WorldWideScience

Sample records for highly charged argon

  1. Argon charge states due to impact of H+ and He+ ions

    Science.gov (United States)

    Oona, H.

    1974-01-01

    Charge states of argon produced by bombardment with 100-keV to 1-MeV H+ and He+ projectiles were studied by examining high-resolution L-shell X-ray satellite spectra. Large differences appear in charge-state populations determined from X-ray data and Auger-electron data.-

  2. High Power Argon, Nitrogen Plasma Torches

    Science.gov (United States)

    Hakki, A.; Kashapov, N.; Sadikov, K.

    2017-11-01

    The paper describes a high power supply for Argon and Nitrogen plasma torches. A high frequency was used in order to drive the pulse width modulation circuit. The average output current consumption (AOCC) was modified from 20A up to 80A by increasing the pulse width from 2μsec up to 3μsec for Argon gas plasma torches. The (AOCC) was reduced from 70A down to 25A by increasing the pulse width from 6μsec up to 8μsec in the case of Nitrogen gas plasma torches.

  3. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  4. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available -1 SABO 2013 TME Workshop Alkantpan Characterising Argon-bomb balloons for High-speed Photography M Olivier and FJ Mostert Landward Sciences, Defence Peace Safety and Security, CSIR, Meiring Naude Road, Pretoria, RSA. Abstract A...

  5. First Measurement of one Pion Production in Charged Current Neutrino and Antineutrino events on Argon

    Energy Technology Data Exchange (ETDEWEB)

    Scanavini, Scanavini,Giacomo [Yale U.

    2017-01-01

    This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons in the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.

  6. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  7. Commissioning and Charge Readout Calibration of a 5 Ton Dual Phase Liquid Argon TPC

    CERN Document Server

    AUTHOR|(CDS)2098555

    Dual phase time projection chambers with amplification of ionization electrons provide a novel technique for measuring and analyzing rare events with excellent spatial resolution and great calorimetric properties. This thesis describes the commissioning of the WA105 3 x 1 x 1 m3 dual phase liquid argon detector, built to demonstrate the performance of this kind of detector on large scales in order to determine the viability of giant dual phase time projection chambers in long baseline neutrino oscillation experiments. The properties of the insulation and the main tank vessel are described and analyzed, such as the pressure, temperature and argon purity requirements during operation in order to guarantee stable conditions and good event tracking. As signals are induced due to electrons from ionizing radiation, crosstalk is caused by capacitive couplings between strips of the charge readout plane and in the electronics of the data acquisition. These induced signals are studied and compared to capacitance and pu...

  8. First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon

    CERN Document Server

    Anderson, C; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Guenette, R; Haug, S; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Linden, S; McKee, D; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Patch, A; Rameika, G; Rebel, B; Rossi, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G

    2011-01-01

    The ArgoNeuT collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beamline at Fermilab, the results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, $0^\\circ$$<\\theta_\\mu$$<36^\\circ$ and 0$argon time projection chamber technology for neutrino detection, the measurements allow tests of low energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy.

  9. PREFACE: 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment

    Science.gov (United States)

    Suzuki, Atsuto; Nishikawa, Koichiro

    2011-07-01

    "Neutrino physics is largely an art of learning a great deal by observing nothing" (Haim Harari, 1988) was our general understanding of the field for the ~25 years previous. A new neutrino era was abruptly brought from outer space by a burst of SN1987A neutrinos. The detection of neutrinos from SN1987A gave a new impetus to neutrino research. As we know, new discoveries of neutrinos have since been made. Neutrinos were no longer mysterious, but attained particle citizenship. Giant liquid argon charge imaging experiments have the prospect of opening the door to the second new era in neutrino physics. The coming era would provoke not evolution, but revolution in particle physics. However, paving the way for the new era requires not evolutionary, but revolutionary detector developments. I hope this workshop will be conducive to reaping a rich harvest from its activities. In 1993, Professor Carlo Rubbia presented "The Renaissance of Experimental Neutrino Physics" in which he discussed various possibilities of shooting neutrino beams from CERN towards Gran Sasso, Super-Kamiokande at Kamioka and DUMAND in Hawaii. Now KEK hopes to shoot neutrino beams from J-PARC to Kamioka, Okinoshima, Korea and Gran Sasso. Signature Atsuto SuzukiDirector General, KEK J-PARC has moved into a new phase of operation. The commissioning of the accelerator complex and experiment facilities has begun, and it is urgent to attain initial design performance as soon as possible. For the immediate future, KEK has a 5 year plan. The plan includes the upgrade of the J-PARC accelerator to a multi-Mega-Watt facility, and detector R&Ds to form the basis for a next step in the neutrino experiment. One of the main issues of the future neutrino experiment will be the search for CP violation in neutrino oscillation, which demands much more precision than studying neutrino oscillation or non-zero theta13. This naturally requires a very massive detector with higher precision than presently available

  10. Charge exchange recombination in X-ray spectra of He-like argon measured at the tokamak TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Schlummer, Tobias

    2014-06-16

    {sub 0}(r) and D {sub perpendicular} {sub to} (r). In most cases the spectra can be reconstructed with high accuracy along the entire radial field of view. The deduced D {sub perpendicular} {sub to} (r) and n{sub 0}(r) are in good agreement with earlier experimental and modeling results. The presented analysis not only resolves the long-standing issues concerning the intensity ratios in the K{sub α}-spectra of He-like ions. It also introduces imaging K{sub α}-spectroscopy as suitable diagnostic for the neutral particle density and the impurity transport behavior in fusion plasmas. Additionally, the radial profiles of the electron and the ion temperature obtained from the K{sub α}-spectra are presented and compared to results from other diagnostics. Charge exchange is not only relevant in regard to the thermal background neutrals. It also plays a key role in charge exchange recombination spectroscopy (CXRS). For impurity density measurements based on CXRS the accuracy of the charge exchange cross sections are of crucial importance. However, so far no experimental verification of the fine-structure resolved cross sections for charge exchange on highly ionized impurity ions has been performed, whereat the available theoretical data sets show significant deviations. In this work the unique diagnostic opportunities at TEXTOR are used to measure the Rydberg series of He-like argon (1snp - 1s{sup 2}, ca. 3 Aa) under direct influence of a neutral particle heating beam (50 keV). The characteristic line enhancement caused by the beam particles is consistent with one set of the theoretical charge exchange cross sections. Both, the absolute values as well as the dependence on the principle and the orbital quantum numbers can be confirmed. The results represent the first experimental verification of the fine-structure resolved cross sections for charge exchange at CXRS relevant collision energies and give confidence in the quality of the theoretical data.

  11. Taming Highly Charged Radioisotopes

    Science.gov (United States)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  12. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  13. Lunar exospheric argon modeling

    Science.gov (United States)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  14. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  15. Experimental and numerical study of high intensity argon cluster beams

    Energy Technology Data Exchange (ETDEWEB)

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E. [Department of Applied Physics, Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090 (Russian Federation); Skovorodko, P. A. [Department of Applied Physics, Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia and Kutateladze Institute of Thermophysics SB RAS,1, Lavrentyev Ave., Novosibirsk, 630090 (Russian Federation)

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  16. Physics with Highly-Charged Ions in an EBIT

    Science.gov (United States)

    Crespo López-Urrutia, J. R.; Bapat, B.; Draganić, I.; Feuerstein, B.; Fischer, D.; Lörch, H.; Moshammer, R.; Ullrich, J.; DuBois, R. D.; Zou, Y.

    After the commissioning of the Freiburg electron beam ion trap, experiments on dielectronic recombination of the low-lying resonances in He-like Ar16+ have been carried out at high resolution. Forbidden transitions (``coronal lines'') of highly charged argon ions in the optical range have been measured with an accuracy around 1 ppm. Ions extracted from FreEBIT have been used to perform collision experiments using the Cold Target Recoil-Ion Momentum Spectroscopy (COLTRIMS) technique.

  17. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  18. Comparison of various NLTE codes in computing the charge-state populations of an argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stone, S.R.; Weisheit, J.C.

    1984-11-01

    A comparison among nine computer codes shows surprisingly large differences where it had been believed that the theroy was well understood. Each code treats an argon plasma, optically thin and with no external photon flux; temperatures vary around 1 keV and ion densities vary from 6 x 10/sup 17/ cm/sup -3/ to 6 x 10/sup 21/ cm/sup -3/. At these conditions most ions have three or fewer bound electrons. The calculated populations of 0-, 1-, 2-, and 3-electron ions differ from code to code by typical factors of 2, in some cases by factors greater than 300. These differences depend as sensitively on how may Rydberg states a code allows as they do on variations among computed collision rates. 29 refs., 23 figs.

