WorldWideScience

Sample records for highly charged relativistic

  1. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  2. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2000-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  3. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong Lin [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sampson, Douglas H [PENNSYLVANIA STATE UNIV

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  4. Relativistic light-shift theory of few-electron systems: Heliumlike highly charged ions

    Science.gov (United States)

    Postavaru, O.; Scafes, A. C.

    2017-09-01

    The light-shift theory of many-electron systems in a laser field is described using the projection operators technique. In heavy ions, the electrons are tightly bound by the Coulomb potential of the nucleus, which prohibits ionization even by strong lasers. However, interaction with the monofrequent laser field leads to dynamic shifts of the electronic energy levels, and the process is treated by second-order time-dependent perturbation theory. In order to treat heliumlike systems, one decomposes the corresponding matrix elements into hydrogenlike matrix elements using the independent particle model. We are applying a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the Stark long-wavelength dipole approximation and takes into account nondipole effects of retardation and interaction with the magnetic field components of the laser beam.

  5. A fast numerical integrator for relativistic charged particle tracking

    Science.gov (United States)

    Qiang, Ji

    2017-09-01

    In this paper, we report on a fast second-order numerical integrator to solve the Lorentz force equations of a relativistic charged particle in electromagnetic fields. This numerical integrator shows less numerical error than the popular Boris algorithm in tracking the relativistic particle subject to electric and magnetic space-charge fields and requires less number of operations than another recently proposed relativistic integrator.

  6. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  7. Heat dissipation in relativistic single charged fluids

    Science.gov (United States)

    Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.

    2015-11-01

    When the temperature of a fluid is increased its out of equilibrium behavior is significantly modified. In particular kinetic theory predicts that the heat flux is not solely driven by a temperature gradient but can also be coupled to other thermodynamic vector forces. We explore the nature of heat conduction in a single component charged fluid in special relativity, where the electromagnetic field is introduced as an external force. We obtain an electrothermal effect, similar to the mixture's cross-effect, which is not present in the non-relativistic simple fluid. The general lines of the corresponding calculation will be shown, emphasizing the importance of reference frame invariance and the origin of the extra heat sources, in particular the role of the modified inertia and the difference in fluid's and molecules' proper times. The constitutive equation for the heat flux obtained using Chapman-Enskog's expansion in Marle's approximation will be analyzed together with the corresponding transport coefficients.The impact of this effect in the overall dynamics of the system here considered will be briefly discussed. The authors acknowledge support from CONACyT through grant CB2011/167563.

  8. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  9. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  10. Charged and Electromagnetic Fields from Relativistic Quantum Geometry

    Directory of Open Access Journals (Sweden)

    Marcos R. A. Arcodía

    2016-06-01

    Full Text Available In the recently introduced Relativistic Quantum Geometry (RQG formalism, the possibility was explored that the variation of the tensor metric can be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field θ, in order that the Einstein tensor (and the Einstein equations can be represented on a Weyl-like manifold. In this framework we study jointly the dynamics of electromagnetic fields produced by quantum complex vector fields, which describes charges without charges. We demonstrate that complex fields act as a source of tetra-vector fields which describe an extended Maxwell dynamics.

  11. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    Science.gov (United States)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  12. Where are the charge carriers along a closed circuit? A relativistic description

    Science.gov (United States)

    Fautrat, Sylvain

    2016-03-01

    We present relativistic transformations of charge densities for a closed electric circuit consisting of straight sections of finite length wires. The study of charge carrier movement is made in the rest frame of carriers, and with only basic relativistic kinematics, we follow a group of charge carriers along the different segments of the circuit. From the change in inter-particle distances when moving from one wire segment to another, expressions for the charge densities are deduced. This approach aims to provide a deeper understanding of the relativistic motion of objects around a closed loop.

  13. Relativistic mass and charge of photons in thermal plasmas through electromagnetic field quantization.

    Science.gov (United States)

    Asenjo, Felipe A; Muñoz, Víctor; Valdivia, J Alejandro

    2010-05-01

    An effective photon mass and equivalent photon charge are calculated for plasmas with finite temperature, by using a second covariant quantization of the electromagnetic field, which is based on a nonlinear magnetofluid unification field formalism. Relativistic effects are considered both in the fluid bulk motion and in the thermal motion. The effective relativistic photon mass is found for transverse and longitudinal photons, while the equivalent relativistic photon charge is obtained for purely transverse photons. Both quantum quantities are the relativistic generalization, at finite temperature, of previous results [Mendonça, et al., Phys. Rev. E 62, 2989 (2000)]. The dependence with temperature is studied in both cases.

  14. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  15. Beam test performance of a scintillator-based detector for the charge identification of relativistic ions

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S., E-mail: marrocchesi@pi.infn.it [Department of Physics, University of Siena, Via Roma 56, 53100 Siena (Italy); Adriani, O. [Department of Physics, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (Italy); Akaike, Y. [Department of Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Bagliesi, M.G. [Department of Physics, University of Siena, Via Roma 56, 53100 Siena (Italy); Basti, A. [Department of Physics, University of Pisa and INFN, Largo B.Pontecorvo 3, 56127 Pisa (Italy); Bigongiari, G.; Bonechi, S. [Department of Physics, University of Siena, Via Roma 56, 53100 Siena (Italy); Bongi, M. [Department of Physics, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (Italy); Kim, M.Y. [Department of Physics, University of Siena, Via Roma 56, 53100 Siena (Italy); Lomtadze, T. [Department of Physics, University of Pisa and INFN, Largo B.Pontecorvo 3, 56127 Pisa (Italy); Maestro, P. [Department of Physics, University of Siena, Via Roma 56, 53100 Siena (Italy); Niita, T.; Ozawa, S.; Shimizu, Y.; Torii, S. [Department of Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2011-12-11

    We report on the measurements performed with relativistic ions from Be to Fe, at the Fragment Separator (FRS) of the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt, to test the performance of charge-sensitive detectors that were designed to separate - via multiple dE/dx measurements - fully stripped nuclei of cosmic origin in the experiment CALET. The latter is a space mission by the Japanese Space Agency (JAXA) scheduled to be launched to the International Space Station (ISS) in 2013. The CALET instrument is managed by an international collaboration and it is scheduled to take data for 5 years on the Exposure Facility (JEM-EF) of the Japanese module KIBO on the ISS. The aim of the test was to accurately measure the response of the scintillator to different nuclear species and parametrize the saturation of the scintillation light in order to assess the impact of this effect on the charge resolution of the instrument. - Highlights: Black-Right-Pointing-Pointer Charge identification of relativistic cosmic nuclei. Black-Right-Pointing-Pointer Saturation of scintillation light from ionization by heavy nuclei. Black-Right-Pointing-Pointer Charge resolution with scintillators with high Z ionizing radiation.

  16. On the acceleration of charged particles at relativistic shock fronts

    Science.gov (United States)

    Kirk, J. G.; Schneider, P.

    1987-01-01

    The diffusive acceleration of highly relativistic particles at a shock is reconsidered. Using the same physical assumptions as Blandford and Ostriker (1978), but dropping the restriction to nonrelativistic shock velocities, the authors find approximate solutions of the particle kinetic equation by generalizing the diffusion approximation to higher order terms in the anisotropy of the particle distribution. The general solution of the transport equation on either side of the shock is constructed, which involves the solution of an eigenvalue problem. By matching the two solutions at the shock, the spectral index of the resulting power law is found by taking into account a sufficiently large number of eigenfunctions. Low-order truncation corresponds to the standard diffusion approximation and to a somewhat more general method described by Peacock (1981). In addition to the energy spectrum, the method yields the angular distribution of the particles and its spatial dependence.

  17. Relativistic Klein-Gordon charge effects by information-theoretic measures

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Yanez, R J; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071 Granada (Spain)], E-mail: manzano@ugr.es, E-mail: ryanez@ugr.es, E-mail: dehesa@ugr.es

    2010-02-15

    The charge spreading of the ground and excited states of Klein-Gordon particles moving in a Coulomb potential is quantitatively analysed by means of ordinary moments and the Heisenberg measure as well as by using the most relevant information-theoretic measures of global (Shannon entropic power) and local (Fisher information) types. The dependence of these complementary quantities on the nuclear charge Z and the quantum numbers characterizing the physical states is carefully discussed. The comparison of relativistic Klein-Gordon and non-relativistic Schroedinger values is made. Non-relativistic limits at large principal quantum number n and for small values of Z are also reached.

  18. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  19. Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory

    DEFF Research Database (Denmark)

    Dall'Acqua, Anna; Solovej, Jan Philip

    2010-01-01

    We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....

  20. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  1. TOPICAL REVIEW: Highly charged ions

    Science.gov (United States)

    Gillaspy, J. D.

    2001-10-01

    This paper reviews some of the fundamental properties of highly charged ions, the methods of producing them (with particular emphasis on table-top devices), and their use as a tool for both basic science and applied technology. Topics discussed include: charge dependence and scaling laws along isoelectronic or isonuclear sequences (for wavefunction size or Bohr radius, ionization energy, dipole transition energy, relativistic fine structure, hyperfine structure, Zeeman effect, Stark effect, line intensities, linewidths, strength of parity violation, etc), changes in angular momentum coupling schemes, selection rules, interactions with surfaces, electron-impact ionization, the electron beam ion trap (EBIT), ion accelerators, atomic reference data, cosmic chronometers, laboratory x-ray astrophysics, vacuum polarization, solar flares, ion implantation, ion lithography, ion microprobes (SIMS and x-ray microscope), nuclear fusion diagnostics, nanotechnology, quantum computing, cancer therapy and biotechnology.

  2. Nuclear monopole charge form factor calculation for relativistic models including center-of-mass corrections

    Energy Technology Data Exchange (ETDEWEB)

    Avancini, S.S.; Marinelli, J.R. [Universidade Federal de Santa Catarina Florianopolis, Depto de Fisica - CFM, Florianopolis (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (Brazil)

    2013-06-15

    Relativistic models for finite nuclei contain spurious center-of-mass motion in most applications for the nuclear many-body problem, where the nuclear wave function is taken as a single Slater determinant within a space-fixed frame description. We use the Peierls-Yoccoz projection method, previously developed for relativistic approaches together with a reparametrization of the coupling constants that fits binding energies and charge radius and apply our results to calculate elastic electron scattering monopole charge form factors for light nuclei. (orig.)

  3. Influence of ion effects on a space charge limited field emission flow: from non-relativistic to ultra-relativistic regimes

    Science.gov (United States)

    Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.

    2011-10-01

    Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.

  4. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  5. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-28

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  6. Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    CERN Document Server

    Sá Ben-Hao; Tai, A; Zhou Dai Mei; Sa, Ben-Hao; Tai, An; Zhou, Dai-Mei

    2001-01-01

    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic $p+\\bar p$ experimental data and the PHOBOS and PHENIX $Au+Au$ data at $\\sqrt s_{nn}$=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy $Au+Au$ collisions and for $Pb+Pb$ collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, $$, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of $$ for distinguishing various theoretical models.

  7. Taming Highly Charged Radioisotopes

    Science.gov (United States)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  8. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  9. Inverse square law isothermal property in relativistic charged static distributions

    Science.gov (United States)

    Hansraj, Sudan; Qwabe, Nkululeko

    2017-12-01

    We analyze the impact of the inverse square law fall-off of the energy density in a charged isotropic spherically symmetric fluid. Initially, we impose a linear barotropic equation of state p = αρ but this leads to an intractable differential equation. Next, we consider the neutral isothermal metric of Saslaw et al. [Phys. Rev. D 13, 471 (1996)] in an electric field and the usual inverse square law of energy density and pressure results thus preserving the equation of state. Additionally, we discard a linear equation of state and endeavor to find new classes of solutions with the inverse square law fall-off of density. Certain prescribed forms of the spatial and temporal gravitational forms result in new exact solutions. An interesting result that emerges is that while isothermal fluid spheres are unbounded in the neutral case, this is not so when charge is involved. Indeed it was found that barotropic equations of state exist and hypersurfaces of vanishing pressure exist establishing a boundary in practically all models. One model was studied in depth and found to satisfy other elementary requirements for physical admissibility such as a subluminal sound speed as well as gravitational surface redshifts smaller than 2. Buchdahl [Acta Phys. Pol. B 10, 673 (1965)], Böhmer and Harko [Gen. Relat. Gravit. 39, 757 (2007)] and Andréasson [Commum. Math. Phys. 198, 507 (2009)] mass-radius bounds were also found to be satisfied. Graphical plots utilizing constants selected from the boundary conditions established that the model displayed characteristics consistent with physically viable models.

  10. Silicon nanowire based high brightness, pulsed relativistic electron source

    Directory of Open Access Journals (Sweden)

    Deep Sarkar

    2017-06-01

    Full Text Available We demonstrate that silicon nanowire arrays efficiently emit relativistic electron pulses under irradiation by a high-intensity, femtosecond, and near-infrared laser (∼1018 W/cm2, 25 fs, 800 nm. The nanowire array yields fluxes and charge per bunch that are 40 times higher than those emitted by an optically flat surface, in the energy range of 0.2–0.5 MeV. The flux and charge yields for the nanowires are observed to be directional in nature unlike that for planar silicon. Particle-in-cell simulations establish that such large emission is caused by the enhancement of the local electric fields around a nanowire, which consequently leads to an enhanced absorption of laser energy. We show that the high-intensity contrast (ratio of picosecond pedestal to femtosecond peak of the laser pulse (10−9 is crucial to this large yield. We extend the notion of surface local-field enhancement, normally invoked in low-order nonlinear optical processes like second harmonic generation, optical limiting, etc., to ultrahigh laser intensities. These electron pulses, expectedly femtosecond in duration, have potential application in imaging, material modification, ultrafast dynamics, terahertz generation, and fast ion sources.

  11. Relativistic Thermodynamics: Transverse Momentum Distributions in High-Energy Physics

    CERN Document Server

    Cleymans, J.

    2012-01-01

    Transverse momentum distributions measured by the STAR and PHENIX collaborations at the Relativistic Heavy Ion Collider and by the ALICE, ATLAS and CMS collaborations at the Large Hadron Collider can be considered in the framework of relativistic thermodynamics using the Tsallis distribution. Theoretical issues are clarified concerning the thermodynamic consistency in the case of relativistic high energy quantum distributions. An improved form is proposed for describing the transverse momentum distribution and fits are presented together with estimates of the parameter q and the temperature T.

  12. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...... absorption in matter. No evidence for such particles has been found. This negative result is used to set an upper limit for the ratio of quark yield to that of particles with unit electric charge. For quark masses below 2 GeV/c2 the 90% confidence level upper limits range from 2 × 10−4 to 2.5 × 10...

  13. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  14. New search for relativistic particles with fractional electric charge at the CERN p anti p collider

    Energy Technology Data Exchange (ETDEWEB)

    Banner, M.; Bloch, P.; Loucatos, S.; Mansoulie, B.; Roussarie, A.; Teiger, J.; Zaccone, H. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Borer, K.; Hahn, B.; Haenni, H.

    1985-06-13

    We report on a search for relativistic particles with fractional electric charge at the CERN p anti p collider, using a telescope of scintillation counters to detect particles with anomalously low ionization. Since no event survives the selection criteria, upper limits on quark production are deduced from this experiment. At 90% confidence level and in the limit of very light quarks with charge +-1/3 and +-2/3 they are 2.8 . 10/sup -6/ and 5.6 . 10/sup -5/, respectively, per single charged particle. These limits increase rapidly with increasing quark mass and are nearly two and one order of magnitude better than previously measured by UA2.

  15. Interaction of relativistic short proton bunches with space charge limited electron clouds

    Directory of Open Access Journals (Sweden)

    F. B. Petrov

    2014-12-01

    Full Text Available The electron cloud buildup and interaction with a train of relativistic, short proton bunches is studied using particle-in-cell codes. The simulation models describe the electron generation at the beam pipe wall as well as the wakefield behind the bunches. The study focuses on the space charge limited (saturated cloud profile between the bunches and on the incoherent tune spread caused by the interaction of the saturated cloud with individual bunches. Analytical expressions describing the pinch of a saturated electron cloud are derived and compared to simulation results.

  16. Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Spix, George J.

    2006-01-01

    We propose a simple relativistic derivation of the electric and the magnetic fields generated by an electric point charge moving with constant velocity. Our approach is based on the radar detection of the point space coordinates where the fields are measured. The same equations were previously derived in a relatively complicated way2 based exclusively on general electromagnetic field equations and without making use of retarded potentials or relativistic equations

  17. Search for relativistic particles with fractional electric charge at the CERN anti pp collider

    Energy Technology Data Exchange (ETDEWEB)

    Banner, M.; Bloch, P.; Loucatos, S.; Mansoulie, B.; Roussarie, A.; Teiger, J.; Zaccone, H. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Bonaudi, F.; Borghini, M.; Clark, A.G.

    1983-01-27

    A search for relativistic particles with fractional electric charge has been performed at the CERN anti pp collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (approx.= 40 gr cm/sup -2/) limits this search to particles without strong absorption in matter. No evidence for such particles has been found. This negative result is used to set an upper limit for the ratio of quark yield to that of particles with unit electric charge. For quark masses below 2 GeV/c/sup 2/ the 90% confidence level upper limits range from 2 x 10/sup -4/ to 2.5 x 10/sup -3/ depending on the quark mass and electric change.

  18. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  19. Plethora of relativistic charged spheres: The full spectrum of Guifoyle's static, electrically charged spherical solutions

    Science.gov (United States)

    Lemos, José P. S.; Zanchin, Vilson T.

    2017-05-01

    We show that Guilfoyle's exact solutions of the Einstein-Maxwell equations for spherical symmetric static electrically charged matter with a Reissner-Nordström exterior possess a bewildering plethora of different types of solutions. For the parameter space of the solutions we use two normalized variables, q2/R2 and r0/R , where q is the total electric charge, r0 is the radius of the object, and R is a length representing the square root of the inverse energy density of the matter. The two other parameters, the mass m and the Guilfoyle parameter a , both dependent on q , r0 and R , are analyzed in detail. The full parameter space of solutions q2/R2×r0/R is explored with the corresponding types of solutions being identified and analyzed. The different types of solutions are regular charged stars, including charged dust stars and stars saturating the Buchdahl-Andréasson bound, quasiblack holes, regular charged black holes with a de Sitter core, regular black holes with a core of phantom charged matter, other exotic regular black holes, Schwarzschild stars, Schwarzschild black holes, Kasner spacetimes, pointlike and planar naked singularities, and the Minkowski spacetime. Allowing for q2<0 , in which case it is not possible to interpret q as electric charge, also yields new solutions, some of which are interesting and regular, others are singular. Some of these types of solutions as well as the matter properties have been previously found and studied, here the full spectrum being presented in a unified manner.

  20. Charge asymmetry and relativistic corrections in pure vibrational states of the HD+ ion

    Science.gov (United States)

    Stanke, Monika; Adamowicz, Ludwik

    2014-03-01

    In this work we present very accurate quantum-mechanical calculations of all bound pure vibrational states of the HD+ ion performed without the Born-Oppenheimer (BO) approximation. All three particles forming the system are treated on equal footing. The approach involves separating the center-of-mass motion from the laboratory-frame nonrelativistic Hamiltonian and expending the wave function of each considered state in terms of all-particle explicitly correlated Gaussian functions. The Gaussian exponential parameters are variationally optimized with the aid of the analytical energy gradient calculated with respect to these parameters. For each state the leading relativistic corrections are calculated as expectation values of the corresponding operators with the non-BO wave function of the state. The non-BO approach allows us to directly describe the charge asymmetry in HD+ which is due to the nuclear-mass asymmetry. The effect increases with the vibrational excitation and affects the values of the relativistic corrections. This phenomenon is the focus of the present study.

  1. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  2. Incompressible relativistic spheres: Electrically charged stars, compactness bounds, and quasiblack hole configurations

    CERN Document Server

    Arbañil, José D V; Zanchin, Vilson T

    2014-01-01

    We investigate the properties of relativistic star spheres made of an electrically charged incompressible fluid, generalizing, thus, the Schwarzschild interior solution. The investigation is carried by integrating numerically the hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation, with the hypothesis that the charge distribution is proportional to the energy density. We match the interior to a Reissner-Nordstr\\"om exterior, and study some features of these star spheres such as the total mass $M$, the radius $R$, and the total charge $Q$. We also display the pressure profile. For star spheres made of a perfect fluid there is the Buchdahl bound, $R/M\\geq 9/4$, a compactness bound found from generic principles. For the Schwarzschild interior solution there is also the known compactness limit, the interior Schwarzschild limit where the configurations attain infinite central pressure, given by $R/M=9/4$, yielding an instance where the Buchdahl bound is saturated. We study this li...

  3. Longitudinal space charge effect in slowly converging or diverging relativistic beams

    Directory of Open Access Journals (Sweden)

    Karl L. F. Bane

    2002-10-01

    Full Text Available Beginning with the Green function for a rod beam in a round beam pipe we derive the space charge induced average energy change and rms spread for relativistic beams that are slowly converging or diverging in round beam pipes, a result that tends to be much larger than the 1/γ^{2} dependence for parallel beams. Our results allow for beams with longitudinal-transverse correlation, and for slow variations in beam pipe radius. We calculate, in addition, the space charge component of energy change and spread in a chicane compressor. This component indicates source regions of coherent synchrotron radiation (CSR energy change in systems with compression. We find that this component, at the end of example compressors, approximates the total induced voltage obtained by more detailed CSR calculations. Our results depend on beam pipe radius (although only weakly whereas CSR calculations do not normally include this parameter, suggesting that results of such calculations, for systems with beam pipes, are not complete.

  4. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  5. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    Science.gov (United States)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  6. Relativistic point dynamics general equations, constant proper masses, interactions between electric charges, variable proper masses, collisions

    CERN Document Server

    Arzeliès, Henri

    1972-01-01

    Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int

  7. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  8. A Class of Super Dense Stars Models Using Charged Analogues of Hajj-Boutros Type Relativistic Fluid Solutions

    Science.gov (United States)

    Pant, Neeraj; Pradhan, N.; Murad, Mohammad Hassan

    2014-11-01

    We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect charged fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of Schwarzschild parameter u lying in the range 0 < u < 0.1727 for the maximum value of charge parameter K = 0.08163. The maximum mass of the fluid distribution is calculated by using stellar surface density as ρ b = 4.6888×1014g cm-3. Corresponding to K = 0.08 and u max = 0.1732, the resulting well behaved solution has a maximum mass M = 0.9324 M ⊙ and radius R = 8.00 and by assuming ρ b = 2×1014g cm-3 the solution results a stellar configuration with maximum mass M = 1.43 M ⊙ and radius R b = 12.25 km. The maximum mass is found increasing with increasing K up to 0.08. The well behaved class of relativistic stellar models obtained in this work might has astrophysical significance in the study of internal structure of compact star such as neutron star or self-bound strange quark star like Her X-1.

  9. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    Science.gov (United States)

    Hossen, M. R.; Nahar, L.; Mamun, A. A.

    2014-12-01

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultra-relativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  10. High resolution printing of charge

    Science.gov (United States)

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  11. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING.

    Energy Technology Data Exchange (ETDEWEB)

    POGORELSKY,I.V.; BEN ZVI,I.; HIROSE,T.; KASHIWAGI,S.; YAKIMENKO,V.; KUSCHE,K.; SIDDONS,P.; ET AL

    2001-11-29

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO{sub 2} laser. We observed the record 1.7 x 10{sup 8} x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO{sub 2} laser and 60 MeV electron beam.

  12. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  13. Forming of space charge wave with broad frequency spectrum in helical relativistic two-stream electron beams

    DEFF Research Database (Denmark)

    Lysenko, Alexander V.; Volk, Iurii I.; Serozhko, A.

    2017-01-01

    We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two......-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum...... expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal...

  14. Electron impact ionization of highly charged lithiumlike ions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  15. Relativistic dust accretion of charged particles in Kerr-Newman spacetime

    Science.gov (United States)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus

    2017-09-01

    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.

  16. A family of relativistic charged thin disks with an inner edge

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2009-12-01

    Full Text Available A new family of exact solutions of the Einstein-Maxwell equations for static axially symmetric spacetimes is presented. The metric functions of the solutions are explicitly computed and are simply written in terms of the oblate spheroidal coordinates. The solutions, obtained by applying the Ernst method of complex potentials, describe an infinite family of static charged dust disks with an inner edge. The energy density, pressure and charge density of all the disks of the family are everywhere well behaved, in such a way that the energy-momentum tensor fully agrees with all the energy conditions.

  17. The charge form factor of pseudoscalar mesons in a relativistic constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1994-04-01

    The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.

  18. Photorecombination studies of highly charged tungsten ions at Shanghai EBIT

    Science.gov (United States)

    Tu, B.; Xiao, J.; Yao, K.; Wang, X.; Shen, Y.; Yang, Y.; Lu, D.; Huang, L.; Zhen, C.; Fu, Y.; Wei, B.; Hutton, R.; Zou, Y.