  19. Kinetics of high pressure argon-helium pulsed gas discharge

    Science.gov (United States)

    Emmons, D. J.; Weeks, D. E.

    2017-05-01

    Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role in reducing A r (1 s5) metastable loss rates through the reaction sequence A r (1 s5)+e-→A r (1 s4)+e- followed by A r (1 s4)→A r +ℏω . Collisions with He are observed to be responsible for A r (2 p9) mixing, with nearly equal rates to A r (2 p10) and A r (2 p8) . Additionally, dissociative recombination of A r2+ is determined to be the dominant electron loss mechanism for the simulated discharge conditions and cavity size.

  20. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres.

    Science.gov (United States)

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-25

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  1. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  2. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan; Jin, Ke; Du, Yingge; Neeway, James J.; Ryan, Joseph V.; Hu, Dehong; Zhang, Hongliang; Hong, Mina; Le Guernic, Solenne; Thevuthasan, Suntharampillai; Wang, Fuyi; Zhu, Zihua

    2015-08-01

    For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputter rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.

  3. Physics with Highly-Charged Ions in an EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Lopez-Urrutia, J. R.; Bapat, B.; Draganic, I.; Feuerstein, B.; Fischer, D.; Loerch, H.; Moshammer, R.; Ullrich, J. [Max-Planck-Insitut fuer Kernphysik (Germany); DuBois, R. D. [University of Missoury (United States); Zou, Y. [Fudan University (China)

    2003-03-15

    After the commissioning of the Freiburg electron beam ion trap, experiments on dielectronic recombination of the low-lying resonances in He-like Ar{sup 16+} have been carried out at high resolution. Forbidden transitions ('coronal lines') of highly charged argon ions in the optical range have been measured with an accuracy around 1 ppm. Ions extracted from FreEBIT have been used to perform collision experiments using the Cold Target Recoil-Ion Momentum Spectroscopy (COLTRIMS) technique.

  4. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  5. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  6. TOPICAL REVIEW: Highly charged ions

    Science.gov (United States)

    Gillaspy, J. D.

    2001-10-01

    This paper reviews some of the fundamental properties of highly charged ions, the methods of producing them (with particular emphasis on table-top devices), and their use as a tool for both basic science and applied technology. Topics discussed include: charge dependence and scaling laws along isoelectronic or isonuclear sequences (for wavefunction size or Bohr radius, ionization energy, dipole transition energy, relativistic fine structure, hyperfine structure, Zeeman effect, Stark effect, line intensities, linewidths, strength of parity violation, etc), changes in angular momentum coupling schemes, selection rules, interactions with surfaces, electron-impact ionization, the electron beam ion trap (EBIT), ion accelerators, atomic reference data, cosmic chronometers, laboratory x-ray astrophysics, vacuum polarization, solar flares, ion implantation, ion lithography, ion microprobes (SIMS and x-ray microscope), nuclear fusion diagnostics, nanotechnology, quantum computing, cancer therapy and biotechnology.

  7. Capture and isolation of highly-charged ions in a unitary Penning trap

    OpenAIRE

    Brewer, Samuel M.; Guise, Nicholas D; Tan, Joseph N.

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, ...

  8. High resolution printing of charge

    Science.gov (United States)

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  9. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  10. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  11. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation, and LHC relative luminosity measurement.

    CERN Document Server

    Arfaoui, Samir; Monnier, E

    2011-01-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In oder to do so,it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity ...

  12. First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply

    CERN Document Server

    Cantini, C; Bueno, L Molina; Murphy, S; Radics, B; Regenfus, C; Rigaut, Y-A; Rubbia, A; Sergiampietri, F; Viant, T; Wu, S

    2016-01-01

    Voltages above a hundred kilo-volt will be required to generate the drift field of future very large liquid Argon Time Projection Chambers. The most delicate component is the feedthrough whose role is to safely deliver the very high voltage to the cathode through the thick insulating walls of the cryostat without compromising the purity of the argon inside. This requires a feedthrough that is typically meters long and carefully designed to be vacuum tight and have small heat input. Furthermore, all materials should be carefully chosen to allow operation in cryogenic conditions. In addition, electric fields in liquid argon should be kept below a threshold to reduce risks of discharges. The combination of all above requirements represents significant challenges from the design and manufacturing perspective. In this paper, we report on the successful operation of a feedthrough satisfying all the above requirements. The details of the feedthrough design and its manufacturing steps are provided. Very high voltages...

  13. Relativistic coupled-cluster and density-functional studies of argon at high pressure

    Science.gov (United States)

    Schwerdtfeger, Peter; Steenbergen, Krista G.; Pahl, Elke

    2017-06-01

    The equation of state P (V ,T ) for solid argon is determined by the calculation of accurate static and vibrational terms in the free energy. The static component comes from a quantum theoretical many-body expansion summing over all energetic contributions from two-, three-, and four-body fragments treated with relativistic coupled cluster theory, while the lattice vibrations are described at an anharmonic level including two- and three-body forces as well as temperature effects. The dynamic part is calculated within the Debye and Einstein approximation, as well as by a more accurate phonon treatment where the vibrational motions in the lattice are coupled. Our results are in good agreement with room-temperature high-pressure experimental data up to ˜20 GPa. In the 20-100 GPa pressure range, however, we see considerable deviations between experiment and theory, perhaps indicating missing four-body contributions (beyond the quadruple dipole terms included here), missing five and higher-body effects, and the need to go beyond the coupled cluster singles-doubles with perturbative triples treatment in such higher-body forces. This contrasts with the results for solid neon, where excellent agreement has been achieved taking only two- and three-body forces into account [P. Schwerdtfeger and A. Hermann, Phys. Rev. B 80, 064106 (2009), 10.1103/PhysRevB.80.064106]. We demonstrate that the phase transition from fcc to hcp cannot account for the large discrepancies observed. Density functional calculations give very mixed results in the high-pressure region, but some functionals such as optB88-vdW (proposed by Lundqvist and co-workers) describe the many-body forces in argon reasonably well over the range of pressures investigated. Theoretical investigations of the heavier rare gas solids reaching experimental accuracy in the high-pressure regime therefore remain a significant challenge.

  14. A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2011-01-01

    The current front-end electronics of the ATLAS Liquid Argon calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. This upgrade calls for an optical link system of 100 Gbps per front-end board (FEB). A high speed, low power, radiation tolerant serializer is the critical component in this system. In this paper, we present the design and test results of a single channel 16:1 serializer and the design of a double-channel 16:1 serializer. Both designs are based on a commercial 0.25 μm silicon-on-sapphire CMOS technology. The single channel serializer consists of a serializing unit, a PLL clock generator and a line driver implemented in current mode logic (CML). The serializing unit multiplexes 16 bit parallel LVDS data into 1-bit width serial CMOS data. The serializing unit is composed of a cascade of 2:1 multiplexing circuits based on static D-flip-fl...

  15. Charging of highly resistive granular metal films

    Science.gov (United States)

    Orihuela, M. F.; Ortuño, M.; Somoza, A. M.; Colchero, J.; Palacios-Lidón, E.; Grenet, T.; Delahaye, J.

    2017-05-01

    We have used the scanning Kelvin probe microscopy technique to monitor the charging process of highly resistive granular thin films. The sample is connected to two leads and is separated by an insulator layer from a gate electrode. When a gate voltage is applied, charges enter from the leads and rearrange across the sample. We find very slow processes with characteristic charging times exponentially distributed over a wide range of values, resulting in a logarithmic relaxation to equilibrium. After the gate voltage has been switched off, the system again relaxes logarithmically slowly to the new equilibrium. The results cannot be explained with diffusion models, but most of them can be understood with a hopping percolation model, in which the localization length is shorter than the typical site separation. The technique is very promising for the study of slow phenomena in highly resistive systems and will be able to estimate the conductance of these systems when direct macroscopic measurement techniques are not sensitive enough.

  16. Highly charged Arq+ ions interacting with metals

    Science.gov (United States)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  17. Capture and isolation of highly-charged ions in a unitary Penning trap

    CERN Document Server

    Brewer, Samuel M; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, and storage of highly-charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply-charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is $\\approx$ 60 times narrower than typically...

  18. High-LET charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. (Lawrence Berkeley Lab., CA (United States). Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  19. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  20. A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2014-01-01

    We have been developing a serializer application-specific integrated circuit (ASIC) based on a commercial 0.25-μm silicon-on-sapphire (SOS) CMOS technology for the ATLAS liquid argon calorimeter front-end electronics upgrade. The first prototype, a 5 Gbps 16:1 serializer has been designed, fabricated, and tested in lab environment and in 200 MeV proton beam. The test results indicate that the first prototype meets the design goals. The second prototype, a double-lane, 8 Gbps per lane serializer is under development. The post layout simulation indicates that 8 Gbps is achievable. In this paper we present the design and the test results of the first prototype and the design and status of the second prototype.

  1. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    Science.gov (United States)

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  2. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  3. Liquid argon imaging a novel detection technology

    CERN Document Server

    Rubbia, Carlo

    2002-01-01

    Ionisation electrons may drift over large distances (meters) in a volume of highly purified liquid argon (O2 equivalent less than 0.1 ppb!) under the action of an electric field. With an appropriate readout system (i.e. a set of fine pitch wire grids) we have realised a massive, continuously sensitive 'bubble chamber' with multiple readouts of the same, small charge (a minimum ionising track segment, 2 mm long, yields • 10000 electrons). We have developed this technology since 1987, initially with small laboratory devices and later with progressively larger and more sophisticated detectors, the latest being the T600 module (740 ton of liquid Argon), which has been operated in Pavia, as a step toward the ICARUS programme in the Gran Sasso Laboratory (LNGS). With cloning of T600 we aim at a 3000 ton detector by 2005. Argon is a medium with density 1.4 g/cm3, similar in characteristics to the heavy freon used in the famous Gargamelle. With wire pitches of 2-3 mm, it provides an extremely high spatial re...

  4. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  5. Argon metastable production in argon-helium microplasmas

    Science.gov (United States)

    Hoskinson, Alan R.; Gregorío, José; Hopwood, Jeffrey; Galbally-Kinney, Kristin; Davis, Steven J.; Rawlins, Wilson T.

    2016-06-01

    Microwave resonator-driven microplasmas are a promising technology for generating the high density of rare-gas metastable states required for optically pumped rare gas laser systems. We measure the density of argon 1s5 states (Paschen notation) in argon-helium plasmas between 100 Torr and atmospheric pressure using diode laser absorption. The metastable state density is observed to rise with helium mole fraction at lower pressures but to instead fall slightly when tested near atmospheric pressure. A 0-D model of the discharge suggests that these distinct behaviors result from the discharge being diffusion-controlled at lower pressures, but with losses occurring primarily through dissociative recombination at high pressures. In all cases, the argon metastable density falls sharply when the neutral argon gas fraction is reduced below approximately 2%.

  6. Experimental study and simulation of the residual activity induced by high-energy argon ions in copper

    Science.gov (United States)

    Strašík, I.; Mustafin, E.; Seidl, T.; Pavlovič, M.

    2010-03-01

    The paper presents new experimental results and FLUKA-simulations of residual activation induced by high-energy argon ions in copper. It follows the previous residual activation studies performed at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt with uranium ions as a preparatory work for constructing the FAIR facility. Copper samples were irradiated by 1 GeV/u and 500 MeV/u 40Ar ions and investigated by gamma-ray spectroscopy. The samples were irradiated in the stacked-foil geometry. The isotopes with dominating contribution to the total residual activity were identified and their partial activities were quantified. Depth-profiling of the partial residual activities of all identified isotopes was performed by measurements of individual target foils. The experimental results were compared with simulations by the FLUKA-code. A satisfactory agreement between the experiment and the simulations was observed.

  7. Charging-discharging system with high power factor, high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Joe, Kee Yeon; Byun, Young Bok; Koo, Heun Hoi [Korea Electrotechnology Research Institute (Korea, Republic of)

    1995-07-01

    This paper presents equipment for charging and discharging with high power factor and high efficiency. This equipment is consisted of 3{Phi} SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor charging-discharging System. (author). 7 refs., 14 figs., 1 tab.

  8. Radioactive decays of highly-charged ions

    Directory of Open Access Journals (Sweden)

    Gao B. S.

    2015-01-01

    Full Text Available Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state β-decay and its time-mirrored counterpart, orbital electron-capture.

  9. Precision mass measurements of highly charged ions

    Science.gov (United States)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  10. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  11. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  12. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy. Copyright © 2015, American Association for the Advancement of Science.

  13. Successive Charge Transitions of Unusually High-Valence Fe3.5+ : Charge Disproportionation and Intermetallic Charge Transfer.

    Science.gov (United States)

    Hosaka, Yoshiteru; Denis Romero, Fabio; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi

    2017-04-03

    A perovskite-structure oxide containing unusually high-valence Fe3.5+ was obtained by high-pressure synthesis. Instability of the Fe3.5+ in Ca0.5 Bi0.5 FeO3 is relieved first by charge disproportionation at 250 K and then by intermetallic charge transfer between A-site Bi and B-site Fe at 200 K. These previously unobserved successive charge transitions are due to competing intermetallic and disproportionation charge instabilities. Both transitions change magnetic and structural properties significantly, indicating strong coupling of charge, spin, and lattice in the present system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High temperature charge amplifier for geothermal applications

    Science.gov (United States)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  15. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Science.gov (United States)

    Kalsia, Mohit; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-05-01

    High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific heat increase significantly. It can be concluded that higher heat transfer rate and lower pumping power can be achieved with SCAR as coolant in the HTS cables.

  16. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  17. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  18. A Purity Monitoring System for the H1 Liquid Argon Calorimeter

    CERN Document Server

    Barrelet, E

    2002-01-01

    The ionization probes used for monitoring the liquid argon purity in the H1 calorimeter are described and results of their operation in tests at CERN and during the period 1992 to the end of 1998 at HERA are given. The high sensitivity of the charge measurements leads to refined charge collection models, and to the observation of a variation of the ionization yield of our electron sources with temperature.

  19. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Kalsia, Mohit [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, PVK Institute of Technology, Anantpur, 515 001 (India)

    2017-05-15

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T{sub c} > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific

  20. Production of high quality syngas from argon/water plasma gasification of biomass and waste.

    Science.gov (United States)

    Hlina, M; Hrabovsky, M; Kavka, T; Konrad, M

    2014-01-01

    Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100-110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma--composition, very high temperature and low mass flow rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. High-temperature argon broadening of CO2 near 2190 cm-1 in a shock tube

    Science.gov (United States)

    Mulvihill, C. R.; Petersen, E. L.

    2017-10-01

    Scanned-wavelength laser absorption measurements of CO2 diluted in Ar were performed behind reflected shock waves at high temperatures (1158-2017 K) and low pressures (5.1-108.4 kPa). High-resolution (0.001 cm-1) scans were conducted in 0.4-cm-1 increments from about 2188.8 to 2191.8 cm-1 at a scan rate of 2 kHz. The HITRAN 2004, HITRAN 2012, and CDSD-296 databases were all found to underestimate the absorption, typically by an order of magnitude or more. The HITEMP database, however, closely predicted the measured data. For the assumed form γ_{{{CO}_{ 2} - {Ar}}} (T) = γ_{{{CO}_{ 2} - {Ar}}} (T0 )(T0 /T)n with T0 = 296 K, an optimization routine was implemented to determine the values of γ_{{{CO}_{ 2} - {Ar}}} (T0 ) and n. From the optimization, values of 0.033 ± 0.004 cm-1 atm.-1 and 0.61 ± 0.04 were determined for γ_{{{CO}_{ 2} - {Ar}}} (T0 ) and n, respectively, which are in good agreement with historical values. These values describe an average CO2-Ar broadening coefficient in the frequency range studied herein and are reliable within the experimental temperature range. In addition, a set of fixed-wavelength measurements at 2190.0175 cm-1 were carried out at 122, 446, and 1115 kPa between 1100 and 2100 K, and the HITEMP predictions incorporating the proposed Ar-broadening parameters showed excellent agreement with these data.

  2. Argon ion beam polishing: a preparation technique for evaluating the interface of osseointegrated implants with high resolution.