    2017-11-01

    In this paper, we report studies on photorecombination (PR) processes for highly charged W ions. The experiment was performed at Shanghai electron beam ion trap by employing a fast electron beam-energy scanning technique. The KLL dielectronic recombination (DR) resonance strengths for He- up to O-like W ions were determined. The strong interference effect between DR and radiative recombination (RR) was observed and the Fano factor, which measures the interference degree, was determined for the main resonances of ground state He-, Be-, B-, C-, N-, and O-like W ions. In addition, we show experimentally that an autoionizing state can have both Fano and Lorentzian behavior naturally, depending on the processes involved. A fully relativistic configuration interaction method implemented in the flexible atomic code was employed to calculate DR, RR processes and also the inference effect.

  19. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  20. On Relativistic Space Charge Limited Current in Planar, Cylindrical, and Spherical Diodes

    Science.gov (United States)

    2016-07-01

    Phys. Rev., vol . 21, p. 450, 1923. [3] I. Langmuir and K. B. Blodgett, “Currents limited by space charge between coaxial cylinders,” Phys. Rev., vol . 22 ...Andrew Greenwood, et al. Air Force Research Laboratory Department of Nuclear Engineering 3550 Aberdeen Avenue SE Radiological ...Force Resear ch Laboratory 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 Department of Nuclear Engineering and Radiological Sciences

  1. Relativistic Dynamics of a Charged Sphere. Updating the Lorentz-Abraham Model.

    Science.gov (United States)

    Yaghjian, Arthur D.

    "This is a remarkable book. […] A fresh and novel approach to old problems and to their solution." Fritz Rohrlich, Emeritus Professor of Physics, Syracuse University This book takes a fresh, systematic approach to determining the equation of motion for the classical model of the electron introduced by Lorentz more than 100 years ago. The original derivations of Lorentz, Abraham, Poincaré and Schott are modified and generalized for the charged insulator model of the electron to obtain an equation of motion consistent with causal solutions to the Maxwell-Lorentz equations and the equations of special relativity. The solutions to the resulting equation of motion are free of pre-acceleration and runaway behavior. Binding forces and a total stress momentum energy tensor are derived for the charged insulator model. General expressions for synchrotron radiation emerge in a form convenient for determining the motion of the electron. Appendices provide simplified derivations of the self-force and power at arbitrary velocity. In this Second Edition, the method used for eliminating the noncausal pre-acceleration from the equation of motion has been generalized to eliminate pre-deceleration as well. The generalized method is applied to obtain the causal solution to the equation of motion of a charge accelerating in a uniform electric field for a finite time interval. Alternative derivations of the Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation of motion are also given, along with Spohn’s elegant solution of this approximate equation for a charge moving in a uniform magnetic field. The book is a valuable resource for students and researchers in physics, engineering and the history of science.

  2. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields

    OpenAIRE

    Tao, Molei

    2016-01-01

    This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motio...

  3. Charge identification in CR-39 nuclear track detector using relativistic lead ion fragmentation

    CERN Document Server

    Manzoor, S; Rana, M A; Shahzad, M I; Sher, G; Sajid, M; Khan, H A; Giacomelli, G; Giorgini, M; Mandrioli, G; Patrizii, L; Popa, V; Serra, P; Togo, V

    2000-01-01

    Three stacks of plastic CR-39 Nuclear Track Detectors (NTD) were exposed to 158 A GeV /sup 207/Pb ions at the CERN-SPS beam facility. The main purpose of this experiment was the calibration of the CR-39 for the search of atmospheric magnetic monopoles. Different targets (Al, Cu and Pb) were used to produce a large spectrum of charge ions for the purpose of calibration as well as the study of ultrarelativistic lead ion fragmentation. The exposure of each stack was performed at normal incidence with a fluence of about 1500 ion/cm /sup 2/. The total number of lead ions in each spill was about 7.8*10 /sup 4/ and there were eight spills incident on each stack. For the stack with the Cu target, the lengths of etched cones on one face of the CR-39 were measured. From this measurement procedure, a new calibration curve has been generated for the extended charge region 63or=2, and a large dynamical range in counting rates of up to 10/sup 9/ s/sup -1/ due to single particle or current readout, respectively. (2 refs).

  4. Rapidity dependence of charged pion production at relativistic energies using Tsallis statistics

    Energy Technology Data Exchange (ETDEWEB)

    Ristea, Oana; Jipa, Alexandru [University of Bucharest, Faculty of Physics, Bucharest - Magurele (Romania); Ristea, Catalin [University of Bucharest, Faculty of Physics, Bucharest - Magurele (Romania); Institute of Space Science, Bucharest - Magurele (Romania)

    2017-05-15

    Transverse momentum distributions of charged pions produced in Au+Au collisions at 62.4 GeV, 130 GeV, 200 GeV, Cu+Cu and d+Au collisions at 200 GeV, p+p collisions at 62.4 and 200 GeV and Pb+Pb collisions at 17.3 GeV are studied using the Tsallis distribution as a parametrization. The non-extensivity parameter and Tsallis volume increase with energy, while the Tsallis temperature shows a decrease at higher energies. Using BRAHMS p{sub T} spectra obtained in Au+Au collisions at 62.4 GeV and 200 GeV, Tsallis fit parameters are obtained on a very wide rapidity range. Results are compared with p+p and Cu+Cu data and changes of Tsallis parameters with rapidity and energy are investigated. We found that non-extensivity parameter q shows a decrease from midrapidity to forward rapidities for all the studied systems. Tsallis volume, V, increases with the system size from p+p, Cu+Cu to Au+Au, both in central rapidity region and at forward rapidities. The values of temperatures increase with rapidity, but the T/cosh(y) ratio is constant as a function of rapidity. (orig.)

  5. Effective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approach

    Science.gov (United States)

    Bondarenko, S.; Lipatov, L.; Prygarin, A.

    2017-08-01

    We discuss application of formalism of small- x effective action for reggeized gluons (Gribov, Sov. Phys. JETP 26:414, 1968; Lipatov, Nucl. Phys. B 452:369, 1995; Lipatov, Phys. Rep. 286:131, 1997; Lipatov, Subnucl. Ser. 49:131, 2013; Lipatov, Int. J. Mod. Phys. Conf. Ser. 39:1560082, 2015; Lipatov, Int. J. Mod. Phys. A 31(28/29):1645011, 2016; Lipatov, EPJ Web Conf. 125:01010, 2016; Lipatov, Sov. J. Nucl. Phys. 23:338, 1976; Kuraev et al., Sov. Phys. JETP 45:199, 1977; Kuraev et al., Zh Eksp, Teor. Fiz. 72:377, 1977; Balitsky and Lipatov, Sov. J. Nucl. Phys. 28:822, 1978; Balitsky and Lipatov, Yad. Fiz. 28:1597 1978), for the calculation of classical gluon field of relativistic color charge, similarly to that done in CGC approach of McLerran and Venugopalan, Phys. Rev. D 49:2233 (1994), Jalilian-Marian et al., Phys. Rev. D 55:5414 (1997), Jalilian-Marian et al., Nucl. Phys. B 504:415 (1997), Jalilian-Marian et al., Phys. Rev. D 59:014014 (1998), Jalilian-Marian et al., Phys. Rev. D 59:014015 (1998), Iancu et al., Nucl. Phys. A 692:583 (2001), Iancu et al., Phys. Lett. B 510:133 (2001), Ferreiro et al., Nucl. Phys. A 703:489 (2002). The equations of motion with the reggeon fields are solved in LO and NLO approximations and new solutions are found. The results are compared to the calculations performed in the CGC framework and it is demonstrated that the LO CGC results for the classical field are reproduced in our calculations. Possible applications of the NLO solution in the effective action and CGC frameworks are discussed as well.

  6. Effective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approach

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S.; Prygarin, A. [Ariel University, Physics Department, Ariel (Israel); Lipatov, L. [St. Petersburg Nuclear Physics Institute, Saint Petersburg (Russian Federation); Hamburg University, II Institute of Theoretical Physics, Hamburg (Germany)

    2017-08-15

    We discuss application of formalism of small-x effective action for reggeized gluons (Gribov, Sov. Phys. JETP 26:414, 1968; Lipatov, Nucl. Phys. B 452:369, 1995; Lipatov, Phys. Rep. 286:131, 1997; Lipatov, Subnucl. Ser. 49:131, 2013; Lipatov, Int. J. Mod. Phys. Conf. Ser. 39:1560082, 2015; Lipatov, Int. J. Mod. Phys. A 31(28/29):1645011, 2016; Lipatov, EPJ Web Conf. 125:01010, 2016; Lipatov, Sov. J. Nucl. Phys. 23:338, 1976; Kuraev et al., Sov. Phys. JETP 45:199, 1977; Kuraev et al., Zh Eksp, Teor. Fiz. 72:377, 1977; Balitsky and Lipatov, Sov. J. Nucl. Phys. 28:822, 1978; Balitsky and Lipatov, Yad. Fiz. 28:1597 1978), for the calculation of classical gluon field of relativistic color charge, similarly to that done in CGC approach of McLerran and Venugopalan, Phys. Rev. D 49:2233 (1994), Jalilian-Marian et al., Phys. Rev. D 55:5414 (1997), Jalilian-Marian et al., Nucl. Phys. B 504:415 (1997), Jalilian-Marian et al., Phys. Rev. D 59:014014 (1998), Jalilian-Marian et al., Phys. Rev. D 59:014015 (1998), Iancu et al., Nucl. Phys. A 692:583 (2001), Iancu et al., Phys. Lett. B 510:133 (2001), Ferreiro et al., Nucl. Phys. A 703:489 (2002). The equations of motion with the reggeon fields are solved in LO and NLO approximations and new solutions are found. The results are compared to the calculations performed in the CGC framework and it is demonstrated that the LO CGC results for the classical field are reproduced in our calculations. Possible applications of the NLO solution in the effective action and CGC frameworks are discussed as well. (orig.)

  7. Charging of highly resistive granular metal films

    Science.gov (United States)

    Orihuela, M. F.; Ortuño, M.; Somoza, A. M.; Colchero, J.; Palacios-Lidón, E.; Grenet, T.; Delahaye, J.

    2017-05-01

    We have used the scanning Kelvin probe microscopy technique to monitor the charging process of highly resistive granular thin films. The sample is connected to two leads and is separated by an insulator layer from a gate electrode. When a gate voltage is applied, charges enter from the leads and rearrange across the sample. We find very slow processes with characteristic charging times exponentially distributed over a wide range of values, resulting in a logarithmic relaxation to equilibrium. After the gate voltage has been switched off, the system again relaxes logarithmically slowly to the new equilibrium. The results cannot be explained with diffusion models, but most of them can be understood with a hopping percolation model, in which the localization length is shorter than the typical site separation. The technique is very promising for the study of slow phenomena in highly resistive systems and will be able to estimate the conductance of these systems when direct macroscopic measurement techniques are not sensitive enough.

  8. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  9. Highly charged Arq+ ions interacting with metals

    Science.gov (United States)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  10. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  11. A new relativistic hydrodynamics code for high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Akamatsu, Yukinao [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Osaka University, Department of Physics, Toyonaka (Japan); Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)

    2016-10-15

    We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under the existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, the Landau-Khalatnikov solution, and propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions. We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates. (orig.)

  12. Collective Longitudinal Polarization in Relativistic Heavy-Ion Collisions at Very High Energy

    Science.gov (United States)

    Becattini, F.; Karpenko, Iu.

    2018-01-01

    We study the polarization of particles in relativistic heavy-ion collisions at very high energy along the beam direction within a relativistic hydrodynamic framework. We show that this component of the polarization decreases much slower with center-of-mass energy compared to the transverse component, even in the ideal longitudinal boost-invariant scenario with nonfluctuating initial state, and that it can be measured by taking advantage of its quadrupole structure in the transverse momentum plane. In the ideal longitudinal boost-invariant scenario, the polarization is proportional to the gradient of temperature at the hadronization and its measurement can provide important information about the cooling rate of the quark-gluon plasma around the critical temperature.

  13. A relativistic gravity train

    Science.gov (United States)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  14. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe.

    Science.gov (United States)

    Zhang, C J; Hua, J F; Xu, X L; Li, F; Pai, C-H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

  15. Capturing relativistic wake eld structures in plasmas using ultrashort high-energy electrons as a probe

    CERN Document Server

    Zhang, C J; Xu, X L; Li, F; Pai, C -H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime...

  16. High-LET charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. (Lawrence Berkeley Lab., CA (United States). Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  17. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super ... The energy dependence of the charged particle density dNch/dη, normalized to the num- ..... meson both in the dropping mass and the collision broadening scenarios, is almost as high at RHIC as at ...

  18. Relativistic methods for chemists

    CERN Document Server

    Barysz, Maria

    2010-01-01

    "Relativistic Methods for Chemists", written by a highly qualified team of authors, is targeted at both experimentalists and theoreticians interested in the area of relativistic effects in atomic and molecular systems and processes and in their consequences for the interpretation of the heavy element's chemistry. The theoretical part of the book focuses on the relativistic methods for molecular calculations discussing relativistic two-component theory, density functional theory, pseudopotentials and correlations. The experimentally oriented chapters describe the use of relativistic methods in different applications focusing on the design of new materials based on heavy element compounds, the role of the spin-orbit coupling in photochemistry and photobiology, and chirality and its relations to relativistic description of matter and radiation. This book is written at an intermediate level in order to appeal to a broader audience than just experts working in the field of relativistic theory.

  19. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  20. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    Science.gov (United States)

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  1. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  2. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  3. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  4. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, 11 Acad. Lavrentyev Ave, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090 (Russian Federation); Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Acad. Lavrentyev Ave, Novosibirsk, 630090 (Russian Federation); Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073 (Russian Federation)

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  5. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

    Science.gov (United States)

    Sudar, N.; Musumeci, P.; Duris, J.; Gadjev, I.; Polyanskiy, M.; Pogorelsky, I.; Fedurin, M.; Swinson, C.; Kusche, K.; Babzien, M.; Gover, A.

    2016-10-01

    We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  6. Half-life measurements for neutral and highly-charged {alpha}-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Farinon, Fabio [GSI, Darmstadt (Germany); Justus-Liebig Universitaet, Giessen (Germany); Collaboration: E073-Collaboration

    2012-07-01

    The influence of the bound electron cloud on the {alpha}-decay constant {lambda} has been discussed theoretically since the late 50s. Tiny changes in Q-values and {alpha}-decay half-lives of fully stripped ions are expected and can provide information on the electron screening energy, thereby deducing reliable reaction rates in stellar environments. Recently, the measurements of {alpha}-decay half-lives are feasible also for highly-charged radioactive nuclides. Using a {sup 238}U beam at relativistic energies at the present FRS-ESR facility at GSI it is possible to produce, efficiently separate and store highly charged {alpha}-emitters. {sup 213}Fr{sup 86+} have been investigated by using the Schottky Mass Spectrometry technique. In order to establish a solid reference data set, lifetime measurements of the corresponding neutral atoms have been performed directly at the FRS by implanting the separated ions into an active silicon stopper. These results are reported.

  7. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    CERN Document Server

    Shah, Chintan; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; López-Urrutia, José R Crespo; Tashenov, Stanislav

    2016-01-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam energy adjusted to recombination resonances in order to produce $K\\alpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  8. Relativistic Electron Acceleration by Surface Plasma Waves in the High Intensity Regime

    Science.gov (United States)

    Zhu, Xiaoming; Cerchez, Mirela; Swantusch, Marco; Aurand, Bastian; Prasad, Rajendra; Andreev, Alexander; Willi, Oswald

    2017-10-01

    High field plasmonics is one of the new research fields which has synergetically benefited from the advances in laser technology. The availability of radiation fields of intensities exceeding 1018 W/cm2 brought plasmonics into a new regime where relativistic and nonlinear effects start to dominate the dynamics of the surface plasma waves (SPWs). Moreover, surface plasma waves are a very efficient route to transfer the laser energy to the secondary sources including laser driven particle and radiation beams and to control and optimize the physical properties of these sources. We present here experimental evidence of a novel regime of the SPWs excitation by ultra-high intensity laser field (I>1020 W/cm2) on grating targets and its effect on high energy surface electron acceleration. The peak of the electron emission was detected at a laser incidence angle of 45°. The results indicate new conditions for resonant excitation of SPWs since in the limit of the linear regime (moderate intensities of 1019 W/cm2 and step preplasma profile), the resonance angle is predicted at 30°. 2D PIC simulations and a novel analytical model confirm the experimental data and reveal that, at laser intensities above 1020W/cm2, nonlinearities induced by the preplasma condition and relativistic effects change the SPWs resonance.

  9. HIGH-ENERGY NEUTRINO AND GAMMA-RAY TRANSIENTS FROM TRANS-RELATIVISTIC SUPERNOVA SHOCK BREAKOUTS

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi; Gao, Shan; Meszaros, Peter [Center for Particle and Gravitational Astrophysics, Department of Astronomy and Astrophysics, Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Murase, Kohta; Horiuchi, Shunsaku, E-mail: kzk15@psu.edu [CCAPP and Department of Physics, Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210 (United States)

    2013-05-20

    Trans-relativistic shocks that accompany some supernovae (SNe) produce X-ray burst emissions as they break out in the dense circumstellar medium around the progenitors. This phenomenon is sometimes associated with peculiar low-luminosity gamma-ray bursts (LL GRBs). Here, we investigate the high-energy neutrino and gamma-ray counterparts of such a class of SNe. Just beyond the shock breakout radius, particle acceleration in the collisionless shock starts to operate in the presence of breakout photons. We show that protons may be accelerated to sufficiently high energies and produce high-energy neutrinos and gamma rays via the photomeson interaction. These neutrinos and gamma rays may be detectable from {approx}< 10 Mpc away by IceCube/KM3Net as multi-TeV transients almost simultaneously with the X-ray breakout, and even from {approx}< 100 Mpc away with follow-up observations by the Cherenkov Telescope Array using a wide-field sky monitor like Swift as a trigger. A statistical technique using a stacking approach could also be possible for the detection, with the aid of the SN optical/infrared counterparts. Such multi-messenger observations offer the possibility to probe the transition of trans-relativistic shocks from radiation-mediated to collisionless ones, and would also constrain the mechanisms of particle acceleration and emission in LL GRBs.

  10. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  11. Relativistic magnetohydrodynamics

    Science.gov (United States)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  12. Charging-discharging system with high power factor, high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Joe, Kee Yeon; Byun, Young Bok; Koo, Heun Hoi [Korea Electrotechnology Research Institute (Korea, Republic of)

    1995-07-01

    This paper presents equipment for charging and discharging with high power factor and high efficiency. This equipment is consisted of 3{Phi} SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor charging-discharging System. (author). 7 refs., 14 figs., 1 tab.

  13. Radioactive decays of highly-charged ions

    Directory of Open Access Journals (Sweden)

    Gao B. S.

    2015-01-01

    Full Text Available Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state β-decay and its time-mirrored counterpart, orbital electron-capture.

  14. Precision mass measurements of highly charged ions

    Science.gov (United States)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  15. Speed Kills: Highly Relativistic Spaceflight Would be Fatal for People and Instruments

    Science.gov (United States)

    Edelstein, William; Edelstein, Arthur

    2010-02-01

    Stories, books and movies about space travel often describe journeys at near-light velocities. Such high speed is desirable, as the resulting relativistic time dilation reduces the duration of the trip, at least for the travelers, so that they can cover interstellar distances in a reasonable amount of time (by their own clocks) and live long enough to reach their destination. The relativistic rocket equation shows the enormous difficulty of achieving such velocities. As spaceship velocities approach the speed of light, interstellar hydrogen, although only present on average at a density of about 2 atoms per cm^3, impinges on the spacecraft and turns into intense radiation (Purcell, 1963) that would quickly kill passengers and destroy instrumentation. In addition, the energy loss of ionizing radiation passing through the ship's hull represents an increasing heat load which necessitates large expenditures of energy to cool the ship. Preventing this irradiation by the use of material or electromagnetic shields is a daunting and, as far as we know, unsolvable problem. The presence of interstellar hydrogen is yet another formidable obstacle to interstellar travel. )

  16. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  17. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    Science.gov (United States)

    Dubus, G.; Lamberts, A.; Fromang, S.

    2015-09-01

    Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org

  18. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy. Copyright © 2015, American Association for the Advancement of Science.

  19. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  20. Successive Charge Transitions of Unusually High-Valence Fe3.5+ : Charge Disproportionation and Intermetallic Charge Transfer.

    Science.gov (United States)

    Hosaka, Yoshiteru; Denis Romero, Fabio; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi

    2017-04-03

    A perovskite-structure oxide containing unusually high-valence Fe3.5+ was obtained by high-pressure synthesis. Instability of the Fe3.5+ in Ca0.5 Bi0.5 FeO3 is relieved first by charge disproportionation at 250 K and then by intermetallic charge transfer between A-site Bi and B-site Fe at 200 K. These previously unobserved successive charge transitions are due to competing intermetallic and disproportionation charge instabilities. Both transitions change magnetic and structural properties significantly, indicating strong coupling of charge, spin, and lattice in the present system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Amplification of a high-frequency electromagnetic wave by a relativistic plasma

    Science.gov (United States)

    Yoon, Peter H.

    1990-01-01

    The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.

  2. High-current relativistic klystron amplifier development for microsecond pulse lengths

    Science.gov (United States)

    Fazio, M. V.; Carlsten, B. E.; Faehl, R. J.; Kwan, T. J.; Rickel, D. G.; Stringfield, R. M.; Tallerico, P. J.

    1991-05-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To date the device has yielded an RF modulated electron beam power of 350 MW, with up to 50 MW coupled into the waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input RF drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modelling are presented.

  3. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    Science.gov (United States)

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  4. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, C. E. [Univ. of Wisconsin, Madison, WI (United States)

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction.

  5. High temperature charge amplifier for geothermal applications

    Science.gov (United States)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  6. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  7. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  8. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  9. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    Science.gov (United States)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  10. Ionisation from the 3s sub-level of highly charged ions

    Science.gov (United States)

    Golden, L. B.; Sampson, D. H.; Omidvar, K.

    1978-01-01

    Scaled electron-impact cross sections are calculated for ionization from the 3s sublevel of hydrogenic ions with Z equal infinity by use of the Born exchange or the Coulomb-Born Oppenheimer approximation (which is exact, apart from relativistic corrections, in this limit). The results are fitted to an analytic expression which goes into the correct Bethe approximation result at high energies and which can readily be integrated over a Maxwellian electron velocity distribution to obtain collision rates. These results permit calculation of the approximate cross section and collision rate for ionization from the 3s sublevel of any highly charged ion with Z/N larger than approximately 2. Results obtained by the described procedure for Fe-14(+) and Fe-15(+) are compared with results obtained by other procedures.

  11. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  12. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  13. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  14. Cosmic rays and diffusive shock acceleration at highly oblique non-relativistic shocks

    Energy Technology Data Exchange (ETDEWEB)

    Meli, Athina [Max Planck Institute fuer Radioastronomie, Bonn (Germany); Biermann, L. Peter [Max Planck Institute fuer Radioastronomie, Bonn (Germany); Department of Physcis and Astronomy, University of Bonn (Germany)

    2006-01-15

    Our purpose is to evaluate the rate of the maximum energy and the acceleration rate that cosmic rays acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites, where highly oblique shocks exist. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field at the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the acceleration rate. We find (and justify previous analytical work - Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the cosmic rays to be obtained. An explanation of the cosmic ray spectrum at high energies, between 10{sup 15}eV and about 10{sup 18}eV is claimed, as we estimate the upper limit of energy that cosmic rays could gain in plausible astrophysical regimes; interpreted by the scenario of cosmic rays which are injected by three different kind of sources (a) supernovae which explode into the interstellar medium (b) Red Supergiants, and (c) Wolf-Rayet stars, where the two latter explode into their pre-supernovae winds.

  15. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  16. Suppression of the high-p(T) charged-hadron R(AA) at the LHC.

    Science.gov (United States)

    Majumder, A; Shen, C

    2012-11-16

    We present a parameter-free postdiction of the high-p(T) charged-hadron nuclear modification factor (R(AA)) in two centralities, measured by the CMS Collaboration in Pb-Pb collisions at the LHC. The evolution of the bulk medium is modeled using viscous fluid dynamics, with parameters adjusted to describe the soft hadron yields and elliptic flow. Assuming the dominance of radiative energy loss, we compute the medium modification of the R(AA) using a perturbative QCD-based formalism, the higher twist scheme. The transverse momentum diffusion coefficient q[over ^] is assumed to scale with the entropy density and is normalized by fitting the R(AA) in the most central Au-Au collisions at the Relativistic Heavy-Ion Collider. This setup is validated in noncentral Au-Au collisions at the Relativistic Heavy-Ion Collider and then extrapolated to Pb-Pb collisions at the LHC, keeping the relation between q[over ^] and entropy density unchanged. We obtain a satisfactory description of the CMS R(AA) over the p(T) range from 10 to 100 GeV.

  17. HITRAP - a facility for experiments on heavy highly charged ions and on antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Andjelkovic, Z; Barth, W; Brantjes, N P M; Braeuning-Demian, A; Dahl, L; Herfurth, F; Kester, O; Kluge, H J; Koszudowski, S; Kozhuharov, C; Maero, G; Noertershaeuser, W [GSI, Darmstadt (Germany); Birkl, G [Technische Universitaet Darmstadt (Germany); Blank, I; Goetz, S [Universitaet Freiburg (Germany); Blaum, K [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Bodewits, E; Hoekstra, R [KVI Groningen (Netherlands); Church, D [Texas AM University, Texas (United States); Pfister, J, E-mail: w.quint@gsi.d [Universitaet Frankfurt (Germany)

    2009-11-01

    HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has been demonstrated and studied in detail. The commissioning of the RFQ structure and the cooler trap is ongoing.

  18. Charge transfer and relativistic effects in the low-lying electronic states of CuCl, CuBr and CuI

    NARCIS (Netherlands)

    Sousa, C; de Jong, W.A.; Broer, R.; Nieuwpoort, WC

    1997-01-01

    The spectral transitions and the character of the low-lying excited states of the copper halides, CuX (X = Cl, Br, I) are studied by means of two different relativistic computational approaches. One is based on the CASSCF/CASPT2 approach with operators accounting for scalar relativistic effects

  19. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    Science.gov (United States)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-08-01

    collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.

  20. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)

    2016-08-01

    always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.

  1. Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    Science.gov (United States)

    Rocca, J. J.; Purvis, M. A.; Shlyaptsev, V. N.; Hollinger, R. C.; Bargsten, C.; Pukhov, A.; Keiss, D.; Townsend, A.; Prieto, A.; Wang, Y.; Yin, L.; Wang, S.; Luther, B.; Woolston, M.

    2013-10-01

    Long-lived plasmas that are simultaneously dense and hot (multi-keV) have been created by spherical compression with the world's largest lasers, and by supersonic heating of volumes with densities on the order of Nec using multi-kJ lasers pulses. We demonstrate volumetric heating of near-solid density plasmas to keV temperatures using ultra-high contrast λ = 400 nm femtosecond laser pulses of only 0.5 J energy to irradiate arrays of vertically aligned nanowires with 12% average solid density. X-ray spectra show that irradiation of Ni and Au nanowires arrays with relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. He- α line emission greatly exceeds that of the Ni K α line. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. The increased hydrodynamic-to-radiative lifetime ratio is responsible for a great increase in the x-ray emission. Work supported by Defense Threat Reduction Agency grant HDTRA-1-10-1-0079 and by the HEDLP program of the Office of Science of the U.S Department of Energy. Equipment developed under NSF grant MRI-ARRA 09-561. A.P was supported by DFG-funded project TR18.

  2. High-Order Fully General-Relativistic Hydrodynamics: new Approaches and Tests

    CERN Document Server

    Radice, David; Galeazzi, Filippo

    2013-01-01

    We present a new approach for achieving high-order convergence in fully general-relativistic hydrodynamic simulations. The approach is implemented in WhiskyTHC, a new code that makes use of state-of-the-art numerical schemes and was key in achieving, for the first time, higher than second-order convergence in the calculation of the gravitational radiation from inspiraling binary neutron stars Radice et al. (2013). Here, we give a detailed description of the algorithms employed and present results obtained for a series of classical tests involving isolated neutron stars. In addition, using the gravitational-wave emission from the late inspiral and merger of binary neutron stars, we make a detailed comparison between the results obtained with the new code and those obtained when using standard second-order schemes commonly employed for matter simulations in numerical relativity. We find that even at moderate resolutions and for binaries with large compactness, the phase accuracy is improved by a factor 50 or mo...

  3. Cherenkov and parametric (quasi-Cherenkov) radiation from relativistic charged particles moving in crystals formed by metallic wires

    CERN Document Server

    Baryshevsky, Vladimir

    2016-01-01

    Until recently, the interaction of electromagnetic waves with crystals built from parallel metallic wires (wire media) was analyzed in the approximation of isotropic scattering of the electromagnetic wave by a single wire. However, if the wires are thick (kR~1), electromagnetic wave scattering by a wire is anisotropic, i.e., the scattering amplitude depends on the scattering angle. In this work, we derive the equations that describe diffraction of electromagnetic waves and spontaneous emission of charged particles in wire media, and take into account the angular dependence of scattering amplitude. Numerical solutions of these equations show that the radiation intensity increases as the wire radius is increased and achieves its maximal value in the range kR~1. The case when the condition kR~1 is fulfilled in the THz frequency range is considered in detail. The calculations show that the instantaneous power of Cherenkov and parametric (quasi-Cherenkov) radiations from electron bunches in the crystal can be tens...

  4. Laser focus accelerator by relativistic self-focusing and high electric fields in double layers of nonlinear force produced cavitons

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J.; Eliezer, S.; Farley, F.J.M.; Goldsworthy, M.P.; Green, F.; Hora, H.; Kelly, J.C.; Lalousis, P.; Luther-Davies, B.; Stening, R.J.

    1985-07-15

    The laser focus accelerator with relativistic self-focusing for achieving Z-separated heavy ions of energies beyond 10 GeV was studied experimentally, in detailed numerical work and estimations on intense muon sources, heavy nuclear collisions and generation of new isotopes are on the way. The recently detected inverted double layers in the nonlinear (ponderomotive) force produced cavitons with 10/sup 9/ V/cm nearly static field can be used for electron acceleration. An upgraded present days Antares system with 20 phase-optimized steps should arrive at TeV electrons. The spontaneous high magnetic fields should produce highly directed non-Z-separated ion bunches where the E x B mechanism of Forslund and Brackbill with thermally created electric fields can be improved drastically by nonlinear force generated fields. Further studies were on acceleration by relativistic Doppler shift and by the transverse free electron laser.

  5. Relativistic coupled-cluster and density-functional studies of argon at high pressure

    Science.gov (United States)

    Schwerdtfeger, Peter; Steenbergen, Krista G.; Pahl, Elke

    2017-06-01

    The equation of state P (V ,T ) for solid argon is determined by the calculation of accurate static and vibrational terms in the free energy. The static component comes from a quantum theoretical many-body expansion summing over all energetic contributions from two-, three-, and four-body fragments treated with relativistic coupled cluster theory, while the lattice vibrations are described at an anharmonic level including two- and three-body forces as well as temperature effects. The dynamic part is calculated within the Debye and Einstein approximation, as well as by a more accurate phonon treatment where the vibrational motions in the lattice are coupled. Our results are in good agreement with room-temperature high-pressure experimental data up to ˜20 GPa. In the 20-100 GPa pressure range, however, we see considerable deviations between experiment and theory, perhaps indicating missing four-body contributions (beyond the quadruple dipole terms included here), missing five and higher-body effects, and the need to go beyond the coupled cluster singles-doubles with perturbative triples treatment in such higher-body forces. This contrasts with the results for solid neon, where excellent agreement has been achieved taking only two- and three-body forces into account [P. Schwerdtfeger and A. Hermann, Phys. Rev. B 80, 064106 (2009), 10.1103/PhysRevB.80.064106]. We demonstrate that the phase transition from fcc to hcp cannot account for the large discrepancies observed. Density functional calculations give very mixed results in the high-pressure region, but some functionals such as optB88-vdW (proposed by Lundqvist and co-workers) describe the many-body forces in argon reasonably well over the range of pressures investigated. Theoretical investigations of the heavier rare gas solids reaching experimental accuracy in the high-pressure regime therefore remain a significant challenge.

  6. Tailoring the pulse shape to efficiently populate atomic electron metastable states in a relativistically intense high-frequency laser field

    Science.gov (United States)

    Emelin, M. Yu.; Smirnov, L. A.; Ryabikin, M. Yu.

    2017-10-01

    The results of both quantum-mechanical numerical calculations beyond the electric dipole approximation and relativistic classical Monte Carlo simulations are presented for a ground-state hydrogen atom exposed to a high-frequency circularly polarized laser field in a wide intensity range. The persistence of the light-induced metastable bound states well into the relativistic regime of laser-atom interaction is demonstrated. The feasibility of high-efficiency electron trapping into these metastable states is examined in the frame of a simple two-stage scenario for a laser field turning on. The optimal parameters of the laser pulse front are found, which provide an optimal balance between the needs to achieve as quickly as possible the higher intensities, for which the decay rate of the metastable states is lower, and to ensure sufficient adiabaticity of the field turning on to avoid the unwanted "shake-off" processes. As a result, more than 60% probability of electron trapping into the metastable states in a relativistically intense high-frequency laser field is demonstrated.

  7. Prompt Injections of Highly Relativistic Electrons Induced by Interplanetary Shocks: A Statistical Study of Van Allen Probes Observations

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Jian, L. K,; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.

    2016-01-01

    We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

  8. Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Jian, L. K.; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.

    2016-12-01

    We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

  9. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  10. Highly charged ion based time of flight emission microscope

    Science.gov (United States)

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  11. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  12. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)]. E-mail: a.gumberidze@gsi.de; Bosch, F. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Braeuning-Demian, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Hagmann, S. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Kuehl, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Liesen, D. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Stoehlker, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)

    2005-05-01

    The proposed new international accelerator Facility for Antiproton and Ion Research (FAIR) will open up exciting and far-reaching perspectives for atomic physics research in the realm of highly-charged heavy ions: it will provide the highest intensities of relativistic beams of both stable and unstable heavy nuclei. In combination with the strongest possible electromagnetic fields produced by the nuclear charge of the heaviest nuclei, this will allow to extend atomic spectroscopy up to the virtual limits of atomic matter. Based on the experience and results already achieved at the experimental storage ring (ESR), a substantial progress in atomic physics research has to be expected in this domain, due to a tremendous improvement of intensity, energy and production yield of both stable and unstable nuclei.

  13. Energy loss of a high-charge bunched electron beam in plasma: Analysis

    Directory of Open Access Journals (Sweden)

    N. Barov

    2004-06-01

    Full Text Available There has been much recent experimental and theoretical interest in the blowout regime of plasma wakefield acceleration, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. A quantitative understanding of the blowout regime including all these effects has, to this point, been available only through detailed simulations. This paper represents an initial step towards an analytical theory of this regime, in which the mechanism of energy loss in the drive beam is investigated. We find, first from examination of electromagnetic particle-in-cell simulations, and then through analytical investigations, that under short pulse, high-charge conditions, the plasma electrons receive a strong initial push along the direction of beam motion. This nonlinear effect is unanticipated by linear theory, where the return current motion is in the opposite direction. In the limit of short pulses (the δ-function limit, the beam energy loss is shown to be linear in charge even with a nonlinear plasma response dominated by relativistic, electromagnetic effects, despite the fact that the initial plasma electron response changes qualitatively from the familiar electrostatic, nonrelativistic limit.

  14. A High-Order Relativistic Two-Fluid Electrodynamic Scheme with Consistent Reconstruction of Electromagnetic Fields and a Multidimensional Riemann Solver for Electromagnetism

    CERN Document Server

    Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho

    2016-01-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...

  15. Identification of high momentum charged hadrons in ALICE:. detector performance and perspectives

    Science.gov (United States)

    Volpe, G.

    2010-04-01

    The results obtained by the RHIC experiments at BNL from high energy nucleus-nucleus collisions have shown the importance of identifying high momentum charged hadrons. At LHC, the relevant range for particle identification is expected to be wider than at RHIC, i.e. well above 10 GeV/c. In the ALICE experiment, dedicated to the study of heavy-ion collisions at LHC energies, particles with momentum below 10 GeV/c are identified by high-quality particle identification detectors based on the measurements of ionization energy losses in the Time-Projection-Chamber (TPC), Time-of- Flight (TOF) and Cherenkov radiation (HMPID). At higher momenta, statistical identification of hadrons is envisaged by measuring the ionization energy loss in the relativistic rise momentum region of the TPC. However, since the topology of the jets having a baryon leading particle may be different than those with a meson leading particle, it will also be necessary to identify track by track the highest momentum particles. For this reason, a proposal for an up-grade of the high momentum particle identification is being considered. Such an upgrade would consist of a ring imaging Cherenkov detector, called VHMPID (Very High Momentum Particle IDentification), exploiting the focusing properties of a segmented spherical mirror and using C4F10 as Cherenkov radiator. Characteristics and expected performance of the ALICE high momentum identification systems and of the VHMPID will be reviewed in this paper.

  16. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  17. Highly charged ion injector in the terminal of tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M; Asozu, T; Nakanoya, T; Kutsukake, K; Hanashima, S; Takeuchi, S, E-mail: matsuda.makoto@jaea.go.j [Japan Atomic Energy Agency, Tokai Research and Development Center, Nuclear Science Research Institute, Tandem Accelerator Section 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195 (Japan)

    2009-04-01

    A highly charged heavy ion injector using an all permanent magnet type electron cyclotron resonance ion source (ECRIS) has been constructed in the high voltage terminal of the vertical and folded type 20UR Pelletron tandem accelerator at Japan Atomic Energy Agency at Tokai. The new in-terminal injector made it possible to accelerate highly charged heavy ions which have not been obtained from the tandem accelerator. Beam energy and beam intensity have been remarkably increased and the noble gas ion beams have become available.

  18. Cryogenic linear Paul trap for cold highly charged ion experiments

    DEFF Research Database (Denmark)

    Schwarz, Maria; Versolato, Oscar; Windberger, Alexander

    2012-01-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H2 partial pressure of about 10−15 mbar...

  19. Cold highly charged ions in a cryogenic Paul trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Windberger, A.

    2013-01-01

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir...

  20. Diffracted transition radiation of an ultra-high-energy relativistic electron beam in a thin single-crystal wafer

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State University (Russian Federation)

    2016-10-15

    We consider diffracted transition radiation (DTR) emitted by high-energy relativistic electrons crossing a thin single-crystal wafer in the Laue geometry. The expression describing the DTR angular density is derived for the case where the electron path length in the target is much smaller than the X-ray wave extinction length in the crystal and the kinematic nature of this expression is demonstrated. It is shown that the DTR angular density in a thin target is proportional to the target thickness.

  1. Progress Towards Charge Exchange Cross-Sections with Highly Charged Ions: Computation and Experiment

    Science.gov (United States)

    Bromley, Steven James

    This thesis is a summary of the computational and experimental progress towards measuring the charge exchange cross-section of highly charged ions (HCIs). Electronic structure calculations were carried out for the molecular ion LiHe+ using NWChem on the Clemson University Palmetto Cluster. Potential energy surfaces for 40 electronic states are presented. The electronic configurations of the six lowest states have been identified by their energies in the separate atom limit, which deviate from experimental values by at most 1.2%. Future work will investigate higher charge states of LiHe and the interaction between low-Z HCIs and neutral gases. Two experimental apparatus were designed and constructed for experiments with HCIs. To aid in the detection of trapped HCIs, a time-of-flight mass spectrometer for radial extraction from Paul traps was constructed and tested using a Mg + source. Lastly, a gas cell was designed and constructed for charge exchange cross-section measurements using HCIs produced in the Clemson University Electron Beam Ion Trap (CUEBIT).

  2. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  3. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  4. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  5. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  6. High performance imaging of relativistic soft X-ray harmonics by sub-micron resolution LiF film detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, Tatiana; Faenov, Anatoly [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Pirozhkov, Alexander; Esirkepov, Timur; Koga, James; Nakamura, Tatsufumi; Bulanov, Sergei; Fukuda, Yuji; Hayashi, Yukio; Kotaki, Hideyuki; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Astapov, Artem; Pikuz, Sergey Jr. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Klushin, Georgy [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Nagorskiy, Nikolai; Magnitskiy, Sergei [International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka (Japan)

    2012-12-15

    The spectrum variation and the coherent properties of the high-order harmonics (HOH) generated by an oscillating electron spikes formed at the joint of the boundaries of a cavity and a bow wave, which are created by a relativistically self-focusing laser in underdense gas jet plasma, are investigated. This new mechanism for HOH generation efficiently produces emission from ultraviolet up to the XUV ''water window'' spectral range. To characterize such source in the wide spectral range a diffraction imaging technique is applied. High spatial resolution EUV and soft X-ray LiF film detector have been used for precise measurements of diffraction patterns. The measurements under observation angle of 8 to the axis of laser beam propagation have been performed. The diffraction patterns were observed on the detector clearly, when the square mesh was placed at the distance of 500 mm from the output of plasma and at the distance of 27.2 mm in front of the detector. It is shown that observed experimental patterns are well consistent with modeled ones for theoretical HOH spectrum, provided by particle-in-cell simulations of a relativistic-irradiance laser pulse interaction with underdense plasma (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. High Energy Charged Particles in Space at One Astronomical Unit

    Science.gov (United States)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  8. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  9. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    CERN Document Server

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  10. Physics with Highly-Charged Ions in an EBIT

    Science.gov (United States)

    Crespo López-Urrutia, J. R.; Bapat, B.; Draganić, I.; Feuerstein, B.; Fischer, D.; Lörch, H.; Moshammer, R.; Ullrich, J.; DuBois, R. D.; Zou, Y.

    After the commissioning of the Freiburg electron beam ion trap, experiments on dielectronic recombination of the low-lying resonances in He-like Ar16+ have been carried out at high resolution. Forbidden transitions (``coronal lines'') of highly charged argon ions in the optical range have been measured with an accuracy around 1 ppm. Ions extracted from FreEBIT have been used to perform collision experiments using the Cold Target Recoil-Ion Momentum Spectroscopy (COLTRIMS) technique.

  11. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  12. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  13. Finite-element 3D simulation tools for high-current relativistic electron beams

    Science.gov (United States)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  14. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  15. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic ...

  16. Relativistically strong electromagnetic radiation in a plasma

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  17. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  18. Making a soft relativistic mean-field equation of state stiffer at high density

    Science.gov (United States)

    Maslov, K. A.; Kolomeitsev, E. E.; Voskresensky, D. N.

    2015-11-01

    We study relativistic mean-field (RMF) models including nucleons interacting with scalar, vector, and isovector mean fields and mean-field self- and cross-interaction terms. Usually, in such models the magnitude of the scalar field increases monotonically with the nucleon density, and the nucleon effective mass decreases. We demonstrate that the latter quantity stops decreasing and the equation of state stiffens, provided the mean-field self-interaction potential rises sharply in a narrow vicinity of the values of mean fields corresponding to nucleon densities n ≳n*>n0 , where n0 is the nuclear saturation density. As a result the limiting neutron star mass increases. This procedure offers a simple way to stiffen the equation of state at densities above n* without altering it at densities n ≲n0 . The developed scheme allows a neutron star application of the RMF models, which are well fitted to finite nuclei but do not fulfill the experimental constraint on the limiting neutron star mass. The exemplary application of the method to the well-known FSUGold model allows us to increase the limiting neutron star mass from 1.72 M⊙ to M ≥2.01 M⊙ .

  19. Physics with Highly-Charged Ions in an EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Lopez-Urrutia, J. R.; Bapat, B.; Draganic, I.; Feuerstein, B.; Fischer, D.; Loerch, H.; Moshammer, R.; Ullrich, J. [Max-Planck-Insitut fuer Kernphysik (Germany); DuBois, R. D. [University of Missoury (United States); Zou, Y. [Fudan University (China)

    2003-03-15

    After the commissioning of the Freiburg electron beam ion trap, experiments on dielectronic recombination of the low-lying resonances in He-like Ar{sup 16+} have been carried out at high resolution. Forbidden transitions ('coronal lines') of highly charged argon ions in the optical range have been measured with an accuracy around 1 ppm. Ions extracted from FreEBIT have been used to perform collision experiments using the Cold Target Recoil-Ion Momentum Spectroscopy (COLTRIMS) technique.

  20. A high linearity 14-bit pipelined charge summation ADC

    Science.gov (United States)

    Duignan, Nigel; Farrell, Ronan

    2005-06-01

    Presented in this paper is a low power, area efficient pipeline analog-to-digital converter (ADC), utilising a charge summation technique and a switched-capacitor implementation. Utilising switched capacitor, a staircase ramp is produced caused by the switching capacitors and a fixed reference voltage, as opposed to a linear ramp. The advantage of the charge summation technique is the reduction in power usage as the charging time of the capacitors is small so for most of the sample period the circuit is quiescent. The paper presents the use of this architecture as a 14-bit pipelined ADC, which can sample data at a rate of 1 MSps. The pipeline architecture itself is novel as the typical sub-DAC is not required. The signal-to-noise ratio (SNR) of the ADC is improved by using a spatial over-sampling technique, which reduces the thermal noise effect on in the switched capacitor circuit. The effects of opamps finite gain and offset on the linearity of the ramp are reduced by employing a finite gain and offset compensated integrator architecture and through the use of low-resolution pipeline stages. The proposed architecture is a strong candidate for applications demanding high resolution with low power requirements.

  1. Space charge templates for high-current beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  2. Revisiting non-relativistic limits

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kristan [C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook,Stony Brook, NY 11794-3840 (United States); Karch, Andreas [Department of Physics, University of Washington,Seattle, WA 98195 (United States)

    2015-04-28

    We show that the full spurionic symmetry of Galilean-invariant field theories can be deduced when those theories are the limits of relativistic parents. Under the limit, the non-relativistic daughter couples to Newton-Cartan geometry together with all of the symmetries advocated in previous work, including the recently revived Milne boosts. Our limit is a covariant version of the usual one, where we start with a gapped relativistic theory with a conserved charge, turn on a chemical potential equal to the rest mass of the lightest charged state, and then zoom in to the low energy sector. This procedure gives a simple physical interpretation for the Milne boosts. Our methods even apply when there is a magnetic moment, which is known to modify the non-relativistic symmetry transformations. We focus on two examples. Free scalars are used to demonstrate the basic procedure, whereas hydrodynamics is used in order to exhibit the power of this approach in a fully dynamical setting, correcting several inaccuracies in the existing literature.

  3. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    , the continuous propagation of the streamer tends to be unstable, because it does not expand like the conventional positive streamer. Its head electric field continues to increase and can reach half of the conventional breakdown threshold field, which results in an ion density of 3- 10×1014m-3 in the channel immediately following the head. The spatial width of the high field region in the streamer head is about 100 m and the streamer speed is about 5×105 m/s. As a result, conventional positive streamers can be initiated from thundercloud hydrometeors or inhomogeneities of enhanced conductivities of millimeter sizes in the relativistic feedback streamer head and the positive streamers may further result in the formation of leaders. In addition, a relativistic feedback streamer can result in a charge moment change of several tens of coulomb-kilometers in a few tens of milliseconds, indicating that the relativistic feedback discharge process could be an important component for thundercloud charge dynamics.

  4. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  5. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  6. The TITAN EBIT charge breeder for mass measurements on highly charged short-lived isotopes-First online operation

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.ed [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); National Superconducting Laboratory (NSCL), Michigan State University, East Lansing, MI 48824 (United States); Brodeur, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brunner, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Physik Department E12, Technische Universitaet Muechen, James Franck Str., D-85748 Garching (Germany); Ettenauer, S.; Gallant, A.T. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Simon, V. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Good, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Froese, M.W.; Crespo Lopez-Urrutia, J.R. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Delheij, P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Epp, S. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Ringle, R.; Schwarz, S. [National Superconducting Laboratory (NSCL), Michigan State University, East Lansing, MI 48824 (United States); Ullrich, J. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2010-12-01

    TITAN (TRIUMF's Ion Traps for Atomic and Nuclear science) is a novel online facility for high-precision mass measurements on short-lived isotopes. TITAN is the only such facility that employs an Electron-Beam Ion Trap (EBIT) charge-state breeder to produce highly charged ions for their use to increase the precision of mass measurements. We describe the recently commissioned TITAN EBIT and present the results of first injection, charge breeding, and extraction tests performed with stable and radioactive ions.

  7. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  8. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    Science.gov (United States)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  9. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  10. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  11. Charge regulation of weak polyelectrolytes at low- and high-dielectric-constant substrates

    CERN Document Server

    Netz, R R

    2003-01-01

    As is well known, the effective charge of weak polyelectrolytes (PEs) decreases with decreasing salt concentration due to the electrostatic repulsion between dissociated charges. Close to dielectric boundaries, image-charge effects influence the dissociation equilibrium. At low-dielectric-constant substrates, one finds a further charge decrease and repulsion from the interface, while at high-dielectric-constant (e.g. metallic) substrates, the effective charge increases and the PE is attracted to the interface.

  12. Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff

    Science.gov (United States)

    Zhang, Ying; Hu, Jinniu; Liu, Peng

    2018-01-01

    The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.