    Science.gov (United States)

    Grüner, Daniel; Fäldt, Jenny; Jansson, Kjell; Shen, Zhijian

    2011-01-01

    The objective of this study was to assess the use of ion beam polishing for preparing cross sections suitable for high-resolution scanning electron microscope (SEM) investigation of dental implants with a brittle porous oxide layer and of bone/implant interfaces. Thirteen Nobel Biocare TiUnite implants were placed in minipigs. After 4 weeks, the implant and surrounding bone were removed en bloc and the implant was cut axially into two halves. The cross section was then polished with an argon ion beam. Additionally, ion beam-polished cross sections were prepared from four as-received implants. Ion beam-polished surfaces were studied with a field emission SEM (FE-SEM). With FE-SEM, up to 1 mm along the interface of ion beam-polished implant surfaces can be studied with a resolution of a few nanometers. Filled and unfilled pores of the porous TiUnite coating can be distinguished, providing information on pore accessibility. Implant-bone interfaces can be analyzed using backscattered electron images, where titanium, the oxide layer, mineralized extracellular matrix, and osteocyte lacunae/resin/soft tissue can easily be distinguished as a result of atomic number contrast and the sharp boundaries between the different materials. Filled and unfilled pores can be distinguished. Characterization of local chemistry is possible with energy dispersive X-ray spectrometry, and bone growth into small pores (FE-SEM complements the established methods for the characterization of interfaces and bridges the wide gap in accessible length scale and resolution between the observations of mechanically polished interfaces by optical or scanning electron microscopes and the observation of focused ion beam-milled sections in a transmission electron microscope.

  3. Timing of strain localization in high-pressure low-temperature shear zones: The argon isotopic record

    Science.gov (United States)

    Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain

    2017-04-01

    The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record

  4. Development mechanism of high pressure argon plasma produced by irradiation of excimer laser. Ekishima reza ni yori seiseishita koatsuryoku arugon purazuma no seicho kiko

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, J.; Tsuda, N.; Uchida, Y.; Furuhashi, H. (Aichi Inst. of Technology, Aichi (Japan)); Sahashi, T. (Daido Inst. of Technology, Aichi (Japan))

    1994-04-20

    The studies of a high temperature and high density laser plasma are being carried out centering around solid targets, but a high density plasma can be generated also by focused irradiation of a laser light onto a high pressure gas target. However, in this case, studies on a high pressure laser plasma using the ultra-violet beam are seldom conducted. In this paper, the generation mechanism of a plasma generated mainly behind the focal point of the lens is mentioned in case when the ultra violet laser beam is focused and irradiated onto a high pressure argon gas, and it has been compared for study with the plasma generated by a ruby laser. Part of the obtained results is as follows; it has been elucidated that the plasma generated behind the focal point by focusing and irradiating an ultra violet laser beam onto a high pressure argon gas is growing simultaneously by the radiation supported shock wave and the breakdown wave, same as the case of a visible laser beam. When the ultra violet beam with frequency higher than the plasma frequency is irradiated, a plasma grows in front of the focal point too. 6 refs., 9 figs.

  5. Highly charged ion based time of flight emission microscope

    Science.gov (United States)

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  6. WA105: A large demonstrator of a liquid argon dual phase TPC

    Science.gov (United States)

    Zambelli, L.; Murphy, S.; WA105 Collaboration

    2017-09-01

    The Liquid argon technology has been chosen for the DUNE underground experiment for the study of neutrino oscillations, neutrino astrophysics and proton decay. This detector has excellent tracking and calorimetric capabilities much superior to currently operating neutrino detectors. WA105 is a large demonstrator of the dual-phase liquid argon TPC based on the GLACIER design, with a 6×6×6 m3 (appr. 300t) active volume. Its construction and operation test scalable solutions for the crucial aspects of this detector: ultra-high argon purity in non-evacuable tanks, long drifts, very high drift voltages, large area MPGD, cold preamplifiers. The TPC will be built inside a tank based on industrial LNG technology. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multipliers (LEM’s) provides amplification before the charge collection onto an anode plane with strip readout. This highly cost effective solution provides excellent imaging capabilities with equal charge sharing on both views. PMTs located at the bottom of the tank containing the liquid argon provide the readout of the scintillation light. This demonstrator is an industrial prototype of the design proposed for a large underground detector. WA105 is under construction at CERN and will be exposed to a charged particle beam (0.5 - 20 GeV/c) in the North Area in 2018. The data will provide necessary calibration of the detector performances and benchmark sophisticated reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program DUNE.

  7. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  8. Highly charged ion injector in the terminal of tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M; Asozu, T; Nakanoya, T; Kutsukake, K; Hanashima, S; Takeuchi, S, E-mail: matsuda.makoto@jaea.go.j [Japan Atomic Energy Agency, Tokai Research and Development Center, Nuclear Science Research Institute, Tandem Accelerator Section 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195 (Japan)

    2009-04-01

    A highly charged heavy ion injector using an all permanent magnet type electron cyclotron resonance ion source (ECRIS) has been constructed in the high voltage terminal of the vertical and folded type 20UR Pelletron tandem accelerator at Japan Atomic Energy Agency at Tokai. The new in-terminal injector made it possible to accelerate highly charged heavy ions which have not been obtained from the tandem accelerator. Beam energy and beam intensity have been remarkably increased and the noble gas ion beams have become available.

  9. Experimental behaviour of a argon plasma, which is passed by a high current intensity, with different magnetic field configurations; Comportamiento experimental de un plasma de argon en diferentes configuraciones de campo magnetico y a elevadas corrientes

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J.

    1964-07-01

    In a lineal discharge, the longitudinal and azimuthal magnetic fields produced by the current through the tube and the returning conductors, which have 4 different forms, are determined with a magnetic probe, which has a radial and longitudinal displacement. The plasma is produced discharging a 135{mu}F and 9 KV capacitor bank through Argon at 10{sup -}1 Torr. (Author) 5 refs.

  10. Cryogenic linear Paul trap for cold highly charged ion experiments

    DEFF Research Database (Denmark)

    Schwarz, Maria; Versolato, Oscar; Windberger, Alexander

    2012-01-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H2 partial pressure of about 10−15 mbar...

  11. Cold highly charged ions in a cryogenic Paul trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Windberger, A.

    2013-01-01

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir...

  12. Progress Towards Charge Exchange Cross-Sections with Highly Charged Ions: Computation and Experiment

    Science.gov (United States)

    Bromley, Steven James

    This thesis is a summary of the computational and experimental progress towards measuring the charge exchange cross-section of highly charged ions (HCIs). Electronic structure calculations were carried out for the molecular ion LiHe+ using NWChem on the Clemson University Palmetto Cluster. Potential energy surfaces for 40 electronic states are presented. The electronic configurations of the six lowest states have been identified by their energies in the separate atom limit, which deviate from experimental values by at most 1.2%. Future work will investigate higher charge states of LiHe and the interaction between low-Z HCIs and neutral gases. Two experimental apparatus were designed and constructed for experiments with HCIs. To aid in the detection of trapped HCIs, a time-of-flight mass spectrometer for radial extraction from Paul traps was constructed and tested using a Mg + source. Lastly, a gas cell was designed and constructed for charge exchange cross-section measurements using HCIs produced in the Clemson University Electron Beam Ion Trap (CUEBIT).

  13. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  14. High Energy Charged Particles in Space at One Astronomical Unit

    Science.gov (United States)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  15. Non-targeted effects induced by high LET charged particles

    Science.gov (United States)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  16. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    CERN Document Server

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  17. Electron impact ionization of highly charged lithiumlike ions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  18. Thermophysical properties of argon

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  19. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  20. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  1. Comparative study of analytical inductively-coupled argon-plasma discharges using different outer gases.

    Science.gov (United States)

    Zaray, G; Broekaert, J A; Böhmer, R G; Leis, F

    1987-07-01

    The analytical capabilities of high power (2-4 kW) ICPs with argon as inner and intermediate gas and different outer gases (argon, nitrogen, oxygen and air) were studied under optimum and compromise operating conditions. Under the optimum conditions, the lowest detection limits for elements with sensitive atom lines (C, B, Zn) or ion lines (Mg, Mn, Fe, Cr, Ti, V) were achieved with argon as outer gas and an observation height of 13 mm. Under compromise conditions (3 kW, aerosol gas gauge-pressure 3 bar) the lowest detection limits for the atom lines were also found with a pure argon plasma at an observation height of 13 mm. For ion lines, however, the argon/oxygen and argon/nitrogen plasmas and an observation height of 8 mm were better. The detection limits were poorer in the presence of an aluminium matrix; under the optimum operating conditions, the relative increase in detection limit was smaller with the argon/oxygen and argon/air ICPs than with the pure argon or argon/nitrogen ICPs. It was found that the interferences arising from an easily ionizable matrix are lower with a diatomic gas than with argon as outer gas. The interferences when the argon/nitrogen, argon/oxygen and argon/air plasmas are used are similar and practically independent of the nebulizer-gas pressure applied.