  13. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  14. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

    Science.gov (United States)

    Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R

    2003-12-04

    The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).

  16. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  17. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  18. Electron impact excitation of highly charged sodium-like ions

    Science.gov (United States)

    Blaha, M.; Davis, J.

    1978-01-01

    Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.

  19. Charged particle density distributions in Au·Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au·Au collisions using the BRAHMS ... Relativistic heavy-ion collisions; charged hadron production; pseudorapidity distribu- tions; centrality .... the predictions of two different theoretical models: (i) the high density gluon saturation model of Kharzeev and ...

  20. A spectrometer for study of high mass objects created in relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.A.; Barish, K.N.; Batsouli, S.; Bennett, M.J.; Bennett, S.J.; Chikanian, A.; Coe, S.D.; Cormier, T.M.; Davies, R.R.; De Cataldo, G.; Dee, P.; Diebold, G.E.; Dover, C.B.; Ewell, L.A.; Emmet, W.; Fachini, P.; Fadem, B.; Finch, L.E.; George, N.K.; Giglietto, N.; Greene, S.V.; Haridas, P.; Hill, J.C. E-mail: jhill@iastate.edu; Hirsch, A.S.; Hoversten, R.A.; Huang, H.Z.; Jaradat, H.; Kim, B.; Kumar, B.S.; Lajoie, J.G.; Lainis, T.; Lewis, R.A.; Li, Q.; Li, Y.; Libby, B.; Majka, R.D.; Miller, T.E.; Munhoz, M.G.; Nagle, J.L.; Petridis, A.; Pless, I.A.; Pope, J.K.; Porile, N.T.; Pruneau, C.; Rabin, M.S.Z.; Reid, J.D.; Rimai, A.; Riso, J.; Rose, A.; Rotondo, F.S.; Sandweiss, J.; Scharenberg, R.P.; Skank, H.; Slaughter, A.J.; Sleage, G.; Smith, G.A.; Spinelli, P.; Srivastava, B.K.; Tincknell, M.L.; Toothacker, W.S.; Van Buren, G.; Wilson, W.K.; Wohn, F.K.; Wolin, E.J.; Xu, Z.; Zhao, K

    1999-11-21

    Experiment E864 at the Brookhaven AGS accelerator uses a high sensitivity, large acceptance spectrometer, designed to search for strangelets and other novel forms of matter produced in high-energy heavy ion collisions. The spectrometer has excellent acceptance and rate capabilities for measuring the production properties of known particles and nuclei such as p-bar, d-bar and {sup 6}He. The experiment uses a magnetic spectrometer and employs redundant time of flight and position detectors and a hadronic calorimeter. In this paper we describe the design and performance of the spectrometer.

  1. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    Science.gov (United States)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  2. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  3. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  4. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  5. High-contrast laser acceleration of relativistic electrons in solid cone-wire targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sawada, H. [Univ. of California-San Diego, La Jolla, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chawla, S. R. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jarrott, L. C. [Univ. of California-San Diego, La Jolla, CA (United States); Flippo, K. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McLean, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perez, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beg, F. N. [Univ. of California-San Diego, La Jolla, CA (United States); Bartal, T. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, M. S. [General Atomics, San Diego, CA (United States)

    2015-12-31

    Optimization of electron coupling into small solid angles is of extreme importance to applications, such as Fast Ignition, that require maximum electron energy deposition within a small volume. To optimize this coupling, we use the ultra-high-contrast Trident laser, which remains below intensity of 1011 W/cm2 until < 0.1 ns before the main pulse, while still attaining high-energy, 75 J, and peak intensity of 5 x 1019 W/cm2. Using a cone-wire target, we find that the coupling into the 40 μm diameter wire is increased by a factor of 2.7x over the low-contrast Titan laser at similar peak intensity. Full-scale simulations are used to model the laser interaction and quantitatively reproduce the experimental results. These show that increase in coupling is due to both a closer interaction, as well as the reduction of laser filamentation and self-focusing.

  6. Proton radiography of relativistic magnetic reconnection driven by ultra-high intensity lasers

    Science.gov (United States)

    Campbell, Paul T.; Raymond, A.; Palmer, C. A. J.; Ma, Y.; Chen, H.; Katzir, Y.; Mileham, C.; Nilson, P. M.; Ridgers, C. P.; Thomas, A. G. R.; Tubman, E. R.; Wei, M. S.; Williams, G. J.; Woolsey, N.; Willingale, L.; Krushelnick, K.

    2017-10-01

    In recent experiments conducted with the OMEGA-EP laser facility at LLE and the Vulcan laser at RAL, proton radiography was used to observe in detail the magnetic field dynamics associated with magnetic reconnection driven by ultra-high intensity, short pulse lasers. Two configurations were investigated: one with two short pulses focused on target in close proximity and another with a short pulse fired near a relatively slowly evolving long pulse produced plasma. The proton radiography results, along with x-ray imaging and angularly resolved electron spectra will be presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-0002727.

  7. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  8. Relativistic Electron Vortices.

    Science.gov (United States)

    Barnett, Stephen M

    2017-03-17

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  9. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  10. The Los Alamos suite of relativistic atomic physics codes

    Science.gov (United States)

    Fontes, C. J.; Zhang, H. L.; Abdallah, J., Jr.; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-07-01

    The Los Alamos suite of relativistic atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  11. Mass spectrum bound state systems with relativistic corrections

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)

    2009-07-28

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.

  12. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    CERN Document Server

    Ghazi, M E

    2002-01-01

    addition, another very weak satellites with wavevector (1/2, 1, 1/2) were observed possibly due to spin ordering. two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd sub 1 sub / sub 2 Sr sub 1 sub / sub 2 MnO sub 3 a series of phase transitions were observed using high-resolution synchrotron X-ray scattering. Above the charge ordering transition temperature, T sub C sub O , by measuring the peak profiles of Bragg reflections as a function of temperature, it was foun...

  13. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  14. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  15. Shapes and Fissility of Highly Charged and Rapidly Rotating Levitated Liquid Drops

    Science.gov (United States)

    Liao, L.; Hill, R. J. A.

    2017-09-01

    We use diamagnetic levitation to investigate the shapes and the stability of free electrically charged and spinning liquid drops of volume ˜1 ml. In addition to binary fission and Taylor cone-jet fission modes observed at low and high charge density, respectively, we also observe an unusual mode which appears to be a hybrid of the two. Measurements of the angular momentum required to fission a charged drop show that nonrotating drops become unstable to fission at the amount of charge predicted by Lord Rayleigh. This result is in contrast to the observations of most previous experiments on fissioning charged drops, which typically exhibit fission well below Rayleigh's limit.

  16. Formulation of the relativistic quantum Hall effect and parity anomaly

    Science.gov (United States)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  17. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Roland [U.S. Department of Energy' s Vehicle Technologies Office, Washington, DC (United States); Maronde, Carl [National Energy Technology Lab. (NETL), Albany, OR (United States); Gehrke, Chris [Caterpillar, Inc., Peoria, IL (United States); Fiveland, Scott [Caterpillar, Inc., Peoria, IL (United States)

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  18. Searches for relativistic magnetic monopoles in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others

    2016-03-15

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  19. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high

  20. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  1. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma; Movimiento relativista de particulas cargadas en la interaccion de pulsos cortos de luz laser intensa con plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F

    2004-07-01

    In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the {eta} phase is a Lorentz invariant. It is shown, also that the proper time

  2. Fragmentation processes of OCS in collision with highly charged ions

    Science.gov (United States)

    Matsumoto, J.; Tezuka, T.; Fukutome, A.; Karimi, R.; Wales, B.; Sanderson, J. H.; Shiromaru, H.

    2014-04-01

    Fragmentation of (OCS)3+ and (OCS)4+ produced by 120 keV Ar8+ collision was studied by using a position-sensitive time-of-flight (PS-TOF) method. We identified stepwise processes involving CO2+ and CS2+ metastable species as well as the concerted process (simultaneous breakup of the two bonds). For the (OCS)4+ events, the stepwise processes were found for fragmentation channels containing a doubly-charged terminal atom.

  3. High density thermite mixture for shaped charge ordnance disposal

    OpenAIRE

    Elshenawy, Tamer; Soliman, Salah; Hawass, Ahmed

    2017-01-01

    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  4. Relativistic quantum mechanics of a Dirac oscillator

    CERN Document Server

    Martines y Romero, R P; Salas-Brito, A L

    1995-01-01

    The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside a uniformly charged sphere. (author)

  5. Relativistic Electron Response to the Combined Magnetospheric Impact of a Coronal Mass Ejection Overlapping with a High-Speed Stream: Van Allen Probes Observations

    Science.gov (United States)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; hide

    2015-01-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  6. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  7. PREFACE: 14th International Conference on the Physics of Highly Charged Ions (HCI 2008)

    Science.gov (United States)

    Azuma, Toshiyuki; Nakamura, Nobuyuki; Yamada, Chikashi

    2009-07-01

    This volume contains the Proceedings of the 14th International Conference on the Physics of Highly Charged Ions (HCI2008), held at the University of Electro-Communications, Chofu, Tokyo, Japan from 1-5 September 2008. This series of conferences began in Stockholm, Sweden in 1982 and has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992), Vienna, Austria (1994), Omiya, Japan (1996), Bensheim, Germany (1998), Berkeley, USA (2000), Caen, France (2002), Vilnius, Lithuania (2004) and Belfast, UK (2006). Highly charged ions (HCI), which are defined as highly ionized (i.e. positively charged atomic) ions here, mainly exist in hot plasmas such as the solar corona and fusion plasmas. It is true that its importance in plasma physics has driven researchers to the spectroscopic studies of HCIs, but the spectroscopy of few-electron ions is not only important for plasmas but also interesting for fundamental atomic physics. Electrons moving fast near a heavy nucleus give a suitable system to test the fundamental atomic theory involving relativistic and quantum electro-dynamic effects in a strong field. Also, the huge potential energy of a HCI induces drastic reaction in the interaction with matter. This unique property of HCIs, coupled with the recent development of efficient ion sources, is opening the possibility to utilize them in new technologies in the field such as nano-fabrication, surface analysis, medical physics, and so on. Hence, this conference is recognized as a valuable gathering place for established practitioners and also for newcomers; we exchange information, we are introduced to the subject itself, and to unexpected interfaces with other fields. On 31 August, the day before the opening of HCI2008, we welcomed the delegates at the university's restaurant—and we were greeted with an unusually heavy summer shower! The conference then opened on

  8. Numerical calculations of high-altitude differential charging: Preliminary results

    Science.gov (United States)

    Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.

    1979-01-01

    A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.

  9. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More?

    Science.gov (United States)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  10. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    Science.gov (United States)

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  11. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  12. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  13. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  14. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao

    2015-12-01

    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  15. Relativistic Coulomb fission

    Science.gov (United States)

    Norbury, John W.

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  16. Relativistic transformation of phase-space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2011-07-01

    Full Text Available We investigate the transformation of the distribution function in the relativistic case, a problem of interest in plasma when particles with high (relativistic velocities come into play as for instance in radiation belt physics, in the electron-cyclotron maser radiation theory, in the vicinity of high-Mach number shocks where particles are accelerated to high speeds, and generally in solar and astrophysical plasmas. We show that the phase-space volume element is a Lorentz constant and construct the general particle distribution function from first principles. Application to thermal equilibrium lets us derive a modified version of the isotropic relativistic thermal distribution, the modified Jüttner distribution corrected for the Lorentz-invariant phase-space volume element. Finally, we discuss the relativistic modification of a number of plasma parameters.

  17. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  18. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  19. On the Nature of High Field Charge Transport in Reinforced Silicone Dielectrics: Experiment and Simulation

    CERN Document Server

    Huang, Yanhui

    2016-01-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field, and were compared with properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial to determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails, and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  20. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  1. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  2. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  3. Relativistic versus non-relativistic mean field

    Science.gov (United States)

    Reinhard, Paul-Gerhard

    Three variants of the relativistic mean-field model (RMF) and the nonrelativistic Skyrme-Hartree-Fock model (SHF) are compared. Overall quality, predictive power, and correlations between observables are addressed using statistical analysis on the basis of least squares fits. Appropriate density dependence is a crucial ingredient for good performance of RMF. However, SHF shows still more flexibility particularly in the isovector channel.

  4. A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer

    Science.gov (United States)

    Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei

    2017-12-01

    In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).

  5. Studies at the border between nuclear and atomic physics: Weak decays of highly charged ions

    Science.gov (United States)

    Atanasov, D.; Blaum, K.; Bosch, F.; Brandau, C.; Bühler, P.; Cakirli, R. B.; Chen, X. C.; Dillmann, I.; Faestermann, T.; Gao, B. S.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Grisenti, R.; Gumberidze, A.; Hagmann, S.; Hillenbrand, P.-M.; Kienle, P.; Kozhuharov, C.; Lane, G.; Langer, C.; Lederer-Woods, C.; Lestinsky, M.; Litvinov, S. A.; Litvinov, Yu A.; Ma, X. W.; Najafi, M. A.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Ozturk, F. C.; Patyk, Z.; Pavicevic, M. K.; Petridis, N.; Reifarth, R.; Sanchez, R.; Sanjari, M. S.; Schneider, D.; Shevelko, V.; Spillmann, U.; Steck, M.; Stöhlker, T.; Sun, B. H.; Suzaki, F.; Suzuki, T.; Torilov, S. Yu; Trageser, C.; Trassinelli, M.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wang, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Yan, X. L.; Zhang, Y. H.; Zhou, X. H.; ">ILIMA, highly charged ions is presented. The paper closely follows the progress-report presentation given at the conference. Due to the limited space an emphasis is given to an exhaustive bibliography.

  6. Capture and isolation of highly-charged ions in a unitary Penning trap

    OpenAIRE

    Brewer, Samuel M.; Guise, Nicholas D; Tan, Joseph N.

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, ...

  7. A High-Level Functional Architecture for GNSS-Based Road Charging Systems

    DEFF Research Database (Denmark)

    Zabic, Martina

    2011-01-01

    Within recent years, GNSS-based road charging systems have been highly profiled on the policy makers’ agenda. These types of systems are however technically challenging and are considered one of the most complex types of charging systems. To understand the structure and behavior of such road...... charging systems, it is important to highlight the overall system architecture which is the framework that defines the basic functions and important concepts of the system. This paper presents a functional architecture for GNSS-based road charging systems based on the concepts of system engineering. First......, a short introduction is provided followed by a presentation of the system engineering methodology to illustrate how and why system architectures can be beneficial for GNSS-based road charging systems. Hereafter, a basic set of system functions is determined based on functional system requirements, which...

  8. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  9. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  10. Monovalent counterion distributions at highly charged water interfaces: proton-transfer and Poisson-Boltzmann theory.

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2005-12-01

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion distributions (Cs+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3O+ at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  11. Ionization distribution near a relativistic particle track in gas

    CERN Document Server

    Grichine, V M

    2009-01-01

    The space distribution of ionization produced by relativistic charged particle around its trajectory is discussed in the framework of photo-absorption ionization model. The mean root square transverse radius of the ionization space distribution shows relativistic rise. The rise is due to relativistic increasing of Cherenkov photon generation. The photons with energy more than the first ionization potential have small but finite range which is typically much more than the range of an electron with the same energy. Calculations illustrating this effect were done using the gas mixture proposed for ALICE LHC time projection chamber.

  12. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  13. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M electrons energized by foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  14. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)

    2017-06-15

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions. (orig.)

  15. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms

    Science.gov (United States)

    Toyota, Koudai; Son, Sang-Kil; Santra, Robin

    2017-04-01

    In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms, energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev. Lett. 110, 173005 (2013), 10.1103/PhysRevLett.110.173005. On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012), 10.1038/nphoton.2012.261. To investigate both relativistic and resonance effects, we extend the xatom toolkit to incorporate relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.

  16. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  17. Relativistic Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes.

  18. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  19. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  20. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  1. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  2. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  3. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  4. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  5. Relativistic entropy and related Boltzmann kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kaniadakis, G. [Politecnico di Torino (Italy). Dipartimento di Fisica

    2009-06-15

    It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmann equation, fixes univocally the entropy of the system, which turns out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect to its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitly remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativistic Boltzmann equation, obeys the H-theorem and predicts a stationary stable distribution, presenting power law tails in the high-energy region. The ensued relativistic kinetic theory preserves the main features of the classical kinetics, which recovers in the c{yields}{infinity} limit. (orig.)

  6. Capture and isolation of highly-charged ions in a unitary Penning trap

    CERN Document Server

    Brewer, Samuel M; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, and storage of highly-charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply-charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is $\\approx$ 60 times narrower than typically...

  7. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  8. Highly charged ions in exotic atoms research at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Anagnostopoulos, D.F.; Biri, S.; Boisbourdain, V.; Demeter, M.; Borchert, G.; Egger, J.P.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Liu, Y.W.; Manil, B.; Markushin, V.E.; Marton, H.; Nelms, N.; Rusi El Hassani, A.J.; Simons, L.M. E-mail: leopold.simons@psi.ch; Stingelin, L.; Wasser, A.; Wells, A.; Zmeskal, J

    2003-05-01

    During their de-excitation, exotic atoms formed in low pressure gases reach a state of high or even complete ionization. X-rays emitted from higher n-states of electron-free atoms have well defined energies with the error originating only from the error in the mass values of the constituent particles. They served as a basis for a new determination of the pion mass as well as for a high precision measurement of the pionic hydrogen ground state shift. The response function of the Bragg spectrometer has been determined with X-rays from completely ionized pionic carbon and with a dedicated electron cyclotron resonance ion trap (ECRIT). A further extension of the ECRIT method implemented in the experiment allows a direct calibration of exotic atom transitions as well as a precise determination of the energy of fluorescence lines.

  9. X-ray spectroscopy of highly-charged heavy ions at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A. [Laboratoire Kastler Brossel, Universite P. et M. Curie, Paris (France)], E-mail: a.gumberidze@gsi.de; Stoehlker, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Physikalisches Institut, Universitt Heidelberg, D-69120 Heidelberg (Germany); Beyer, H.F.; Bosch, F.; Braeuning-Demian, A.; Hagmann, S.; Kozhuharov, C.; Kuehl, Th.; Mann, R. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Indelicato, P. [Laboratoire Kastler Brossel, Universite P. et M. Curie, Paris (France); Quint, W. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Warczak, A. [Institute of Physics, Jagiellonian University, Cracow (Poland)

    2009-01-15

    In the current contribution, we give an overview of the envisioned X-ray spectroscopy program within the atomic physics research collaboration SPARC (Stored Particle Atomic Research Collaboration) at FAIR (Facility for Antiproton and Ion Research). These activities comprise, among others, the investigation of relativistic collision dynamics, electron correlation in the presence of strong fields, the test of Quantum Electrodynamics in extremely strong electromagnetic fields, and ideas to test the predictions of fundamental theories besides Quantum Electrodynamics. The state of the art X-ray spectroscopy will be of key importance for realization of these challenging goals. The world-wide unique experimental conditions and opportunities offered by the future FAIR facility will be combined with advanced X-ray detection devices, i.e. large-area, segmented solid-state detectors, high-resolution crystal spectrometers, calorimetric detectors etc.

  10. Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the 4$\\pi$ Configuration of Plastic Track Detectors

    CERN Multimedia

    2002-01-01

    % EMU19 \\\\ \\\\ The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors. \\\\ \\\\One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z~$\\geq$~6 with almost 100\\% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring tra...

  11. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    Science.gov (United States)

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Parameter-free calculation of charge-changing cross sections at high energy

    Science.gov (United States)

    Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.

    2016-07-01

    Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.

  13. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    CERN Document Server

    Beiersdorfer, P; Crespo, J; Kim, S H; Neill, P; Utter, S; Widmann, K

    2000-01-01

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic cry...

  14. Effects of High Charge Densities in Multi-GEM Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Muller, H.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-01-01

    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.

  15. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  16. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Science.gov (United States)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  17. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  18. OTR studies for the high charge CTF3 beam

    CERN Document Server

    Bravin, Enrico; Vermare, C

    2003-01-01

    The CTF3 (CLIC Test Facility 3) will produce 1.56µs long intense electron pulses. The unbunched 5.4A beam of the injector will have a transverse beam size ~1mm. After the buncher the current is reduced to 3.5A and the transverse size varies between a few hundred micrometers and one millimetre along the length of the linac. Calculations indicate that these beam parameters will impose an unbearable thermal load for the intercepting screens currently in use (scintillators and aluminium OTR foils). Graphite and SiC have been investigated as possible alternative materials for the OTR radiators. The possibility of replacing scintillating screens with OTR targets at the low energies of the injector has also been considered. A possible limitation in the use of such high temperature radiators has been identified; ions released from the heated target could focus further the beam with the risk of damaging the target itself and/or blowing up the beam. This would also affect the emittance measurement and would hinder any...

  19. Non-targeted effects induced by high LET charged particles

    Science.gov (United States)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  20. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect......, in principle, be observed at low temperatures if other transport bottlenecks associated with grain boundaries or contacts could be removed....

  1. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, S. [Kassel Univ. (Germany). Inst. fuer Physik; Indelicato, P. [Lab. Kastler Brossel, Ecole Normale Superieure et Universite Pierre et Marie Curie, Paris (France); Stoehlker, T. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  2. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M. [Institut fuer Kernphysik, Schlossgartenstr. 9, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, F-91128 Palaiseau (France); Vogt, K.; Bagnoud, V. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  3. High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

    Science.gov (United States)

    House, Matthew; Bartlett, Ian; Pakkiam, Prasanna; Koch, Matthias; Peretz, Eldad; van der Heijden, Joost; Kobayashi, Takashi; Rogge, Sven; Simmons, Michelle

    We report the development of a high sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead, designed to minimize the geometric requirements of a charge sensor for scalable quantum computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single electron transistor (rf-SET) with which to make a comparison of the charge detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1, compared with an integration time of 55 ns for the rf-SET. This level of sensitivity is suitable for fast (Communication Technology (Project No. CE110001027) and the U.S. Army Research Office under Contract No. W911NF-13-1-0024.

  4. Two-Step Delamination of Highly Charged, Vermiculite-like Layered Silicates via Ordered Heterostructures.

    Science.gov (United States)

    Daab, Matthias; Rosenfeldt, Sabine; Kalo, Hussein; Stöter, Matthias; Bojer, Beate; Siegel, Renée; Förster, Stephan; Senker, Jürgen; Breu, Josef

    2017-05-16

    Because of strong Coulomb interactions, the delamination of charged layered materials becomes progressively more difficult with increasing charge density. For instance, highly charged sodium fluorohectorite (Na0.6Mg2.4Li0.6Si4O10F2, Na-Hec) cannot be delaminated directly by osmotic swelling in water because its layer charge exceeds the established limit for osmotic swelling of 0.55 per formula unit Si4O10F2. Quite surprisingly, we found that this hectorite at the border of the smectite and vermiculite group can, however, be utterly delaminated into 1-nm-thick platelets with a high aspect ratio (24 000) in a two-step process. The hectorite is first converted by partial ion exchange into a one-dimensionally ordered, interstratified heterostructure with strictly alternating Na(+) and n-butylammonium (C4) interlayers. This heterostructure then spontaneously delaminates into uniform single layers upon immersion in water whereas neither of the homoionic phases (Na-Hec and C4-Hec) swells osmotically. The delamination of more highly charged synthetic layered silicates is a key step to push the aspect ratio beyond the current limits.

  5. High-Frequency Pulsed-Electro-Acoustic (PEA) Measurements for Mapping Charge Distribution

    Science.gov (United States)

    Sorensen, Kristina; Pearson, Lee; Dennison, J. R.; Doyle, Timothy; Hartley, Kent

    2012-10-01

    High-frequency pulsed-electro-acoustic (PEA) measurements are a non-destructive method used to investigate internal charge distributions in dielectric materials. This presentation discusses the theory and signal processing of simple PEA experiments and shows results of PEA measurements. PEA experiments involve a thin dielectric positioned between two conducting electrodes. A voltage signal on the two electrodes generates an electric field across the dielectric, which stimulates embedded charge and creates a pressure wave that propagates within the capacitor. A coupled acoustic sensor then measures the ensuing pressure pulse response. Spatial distributions of the charge profile are obtained from the resultant pressure waveform. Gaussian filters and other signal processing methods are used to increase the signal-to-noise ratio in this waveform. Estimates of the charge distribution inside the dielectric are extracted from this analysis. Our ultimate objective is to develop high resolution PEA methods to investigate in vacuo charge deposition in thin film polymeric, ceramic, or glass dielectric materials using medium to high energy (approximately 103 to 107 eV) electron beams.

  6. Study of neutral-charged particle correlations in high energy collisions

    CERN Document Server

    Dao, F T

    1973-01-01

    Recent experiments at Serpukhov, NAL, and CERN indicate a strong correlation between neutral and charged pions produced in high energy collisions, in contrast to the trend shown by data at lower energies. This study of the energy and charge dependence of these correlations indicates that they do not depend upon the initial state particles and that they are in reasonable agreement with the critical fluid gas model. These high energy correlation data are also studied in terms of a semi-inclusive Koba- Nielsen-Olesen scaling relation. (9 refs).

  7. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  8. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  9. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  10. Charged pion spectra at high $p_T$ in pp collisions at $\\sqrt{s}$ = 900 GeV, measured by the ALICE TPC

    CERN Document Server

    Bryngemark, Lene

    2011-01-01

    The ALICE Time Projection Chamber (TPC) is used for tracking and measuring momentum and specific energy loss, dE/dx, of charged particles produced in hadron collisions at the LHC. This Master’s dissertation describes the statistical identification of charged hadrons (pions, kaons and protons) on the relativistic rise (transverse momentum pT > 3 GeV/c) of the dE/dx curve of the ALICE TPC. Two complementary methods are evaluated and compared. An effect of track cluster charge falling below the threshold of the read-out electronics is found to influence the species separation in dE/dx, and methods to recover the separation are suggested and discussed. Charged pion fractions and invariant charged pion yields in pp collisions at sqrt(s) = 900 GeV are presented as a function of pT, for pseudorapidity |eta| < 0.8 and 3 < pT < 10 GeV/c.

  11. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  12. High-Q Tunable Filters and High Efficiency Charge Pumps Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The supply voltages of modern baseband digital integrated circuits are well below the required actuation voltages for the MEMS tunable filters. Therefore, a charge...

  13. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  14. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Science.gov (United States)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  15. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Vol. 57, No. 1. — journal of. July 2001 physics pp. 161–164. Gamma-ray spectroscopy with relativistic exotic heavy-ions. SAMIT MANDAL, J GERL, H GEISSEL, K HAUSCHILD. ¿. , M HELLSTR ¨OM, ... large [2,3] to perform a meaningful high spin decay spectroscopy of exotic nuclei. At the same time relativistic Coulomb ...

  16. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...

  17. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  18. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    Science.gov (United States)

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  19. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  20. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    NARCIS (Netherlands)

    Jaspers, R.J.E.; Scheffer, M.; Kappatou, A.; Valk, N.C.J. van der; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G.I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-01-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm 2sr to comply with the measurement requirements [S. Tugarinov, Rev. Sci. Instrum. 74, 2075

  1. Highly-charged ions in a penning trap: mass measurements, etc.

    Science.gov (United States)

    Jertz, R.; Bollen, G.; Kluge, H.-J.; Schweikhard, L.; Stolzenberg, H.; Bergström, I.; Carlberg, C.; Schuch, R.

    1991-03-01

    The use of a Penning trap will start a new generation of precision experiments on highly charged ions. The long storage time of the ions in combination with a controlled confinement in a very small volume will enable accuracies in mass determination better than δ m/ m=10-8.

  2. THE INFLUENCE OF ANGULAR-MOMENTUM ON DOUBLE ELECTRON-CAPTURE BY HIGHLY CHARGED IONS

    NARCIS (Netherlands)

    POSTHUMUS, JH; LUKEY, P; MORGENSTERN, R

    1992-01-01

    Double electron capture during collisions of highly charged ions with H-2 or He is studied by measuring and analysing energy spectra of the resulting autoionization electrons and by comparing the experimentally determined population probabilities for the various states with those calculated from a

  3. Hydrogenated carbon clusters produced by highly charged ion impact on solid C-84

    NARCIS (Netherlands)

    Schlatholter, T; Newman, MW; Niedermayr, TR; Machicoane, GA; McDonald, JW; Schenkel, T; Hoekstra, R; Hamza, AV

    2000-01-01

    The emission of small (hydrogenated) carbon cluster ions: CnHm+ (n = 2-22) upon highly charged Xeq+ (q = 20- 14) impact on C-84 surfaces is studied by means of time-of-flight secundary ion mass spectrometry. The respective stage of hydrogenation/protonation of a certain carbon cluster ion C-n(+) is

  4. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  5. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  6. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  7. Quasiparticle Dynamics in Relativistic Plasmas

    Science.gov (United States)

    Yaffe, Laurence G.

    2003-06-01

    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature T) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. This effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations, to leading order in the running coupling g(T) and all orders in 1/log g(T)-1. Suitable observables include transport coefficients (viscosities and diffusion constants) and energy loss rates. This summary sketches the form of the effective theory and outlines its domain of applicability.

  8. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  9. Highly charged ion impact on uracil: Cross sections measurements and scaling

    Science.gov (United States)

    Agnihotri, A. N.; Kasthurirangan, S.; Champion, C.; Rivarola, R. D.; Tribedi, L. C.

    2014-04-01

    Absolute total ionization cross sections (TCS) of uracil in collisions with highly charge C, O and F ions are measured. The scaling properties of cross sections are obtained as a function of projectile charge state and energy. The measurements are compared with the CDW-EIS, CB1 and CTMC calculations. The absolute double differential cross sections (DDCS) of secondary electron emission from uracil in collisions with bare MeV energy C and O ions are also measured. Large enhancement in forward emission is observed.

  10. Charged Particle Production in High Q2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, $\\xp$, of charged final state hadrons are measured in deep-inelastic $\\ep$ scattering at high $Q^2$ in the Breit frame of reference. The analysis covers the range of photon virtuality $100 < Q^2 < 20 000 \\GeV^{2}$. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher $Q^{2}$ and to the full range of $\\xp$. The results are compared with $e^+e^-$ annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process.

  11. On the charge dispersion in high-energy proton-xenon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yuming; Massmann, H.; Xu Shuyan; Gross, D.H.E.; Zhang Xiaoze; Lu Zhaoqi; Sa Benhao

    1987-08-06

    The mass yield and the charge dispersion of secondary fragments produced in high-energetic proton-xenon bombardment are analysed in the frame of our statistical multifragmentation model. The critical mass distribution as well as the charge dispersion, which have led to the discussion of a nuclear liquid-gas phase transition, are easily reproduced within our model. A clear signal of a 'phase transition' at T = 5 MeV is found and is analysed in terms of various multifragment correlations.

  12. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  13. Relativistic configuration interaction approach

    Indian Academy of Sciences (India)

    level of reliability and accuracy in accounting for both relativistic and correlation effects associated with these properties has gained importance. In this paper, we will compute one of the P, ... this procedure provides reasonable accuracy with small computational cost. Titov and co-workers have also reported the result of Wd.

  14. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  15. Relativistic stellar models

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 3. Relativistic stellar models ... Upon specifying particular forms for one of the gravitational potentials and the electric field intensity, the condition for pressure isotropy is transformed into a hypergeometric equation with two free parameters. For particular ...

  16. A relativistic Zeno effect

    NARCIS (Netherlands)

    Atkinson, David

    A Zenonian supertask involving an infinite number of identical colliding balls is generalized to include balls with different masses. Under the restriction that the total mass of all the balls is finite, classical mechanics leads to velocities that have no upper limit. Relativistic mechanics results

  17. Relativistic Quantum Information Theory

    Science.gov (United States)

    2007-11-20

    Relativistic Quantum Information Theory Army Research Office Grant # DAAD -0301-0207 Christoph Adami November 16, 2007 1 Foreword The stated goal of the...the future will allow us to finish the work we started. A List of manuscripts produced under ARO grant # DAAD - 0301-0207 All these manuscripts

  18. Inter-electrode charge collection in high-purity germanium detectors with amorphous semiconductor contacts

    Energy Technology Data Exchange (ETDEWEB)

    Looker, Q., E-mail: qlooker@lbl.gov [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Amman, M. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Vetter, K. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    High-purity germanium (HPGe) radiation detectors with segmented signal readout electrodes combine excellent energy resolution with fine spatial resolution, opening exciting possibilities in radiation imaging applications. Segmenting the electrodes provides the ability to determine the positions of radiation interactions in the detector, but it also brings potential challenges that can inhibit performance. A challenge unique to segmented electrode detectors is collection of charge carriers to the gap between adjacent electrodes rather than to the electrodes themselves, which gives a deficit in the summed energy. While amorphous semiconductor electrical contacts have enabled a simplified fabrication process capable of fine electrode segmentation, the amorphous semiconductor passivation layer between electrodes is prone to inter-electrode charge collection. This article presents a study of the impact of fabrication process parameters on the energy deficit due to inter-electrode charge collection for double-sided strip detectors. Eight double-sided strip HPGe detectors were fabricated with amorphous germanium (a-Ge) and amorphous silicon (a-Si) contacts formed by sputter deposition. Each detector was evaluated for inter-electrode charge collection performance, using as a metric the deficit in the summed signal of two adjacent electrodes. It is demonstrated that both a-Ge and a-Si contacts can be produced with nearly non-existent inter-electrode charge collection when the appropriate combination of sputter gas hydrogen content and gas pressure are selected.

  19. Assessing the Impact of Charge Variants on Stability and Viscosity of a High Concentration Antibody Formulation.

    Science.gov (United States)

    Sule, Shantanu V; Fernandez, Jason E; Mecozzi, Vincent J; Kravets, Yana; Yang, William C; Feng, Pamela; Liu, Suli; Zang, Li; Capili, Allan D; Estey, Tia B; Gupta, Kapil

    2017-12-01

    Characterizing molecular charge variants or isoforms is essential for understanding safety, potency, and bioavailability of antibody therapeutics. However, there is little information on how they influence stability and viscosity-properties governing immunogenicity and delivery. To bridge this gap, we studied antibody stability as a function of charge variant content generated via bioreactor process. We were able to systematically vary acidic variant levels as a function of bioreactor harvest time. Importantly, we do not observe any impact on aggregation behavior of a formulated antibody at high protein concentration as a function of acidic variant level. Furthermore, we confirm that acidic variants enriched using fractionation do not influence viscosity, colloidal or conformational stability. Interestingly, variants with the most acidic isoelectric points contribute disproportionately to formulation color. We discuss our findings in context of antibody manufacturing processes that may yield increased charge variant content. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Stopping of relativistic heavy ions in various media

    Science.gov (United States)

    Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.

    1986-01-01

    The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.

  1. Open quantum dots in graphene: Scaling relativistic pointer states

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D K; Huang, L; Yang, R; Lai, Y-C; Akis, R, E-mail: ferry@asu.ed [School of Electrical, Computer, and Energy Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706 (United States)

    2010-04-01

    Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not 'ashed out' through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.

  2. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  3. Unconventional charge order in a co-doped high-Tc superconductor

    Science.gov (United States)

    Pelc, D.; Vučković, M.; Grafe, H.-J.; Baek, S.-H.; Požek, M.

    2016-09-01

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8-xEu0.2SrxCuO4. We use three complementary experiments--nuclear quadrupole resonance, nonlinear conductivity and specific heat--to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order.

  4. Unconventional charge order in a co-doped high-Tc superconductor.

    Science.gov (United States)

    Pelc, D; Vučković, M; Grafe, H-J; Baek, S-H; Požek, M

    2016-09-08

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8-xEu0.2SrxCuO4. We use three complementary experiments-nuclear quadrupole resonance, nonlinear conductivity and specific heat-to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order.

  5. Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes

    Science.gov (United States)

    Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-07-01

    A comparative study of the interactions between nonlinear ion acoustic solitary waves (IASWs) propagating toward each other, and the electrostatic nonlinear propagation of IASWs, both for the weakly and relativistic regimes consisting of relativistic warm ions, nonthermal electrons, and positrons, is carried out. Two-sided Korteweg-de Vries (KdV) equations are derived using the extended Poincaré-Lighthill-Kuo (PLK) method to reveal the physical issues concerned. The effects of positron concentration, ion-electron temperature ratio, electron-positron temperature ratio, relativistic streaming factor, the population of electron, and positron nonthermality on the electrostatic resonances and their phase shifts are investigated for both regimes. It is found that the plasma parameters significantly modify the phase shifts, electrostatic resonances, hump-shaped electrostatic potential profiles, and the electric fields on the nonlinear propagation characteristics of IASWs. The results obtained may be useful for clarifications of interaction between IASWs in astrophysical and laboratory plasmas, especially in pulsar magnetosphere, laser produced, inertial confinement plasmas, and pulsar relativistic winds with supernova ejecta that produce nonthermal electrons, positrons, and relativistic ions.

  6. Anisotropic Particle Acceleration in Relativistic Shear Layers

    Science.gov (United States)

    Boettcher, Markus; Liang, Edison P.; Fu, Wen

    2017-08-01

    We present results of Particle in Cell (PIC) simulations of relativistic shear layers as relevant to the relativistic jets of acive galactic nuclei and gamma-ray bursts. We study the self-generation of electro-magnetic fields and particle acceleration for various different plasma compositions (electron-ion vs. electron-positron pair vs. hybrid). Special emphasis is placed on the angular distribution of accelerated particles. We find that electron-ion shear layers lead to highly anisotropic particle distributions in the frame of the fast-moving inner spine. The beaming pattern of the highest-energy particles is much narrower than the characteristic beaming angle of 1/Gamma resulting from relativistic aberration of a co-moving isotropic distribution. This may pose a possible solution to the Lorentz-Factor crisis in blazars and explain very hard X-ray / soft gamma-ray spectra of some gamma-ray bursts.

  7. Theory of relativistic radiation reflection from plasmas

    Science.gov (United States)

    Gonoskov, Arkady

    2018-01-01

    We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.

  8. Modeling of direct beam extraction for a high-charge-state fusion driver

    Science.gov (United States)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  9. Charge Transfer across Quantum Dot-Oxide Interfaces for High-Efficiency Photovoltaics

    Science.gov (United States)

    Bonn, Mischa

    Metal oxides constitute robust and relatively cheap semiconductor materials that are finding increasing applications in opto-electronics, but their band gaps are typically prohibitively wide for the generation of free charges through the absorption of visible light. Several approaches have been developed to circumvent this drawback. Specifically, the sensitization of mesoporous oxides by semiconductor quantum dot (QD) nanocrystals represents a promising route for the development of low-cost photovoltaics in QD sensitized solar cells. In addition to their tuneable band gap, QDs have the ability to generate multiple charge carriers from single photons by a process called carrier multiplication (CM), which potentially provides a means towards high-efficiency photovoltaics. Although CM has been widely interrogated in colloidal QDs in solution, the collection of those multiple charge carriers at oxide electrodes has not been clearly elucidated. The contribution of CM towards the overall device performance is ultimately determined by a competition between transfer to the electrode material and charge recombination within the QDs. We report interfacial electron transfer dynamics from quantum dots grown directly onto mesoporous oxide films. Such systems are well-suited for achieving efficient multiple charge transfer by CM, as electron transfer from QD-to-oxide is substantially faster than charge recombination. However, despite CM occurring in the QD, only one electron is transferred to the oxide. This seemingly counterintuitive result can be understood by noting that efficient hot electron transfer at the QD-oxide interface can compete with CM within the QDs. Hot electron transfer is observed to occur on sub-100 fs timescales, nulling the CM efficiency. Implications of these results for solar energy conversion are discussed.

  10. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  11. Charging operation with high energy efficiency for electric vehicle valve-regulated lead-acid battery system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry (CRIEPI), Komae Res. Lab., Lithium Battery Project, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power Co., Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power Co. Inc., Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power Co., Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power Co., Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power Co., Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power Co., Osaka (Japan); Kato, Satoru [The Chugoku Electric Power Co., Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst. Inc., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power Co., Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power Co., Fukuoka (Japan)

    2000-12-01

    A new, high-energy-efficiency charging operation with as little amount of overcharge as possible is proposed to improve the energy efficiency and the cycle life for an EV valve-regulated lead-acid battery. Under this operation, the EV battery system is charged with 105% of amount of the preceding discharge five out of six times and once with 115% in order that it is fully charged. The cycle lives were estimated using a valve-regulated lead-acid battery system of 12 modules connected in series, by SFUDS79 pattern discharging and measurement of the amount of discharge every 50 cycles. Three-step constant current charging with 115% of amount of the preceding discharge required more than 5 h with the final charging step of more than 210 min, with coulomb efficiency of only 87% and energy efficiency of 74%. On the other hand, under the high-energy-efficiency charging operation, three-step charging with 105% shortens the final charging time to 132 min. It was completed in less than 4 h with coulomb and energy efficiency of 95% and 84%, respectively. This operation increased the energy efficiency from 74% to 83% on average in six charging, and extended the cycle life by about 30% to more than 400 cycles. Decreasing the amount of charge by as much as possible suppressed the corrosion of the grids in the positive plate and the heat evolution in batteries due to shortening of the final charging step. Although the high-energy-efficiency charging operation led to the accumulation of inactive PbSO{sub 4} at the upper part of the negative plate, possibly due to the decreasing amount of overcharge, this operation could prolong the cycle life. Full charging once every six times is though to be effective in suppressing degradation caused by the accumulation of inactive PbSO{sub 4} in the negative plate due to the shortage of charge. (orig.)

  12. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density–voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  13. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  14. Observation of coherence in the time-reversed relativistic photoelectric effect.

    Science.gov (United States)

    Tashenov, S; Banaś, D; Beyer, H; Brandau, C; Fritzsche, S; Gumberidze, A; Hagmann, S; Hillenbrand, P-M; Jörg, H; Kojouharov, I; Kozhuharov, Ch; Lestinsky, M; Litvinov, Yu A; Maiorova, A V; Schaffner, H; Shabaev, V M; Spillmann, U; Stöhlker, Th; Surzhykov, A; Trotsenko, S

    2014-09-12

    The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.

  15. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  16. Spin-polarized high-energy scattering of charged leptons on nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, M. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Physics; Miller, C.A. [TRIUMF, Vancouver, BC (Canada); Nowak, W.D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-08-15

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)

  17. Phonons, electronic charge response and electron-phonon interaction in the high-temperature superconductors

    Science.gov (United States)

    Falter, Claus

    2005-01-01

    We investigate the complete phonon dispersion, the phonon induced electronic charge response and the corresponding self-consistent change of the crystal potential an electron feels as a direct measure of the electron-phonon interaction in the high-temperature superconductors within a microscopic model in the framework of linear response theory. Moreover, dielectric and infrared properties are calculated. The experimentally observed strong renormalization of the in-plane oxygen bond-stretching modes which appears upon doping in the high-temperature superconductors is discussed. It is shown that the characteristic softening, indicating a strong nonlocal electron-phonon interaction, is most likely a generic effect of the CuO plane and is driven by a nonlocal coupling of the displaced ions to the localized charge-fluctuations at the Cu and the Oxy ions. At hand of the oxygen bond-stretching modes it is illustrated how lattice-, charge- and spin-degrees of freedom may act synergetically for anisotropic pairing in the high-temperature superconductors. The different behaviour of these modes during the insulator-metal transition via the underdoped phase is calculated and from a comparison of these generic modes in the different phases conclusions about the electronic state are drawn. For the non-cuprate potassium doped high-temperature superconductor Ba-Bi-O also a very strong and anisotropic renormalization of the oxygen bond-stretching modes is predicted. In another investigation c-axis polarized infrared- and Raman-active modes of the HTSC's are calculated in terms of charge fluctuations and anisotropic dipole-fluctuations. Mode assignments discussed controversially in the literature are proposed. Finally, interlayer phonons propagating along the c-axis and their accompanying charge response are investigated. Depending on the strength of the interlayer coupling calculations are performed ranging from the static, adiabatic response regime to the non-adiabatic regime

  18. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  19. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  20. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  1. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    Science.gov (United States)

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  2. High Performance Charge Breeder for HIE-ISOLDE and TSR@ISOLDE Applications

    CERN Document Server

    Shornikov, Andrey; Mertzig, Robert C.; Pikin, Alexander; Wenander, Fredrik J.C.

    2015-01-01

    We report on the development of the HEC2 (High Energy Compression and Current) charge breeder, a possible high performance successor to REXEBIS at ISOLDE. The new breeder would match the performance of the HIE-ISOLDE linac upgrade and make full use of the possible installation of a storage ring at ISOLDE (the TSR@ISOLDE initiative [1]). Dictated by ion beam acceptance and capacity requirements, the breeder features a 2-3.5 A electron beam. In many cases very high charge states, including bare ions up to Z=70 and Li/Na-like up to Z=92 could be requested for experiments in the storage ring, therefore, electron beam energies up to 150 keV are required. The electron-beam current density needed for producing ions with such high charge states at an injection rate into TSR of 0.5-1 Hz is between 10 and 20 kA/cm2, which agrees with the current density needed to produce A/q<4.5 ions for the HIE-ISOLDE linac with a maximum repetition rate of 100 Hz. The first operation of a prototype electron gun with a pulsed elect...

  3. A relativistic trolley paradox

    OpenAIRE

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-01-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 p R ,where R is the radius of the wheel, but 2 p R = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi...

  4. Numerical Relativistic Quantum Optics

    Science.gov (United States)

    2013-11-08

    m is a signed cyclotron frequency, nr is the radial quantum number and ` is the orbital quantum number. The principle quantum number is n ≡ nr...Gordon equation is accomplished via domain decomposition, where each GPGPU advances the solution in a given domain, and MPI is used for commu...other points to the corresponding location in the transfer buffer. Once the ghost cells have been updated, the GPGPU can advance the relativistic wave

  5. The relativistic glider revisited

    OpenAIRE

    Bergamin, L.; Delva, P.; Hees, A.

    2009-01-01

    In this paper we analyze some aspects of the "relativistic glider" proposed by Gu\\'eron and Mosna more in detail. In particular an explicit weak gravity and low velocity expansion is presented, the influence of different initial conditions are studied and the behavior of the glider over a longer integration time is presented. Our results confirm that the system can be used as a glider, but is not able to stop or even revert the fall of an object.

  6. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  7. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  8. High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries

    Science.gov (United States)

    Zhao, Wenjie; Wang, Xiao-Feng; Zheng, Enqiang; Wei, Yingjin; Sanehira, Yoshitaka; Chen, Gang

    2017-05-01

    In this work, we demonstrated the dye-sensitized solar rechargeable batteries devices sharing a structure of Dye-TiO2/electrolyte/Ni/WO3. The WO3 film was prepared by a simple sol-gel process exhibit high cavities and large surface area allowing efficient chemical/electrical reactions. The WO3 films with 2 ± 0.5 μm in thickness as charge collection electrodes exhibited a high energy density over other materials reported thus far. Under irradiation energy of 7.5 mWcm-2 in the photo-charging, the discharging time sustained 1758 s at the current density of 0.05 mA cm-2 in dark, the first specific discharge capacities of WO3 nano-film reach 40.6 mAh g-1 (0.0244 mAh cm-2). This work substantially pushes forward the easy processing solar rechargeable batteries for future potential applications.

  9. On-chip high-voltage generator design design methodology for charge pumps

    CERN Document Server

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  10. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  11. Characterisation of a Thin Fully Depleted SOI Pixel Sensor with High Momentum Charged Particles

    CERN Document Server

    Battaglia, Marco; Contarato, Devis; Denes, Peter; Giubilato, Piero; Mattiazzo, Serena; Pantano, Devis

    2012-01-01

    This paper presents the results of the characterisation of a thin, fully depleted pixel sensor manufactured in SOI technology on high-resistivity substrate with high momentum charged particles. The sensor is thinned to 70 $\\mu$m and a thin phosphor layer contact is implanted on the back-plane. Its response is compared to that of thick sensors of same design in terms of signal and noise, detection efficiency and single point resolution based on data collected with 300 GeV pions at the CERN SPS. We observe that the charge collected and the signal-to-noise ratio scale according to the estimated thickness of the sensitive volume and the efficiency and single point resolution of the thinned chip are comparable to those measured for the thick sensors.

  12. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  13. Relativistic effects in the pionium lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Jallouli, H.; Sazdjian, H.

    1997-12-31

    Pionium decay width is evaluated in the framework of chiral perturbation theory and the relativistic bound state formalism of constraint theory. Corrections of order O({alpha}) are calculated with respect to the conventional lowest-order formula, in which the strong interaction amplitude has been calculated to two-loop order with charged pion masses. Strong interaction corrections, electromagnetic radiative corrections due to pion-photon interactions, electromagnetic mass shift insertions in internal propagators and correction due to the passage from the strong interaction scattering amplitude are calculated. (author). 53 refs.

  14. Superelastic Scattering Of Electrons From Highly Charged Ions With Inner Shell Vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Zavodszky, P. A.; Aliabadi, H.; Bhalla, C. P.; Richard, P.; Toth, G.; Tanis, J. A.

    2001-07-16

    We report the measurement of electrons scattered superelastically from highly charged ions having an initial K -shell vacancy. In this process, the scattered electron gains {approx}725 eV of energy from the deexcitation of an excited He-like F{sup 7+}( 1s2sS{sup 3}) metastable ion to its ground state. Theoretical calculations based on an R -matrix approach agree well in position, shape, and magnitude with the experimental data.