  2. Argon, Oxygen, and Boron Isotopic Evidence Documenting 40ArE Accumulation in Phengite during Water-Rich High-Pressure Subduction Metasomatism of Continental Crust

    Science.gov (United States)

    Menold, C. A.; Grove, M.; Sievers, N. E.

    2016-12-01

    The Luliang Shan area of the North Qaidam UHP metamorphic terrane in NW China features thick, garnet- and phengite-rich metasomatic selvages that formed around gneiss-hosted mafic eclogite blocks during near ultrahigh-pressure (UHP) conditions. Previous work revealed that the phengite-rich selvage formed at near UHP conditions. Quartz and white mica d18O data from the selvage cannot be explained by simple mixing of gneiss and eclogite, and indicate a fluid/rock ratio > 1 during regional-scale infiltration high d18O (ca. 14‰) fluids. Heavy d18O overgrowths of metamorphic zircon over lighter d18O detrital grains indicate that the gneiss was similarly affected. Starkly contrasting B-contents and d11B compositions for the host gneiss and the selvage also cannot be explained by local-scale devolatilization of the gneiss to form the selvage. Instead, the B systematics are best attributed to two distinct phases of fluid infiltration: (1) low-B, high-Cs selvage phengites with d11B from -9 to -30‰ grew under near-UHP conditions; and (2) tourmaline and high-B, low-Cs muscovite with generally positive d11B crystallized in the host gneiss under subsequent lower pressure epidote-amphibolite facies conditions as the Luliang Shan terrane was exhumed past shallower portions of the subduction channel towards the surface. Phengite 40Ar/39Ar ages from eclogite exceed the ca. 490 Ma zircon U-Pb age of eclogite metamorphism by a factor of 1.5 and ages from the more permeable schistose selvage were even older, exceeding the near-UHP metamorphic event by a factor of 1.7. In contrast, lower pressure retrograde muscovite present within the host gneiss and in discrete shear zones cutting the selvage yield 40Ar/39Ar ages younger than 490 Ma and are consistent with regional cooling age patterns. High concentrations of 40ArE in common in UHP phengite are often explained by low phengite/fluid partition coefficients for argon (Dphg/fluidAr = 10-3 to 10-5) coupled with the dry, closed systems

  3. A high linearity 14-bit pipelined charge summation ADC

    Science.gov (United States)

    Duignan, Nigel; Farrell, Ronan

    2005-06-01

    Presented in this paper is a low power, area efficient pipeline analog-to-digital converter (ADC), utilising a charge summation technique and a switched-capacitor implementation. Utilising switched capacitor, a staircase ramp is produced caused by the switching capacitors and a fixed reference voltage, as opposed to a linear ramp. The advantage of the charge summation technique is the reduction in power usage as the charging time of the capacitors is small so for most of the sample period the circuit is quiescent. The paper presents the use of this architecture as a 14-bit pipelined ADC, which can sample data at a rate of 1 MSps. The pipeline architecture itself is novel as the typical sub-DAC is not required. The signal-to-noise ratio (SNR) of the ADC is improved by using a spatial over-sampling technique, which reduces the thermal noise effect on in the switched capacitor circuit. The effects of opamps finite gain and offset on the linearity of the ramp are reduced by employing a finite gain and offset compensated integrator architecture and through the use of low-resolution pipeline stages. The proposed architecture is a strong candidate for applications demanding high resolution with low power requirements.

  4. Space charge templates for high-current beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  5. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information

    National Research Council Canada - National Science Library

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan W; Jin, Ke; Du, Yingge; Neeway, James J; Ryan, Joseph V; Hu, Dehong; Zhang, Kelvin H. L; Hong, Mina; Le Guernic, Solenne; Thevuthasan, Suntharampilai; Wang, Fuyi; Zhu, Zihua

    2015-01-01

    The use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials...

  6. Recent updates on the ArDM project: A Liquid Argon TPC for Dark Matter Detection

    OpenAIRE

    Boccone, Vittorio

    2008-01-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon underground detector. The project relies on the possibility to extract the electrons produced by ionization from the liquid into the gas phase of the detector, to amplify and read out with Large Electron Multipliers detectors. Argon VUV scintillation light has to be converted with wa...

  7. The ArDM project: A liquid argon TPC for dark matter detection

    OpenAIRE

    Boccone, V.

    2009-01-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon underground detector. The project relies on the possibility to extract the electrons produced by ionization from the liquid into the gas phase of the detector, to amplify and read out with Large Electron Multipliers detectors. Argon VUV scintillation light has to be converted with wa...

  8. LBNO-DEMO (WA105): a large demonstrator of the Liquid Argon double phase TPC

    CERN Document Server

    Trzaska, Wladyslaw Henryk

    2015-01-01

    LBNO-DEMO (WA105) is a large demonstrator of the double phase liquid argon TPC intended to develop and test the main elements of the GLACIER-based design for the purpose of scaling it up to the 10–50 kton size needed for Long Baseline Neutrino Oscillation studies. The crucial components of the design are: ultra-high argon purity in non-evacuable tank, long drifts, very high drift voltages, large area Micro Pattern Gas Detectors, and cold preamplifiers. The active volume of the demonstrator is 666 m3 (approximately 300t). WA105 is under construction at CERN and will be exposed to charged particle beams (0.5-20 GeV/c) in the North Area in 2018. The data will provide the necessary calibration of the detector performance and benchmark reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program, including projects like LBNO and DUNE.

  9. Effect of argon during diamond deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, D.C.; Mengui, U.A.; Contin, A.; Trava-Airoldi, V.J.; Baldan, M.R.; Corat, E.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Laboratorio Associado de Sensores e Materiais

    2014-07-01

    The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes is explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations. (author)

  10. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  11. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  12. The TITAN EBIT charge breeder for mass measurements on highly charged short-lived isotopes-First online operation

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.ed [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); National Superconducting Laboratory (NSCL), Michigan State University, East Lansing, MI 48824 (United States); Brodeur, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brunner, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Physik Department E12, Technische Universitaet Muechen, James Franck Str., D-85748 Garching (Germany); Ettenauer, S.; Gallant, A.T. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Simon, V. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Good, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Froese, M.W.; Crespo Lopez-Urrutia, J.R. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Delheij, P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Epp, S. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Ringle, R.; Schwarz, S. [National Superconducting Laboratory (NSCL), Michigan State University, East Lansing, MI 48824 (United States); Ullrich, J. [Max-Planck-Instituet fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2010-12-01

    TITAN (TRIUMF's Ion Traps for Atomic and Nuclear science) is a novel online facility for high-precision mass measurements on short-lived isotopes. TITAN is the only such facility that employs an Electron-Beam Ion Trap (EBIT) charge-state breeder to produce highly charged ions for their use to increase the precision of mass measurements. We describe the recently commissioned TITAN EBIT and present the results of first injection, charge breeding, and extraction tests performed with stable and radioactive ions.

  13. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    Science.gov (United States)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  14. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  15. Positive and negative pulsed corona in argon

    NARCIS (Netherlands)

    E.M. van Veldhuizen; W.R. Rutgers; U. Ebert (Ute)

    2002-01-01

    htmlabstractPhotographs are obtained of corona discharges in argon at atmospheric pressure using a high resolution, intensified CCD camera. Positive and negative polarity is applied at the curved electrode in a point-plane gap and a plane-plane gap with a protruding point. Branching is observed in

  16. Study of electron recombination in liquid argon with the ICARUS TPC

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bruzzese, R.; Bueno, A.; Buzzanca, M.; Calligarich, E.; Campanelli, M.; Carbonara, F.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, K.; Cline, D.; Cocco, A.G.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Di Cicco, A.; Dolfini, R.; Ereditato, A.; Felcini, M.; Ferrari, A.; Ferri, F.; Fiorillo, G.; Galli, S.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Mangano, G.; Markiewicz, M.; Martinez de la Ossa, A.; Matthey, C.; Mauri, F.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.R. E-mail: paola.sala@cern.ch; Santorelli, R.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Spinelli, N.; Stepaniak, J.; Sulej, R.; Szarska, M.; Szeptycka, M.; Terrani, M.; Velotta, R.; Ventura, S.; Vignoli, C.; Wang, H.; Wang, X.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W

    2004-05-11

    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out.

  17. Charge regulation of weak polyelectrolytes at low- and high-dielectric-constant substrates

    CERN Document Server

    Netz, R R

    2003-01-01

    As is well known, the effective charge of weak polyelectrolytes (PEs) decreases with decreasing salt concentration due to the electrostatic repulsion between dissociated charges. Close to dielectric boundaries, image-charge effects influence the dissociation equilibrium. At low-dielectric-constant substrates, one finds a further charge decrease and repulsion from the interface, while at high-dielectric-constant (e.g. metallic) substrates, the effective charge increases and the PE is attracted to the interface.

  18. Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas

    Science.gov (United States)

    Hoskinson, Alan R.; Gregório, José; Hopwood, Jeffrey; Galbally-Kinney, Kristin L.; Davis, Steven J.; Rawlins, Wilson T.

    2017-04-01

    Microwave-driven plasmas operating near atmospheric pressure have been shown to be a promising technique for producing the high density of argon metastable atoms required for optically pumped rare gas laser systems. Stable microwave-driven plasmas can be generated at high pressures using microstrip-based resonator circuits. We present results from computational modeling and laser absorption measurements of argon metastable densities in such plasmas operating in argon-helium gas mixtures at pressures up to 300 Torr. The model and measurements resolve the plasma characteristics both perpendicular to the substrate surface and along the resonator length. The measurements qualitatively and in many aspects quantitatively confirm the accuracy of the model. The plasmas exhibit distinct behaviors depending on whether the operating gas is mostly argon or mostly helium. In high-argon plasmas, the metastable density has a large peak value but is confined very closely to the electrode surfaces as well as being reduced near the discharge gap itself. In contrast, metastable densities in high helium-fraction mixtures extend through most of the plasma. In all systems, increasing the power extends the region of metastable along the resonator length, while the extent away from the substrate surface remains approximately constant.

  19. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  20. Effects of high-pressure argon and nitrogen treatments on respiration, browning and antioxidant potential of minimally processed pineapples during shelf life.

    Science.gov (United States)

    Wu, Zhi-shuang; Zhang, Min; Wang, Shao-jin

    2012-08-30

    High-pressure (HP) inert gas processing causes inert gas and water molecules to form clathrate hydrates that restrict intracellular water activity and enzymatic reactions. This technique can be used to preserve fruits and vegetables. In this study, minimally processed (MP) pineapples were treated with HP (∼10 MPa) argon (Ar) and nitrogen (N) for 20 min. The effects of these treatments on respiration, browning and antioxidant potential of MP pineapples were investigated after cutting and during 20 days of storage at 4 °C. Lower respiration rate and ethylene production were found in HP Ar- and HP N-treated samples compared with control samples. HP Ar and HP N treatments effectively reduced browning and loss of total phenols and ascorbic acid and maintained antioxidant capacity of MP pineapples. They did not cause a significant decline in tissue firmness or increase in juice leakage. HP Ar treatments had greater effects than HP N treatments on reduction of respiration rate and ethylene production and maintenance of phenolic compounds and DPPH(•) and ABTS(•+) radical-scavenging activities. Both HP Ar and HP N processing had beneficial effects on MP pineapples throughout 20 days of storage at 4 °C. Copyright © 2012 Society of Chemical Industry.

  1. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. POLARIS: Portable Liquid Argon Imaging Scintillator

    Science.gov (United States)

    Jia, Yanyu; Kovacs, Benjamin; Kamp, Nicholas; Aidala, Christine; Polaris Team

    2017-09-01

    Liquefied noble gas detectors have become widely used in nuclear and particle physics, in particular for detecting neutrinos and in dark matter searches. However, their potential for neutron detection in low-energy nuclear physics has not yet been realized. The University of Michigan has been constructing a hybrid scintillating time projection chamber for detection of neutrons in the 200 keV 10 MeV range. The scintillation material is argon, and various dopants to improve detector efficiency are being explored. With collection of both scintillation light and ionization charge, improved energy resolution for neutrons is expected compared to existing measurement techniques.

  3. Photorecombination studies of highly charged tungsten ions at Shanghai EBIT

    Science.gov (United States)

    Tu, B.; Xiao, J.; Yao, K.; Wang, X.; Shen, Y.; Yang, Y.; Lu, D.; Huang, L.; Zhen, C.; Fu, Y.; Wei, B.; Hutton, R.; Zou, Y.

    2017-11-01

    In this paper, we report studies on photorecombination (PR) processes for highly charged W ions. The experiment was performed at Shanghai electron beam ion trap by employing a fast electron beam-energy scanning technique. The KLL dielectronic recombination (DR) resonance strengths for He- up to O-like W ions were determined. The strong interference effect between DR and radiative recombination (RR) was observed and the Fano factor, which measures the interference degree, was determined for the main resonances of ground state He-, Be-, B-, C-, N-, and O-like W ions. In addition, we show experimentally that an autoionizing state can have both Fano and Lorentzian behavior naturally, depending on the processes involved. A fully relativistic configuration interaction method implemented in the flexible atomic code was employed to calculate DR, RR processes and also the inference effect.

  4. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  5. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  6. Improved installation prototype for measurement of low argon-37 activity

    Science.gov (United States)

    Pakhomov, Sergei; Dubasov, Yuri

    2015-04-01

    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  7. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    Science.gov (United States)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  8. Potassium-argon (argon-argon), structural fabrics

    Science.gov (United States)

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  9. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  10. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept)

    CERN Document Server

    Melin, G; Girard, A; Hitz, D

    1999-01-01

    An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An expression is derived for determining the ion temperature from the values of all extracted ion currents. One aim is to study the ion temperature behavior in argon plasmas without and with mixing different gases into the plasma. For that purpose a series of experiments has been performed where systematically one or a few parameters where changed. One conclusion is that the ion temperature indeed is decreasing due to gas mixing. A second conclusion is that the decreasing ion temperature is not a sufficient requirement for the beneficial effect of gas mixing to the production of highest charge states of argon.

  11. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    CERN Document Server

    Ghazi, M E

    2002-01-01

    addition, another very weak satellites with wavevector (1/2, 1, 1/2) were observed possibly due to spin ordering. two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd sub 1 sub / sub 2 Sr sub 1 sub / sub 2 MnO sub 3 a series of phase transitions were observed using high-resolution synchrotron X-ray scattering. Above the charge ordering transition temperature, T sub C sub O , by measuring the peak profiles of Bragg reflections as a function of temperature, it was foun...

  12. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  13. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  14. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  15. Shapes and Fissility of Highly Charged and Rapidly Rotating Levitated Liquid Drops

    Science.gov (United States)

    Liao, L.; Hill, R. J. A.

    2017-09-01

    We use diamagnetic levitation to investigate the shapes and the stability of free electrically charged and spinning liquid drops of volume ˜1 ml. In addition to binary fission and Taylor cone-jet fission modes observed at low and high charge density, respectively, we also observe an unusual mode which appears to be a hybrid of the two. Measurements of the angular momentum required to fission a charged drop show that nonrotating drops become unstable to fission at the amount of charge predicted by Lord Rayleigh. This result is in contrast to the observations of most previous experiments on fissioning charged drops, which typically exhibit fission well below Rayleigh's limit.

  16. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Roland [U.S. Department of Energy' s Vehicle Technologies Office, Washington, DC (United States); Maronde, Carl [National Energy Technology Lab. (NETL), Albany, OR (United States); Gehrke, Chris [Caterpillar, Inc., Peoria, IL (United States); Fiveland, Scott [Caterpillar, Inc., Peoria, IL (United States)

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  17. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  18. Charge Exchange and Chemical Reactions with Trapped Th$^{3+}$

    CERN Document Server

    Churchill, L R; Chapman, M S

    2010-01-01

    We have measured the reaction rates of trapped, buffer gas cooled Th$^{3+}$ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th$^{3+}$ make them more prone to loss. Our results show that reactions of Th$^{3+}$ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th$^{3+}$ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th$^{3+}$ and carbon dioxide. Loss rates of Th$^{3+}$ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th$^{3+}$ with nitrogen and argon depend on the internal electronic configuration of the Th$^{3+}$.