  15. State of charge estimation of high power lithium iron phosphate cells

    Science.gov (United States)

    Huria, T.; Ludovici, G.; Lutzemberger, G.

    2014-03-01

    This paper describes a state of charge (SOC) evaluation algorithm for high power lithium iron phosphate cells characterized by voltage hysteresis. The algorithm is based on evaluating the parameters of an equivalent electric circuit model of the cell and then using a hybrid technique with adequate treatment of errors, through an additional extended Kalman filter (EKF). The model algorithm has been validated in terms of effectiveness and robustness by several experimental tests.

  16. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations.

    Science.gov (United States)

    Going, Catherine C; Williams, Evan R

    2015-04-07

    The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate.

  17. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  19. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  20. Research and development of a high-performance differential-hybrid charge sensitive preamplifier.

    Science.gov (United States)

    Zeng, Guoqiang; Hu, Chuanhao; Wei, Shilong; Yang, Jian; Li, Qiang; Ge, Liangquan; Tan, Chengjun

    2017-02-01

    A differential-hybrid charge sensitive preamplifier (CSP) was designed by taking a monolithic dual N-Channel Junction Field-effect Transistor (JFET) and a high-speed, low-noise, operational amplifier as the core parts. Input-stage of the circuit employs low-noise differential dual JFET, which ensures high input impedance and low noise. The differential dual transistor makes the quiescent point of the first-stage differential output stable, which is convenient for connecting with the post stage high-speed operational amplifier. Broadband could be amplified by connecting to the double differential dual transistors through the folded cascode-bootstrap. The amplifying circuit which replaces the interstage and post stage discrete components of a traditional CSP with integrated operational amplifier is simpler and more reliable. It simplifies the design of the quiescent point, gives full play to advantages of releasing large open-loop gain, and improves charge-voltage conversion gain stability. Particularly, the charge-voltage conversion gain is larger under a smaller feedback capacitor, thus enabling to gain better signal-noise ratio. The designed CSP was tested, reporting 3.3×10 13 V/C charge sensitivity, about 90ns rise time of signals, 35:1 signal-noise ratio to gamma-rays of 137 Cs (662keV) and a 0.023 fC/pF noise slope. Gamma-rays of 241 Am (59.5keV) were measured by the BPX66 detector and the designed CSP under room temperature, providing 1.97% energy resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies

    CERN Document Server

    Alver, B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Chetluru, V; Decowski, M P; Garcıa, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Holynski, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, J Kotula W; Kulinich, P; Kuo, C M; Li, W; Lin, W T; Loizides, C; Manly, S; McLeod, D; Michalowski, J; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Sedykh, I; Skulski, W; Smith, C E; Steadman, S G; Steinberg, P; Stephans, G S F; Stodulski, M; Sukhanov, A; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wadsworth, B; Walters, P; Wenger, E; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2010-01-01

    Pseudorapidity distributions of charged particles emitted in $Au+Au$, $Cu+Cu$, $d+Au$, and $p+p$ collisions over a wide energy range have been measured using the PHOBOS detector at RHIC. The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with $|\\eta|<5.4$, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density, $dN_{ch}/d\\eta$, and the total charged-particle multiplicity, $N_{ch}$, are found to factorize into a product of independent functions of collision energy, $\\sqrt{s_{_{NN}}}$, and centrality given in terms of the number of nucleons participating in the collision, $N_{part}$. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of $(\\ln s_{_{NN}})^2$ over the fu...

  2. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015.

    Science.gov (United States)

    Baker, D N; Jaynes, A N; Kanekal, S G; Foster, J C; Erickson, P J; Fennell, J F; Blake, J B; Zhao, H; Li, X; Elkington, S R; Henderson, M G; Reeves, G D; Spence, H E; Kletzing, C A; Wygant, J R

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm ( Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy ( E  ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α  = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L  ≈ 2.8 was pushed inward, but not significantly breached, and no E  ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  3. Highly Relativistic Radiation Belt Electron Acceleration, Transport, and Loss: Large Solar Storm Events of March and June 2015

    Science.gov (United States)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J.C.; Erickson, P. J.; Fennell, Joseph; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; hide

    2016-01-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (Disturbance Storm Time Ring Current Index) value reaching 223 nanoteslas. On 22 June 2015 another strong storm (Dst reaching 204 nanoteslas) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E (Energy) greater than or approximately equal to 1 millielectronvolt) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 millielectronvolts in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong butterfly distributions with deep minima in flux at alpha equals 90 degrees. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported impenetrable barrier at L (L-shell magnetic field line value) approximately equal to 2.8 was pushed inward, but not significantly breached, and no E (Energy) greater than or approximately equal to 2.0 millielectronvolts electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  4. Charge Summing in Spectroscopic X-Ray Detectors With High-Z Sensors

    CERN Document Server

    Koenig, Thomas; Cecilia, Angelica; Ballabriga, Rafael; Baumbach, Tilo; Llopart, Xavier; Fiederle, Michael; Zuber, Marcus; Hamann, Elias; Fauler, Alex; Campbell, Michael

    2013-01-01

    The spectroscopic performance of photon counting detectors is limited by the effects of charge sharing between neighboring pixels and the emission of characteristic X-rays. For these reasons, an event can be either missed or counted more than once. These effects become more and more of a concern when pixel pitches are reduced, and for the technology available so far, this meant that there would always be a trade-off between a high spatial and a high spectral resolution. In this work, we present first measurements obtained with the new Medipix3RX ASIC, which features a network of charge summing circuits establishing a communication between pixels which helps to mitigate these effects. Combined with cadmium telluride sensors, we show that this new technology is successful at improving a detector's spectroscopic capabilities even at pixel pitches as small as 55 mu m. At this pitch, we measure an energy response function similar to that observed for a pixel pitch of 165 mu m in the absence of a charge summing cir...

  5. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  6. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  7. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.

    1999-01-01

    Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...... character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications...

  8. Charged particle production in high Q{sup 2} deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Aktas, A. [DESY, Hamburg (DE)] (and others)

    2007-05-15

    The average charged track multiplicity and the normalised distribution of the scaled momentum, x{sub p}, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q{sup 2} in the Breit frame of reference. The analysis covers the range of photon virtuality 100 < Q{sup 2} < 20 000 GeV{sup 2}. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher Q{sup 2} and to the full range of x{sub p}. The results are compared with e{sup +}e{sup -} annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process. (orig.)

  9. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  10. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  11. Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high-momentum nucleons induced by short-range correlations

    Science.gov (United States)

    Cai, Bao-Jun; Li, Bao-An

    2016-01-01

    It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy Esym(ρ ) . First, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic models, the kinetic symmetry energy of quasinucleons is found to be Esymkin(ρ0) =-16.94 ±13.66 MeV which is dramatically different from the prediction of Esymkin(ρ0) ≈12.5 MeV by FFG models at nuclear matter saturation density ρ0=0.16 fm-3 . Third, comparing the RMF calculations with and without the high-momentum nucleons using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum distribution is found to make the Esym(ρ ) more concave around ρ0 by softening it significantly at both subsaturation and suprasaturation

  12. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  13. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider. Subrata Pal. Volume 84 Issue 5 May 2015 pp ... Subrata Pal1. Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  14. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  15. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  16. Physics and applications with laser-induced relativistic shock waves

    National Research Council Canada - National Science Library

    S Eliezer; J M Martinez-Val; Z Henis; N Nissim; S V Pinhasi; A Ravid; M Werdiger; E Raicher

    2016-01-01

    The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance laser or indirectly by a laser acceleration of a foil that collides with a second static foil...

  17. Relativistic Dynamics of Graphene

    Science.gov (United States)

    Semenoff, Gordon

    2011-10-01

    Graphene is a one-atom thick layer of carbon atoms where electrons obey an emergent Dirac equation. Only seven years after it first became available in the laboratory, graphene has captured the attention of a wide spectrum of scientists: from particle physicists interested in using graphene's emergent relativistic dynamics to study quantum field theory phenomena to condensed matter physicists fascinated by its unusual electronic propertied and technologists searching for materials for the nest generation of electronic devices. This presentation will review the basics of graphene and some questions, such as the possibility of chiral symmetry breaking, which have overlap with similar ones in strong interaction particle physics.

  18. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  19. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  20. Relativistic dissipative fluids

    CERN Document Server

    Geroch, R

    1993-01-01

    We observe in Nature fluids that manifest dissipation, e.g., the effects of heat conductivity and viscosity. We believe that all physical phenomena are to be described within the framework of General Relativity. What, then, is the appropriate description of a relativistic dissipative fluid? This is not only a question of principle, but also one of practical interest. There exist systems, such as certain neutron stars, in which relativity and dissipation are at the same time significant.

  1. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal

    Science.gov (United States)

    Weiss, Joel T.; Shanks, Katherine S.; Philipp, Hugh T.; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W.; Gruner, Sol M.

    2017-04-01

    Several charge integrating CMOS pixel front ends utilizing charge removal techniques have been fabricated to extend dynamic range for X-ray diffraction applications at synchrotron sourcesand X-ray free electron lasers (XFELs). The pixels described herein build on the mixed mode pixel array detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 X-rays/pixel/s while maintaining sensitivity to smaller signals, down to single X-rays. To extend dynamic range, charge is removed from the integration node of the frontend amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is, thereby, shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux > 1011 X-rays/pixel/s. Pixel front-end linearity was evaluated by direct current injection and results are presented. A small-scale readout ASIC utilizing these pixel architectures has been fabricated and the use of these architectures to increase single X-ray pulse dynamic range at XFELs is discussed briefly.

  3. Spectroscopy of Highly Charged Tin Ions for AN Extreme Ultraviolet Light Source for Lithography

    Science.gov (United States)

    Torretti, Francesco; Windberger, Alexander; Ubachs, Wim; Hoekstra, Ronnie; Versolato, Oscar; Ryabtsev, Alexander; Borschevsky, Anastasia; Berengut, Julian; Crespo Lopez-Urrutia, Jose

    2017-06-01

    Laser-produced tin plasmas are the prime candidates for the generation of extreme ultraviolet (EUV) light around 13.5 nm in nanolithographic applications. This light is generated primarily by atomic transitions in highly charged tin ions: Sn^{8+}-Sn^{14+}. Due to the electronic configurations of these charge states, thousands of atomic lines emit around 13.5 nm, clustered in a so-called unresolved transition array. As a result, accurate line identification becomes difficult in this regime. Nevertheless, this issue can be circumvented if one turns to the optical: with far fewer atomic states, only tens of transitions take place and the spectra can be resolved with far more ease. We have investigated optical emission lines in an electron-beam-ion-trap (EBIT), where we managed to charge-state resolve the spectra. Based on this technique and on a number of different ab initio techniques for calculating the level structure, the optical spectra could be assigned [1,2]. As a conclusion the assignments of EUV transitions in the literature require corrections. The EUV and optical spectra are measured simultaneously in the controlled conditions of the EBIT as well as in a droplet-based laser-produced plasma source providing information on the contribution of Sn^{q+} charge states to the EUV emission. [1] A. Windberger, F. Torretti, A. Borschevsky, A. Ryabtsev, S. Dobrodey, H. Bekker, E. Eliav, U. Kaldor, W. Ubachs, R. Hoekstra, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Analysis of the fine structure of Sn^{11+} - Sn^{14+} ions by optical spectroscopy in an electron beam ion trap, Phys. Rev. A 94, 012506 (2016). [2] F. Torretti, A. Windberger, A. Ryabtsev, S. Dobrodey, H. Bekker, W. Ubachs, R. Hoekstra, E.V. Kahl, J.C. Berengut, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Optical spectroscopy of complex open 4d-shell ions Sn^{7+} - Sn^{10+}, arXiv:1612.00747

  4. High performance charge breeder for HIE-ISOLDE and TSR@ISOLDE applications

    Energy Technology Data Exchange (ETDEWEB)

    Shornikov, Andrey, E-mail: andrey.shornikov@cern.ch; Mertzig, Robert C.; Wenander, Fredrik J. C. [CERN, Geneva 23, CH-1211 (Switzerland); Beebe, Edward N.; Pikin, Alexander [Brookhaven National Lab, Upton, NY 11973 (United States)

    2015-01-09

    We report on the development of the HEC{sup 2} (High Energy Compression and Current) charge breeder, a possible high performance successor to REXEBIS at ISOLDE. The new breeder would match the performance of the HIE-ISOLDE linac upgrade and make full use of the possible installation of a storage ring at ISOLDE (the TSR@ISOLDE initiative [1]). Dictated by ion beam acceptance and capacity requirements, the breeder features a 2–3.5 A electron beam. In many cases very high charge states, including bare ions up to Z=70 and Li/Na-like up to Z=92 could be requested for experiments in the storage ring, therefore, electron beam energies up to 150 keV are required. The electron-beam current density needed for producing ions with such high charge states at an injection rate into TSR of 0.5–1 Hz is between 10 and 20 kA/cm{sup 2}, which agrees with the current density needed to produce A/q<4.5 ions for the HIE-ISOLDE linac with a maximum repetition rate of 100 Hz. The first operation of a prototype electron gun with a pulsed electron beam of 1.5 A and 30 keV was demonstrated in a joint experiment with BNL [2]. In addition, we report on further development aiming to achieve CW operation of an electron beam having a geometrical transverse ion-acceptance matching the injection of 1{sup +} ions (11.5 μm), and an emittance/energy spread of the extracted ion beam matching the downstream mass separator and RFQ (0.08 μm normalized / ± 1%)

  5. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  6. Exotic Non-relativistic String

    CERN Document Server

    Casalbuoni, Roberto; Longhi, Giorgio

    2007-01-01

    We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.

  7. relline: Relativistic line profiles calculation

    Science.gov (United States)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  8. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R. J. E.; Scheffer, M. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Eindhoven (Netherlands); Kappatou, A. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Nieuwegein (Netherlands); Valk, N. C. J. van der; Durkut, M.; Snijders, B. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Marchuk, O.; Biel, W. [Institut fuer Energie und Klimaforschung-IEK-4 Forschungszentrum, Juelich GmbH, 52425 Juelich (Germany); Pokol, G. I. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Erdei, G. [Department of Atomic Physics, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Zoletnik, S.; Dunai, D. [WIGNER RCP, RMKI, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary)

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  9. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITERa)

    Science.gov (United States)

    Jaspers, R. J. E.; Scheffer, M.; Kappatou, A.; van der Valk, N. C. J.; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G. I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-10-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm2sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)], 10.1063/1.1537443. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  10. Relativistic models for quasielastic electron and neutrino-nucleus scattering

    Directory of Open Access Journals (Sweden)

    Meucci Andrea

    2012-12-01

    Full Text Available Relativistic models developed within the framework of the impulse approximation for quasielastic (QE electron scattering and successfully tested in comparison with electron-scattering data have been extended to neutrino-nucleus scattering. Different descriptions of final-state interactions (FSI in the inclusive scattering are compared. In the relativistic Green’s function (RGF model FSI are described consistently with the exclusive scattering using a complex optical potential. In the relativistic mean field (RMF model FSI are described by the same RMF potential which gives the bound states. The results of the models are compared for electron and neutrino scattering and, for neutrino scattering, with the recently measured charged-current QE (CCQE MiniBooNE cross sections.

  11. A relativistic trolley paradox

    Science.gov (United States)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  12. Relativistic ring models

    Energy Technology Data Exchange (ETDEWEB)

    Ujevic, Maximiliano [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Letelier, Patricio S.; Vogt, Daniel [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica. Dept. de Matematica Aplicada

    2011-07-01

    Full text: Relativistic thick ring models are constructed using previously found analytical Newtonian potential-density pairs for flat rings and toroidal structures obtained from Kuzmin-Toomre family of discs. This was achieved by inflating previously constructed Newtonian ring potentials using the transformation |z|{yields}{radical}z{sup 2} + b{sup 2}, and then finding their relativistic analog. The models presented have infinite extension but the physical quantities decays very fast with the distance, and in principle, one could make a cut-off radius to consider it finite. In particular, we present systems with one ring, two rings and a disc with a ring. Also, the circular velocity of a test particle and its stability when performing circular orbits are presented in all these models. Using the Rayleigh criterion of stability of a fluid at rest in a gravitational field, we find that the different systems studied present a region of non-stability that appears in the intersection of the disc and the ring, and between the rings when they become thinner. (author)

  13. Relativistic Planck-scale polymer

    Science.gov (United States)

    Amelino-Camelia, Giovanni; Arzano, Michele; Da Silva, Malú Maira; Orozco-Borunda, Daniel H.

    2017-12-01

    Polymer quantum mechanics has been studied as a simplified picture that reflects some of the key properties of Loop Quantum Gravity; however, while the fate of relativistic symmetries in Loop Quantum Gravity is still not established, it is usually assumed that the discrete polymer structure should lead to a breakdown of relativistic symmetries. We here focus for simplicity on a one-spatial-dimension polymer model and show that relativistic symmetries are deformed, rather than being broken. The specific type of deformed relativistic symmetries which we uncover appears to be closely related to analogous descriptions of relativistic symmetries in some noncommutative spacetimes. This also contributes to an ongoing effort attempting to establish whether the ;quantum-Minkowski limit; of Loop Quantum Gravity is a noncommutative spacetime.

  14. Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence

    Science.gov (United States)

    Zrake, Jonathan; MacFadyen, Andrew

    2011-08-01

    Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of ɛB>~0.01 are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with relative Lorentz factors of several. These conditions are relevant in models for internal shocks, for the late afterglow phase, for cocoon material along the edge of a relativistic jet as it propagates through a star, as well neutron stars merging with each other and with black hole companions. We find that relativistic turbulence decays extremely quickly, on a sound crossing time of an eddy. Models invoking sustained relativistic turbulence to explain variability in GRB prompt emission are thus strongly disfavored unless a persistant driving of the turbulence is maintained for the duration of the prompt emission.

  15. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of anomaly parameter of |α − 1| < 8.7 × 10(-7).

  16. A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator

    Science.gov (United States)

    Loan, Sajad A.; Bashir, Faisal; Rafat, M.; Alamoud, Abdul Rehman M.; Abbasi, Shuja A.

    2014-09-01

    In this paper, we propose a new high performance PN-Schottky collector (PN-SC) lateral bipolar junction transistor (BJT) on silicon-on-insulator (SOI). The proposed device addresses the problem of poor speed of conventional lateral PNP-BJT device by using a Schottky collector. Further, it does not use the conventional ways of ion implantation/diffusion to realize n and p type doped region. However, it uses metal electrodes of different work functions to create n and p type charge plasma in an undoped silicon film. The simulation study of the proposed lateral PN-SC bipolar charge plasma transistor on SOI (PN-SC-BCPT) device has shown a significant improvement in current gain (β), cutoff frequency (f T) and switching performance in comparison to conventional PNP-BJT and PNP-bipolar charge plasma transistor (PNP-BCPT) devices. A significantly high β is obtained in the proposed PN-SC-BCPT (˜2100) in comparison to PNP-BCPT (˜1450) and the conventional BJT (˜9) devices, respectively. It has been observed that there is 89.56% and 153.5% increase in f T for the proposed PN-SC-BCPT device (2.18 GHz) in comparison to conventional PNP-BJT (1.15 GHz) and PNP-BCPT (0.86 GHz) devices, respectively. Further, reductions of 24.6% and 15.4% in switching ON-delay and 66% and 30.76% in switching OFF-delay have been achieved in the proposed device based inverters in comparison to PNP-BCPT and the conventional BJT devices based inverters, respectively. Furthermore, the proposed device does not face doping related issues and the requirement of high temperature processing is absent.

  17. Experimental characterization of a space charge induced modulation in high-brightness electron beam

    Directory of Open Access Journals (Sweden)

    T. Shaftan

    2004-08-01

    Full Text Available We present the experimental investigation of a collective effect driving strong modulation in the longitudinal phase space of a high-brightness electron beam. The measured beam energy spectrum was analyzed in order to reveal the main parameters of modulation. The experimental results were compared with a model of space-charge oscillations in the beam longitudinal phase space. The measurements and analysis allowed us to determine the range of the parameters of the observed effect on the modulation dynamics and illustrate its potential impact on short-wavelength free-electron laser performance.

  18. Plasma Effects On Atomic Data For The K-Vacancy States Of Highly Charged Iron Ions

    OpenAIRE

    Deprince, J; Fritzsche, S; Kallman, T. R.; Palmeri, P; Quinet, Pascal

    2017-01-01

    The main goal of the present work is to estimate the effects of plasma environment on the atomic parameters associated with the K-vacancy states in highly charged iron ions within the astrophysical context of accretion disks around black holes. In order to do this, multiconfiguration Dirac-Fock computations have been carried out by considering a time averaged Debye-H\\"uckel potential for both the electron-nucleus and electron-electron interactions. In the present paper, a first sample of resu...

  19. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Grether, M.; Spieler, A.; Niemann, D. [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A.

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  20. Determination of Charge Component Composition in Self-Propagating High-Temperature Synthesis of Intermetallic Compounds

    Science.gov (United States)

    Evtushenko, A. T.; Lebedeva, O. A.; Torbunov, S. S.

    2005-05-01

    A method for determining the component composition of the charge for the self-propagating high-temperature synthesis of intermetallic compounds from the maximum value of the emitted heat in the combustion of thermit, which is required for melting the alloying components, is suggested. The mass composition of the alloying components is determined by solving a closed system of algebraic equations represented by regression equations derived from the results of physical experiment for obtaining specific properties of the intermetallic compound. Theoretical computations are partially confirmed by experimental results.

  1. Estimation of Transformer Parameters and Loss Analysis for High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Ouyang, Ziwei

    2013-01-01

    In a bi-directional DC-DC converter for capacitive charging application, the losses associated with the transformer makes it a critical component. In order to calculate the transformer losses, its parameters such as AC resistance, leakage inductance and self capacitance of the high voltage (HV......) winding has to be estimated accurately. This paper analyzes the following losses of bi-directional flyback converter namely switching loss, conduction loss, gate drive loss, transformer core loss, and snubber loss, etc. Iterative analysis of transformer parameters viz., AC resistance, leakage inductance...

  2. Atomic physics with highly-charged ions at the future FAIR facility. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Beyer, H.F.; Braeuning, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (DE)] (and others)

    2006-11-15

    The key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and setups required to reach the physics goals is given. (orig.)

  3. Atomic physics with highly-charged ions at the future FAIR facility: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany) and Institut fuer Kernphysik, University of Frankfurt (Germany)]. E-mail: t.stoehlker@gsi.de; Beyer, H.F. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning, H. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Brandau, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Hagmann, S. [Institut fuer Kernphysik, University of Frankfurt (Germany); Kozhuharov, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kluge, H.J. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kuehl, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Liesen, D. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Mann, R. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Noertershaeuser, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Quint, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Schramm, U. [LMU, Munich (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden)

    2007-08-15

    Key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and set-ups required to reach the physics goals is given.

  4. Collision of highly charged ion with clusters. Simulation study for electronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yabana, Kazuhiro [Niigata Univ. (Japan)

    1997-05-01

    Collision of highly charged ion with cluster, for example, collision of C{sub 60}-Ar{sup 8+} at E=80 KeV, was simulated by the time-dependence Kohn-Shame equation. The distribution of electron densities and the self-consistent potential were obtained. A part of C{sub 60} potential curve became depressed by the Coulomb force of ion, so that the saddle point was produced on the potential. The behavior of electron transfer on the saddle point was agreed with the classical barrier model. Time-dependent density functional method was explained. (S.Y.)

  5. Advanced relativistic VLBI model for geodesy

    Science.gov (United States)

    Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao

    2017-07-01

    Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.

  6. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  7. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    CERN Document Server

    Ulmer, S; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-01-01

    Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available$^{4, 5, 6, 7, 8}$. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H$^−$) carried out in a Penning trap system. From 13,000 frequency measurements we compare th...

  8. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  9. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction.

    Science.gov (United States)

    Sheikh, Arif D; Munir, Rahim; Haque, Md Azimul; Bera, Ashok; Hu, Weijin; Shaikh, Parvez; Amassian, Aram; Wu, Tom

    2017-10-11

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic (PV) performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After temperature-dependent grazing-incidence wide-angle X-ray scattering, in situ X-ray diffraction, and optical absorption experiments were carried out, the thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10% in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of the crystallinity and p doping in the hole transporter, spiro-OMeTAD, which promotes the efficient extraction of photogenerated carriers. However, further thermal cycles produced a detrimental effect on the PV performance of PSCs, with the short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the PV performance of PSCs degraded at high operation temperatures; both the short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of the fill factor was the opposite. Our impedance spectroscopy analysis revealed a monotonous increase of the charge-transfer resistance and a concurrent decrease of the charge-recombination resistance with increasing temperature, indicating a high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance because of the deteriorated interfacial photocarrier extraction. The present findings suggest that the development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite PVs in harsh

  10. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  11. Analytic study of 1D diffusive relativistic shock acceleration

    Science.gov (United States)

    Keshet, Uri

    2017-10-01

    Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN/dEpropto E-p spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p-1=1-ln[γd(1+βd)]/ ln;[γu(1+βu)], where βu (βd) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a Jüttner-Synge equation of state) noticeably hardens with increasing 1<γu<57, before logarithmically converging back to p(γu→∞)=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.