  19. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  20. Argon purification studies and a novel liquid argon re-circulation system

    Science.gov (United States)

    Mavrokoridis, K.; Calland, R. G.; Coleman, J.; Lightfoot, P. K.; McCauley, N.; McCormick, K. J.; Touramanis, C.

    2011-08-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficiency of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O2, H2O, N2 and CO2 in the range of between 0.01 ppm to 1000 ppm - H2O was found to have the most profound effect on gaseous argon scintillation light, and N2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N2 gas and H2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P2O5 at removing O2 and H2O impurities from 1 bar N6 argon gas at both room temperature and -130 °C was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity.

  1. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high

  2. Fragmentation processes of OCS in collision with highly charged ions

    Science.gov (United States)

    Matsumoto, J.; Tezuka, T.; Fukutome, A.; Karimi, R.; Wales, B.; Sanderson, J. H.; Shiromaru, H.

    2014-04-01

    Fragmentation of (OCS)3+ and (OCS)4+ produced by 120 keV Ar8+ collision was studied by using a position-sensitive time-of-flight (PS-TOF) method. We identified stepwise processes involving CO2+ and CS2+ metastable species as well as the concerted process (simultaneous breakup of the two bonds). For the (OCS)4+ events, the stepwise processes were found for fragmentation channels containing a doubly-charged terminal atom.

  3. High density thermite mixture for shaped charge ordnance disposal

    OpenAIRE

    Elshenawy, Tamer; Soliman, Salah; Hawass, Ahmed

    2017-01-01

    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  4. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  5. The ArDM project: A liquid argon TPC for dark matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Boccone, V, E-mail: boccone@cern.c [Physik-Institut der Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)

    2009-04-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon underground detector. The project relies on the possibility to extract the electrons produced by ionization from the liquid into the gas phase of the detector, to amplify and read out with Large Electron Multipliers detectors. Argon VUV scintillation light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. We describe the status of the LEM based charge readout and light readout system R and D and the first light readout tests with warm and cold argon gas in the full size detector.

  6. The ArDM project: A liquid argon TPC for dark matter detection

    Science.gov (United States)

    Boccone, V.; Ar DM Collaboration

    2009-04-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon underground detector. The project relies on the possibility to extract the electrons produced by ionization from the liquid into the gas phase of the detector, to amplify and read out with Large Electron Multipliers detectors. Argon VUV scintillation light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. We describe the status of the LEM based charge readout and light readout system R&D and the first light readout tests with warm and cold argon gas in the full size detector.

  7. Numerical calculations of high-altitude differential charging: Preliminary results

    Science.gov (United States)

    Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.

    1979-01-01

    A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.

  8. Measurements of ion mobility in argon and neon based gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Deisting, Alexander, E-mail: alexander.deisting@cern.ch [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Garabatos, Chilo [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Szabo, Alexander [Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Vranic, Danilo [Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany)

    2017-02-11

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run 3 with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility K is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different CO{sub 2} fractions. A decrease of K was measured for increasing water content.

  9. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    INSPIRE-00507268

    2017-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  10. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More?

    Science.gov (United States)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  11. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    Science.gov (United States)

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  12. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  13. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  14. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  15. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  16. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  17. On the Nature of High Field Charge Transport in Reinforced Silicone Dielectrics: Experiment and Simulation

    CERN Document Server

    Huang, Yanhui

    2016-01-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field, and were compared with properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial to determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails, and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  18. Energy Reconstruction and high-speed Data Transmission with FPGAs for the Upgrade of the ATLAS Liquid Argon Calorimeter at LHC

    CERN Document Server

    Stärz, Steffen

    The Liquid Argon calorimeter of the ATLAS detector at CERN near Geneva is equipped with improved readout and trigger electronics for the operation at higher luminosity LHC in the frame of several upgrades (Phase-0, I, and II). Special attention is given to an early digitisation of detector raw data and their following digital data transmission and processing via FPGAs already for the Level-1 trigger. The upgrades additionally foresee to provide higher spatial granularity information for the Level-1 trigger in order to improve its performance for low momentum single particles at increased collision rates. The first part of this dissertation contains the development and implementation of a modular detector simulation framework, AREUS, which allows to analyse different filter algorithms for the energy reconstruction as well as their performance with respect to the expected digitised detector raw data. In this detector simulation framework the detailed algorithmic functionality of the FPGAs has been taken into ac...

  19. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  20. A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer

    Science.gov (United States)

    Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei

    2017-12-01

    In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).

  1. Studies at the border between nuclear and atomic physics: Weak decays of highly charged ions

    Science.gov (United States)

    Atanasov, D.; Blaum, K.; Bosch, F.; Brandau, C.; Bühler, P.; Cakirli, R. B.; Chen, X. C.; Dillmann, I.; Faestermann, T.; Gao, B. S.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Grisenti, R.; Gumberidze, A.; Hagmann, S.; Hillenbrand, P.-M.; Kienle, P.; Kozhuharov, C.; Lane, G.; Langer, C.; Lederer-Woods, C.; Lestinsky, M.; Litvinov, S. A.; Litvinov, Yu A.; Ma, X. W.; Najafi, M. A.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Ozturk, F. C.; Patyk, Z.; Pavicevic, M. K.; Petridis, N.; Reifarth, R.; Sanchez, R.; Sanjari, M. S.; Schneider, D.; Shevelko, V.; Spillmann, U.; Steck, M.; Stöhlker, T.; Sun, B. H.; Suzaki, F.; Suzuki, T.; Torilov, S. Yu; Trageser, C.; Trassinelli, M.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wang, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Yan, X. L.; Zhang, Y. H.; Zhou, X. H.; ">ILIMA, highly charged ions is presented. The paper closely follows the progress-report presentation given at the conference. Due to the limited space an emphasis is given to an exhaustive bibliography.

  2. A High-Level Functional Architecture for GNSS-Based Road Charging Systems

    DEFF Research Database (Denmark)

    Zabic, Martina

    2011-01-01

    Within recent years, GNSS-based road charging systems have been highly profiled on the policy makers’ agenda. These types of systems are however technically challenging and are considered one of the most complex types of charging systems. To understand the structure and behavior of such road...... charging systems, it is important to highlight the overall system architecture which is the framework that defines the basic functions and important concepts of the system. This paper presents a functional architecture for GNSS-based road charging systems based on the concepts of system engineering. First......, a short introduction is provided followed by a presentation of the system engineering methodology to illustrate how and why system architectures can be beneficial for GNSS-based road charging systems. Hereafter, a basic set of system functions is determined based on functional system requirements, which...

  3. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  4. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  5. Monovalent counterion distributions at highly charged water interfaces: proton-transfer and Poisson-Boltzmann theory.

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2005-12-01

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion distributions (Cs+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3O+ at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  6. ArgonCube: a Modular Approach for Liquid Argon TPC Neutrino Detectors for Near Detector Environments

    CERN Document Server

    Auger, M; Sinclair, JR

    2017-01-01

    Liquid Argon Time Projection Chambers (LAr TPCs) are an ideal detector candidate for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently under consideration at the future LBNF/DUNE facility in the United States. That particular endeavor would be on the very large mass scale of 40~kt. Following diverse and long standing R\\&D work conducted over several years, with contributions from international collaborators, we propose a novel LAr TPC based on a fully-modular, innovative design, ArgonCube. ArgonCube will demonstrate that LAr TPCs are a viable detector technology for high-energy and high-multiplicity environments, such as the DUNE near detector. Necessary R\\&D work is proceeding along two main pathways; the first, aimed at the demonstration of modular detector design and the second, at the exploration of new signal readout methods. This two-pronged approach has provided a hig...

  7. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  8. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  9. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  10. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  11. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  12. Characterising the light output from Argon bombs by two simultaneous diagnostic techniques

    CSIR Research Space (South Africa)

    Olivier, M

    2013-01-01

    Full Text Available The light output from Argon-bombs was investigated by means of ultra high speed photography (Cordin Model 550-32 camera) and locally developed photodiode sensors. Tubes of various sizes were inflated with Argon gas, and were detonated on one side...