  12. Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.

    Science.gov (United States)

    Dolliver, D D; Ordonez, C A

    1999-06-01

    A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions.

  13. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    Science.gov (United States)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  14. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  15. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake.

    Science.gov (United States)

    Zheng, Shou-Tian; Bu, Julia T; Li, Yufei; Wu, Tao; Zuo, Fan; Feng, Pingyun; Bu, Xianhui

    2010-12-08

    The integration of negatively charged single-metal building blocks {In(CO2)4} and positively charged trimeric clusters {In3O} leads to three unique cage-within-cage-based porous materials, which exhibit not only high hydrothermal, thermal, and photochemical stability but also attractive structural features contributing to a very high CO2 uptake capacity of up to 119.8 L/L at 273 K and 1 atm.

  16. Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing

    Science.gov (United States)

    Huang, Tzu‐Yen; Kung, Chung‐Wei; Liao, Yu‐Te; Kao, Sheng‐Yuan; Cheng, Mingshan; Chang, Ting‐Hsiang; Henzie, Joel; Alamri, Hatem R.; Alothman, Zeid A.

    2017-01-01

    Abstract With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4‐ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin‐based metal–organic framework nanocrystals (MOF‐525). The MOF‐525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF‐525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10−6–270 × 10−6 m and the detection limit is estimated to be 0.04 × 10−6 m with high selectivity toward DA. Additionally, a real‐time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5‐25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing. PMID:29201623

  17. A triple GEM detector with pad readout for high rate charged particle triggering

    CERN Document Server

    Bonivento, W; Felici, G; Murtas, F; Valente, P; Cardini, A; Lai, A; Pinci, D; Saitta, B; Bosio, C

    2002-01-01

    In this paper, results of a time performance study of triple gas electron multiplier (GEM) detectors are discussed. This study was driven by an R&D activity on detectors for the Level 0 LHCb muon trigger. However, the results presented in this paper are of more general interest, i.e. for experiments with high rate charged particle triggering. Little interest was given so far to time performance of GEM detectors. Only one group measured double GEM detector time resolution with the Ar/CO//2 (70/30) gas mixture. Our study aimed at triple GEM detector optimisation for good time performance through a detailed investigation of the role played by detector geometry, electric fields and gas mixture. The results reported here, in particular when using the gas mixture Ar/CO//2/CF //4 (60/20/20), considerably improve the time performance discussed in the above-mentioned paper and make the triple GEM detector a promising option for high rate charged particle triggering.

  18. Modelling and design of high compression electron guns for EBIS/T charge breeders

    CERN Document Server

    AUTHOR|(CDS)2087190; Zschornack, G.; Lettry, J.; Wenander, F.

    In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC2 gun operating at its design limit. The experience gained from the commission of the HEC² gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quali...

  19. Evolution of electronic structure in highly charge doped MoS2 compounds

    Science.gov (United States)

    Bin Subhan, Mohammed; Watson, Matthew; Liu, Zhongkai; Walters, Andrew; Hoesch, Moritz; Howard, Chris; Diamond I05 beamline Collaboration

    Transition-metal dichalcogenides (TMDCs) are a group of layered materials that exhibit a rich array of electronic ground states including semiconductivity, metallicity, superconductivity and charge density waves. In recent years, 2D TMDCs have attracted considerable attention due to their unique properties and potential applications in optoelectronics. It has been shown that the charge carrier density in few layer MoS2 can be tunably increased via electrostatic gating. At high levels of doping, MoS2 exhibits superconductivity with a dome-like dependence of Tc on doping analogous to that found in the cuprate superconductors. High doping can also be achieved via intercalation of alkali metals in bulk MoS2. The origin of this superconductivity is not yet fully understood with predictions ranging from exotic pairing mechanisms in bulk systems to Ising superconductivity in single layers. Despite these interesting properties, there has been limited research to date on the electronic structure of these doped compounds. Here we present our work on alkali metal intercalated MoS2 using the low temperature metal ammonia solution method. Using X-ray diffraction, Raman spectroscopy and ARPES measurements we will discuss the physical and electronic structure of these materials. EPSRC, Diamond Light Source.

  20. A search for relativistic electron induced stratospheric ozone depletion

    Science.gov (United States)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  1. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  2. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    Science.gov (United States)

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  3. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  4. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  5. Relativistic gauge invariant potentials

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Negro, J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Olmo, M.A. del (Valladolid Univ. (Spain). Dept. de Fisica Teorica)

    1995-01-01

    A global method characterizing the invariant connections on an abelian principal bundle under a group of transformations is applied in order to get gauge invariant electromagnetic (elm.) potentials in a systematic way. So, we have classified all the elm. gauge invariant potentials under the Poincare subgroups of dimensions 4, 5, and 6, up to conjugation. It is paid attention in particular to the situation where these subgroups do not act transitively on the space-time manifold. We have used the same procedure for some galilean subgroups to get nonrelativistic potentials and study the way they are related to their relativistic partners by means of contractions. Some conformal gauge invariant potentials have also been derived and considered when they are seen as consequence of an enlargement of the Poincare symmetries. (orig.)

  6. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  7. Relativistic Light Sails

    Science.gov (United States)

    Kipping, David

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ˜10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  8. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    Science.gov (United States)

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  9. High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes.

    Science.gov (United States)

    Haldrup, Sofie; Catalano, Jacopo; Hansen, Michael Ryan; Wagner, Manfred; Jensen, Grethe Vestergaard; Pedersen, Jan Skov; Bentien, Anders

    2015-02-11

    The synthesis, characterization, and electrokinetic energy conversion performance have been investigated experimentally in a charged polymeric membrane based on a blend of nitrocellulose and sulfonated polystyrene. The membrane is characterized by a moderate ion exchange capacity and a relatively porous structure with average pore diameter of 11 nm. With electrokinetic energy conversion, pressure can be converted directly into electric energy and vice versa. From the electrokinetic transport properties, a remarkably large intrinsic maximum efficiency of 46% is found. It is anticipated that the results are an experimental verification of theoretical models that predict high electrokinetic energy conversion efficiency in pores with high permselectivity and hydrodynamic slip flow. Furthermore, the result is a promising step for obtaining efficient low-cost electrokinetic generators and pumps for small or microscale applications.

  10. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  11. Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes

    Science.gov (United States)

    Zubair, Ahmed; Tristant, Damien; Nie, Chunyang; Tsentalovich, Dmitri E.; Headrick, Robert J.; Pasquali, Matteo; Kono, Junichiro; Meunier, Vincent; Flahaut, Emmanuel; Monthioux, Marc; Gerber, Iann C.; Puech, Pascal

    2017-11-01

    The origin of highly efficient iodine doping of carbon nanotubes is not well understood. Relying on first-principles calculations, we found that iodine molecules (I2) in contact with a carbon nanotube interact to form monoiodide or/and polyiodide from two and three I2 as a result of removing electrons from the carbon nanotube (p -type doping). Charge per iodine atom for monoiodide ion or iodine atom at end of iodine chain is significantly higher than that for I2. This atomic analysis extends previous studies showing that polyiodide ions are the dominant dopants. Moreover, we observed isolated I atoms in atomically resolved transmission electron microscopy, which proves the production of monoiodide. Finally, using Raman spectroscopy, we quantitatively determined the doping level and estimated the number of conducting channels in high electrical conductivity fibers composed of iodine-doped double-wall carbon nanotubes.

  12. Two-particle Azimuthal Correlations of High-pT Charged Hadrons at the CERN SPS

    CERN Document Server

    Szuba, Marek

    2008-01-01

    Two-particle azimuthal correlations of high-pT hadrons can serve as a probe of interactions of partons with the dense medium produced in high-energy heavy-ion collisions. First NA49 results on such correlations are presented for central and mid-central Pb+Pb collisions at 158A GeV beam energy, for different centrality bins and charge combinations of trigger and associate particles. These results feature a flattened away-side peak in the most central collisions, which is consistent with expectations of the medium-interaction scenario. A comparison with CERES Pb+Au results at the same energy, as well as with PHENIX Au+Au results at the top RHIC energy, is provided.

  13. High efficiency laser-assisted H- charge exchange for microsecond duration beams

    Science.gov (United States)

    Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin; Aleksandrov, Alexander; Danilov, Viatcheslav; Gorlov, Timofey; Liu, Yun; Long, Cary; Menshov, Alexander; Plum, Michael; Shishlo, Andrei; Webster, Andrew; Johnson, David

    2017-12-01

    Laser-assisted stripping is a novel approach to H- charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. The experiment was performed on the Spallation Neutron Source 1 GeV H- beam using a 1 MW peak power UV laser and resulted in ˜95 % stripping efficiency.

  14. Relativistic Magnetron Priming Experiments and Theory

    Science.gov (United States)

    2010-03-29

    Radiological Scinces dept. University of Michigan Ann Arbor, MI 48109 University of Nevada Reno, Reno NV 10-1 Air Force Office of Scientific Research...versus 30% in the simulation). Due to the idealizations used in the magnetic priming simulations of the UM/L-3 Titan relativistic magnetron, direct ...Laboratory, High Power Microwave Division, Directed Energy Directorate, Kirtland AFB, Albuquerque, NM 87117 USA Abstract Using a hybrid approach, three

  15. Charge transfer in high velocity C{sub n}{sup +} + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chabot, M [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Martinet, G [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Mezdari, F [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Diaz-Tendero, S [Departamento de Quimica, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Beroff-Wohrer, K [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Desesquelles, P [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Della-Negra, S [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Hamrita, H [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); LePadellec, A [IRSAMC, Universite Paul Sabatier et CNRS, 31062 Toulouse Cedex 4 (France); Tuna, T [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Montagnon, L [IRSAMC, Universite Paul Sabatier et CNRS, 31062 Toulouse Cedex 4 (France); Barat, M [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Simon, M [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, Universite Paris 6 et CNRS, 11 rue P et M Curie, 75231 Paris Cedex 05 (France); Ismail, I [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France)

    2006-06-14

    Dissociative and non-dissociative charge transfer cross sections in high velocity (v = 2.6 au) collisions between ionic carbon clusters C{sub n}{sup +} (n 2-10) and helium atoms have been measured. The sum of the cross sections has been found to increase significantly with n. Measurements of branching ratios for all fragmentation channels of excited C{sub n} clusters are reported. The summed branching ratios associated with a given number of emitted fragments exhibit odd-even alternations reflecting the higher stability of the species having an odd number of atoms. From an analysis of the summed branching ratios within the statistical microcanonical metropolis Monte Carlo model, and knowing the temperature of the incident clusters, deposited energy distributions due to the charge transfer process are deduced (n = 5-9). These distributions, of similar characteristics whatever n, peak around 4-5 eV and exhibit a large percentage of superexcited states situated above the continuum.

  16. Microscopic observation of highly mobile charge carriers in organic transistors of semicrystalline conducting polymers

    Science.gov (United States)

    Kawamura, Shinya; Wakamatsu, Ayato; Kuroda, Shin-ichi; Takenobu, Taishi; Tanaka, Hisaaki

    2018-02-01

    Charge carrier dynamics in organic field-effect transistors (OFETs) of semicrystalline conducting polymers poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) and poly(3-hexylthiophene) (P3HT) have been investigated down to 4 K by field-induced electron spin resonance (FI-ESR) spectroscopy. The highly mobile nature of charge carriers within the ordered regions of the polymers has been clarified from the observation of the motional narrowing effect of the ESR spectra even below 30 K, where device operation cannot be observed presumably owing to the effect of domain boundaries. The activation energy of carrier motion observed by ESR has been determined as 17 meV for PBTTT and 13 meV for P3HT, which are an order of magnitude smaller than that of FET mobility (>110 meV) obtained for the same devices. These results demonstrate that the intrinsic carrier mobility within the ordered region is much higher than that expected from the macroscopic transport measurements in the semicrystalline polymers.

  17. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  18. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhargavi, R.; Nair, Geetha G., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com; Krishna Prasad, S., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com [Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013 (India); Majumdar, R.; Bag, Braja G. [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore (W) 721 102 (India)

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  19. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    Science.gov (United States)

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.

  20. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  1. Superposition as a Relativistic Filter

    Science.gov (United States)

    Ord, G. N.

    2017-07-01

    By associating a binary signal with the relativistic worldline of a particle, a binary form of the phase of non-relativistic wavefunctions is naturally produced by time dilation. An analog of superposition also appears as a Lorentz filtering process, removing paths that are relativistically inequivalent. In a model that includes a stochastic component, the free-particle Schrödinger equation emerges from a completely relativistic context in which its origin and function is known. The result establishes the fact that the phase of wavefunctions in Schrödinger's equation and the attendant superposition principle may both be considered remnants of time dilation. This strongly argues that quantum mechanics has its origins in special relativity.

  2. High resolution interferometry as a tool for characterization of swelling of weakly charged hydrogels subjected to amphiphile and cyclodextrin exposure

    OpenAIRE

    Gao, Ming; Gawel, Kamila; Stokke, Bjørn Torger

    2013-01-01

    A high resolution interferometric technique was used to determine swelling behavior of weakly charged polyacrylamide hydrogels in the presence of oppositely charged surfactants and subsequent exposure to cyclodextrins. Hydrogels of copolymerized acrylamide and 2-acrylamido-2-methyl-1-propanesulfonic acid (0.22, 0.44, 0.88 mol%) and crosslinked with bisacrylamide (3, 6, 12 mol%) were employed. The equilibrium swelling and swelling kinetics of the hydrogels were determined with 2 nanometer reso...

  3. Formation of Hypernuclei in Relativistic Ion Collisions

    Science.gov (United States)

    Botvina, Alexander; Bleicher, Marcus; Pochodzalla, Josef; Steinheimer, Jan

    We develop a versatile model of hypernuclei production in relativistic hadron and ion collisions. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for the hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin, and the production of multi-strange nuclei including new excited states is quite abundant. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

  4. Highly positive-charged zinc(II) phthalocyanine as non-aggregated and efficient antifungal photosensitizer.

    Science.gov (United States)

    Li, Xing-Shu; Guo, Jun; Zhuang, Jing-Jing; Zheng, Bi-Yuan; Ke, Mei-Rong; Huang, Jian-Dong

    2015-06-01

    A new tetra-α-substituted zinc(II) phthalocyanine containing dodeca-amino groups (compound 4) and its quaternized analogue (compound 5) have been prepared and evaluated for their photoactivities against Candida albicans. Compared with the dodeca-amino phthalocyanine 4, the dodeca-cationic phthalocyanine 5 exhibits a higher photodynamic inactivation against C. albicans with an IC90 value down to 1.46 μM, which can be attributed to its non-aggregated nature in aqueous environments and more efficient cellular uptake. More interestingly, 5 shows a higher photodynamic inactivation on C. albicans due to its stronger affinity to C. albicans cells than mammalian cells. These results suggest that the highly positive-charged phthalocyanine 5 is a potential non-aggregated antifungal photosensitizer, which shows some selectivity toward the fungus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Splitting of a high-energy positively-charged particle beam with a bent crystal

    Science.gov (United States)

    Bandiera, L.; Kirillin, I. V.; Bagli, E.; Berra, A.; De Salvador, D.; Guidi, V.; Lietti, D.; Mazzolari, A.; Prest, M.; Shul'ga, N. F.; Sytov, A.; Vallazza, E.

    2017-07-01

    The possibility of high-energy positively-charged particle beam splitting by means of a short bent axially oriented silicon crystal was recently reported in an experiment carried out at CERN SPS H8 extracted line with a 400 GeV/c proton beam. Here, we investigate more deeply such a possibility focusing our attention on the efficiency of beam splitting and its modulation for different crystal-to-beam orientations. New experimental results confirm the possibility of modulating the 400 GeV/c proton beam intensity in different planar channels by adjusting the orientation of the crystal. Furthermore, an analysis of the beam splitting efficiency vs. the curvature of the crystal was carried out through simulation, highlighting that there exists a bending radius for which the efficiency is maximal.

  6. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites.

    Science.gov (United States)

    Yan, Zhuojun; Yuan, Ye; Tian, Yuyang; Zhang, Daming; Zhu, Guangshan

    2015-10-19

    The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF-23, PAF-24, and PAF-25 are built up by a tetrahedral building unit, lithium tetrakis(4-iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira-Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their "breathing" dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal-organic frameworks, and porous organic frameworks) reported to date. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Three dimensional space charge model for large high voltage satellites. [plasma sheath

    Science.gov (United States)

    Cooks, D.; Parker, L. W.; Mccoy, J. E.

    1980-01-01

    High power solar arrays for satellite power systems with dimensions of kilometers, and with tens of kilovolts distributed over their surface face many plasma interaction problems that must be properly anticipated. In most cases, the effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Two computer programs were developed to provide fully self consistent plasma sheath models in three dimensions as a result of efforts to model the experimental plasma sheath studies at NASA/JSC. Preliminary results indicate that for the conditions considered, the Child-Langmuir diode theory can provide a useful estimate of the plasma sheath thickness. The limitations of this conclusion are discussed. Some of the models presented exhibit the strong ion focusing observed in the JSC experiments.

  8. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  9. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

  10. Development of a Bragg spectrometer for experiments with highly charged ions at storage rings

    Science.gov (United States)

    Banas, D.; Jagodzinski, P.; Pajek, M.; Stöhlker, Th; Trassinelli, M.; Beyer, H. F.; Reuschl, R.; Spillmann, U.

    2007-03-01

    The construction and results of the Monte-Carlo ray-tracing simulations for a low energy x-ray crystal spectrometer designed for future experiments at the ESR storage ring with fast highly charged ions are presented. The spectrometer has a radius of the Rowland circle R = 0.5 m and operates in the Johann geometry. The x-rays emitted from a source are di.racted by spherically bent silicon Si(111) crystal and registered by two-dimensional deep depleted back-illuminated CCD camera. The estimated spectrometer e.ciency, calculated according to a dynamical theory of x-ray di.raction is about 10-6. The energy resolution of the spectrometer obtained from the simulations is about 0.5 eV. influence of the source size and Doppler broadening on the spectrometer resolution is discussed.

  11. Experiments with stored relativistic exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H.; Radon, T.; Attallah, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)] [and others

    1998-07-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: (1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10{sup -6}. The achieved mass resolving power of m/{Delta}m = 6.5 . 10{sup 5} (FWHM) in recent measurements represents an improvement by a factor of two compared to our previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54 {<=} Z {<=} 84. The results are compared with mass models and estimated values based on extrapolations of experimental values. (2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/{Delta}m = 1.5 . 10{sup 5} (FWHM) was achieved in this mode of operation. (3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability. (orig.)

  12. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  13. Measurements of ϕ φ meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC)

    NARCIS (Netherlands)

    Abelev, B.I.; Bai, Y.; Botje, M.A.J.; Braidot, E; Snellings, R.J.M.; Mischke, A.; van Leeuwen, M.; Russcher, M.J.; Peitzmann, T.; Benedosso, F.

    2009-01-01

    We present results for the measurement of ϕ meson production via its charged kaon decay channel ϕ→K+K- in Au+Au collisions at √sNN=62.4,130, and 200 GeV, and in p+p and d+Au collisions at √sNN=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (|y|

  14. Two-stream-like Instability in Dilute Hot Relativistic Beams and Astrophysical Relativistic Shocks

    Science.gov (United States)

    Nakar, Ehud; Bret, Antoine; Milosavljević, Miloš

    2011-09-01

    Relativistic collisionless shocks are believed to be efficient particle accelerators. Nonlinear outcome of the interaction of accelerated particles that run ahead of the shock, the so-called precursor, with the unperturbed plasma of the shock upstream, is thought to facilitate additional acceleration of these particles and to possibly modify the hydrodynamic structure of the shock. We explore here the linear growth of kinetic modes appearing in the precursor-upstream interaction in relativistic shocks propagating in non- and weakly magnetized plasmas: electrostatic two-stream parallel mode and electrostatic oblique modes. The physics of the parallel and oblique modes is similar, and thus, we refer to the entire spectrum of electrostatic modes as "two-stream-like." These modes are of particular interest because they are the fastest growing modes known in this type of system. Using a simplified distribution function for a dilute ultrarelativistic beam that is relativistically hot in its own rest frame, yet has momenta that are narrowly collimated in the frame of the cold upstream plasma into which it propagates, we identify the fastest growing mode in the full k-space and calculate its growth rate. We consider all types of plasma (pairs and ions-electrons) and beam (charged and charge-neutral). We find that unstable electrostatic modes are present in any type of plasma and for any shock parameters. We further find that two modes, one parallel (k bottom = 0) and the other one oblique (k_\\bot \\sim k_\\Vert), are competing for dominance and that either one may dominate the growth rate in different regions of the phase space. The dominant mode is determined mostly by the perpendicular spread of the accelerated particle momenta in the upstream frame, which reflects the shock Lorentz factor. The parallel mode becomes more dominant in shocks with lower Lorentz factors (i.e., with larger momentum spreads). We briefly discuss possible implications of our results for

  15. Relativistic Fluid Dynamics: Physics for Many Different Scales

    Directory of Open Access Journals (Sweden)

    Comer Gregory L.

    2007-01-01

    Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.

  16. Relativistic multiwave Cerenkov generator

    Science.gov (United States)

    Bugaev, S. P.; Kanavets, V. I.; Klimov, A. I.; Koshelev, V. I.; Cherepenin, V. A.

    1983-11-01

    The design and operation of a multiwave Cerenkov generator using a relativistic electron beam are reported. The device comprises a 3-cm-radius tubular graphite cathode fed with a 1-microsec 1-2.5-MW pulse from a Marx generator; a 5.6-cm-radius anode; an increasing 14-32-kG magnetic field; a 3.4-cm-aperture-radius graphite collimating iris; a stainless-steel semitoroidal-iris-loaded slow-wave structure of maximum length 48.6 cm, inside radius 4.2 cm, iris aperture radius 3.0 cm, iris minor radius 3 mm, and period 1.5 cm; a stainless-steel cone collector; and a vacuum-tight 60-cm-radius window. At 2.5 MV and 21 kG, output power at wavelength 3.15 + or - 0.1 cm is measured as about 5 GW, with baseline pulse length 30-50 nsec and efficiency up to about 10 percent.

  17. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  18. Facile Access to Twisted Intramolecular Charge-Transfer Fluorogens Bearing Highly Pretwisted Donor-Acceptor Systems Together with Readily Fine-Tuned Charge-Transfer Characters.

    Science.gov (United States)

    Luo, Yanju; Wang, Yan; Chen, Shiqi; Wang, Ning; Qi, Yige; Zhang, Xiaogen; Yang, Minghui; Huang, Yan; Li, Ming; Yu, Junsheng; Luo, Daibing; Lu, Zhiyun

    2017-05-01

    Twisted intramolecular charge-transfer (TICT) fluorogens bearing highly pretwisted geometries and readily-fine-tuned charge-transfer characters are quite promising sensor and electroluminescence (EL) materials. In this study, by using 4-aryloxy-1,8-naphthalimide derivatives as the molecular framework, it is demonstrated for the first time that a CO bond could serve as the central bond to construct new TICT D-A systems. Photophysical and quantum chemical studies confirm that rotation around central CO bonds is responsible for the formation of a stable TICT state in these compounds. More importantly, owing to the structural adjustability of the aryl moiety and the strong steric interactions between the naphthalimide and the aryl ring systems, these compounds can display readily-fine-tuned TICT characters, hence exhibiting an adjustable solvent polarity threshold for aggregation-induced emission (AIE) activity, and could be AIE-active even in less-polar toluene and nonpolar cyclohexane. Furthermore, these compounds could possess highly-pretwisted ground-state geometries, hence could show good EL performance. The findings reveal a facile but effective molecular constructive strategy for versatile, high-performance optoelectronic TICT compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The effect of laser contrast on generation of highly charged Fe ions by ultra-intense femtosecond laser pulses

    Science.gov (United States)

    Faenov, Anatoly Ya.; Alkhimova, Maria A.; Pikuz, Tatiana A.; Skobelev, Igor Yu.; Nishiuchi, Mamiko; Sakaki, Hironao; Pirozhkov, Alexander S.; Sagisaka, Akito; Dover, Nicholas P.; Kondo, Kotaro; Ogura, Koichi; Fukuda, Yuji; Kiriyama, Hiromitsu; Andreev, Alexander; Nishitani, Keita; Miyahara, Takumi; Watanabe, Yukinobu; Pikuz, Sergey A.; Kando, Masaki; Kodama, Ruosuke; Kondo, Kiminori

    2017-07-01

    Experimental studies on the formation of highly charged ions of medium-Z elements using femtosecond laser pulses with different contrast levels were carried out. Multiply charged Fe ions were generated by laser pulses with 35 fs duration and an intensity exceeding 1021 W/cm2. Using high-resolution X-ray spectroscopic methods, bulk electron temperature of the generated plasma has been identified. It is shown that the presence of a laser pre-pulse at a contrast level of 105-106 with respect to the main pulse drastically decreases the degree of Fe ionization. We conclude that an effective source of energetic, multiply charged moderate and high- Z ions based on femtosecond laser-plasma interactions can be created only using laser pulses of ultra-high contrast.

  20. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  1. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Relativistic stellar models

    Indian Academy of Sciences (India)

    Abstract. We obtain a class of solutions to the Einstein–Maxwell equations describing charged static spheres. Upon specifying particular forms for one of the gravitational potentials and the electric field intensity, the condition for pressure isotropy is transformed into a hypergeometric equation with two free parameters.

  3. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  4. Considerations of acceleration effects in relativistic kinematics

    Science.gov (United States)

    Caviness, Kenneth Edwin

    An extended special-relativistic formalism incorporating non-inertial frames undergoing constant proper acceleration is developed as a natural outgrowth of Einstein's 1905 and 1907 treatises. Based on the so-called clock hypothesis, tacitly used by Einstein, and enunciated by von Laue in 1913, which states that the rate of a ideal clock is independent of its momentary acceleration, extended special relativity (ESR) makes use of the Moeller transformation and generalizes the work of Brehme to form a consistent mathematical framework, revealing a number of hitherto hidden features. From this basis, a number of highly interesting kinematic phenomena are considered, among which are: the nonconstancy of the speed of light and the variation of time rates within an accelerated system; the Doppler shift and aberration of light in a noninertial system, viewed by an inertial observer; the curved path of a light signal, preparatory to a treatment of the spatial and temporal Terrell effects in the ESR formalism. The ensuing equations are compared with special relativistic results, and in each case the role of acceleration in the formulae is defined. Quantitative calculations were made, and the results shown in graph form. The ESR formalism is then shown to be a particular case of the general-relativistic formalism. The limits of the accelerated observer's universe and the limits of the theory are discussed.

  5. Ultrafast high harmonics for probing the fastest spin and charge dynamics in magnetic materials

    Science.gov (United States)

    Grychtol, Patrick

    2015-03-01

    Ultrafast light based on the high-harmonic up-conversion of femtosecond laser pulses have been successfully employed to access resonantly enhanced magnetic contrast at the Mabsorption edges of the 3d ferromagnets Fe, Co and Ni in a table-top setup. Thus, it has been possible to study element-specific dynamics in magnetic materials at femtosecond time scales in a laboratory environment, providing a wealth of opportunities for a greater fundamental understanding of correlated phenomena in solid-state matter. However, these investigations have so far been limited to linear polarized harmonics, since most techniques by which circular soft x-rays can be generated are highly inefficient reducing the photon flux to a level unfit for scientific applications. Besides presenting key findings of our ultrafast studies on charge and spin dynamics, we introduce a simple setup which allows for the efficient generation of circular harmonics bright enough for XMCD experiments. Our work thus represents a critical advance that enables element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution on the tabletop. In collboration with Ronny Knut, Emrah Turgut, Dmitriy Zusin, Christian Gentry, Henry Kapteyn, Margaret Murnane, JILA, University of Colorado, Boulder; Justin Shaw, Hans Nembach, Tom Silva, Electromagnetics Division, NIST, Boulder, CO; and Ofer Kfir, Avner Fleischer, Oren Cohen, Extreme Nonlinear Optics Group, Solid State Institute, Technion, Israel.

  6. Characterization of Cs-Sb cathodes for high charge RF photoinjectors

    CERN Document Server

    AUTHOR|(CDS)2082505; Beghi, Marco

    Future accelerators such as CLIC (Compact LInear Collider), require high brightness electron beams that could be produced with a photoinjector (laser-driven electron source). Cs2Te photocathodes in combination with ultra-violet (UV) laser beams are currently used in many photoinjector facilities, but requirements to the electron sources for future accelerators like CLIC are more demanding. The main challenge for the CLIC drive beam photoinjector is to achieve high bunch charges (8.4 nC), high bunch repetition rates (500 MHz) within long trains (140 s) and with suciently long cathode lifetimes. In particular the laser pulse energy in UV, for such long pulse trains, is currently limited due to a degradation of the beam quality during the 4th harmonic frequency conversion process. Using the 2nd harmonic (green laser beam), provided it is matched with a low photoemission threshold photocathode material, would overcome this limitation. Cesium antimonide (Cs3Sb), being a photoemissive material in the visible range,...

  7. Sarma phase in relativistic and non-relativistic systems

    Directory of Open Access Journals (Sweden)

    I. Boettcher

    2015-03-01

    Full Text Available We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find that fluctuations induce a second-order phase transition at zero temperature, and thus a Sarma phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then be realized in experiment. However, for the non-relativistic system we find the stability region of the Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize a zero-temperature Sarma phase.

  8. EUV magnetic-dipole lines from highly-charged high-Z ions with an open 3d shell

    CERN Document Server

    Osin, D; Reader, J; Ralchenko, Yu

    2012-01-01

    The electron beam ion trap (EBIT) at the National Institute of Standards and Technology was used to produce highly-charged ions of hafnium, tantalum and gold with an open 3d shell. The extreme-ultraviolet (EUV) spectra from these ions were recorded with a flat-field grazing-incidence spectrometer in the wavelength range of 4.5 nm to 25 nm. A total of 133 new spectral lines, primarily due to magnetic-dipole transitions within the ground-state $3d^n$ configurations of the Co-like to K-like ions, were identified by comparing energy-dependent experimental spectra with a detailed collisional-radiative modeling of the EBIT plasma.

  9. EV Charging Analysis with High EV Penetration in the Nordic Region

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei

    This report covers the driving pattern analysis and the electric vehicle (EV) charging ananlysis of Denmark, Sweden, Norway and Finland. The contents in the report are driving pattern analysis of the passenger cars and electrical charging load profiles of EVs based on the analyzed driving patterns...

  10. Highly charged ions impinging on a stepped metal surface under grazing incidence

    NARCIS (Netherlands)

    Robin, A; Niemann, D; Stolterfoht, N; Heiland, W

    We report on energy loss measurements and charge state distributions for 60 keV N6+ and 75 keV N5+ ions scattered off a Pt(110)(1x2) single crystal surface. In particular, the influence of surface steps on the energy loss and the outgoing charge states is discussed. The scattering angle and the

  11. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  12. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Directory of Open Access Journals (Sweden)

    J. Grames

    2011-04-01

    Full Text Available GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c using a large drive laser beam to distribute ion damage over a larger area, and (d by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  13. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Energy Technology Data Exchange (ETDEWEB)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  14. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    Science.gov (United States)

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  15. A fast multi-GEM-based detector for high-rate charged-particle triggering

    CERN Document Server

    Bencivenni, G; Cardini, A; Deplano, C; De Simone, P; Felici, G; Marras, D; Murtas, F; Pinci, D; Poli-Lener, M; Raspino, D

    2002-01-01

    In this paper, results of a time performance study of gas electron multiplier (GEM)-based detectors are discussed. This study was driven by an R & D activity on detectors for the Level 0 LHCb muon trigger. Results presented in this paper are of more general interest, i.e., for experiments in which high-rate charged-particle triggering is needed. Little interest was given so far to time performance of GEM- based detectors, with the exception of one paper reporting the measurement of a double-GEM detector time resolution with an Ar/CO//2 (70/30) gas mixture where the authors quoted a time resolution such that high-efficiency muon triggering at LHCb would be impossible. The results reported here, obtained with the addition of CF//4 and isobutane to the Ar/CO//2 standard mixture, considerably improve the time performance discussed in the above-mentioned paper, allowing one to reach a time distribution root mean square of 5 ns with an isobutane-based mixture. In these conditions, a spark probability per incomi...

  16. High energy neutrinos from GRBs

    CERN Document Server

    De Paolis, F; Orlando, D; Perrone, L

    2001-01-01

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy gamma-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  17. Fields and fluids on curved non-relativistic spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M. [Kadanoff Center for Theoretical Physics,Enrico Fermi Institute and Department of Physics,University of Chicago, Chicago, IL 60637 (United States)

    2015-08-11

    We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional “boost connection” which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example we write down the most general theory of dissipative fluids consistent with the second law in curved non-relativistic geometries and find significant differences in the allowed transport coefficients from those found previously. Kubo formulas for all response coefficients are presented. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its relation to non-relativistic limits may be found in a companion paper.

  18. High rate partial-state-of-charge operation of VRLA batteries

    Science.gov (United States)

    Moseley, Patrick T.

    The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in

  19. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse.

    Science.gov (United States)

    Laitano, R F; Guerra, A S; Pimpinella, M; Caporali, C; Petrucci, A

    2006-12-21

    The correction for charge recombination was determined for different plane-parallel ionization chambers exposed to clinical electron beams with low and high dose per pulse, respectively. The electron energy was nearly the same (about 7 and 9 MeV) for any of the beams used. Boag's two-voltage analysis (TVA) was used to determine the correction for ion losses, k(s), relevant to each chamber considered. The presence of free electrons in the air of the chamber cavity was accounted for in determining k(s) by TVA. The determination of k(s) was made on the basis of the models for ion recombination proposed in past years by Boag, Hochhäuser and Balk to account for the presence of free electrons. The absorbed dose measurements in both low-dose-per-pulse (less than 0.3 mGy per pulse) and high-dose-per-pulse (20-120 mGy per pulse range) electron beams were compared with ferrous sulphate chemical dosimetry, a method independent of the dose per pulse. The results of the comparison support the conclusion that one of the models is more adequate to correct for ion recombination, even in high-dose-per-pulse conditions, provided that the fraction of free electrons is properly assessed. In this respect the drift velocity and the time constant for attachment of electrons in the air of the chamber cavity are rather critical parameters because of their dependence on chamber dimensions and operational conditions. Finally, a determination of the factor k(s) was also made by zero extrapolation of the 1/Q versus 1/V saturation curves, leading to the conclusion that this method does not provide consistent results in high-dose-per-pulse beams.

  20. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  1. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  2. Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst.

    Science.gov (United States)

    Zhu, Jian; Fan, Fengtao; Chen, Ruotian; An, Hongyu; Feng, Zhaochi; Li, Can

    2015-07-27

    Spatially resolved surface photovoltage spectroscopy (SRSPS) was employed to obtain direct evidence for highly anisotropic photogenerated charge separation on different facets of a single BiVO4 photocatalyst. Through the controlled synthesis of a single crystal with preferentially exposed {010} facets, highly anisotropic photogenerated hole transfer to the {011} facet of single BiVO4 crystals was observed. The surface photovoltage signal intensity on the {011} facet was 70 times stronger than that on the {010} facets. The influence of the built-in electric field in the space charge region of different facets on the anisotropic photoinduced charge transfer in a single semiconductor crystal is revealed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction

    Science.gov (United States)

    2016-01-01

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency. PMID:27213219

  4. Relativistic quantum mechanics wave equations

    CERN Document Server

    Greiner, Walter

    1990-01-01

    Relativistic Quantum Mechanics - Wave Equations concentrates mainly on the wave equations for spin-0 and spin-12 particles Chapter 1 deals with the Klein-Gordon equation and its properties and applications The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner) The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course

  5. Non-Relativistic Superstring Theories

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  6. Molecular Relativistic Corrections Determined in the Framework Where the Born-Oppenheimer Approximation is Not Assumed

    Science.gov (United States)

    Stanke, Monika; Adamowicz, Ludwik

    2013-10-01

    In this work, we describe how the energies obtained in molecular calculations performed without assuming the Born-Oppenheimer (BO) approximation can be augmented with corrections accounting for the leading relativistic effects. Unlike the conventional BO approach, where these effects only concern the relativistic interactions between the electrons, the non-BO approach also accounts for the relativistic effects due to the nuclei and due to the coupling of the coupled electron-nucleus motion. In the numerical sections, the results obtained with the two approaches are compared. The first comparison concerns the dissociation energies of the two-electron isotopologues of the H2 molecule, H2, HD, D2, T2, and the HeH+ ion. The comparison shows that, as expected, the differences in the relativistic contributions obtained with the two approaches increase as the nuclei become lighter. The second comparison concerns the relativistic corrections to all 23 pure vibrational states of the HD+ ion. An interesting charge asymmetry caused by the nonadiabatic electron-nucleus interaction appears in this system, and this effect significantly increases with the vibration excitation. The comparison of the non-BO results with the results obtained with the conventional BO approach, which in the lowest order does not describe the charge-asymmetry effect, reveals how this effect affects the values of the relativistic corrections.

  7. Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

    Directory of Open Access Journals (Sweden)

    Roshani Silwal

    2017-09-01

    Full Text Available Extreme ultraviolet spectra of the L-shell ions of highly charged yttrium (Y 26 + –Y 36 + were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength range of 4 nm-20 nm. The electron beam energy was systematically varied from 2.3 keV–6.0 keV to selectively produce different ionization stages. Fifty-nine spectral lines corresponding to Δ n = 0 transitions within the n = 2 and n = 3 shells have been identified using detailed collisional-radiative (CR modeling of the non-Maxwellian plasma. The uncertainties of the wavelength determinations ranged between 0.0004 nm and 0.0020 nm. Li-like resonance lines, 2s– 2 p 1 / 2 and 2s–2 p 3 / 2 , and the Na-like D lines, 3s– 3 p 1 / 2 and 3s– 3 p 3 / 2 , have been measured and compared with previous measurements and calculations. Forbidden magnetic dipole (M1 transitions were identified and analyzed for their potential applicability in plasma diagnostics using large-scale CR calculations including approximately 1.5 million transitions. Several line ratios were found to show strong dependence on electron density and, hence, may be implemented in the diagnostics of hot plasmas, in particular in fusion devices.

  8. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  9. Spectroscropy of middle charge state high-z ions in the ultraviolet for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Utter, Steven Bryan [Auburn Univ., AL (United States)

    1999-12-11

    The quest for the creation of an economically feasible thermonuclear fusion energy reactor is sttill active after many decades of research. Modern machines produce plasmas which are both hotter and more dense than those created 30 years ago and future devices promise to continue this trend. Paramount to this research is the capability to adequately measure certain parameters of the plasma such as temperature, density, impurity concentration and radiation loss. This dissertation reports three sets of spectroscopic measurements from intermediate charge state of high-Z ions, which have been performed at the Electron Beam Ion Trap (EBIT) facility of the Lawrence Livermore National Laboratory, relevant to the development of spectral plasma diagnostics and to the understanding of radiative energy loss from heavy impurity ions of today's and future fusion devices: measurements of W radiation from 40 - 85 A, precision measurements along the Cu isoelectric sequence, and UV spectroscopy of Ti-like W. The results are also compared to the best available theoretical calculations.

  10. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  11. Direct electron-pair production by high energy heavy charged particles

    Science.gov (United States)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  12. Relativistic EOS for supernova simulations

    Directory of Open Access Journals (Sweden)

    Shen H.

    2014-03-01

    Full Text Available We study the relativistic equation of state (EOS of dense matter covering a wide range of temperature, proton fraction, and baryon density for the use of supernova simulations. This work is based on the relativistic mean-field theory (RMF and the Thomas-Fermi approximation. The Thomas-Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We compare the EOS tables in detail.

  13. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  14. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  15. Symmetries and couplings of non-relativistic electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)

    2016-11-08

    We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.

  16. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    Abstract. We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of ...

  17. Energy eigenvalues of spherical symmetric potentials with relativistic corrections: analytic results

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh [al-Farabi Kazak National University, Almaty (Kazakhstan)

    2010-01-14

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including the relativistic corrections. The energy eigenvalues of spherical symmetric potentials for two-particle bound state systems with relativistic corrections are analytically derived. The energy spectra of linear and funnel potentials with orbital and radial excitations are determined. The energy spectrum of a superposition of Coulomb and Yukawa potentials is also determined. Our result shows that the energy spectrum with the relativistic corrections for the linear, harmonic oscillator and funnel potentials is smaller than the upper boundaries for the energy spectrum established in the framework of the spinless Salpeter equation for the orbital and radial excited states. The relativistic corrections to the energy spectrum of a superposition of the attractive Coulomb potential and the Yukawa (exponentially screened Coulomb) potentials are very small.

  18. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    Energy Technology Data Exchange (ETDEWEB)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications

  19. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    Relativistic heavy-ion collisions; fluctuation phenomena; relativistic diffusion model; net-proton rapidly ... cients on the available relativistic energy, results at 40 A•GeV/c are obtained. Extrapolat- ing to higher ... proached for times t ^τs larger than the time τs that is characteristic for strong coupling. – when all secondary ...

  20. Molecular-dynamics simulations of hillocks induced by highly-charged Arq+, Xeq+ ions impact on HOPG surface

    Science.gov (United States)

    Zhang, Zhengrong; Cheng, Xinlu; Li, Huifang; Song, Ting; Guo, Fen; Liu, Zijiang; Chen, Jianhong

    2015-11-01

    The hillocks on highly oriented pyrolytic graphite (HOPG) surface induced by highly charged Arq+, Xeq+ ions are studied by using molecular-dynamics (MD) simulations. And a hybrid potential created by combining the ReaxFF potential with the repulsive ZBL potential is used to describe the interatomic interactions. The effects of incident highly charged ion (HCI)'s kinetic energy and the energy gain due to the interaction of HCI with its own image on the formation of the hillocks are considered in the present simulations. Our results show that both potential and kinetic energy of HCI may affect the hillock size. However, the potential energy of HCI increases dramatically with charge state, which is more important than kinetic energy in the formation of the hillock in extremely high charge states. And it is found that both the height and width of the hillock agree well with experimental data. In addition, the bond breaking and bond formation during the formation of the hillock are also investigated, and the results show that there are many σ bonds breaking and interlayer bonds formation in one layer or between two layers during this process. Furthermore, most of the interlayer bonds in HOPG surface induced by HCI impact are sp2 bond, although some interlayer sp3 bonds are also observed in the present work.

  1. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  2. Dynamical friction in a relativistic plasma.

    Science.gov (United States)

    Pike, O J; Rose, S J

    2014-05-01

    The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction, diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov [B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a consistent manner.

  3. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  4. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that $Z \\alpha .../3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self-generated...... constant. We are interested in the ground state energy in the simultaneous limit $Z \\rightarrow \\infty$, $\\alpha \\rightarrow 0$ such that $\\kappa=Z \\alpha$ is fixed. The leading term in the energy asymptotics is independent of $\\kappa$, it is given by the Thomas-Fermi energy of order $Z^{7...

  5. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  6. Future relativistic heavy ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)

  7. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell

    Directory of Open Access Journals (Sweden)

    Victor Manuel García Fernández

    2016-11-01

    Full Text Available The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-constant voltage (CV/fast discharge (4C in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a thermal model. Heat generation is dominated by the irreversible component associated with cell overpotential, although evidence of the reversible component is also observed, associated with the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell-specific heats and the cell materials’ thickness. The model adjustment of the experimental data during the 2 min resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.

  8. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  9. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  10. Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils.

    Science.gov (United States)

    Stuckey, Jason W; Neaman, Alexander; Ravella, Ramesh; Komarneni, Sridhar; Martínez, Carmen Enid

    2008-12-15

    Smelting of copper (Cu) results in the atmospheric deposition of Cu onto surrounding soils. Excess concentrations of Cu in soils can be absorbed by soil biota to toxic levels or leached into the groundwater, threatening the entire ecosystem. A means to restrict Cu mobility and uptake by plants is to remove it from the aqueous phase by applying an adsorptive material. A synthetic clay (highly charged swelling mica) was tested for its ability to decrease the levels of free and 0.1 M KNO3-extractable Cu in 15 surface soils from three different Cu mining areas in central Chile. The soils contained excessive total Cu levels (112-2790 mg Cu (kg soil)(-1)), while extractable Cu ranged from 0.3 to 22.9 mg Cu L(-1). The mica was applied to each soil at rates of 0.1%, 1%, and 2% (w/w). A 2% sodium-montmorillonite treatment and the nonamended soil served as controls. The order of treatment efficacy in reducing extractable Cu and free Cu2+ for low pH soils ( 1% mica > 2% montmorillonite > 0.1% mica. At 120 days, the 2% mica treatment maintained reductions of up to 93% in the free Cu2+ activity and up to 75% in the extractable Cu concentration upon acidification to the original soil pH value. In addition, Cu retention in mica-treated soils was more resistant to acidification than in lime-treated soils. This mica has promise for the remediation of acidic soils with metal contamination at the surface.

  11. Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach.

    Science.gov (United States)

    Alp, Murat; Parihar, Vipan K; Limoli, Charles L; Cucinotta, Francis A

    2015-08-01

    In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron's morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy (56)Fe, (12)C, and (1)H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale.

  12. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Science.gov (United States)

    Korotchenko, K. B.; Eikhorn, Yu. L.; Dabagov, S. B.

    2017-11-01

    In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110) with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110)) within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z 2 - b (Z , z) / z with the function b (Z , z) depending on the screening parameter and the ion charge number z = Z -Ze.

  13. The relativistic electron response in the outer radiation belt during magnetic storms

    Directory of Open Access Journals (Sweden)

    R. H. A. Iles

    Full Text Available The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.

    Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms – Space plasma physics (charged particle motion and accelerations

  14. The relativistic electron response in the outer radiation belt during magnetic storms

    Directory of Open Access Journals (Sweden)

    R. H. A. Iles

    2002-07-01

    Full Text Available The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms – Space plasma physics (charged particle motion and accelerations

  15. Relativistic many-body theory a new field-theoretical approach

    CERN Document Server

    Lindgren, Ingvar

    2016-01-01

    This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title.  In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...

  16. Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves

    Science.gov (United States)

    Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Wygant, J. R.

    2017-10-01

    How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.

  17. Frontiers in Relativistic Celestial Mechanics, Vol. 1. Theory

    Science.gov (United States)

    Kopeikin, Sergei

    2014-10-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This first volume of a two-volume series is concerned with theoretical foundations such as post-Newtonian solutions to the two-body problem, light propagation through time-dependent gravitational fields, as well as cosmological effects on the movement of bodies in the solar systems. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: M. Soffel: On the DSX-framework T. Damour: The general relativistic two body problem G. Schaefer: Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations A. Petrov and S. Kopeikin: Post-Newtonian approximations in cosmology T. Futamase: On the backreaction problem in cosmology Y. Xie and S. Kopeikin: Covariant theory of the post-Newtonian equations of motion of extended bodies S. Kopeikin and P. Korobkov: General relativistic theory of light propagation in multipolar gravitational fields

  18. End-label, free-solution capillary electrophoresis of highly charged oligosaccharides.

    Science.gov (United States)

    Sudor, J; Novotny, M V

    1995-11-15

    The effect of fluorescent tags on the separation of negatively charged oligosaccharides, derived from a partially hydrolyzed kappa-carrageenan, was studied. When the charge-to-friction ratio of oligosaccharides is increased by the end-label, the migration order is from smaller to larger oligomers, and the resolution of larger oligomers could be improved by using a sieving medium. The migration order can be entirely reversed when the charge-to-friction ratio of the solute is decreased by the end-label. The experimental electrophoretic mobilities obtained in this work are in excellent agreement with the recently reported theoretical model (Mayer, P.; Slater, G. W.; Drouin, G. Anal. Chem. 1994, 66, 1777-1780). The maximum number of separated oligomers (Mmax) as a function of applied voltage and injection time was also studied, but no strong dependencies were found. Resolution between small oligomers could be significantly improved by following this separation principle.

  19. Dijet Production in Charged and Neutral Current $e^{+}p$ Interactions at High $Q^{2}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Krucker, D.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

  20. Relativistic density functional theory modeling of plutonium and americium higher oxide molecules.

    Science.gov (United States)

    Zaitsevskii, Andréi; Mosyagin, Nikolai S; Titov, Anatoly V; Kiselev, Yuri M

    2013-07-21

    The results of electronic structure modeling of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two-component relativistic density functional theory are presented. Ground-state equilibrium molecular structures, main features of charge distributions, and energetics of AnO3, AnO4, An2On (An=Pu, Am), and PuAmOn, n = 6-8, are determined. In all cases, molecular geometries of americium and mixed plutonium-americium oxides are similar to those of the corresponding plutonium compounds, though chemical bonding in americium oxides is markedly weaker. Relatively high stability of the mixed heptoxide PuAmO7 is noticed; the Pu(VIII) and especially Am(VIII) oxides are expected to be unstable.