  13. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  14. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  15. Highly charged ions in exotic atoms research at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Anagnostopoulos, D.F.; Biri, S.; Boisbourdain, V.; Demeter, M.; Borchert, G.; Egger, J.P.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Liu, Y.W.; Manil, B.; Markushin, V.E.; Marton, H.; Nelms, N.; Rusi El Hassani, A.J.; Simons, L.M. E-mail: leopold.simons@psi.ch; Stingelin, L.; Wasser, A.; Wells, A.; Zmeskal, J

    2003-05-01

    During their de-excitation, exotic atoms formed in low pressure gases reach a state of high or even complete ionization. X-rays emitted from higher n-states of electron-free atoms have well defined energies with the error originating only from the error in the mass values of the constituent particles. They served as a basis for a new determination of the pion mass as well as for a high precision measurement of the pionic hydrogen ground state shift. The response function of the Bragg spectrometer has been determined with X-rays from completely ionized pionic carbon and with a dedicated electron cyclotron resonance ion trap (ECRIT). A further extension of the ECRIT method implemented in the experiment allows a direct calibration of exotic atom transitions as well as a precise determination of the energy of fluorescence lines.

  16. Study of fluid mechanical helium argon ion laser

    Science.gov (United States)

    1972-01-01

    An approach to an argon ion laser based on gasdynamic techniques is presented. Improvement in efficiency and power output are achieved by eliminating high heat rejection problems and plasma confinement of the seal-off conventional lasers. The process of producing population inversion between the same energy levels, as in the conventional argon ion laser, has been divided into two phases by separating each other from the processes of ionization and subsequent excitation. Line drawings and graphs are included to amplify the theoretical presentation.

  17. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    Science.gov (United States)

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Parameter-free calculation of charge-changing cross sections at high energy

    Science.gov (United States)

    Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.

    2016-07-01

    Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.

  19. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    CERN Document Server

    Beiersdorfer, P; Crespo, J; Kim, S H; Neill, P; Utter, S; Widmann, K

    2000-01-01

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic cry...

  20. Effects of High Charge Densities in Multi-GEM Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Muller, H.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-01-01

    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.

  1. Darkside: A Depleted Argon Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Alton, Drew; Durben, Dan; Keeter, Kara; Zehfus, Michael; Brice, Steve; Chou, Aaron; Hall, Jeter; Jostlein, Hans; Pordes, Stephen; Sonnenschein, Andrew; Brodsky, Jason [et al.

    2009-10-01

    The existence of dark matter is known from gravitational effects, but its nature remains a deep mystery. One possibility motivated by other considerations in elementary particle physics is that dark matter consists of undiscovered elementary particles. Axions and Weakly Interacting Massive Particles (WIMPs) are two possibilities. Evidence for new particles that could constitute WIMP dark matter may come from upcoming experiments at the Large Hadron Collider at CERN or from sensitive astronomical instruments that detect radiation produced by WIMP-WIMP annihilations in galaxy halos. The thermal motion of the WIMPS comprising the dark matter halo surrounding the galaxy and the earth should result in WIMP-nuclear collisions of sufficient energy to be observable by sensitive laboratory apparatus. The goal of this proposal is to develop and deploy a liquid argon detector that has high sensitivity for direct detection of WIMP collisions. Liquid argon is a promising medium for WIMP detection due to its efficient conversion of energy from WIMP induced nuclear recoils into both ionization and scintillation. In a Time Projection Chamber (TPC), scintillation and ionization can be independently detected and spatially resolved through large volumes of liquid. The relative size and time dependence of these signals permits discrimination of nuclear recoils from background events.

  2. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  3. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Science.gov (United States)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  4. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  5. OTR studies for the high charge CTF3 beam

    CERN Document Server

    Bravin, Enrico; Vermare, C

    2003-01-01

    The CTF3 (CLIC Test Facility 3) will produce 1.56µs long intense electron pulses. The unbunched 5.4A beam of the injector will have a transverse beam size ~1mm. After the buncher the current is reduced to 3.5A and the transverse size varies between a few hundred micrometers and one millimetre along the length of the linac. Calculations indicate that these beam parameters will impose an unbearable thermal load for the intercepting screens currently in use (scintillators and aluminium OTR foils). Graphite and SiC have been investigated as possible alternative materials for the OTR radiators. The possibility of replacing scintillating screens with OTR targets at the low energies of the injector has also been considered. A possible limitation in the use of such high temperature radiators has been identified; ions released from the heated target could focus further the beam with the risk of damaging the target itself and/or blowing up the beam. This would also affect the emittance measurement and would hinder any...

  6. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect......, in principle, be observed at low temperatures if other transport bottlenecks associated with grain boundaries or contacts could be removed....

  7. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  8. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    studied. This proves that the gas/solid difference for argon predicted in recent stopping-power tabulations is significantly overestimated. With high-order Z1 correction terms included in the theoretical description, calculated shell corrections based on the Lindhard-Scharff model are in good agreement...

  9. High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

    Science.gov (United States)

    House, Matthew; Bartlett, Ian; Pakkiam, Prasanna; Koch, Matthias; Peretz, Eldad; van der Heijden, Joost; Kobayashi, Takashi; Rogge, Sven; Simmons, Michelle

    We report the development of a high sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead, designed to minimize the geometric requirements of a charge sensor for scalable quantum computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single electron transistor (rf-SET) with which to make a comparison of the charge detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1, compared with an integration time of 55 ns for the rf-SET. This level of sensitivity is suitable for fast (Communication Technology (Project No. CE110001027) and the U.S. Army Research Office under Contract No. W911NF-13-1-0024.

  10. Nanoparticle formation in a low pressure argon/aniline RF plasma

    Science.gov (United States)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  11. Two-Step Delamination of Highly Charged, Vermiculite-like Layered Silicates via Ordered Heterostructures.

    Science.gov (United States)

    Daab, Matthias; Rosenfeldt, Sabine; Kalo, Hussein; Stöter, Matthias; Bojer, Beate; Siegel, Renée; Förster, Stephan; Senker, Jürgen; Breu, Josef

    2017-05-16

    Because of strong Coulomb interactions, the delamination of charged layered materials becomes progressively more difficult with increasing charge density. For instance, highly charged sodium fluorohectorite (Na0.6Mg2.4Li0.6Si4O10F2, Na-Hec) cannot be delaminated directly by osmotic swelling in water because its layer charge exceeds the established limit for osmotic swelling of 0.55 per formula unit Si4O10F2. Quite surprisingly, we found that this hectorite at the border of the smectite and vermiculite group can, however, be utterly delaminated into 1-nm-thick platelets with a high aspect ratio (24 000) in a two-step process. The hectorite is first converted by partial ion exchange into a one-dimensionally ordered, interstratified heterostructure with strictly alternating Na(+) and n-butylammonium (C4) interlayers. This heterostructure then spontaneously delaminates into uniform single layers upon immersion in water whereas neither of the homoionic phases (Na-Hec and C4-Hec) swells osmotically. The delamination of more highly charged synthetic layered silicates is a key step to push the aspect ratio beyond the current limits.

  12. High-Frequency Pulsed-Electro-Acoustic (PEA) Measurements for Mapping Charge Distribution

    Science.gov (United States)

    Sorensen, Kristina; Pearson, Lee; Dennison, J. R.; Doyle, Timothy; Hartley, Kent

    2012-10-01

    High-frequency pulsed-electro-acoustic (PEA) measurements are a non-destructive method used to investigate internal charge distributions in dielectric materials. This presentation discusses the theory and signal processing of simple PEA experiments and shows results of PEA measurements. PEA experiments involve a thin dielectric positioned between two conducting electrodes. A voltage signal on the two electrodes generates an electric field across the dielectric, which stimulates embedded charge and creates a pressure wave that propagates within the capacitor. A coupled acoustic sensor then measures the ensuing pressure pulse response. Spatial distributions of the charge profile are obtained from the resultant pressure waveform. Gaussian filters and other signal processing methods are used to increase the signal-to-noise ratio in this waveform. Estimates of the charge distribution inside the dielectric are extracted from this analysis. Our ultimate objective is to develop high resolution PEA methods to investigate in vacuo charge deposition in thin film polymeric, ceramic, or glass dielectric materials using medium to high energy (approximately 103 to 107 eV) electron beams.

  13. Study of neutral-charged particle correlations in high energy collisions

    CERN Document Server

    Dao, F T

    1973-01-01

    Recent experiments at Serpukhov, NAL, and CERN indicate a strong correlation between neutral and charged pions produced in high energy collisions, in contrast to the trend shown by data at lower energies. This study of the energy and charge dependence of these correlations indicates that they do not depend upon the initial state particles and that they are in reasonable agreement with the critical fluid gas model. These high energy correlation data are also studied in terms of a semi-inclusive Koba- Nielsen-Olesen scaling relation. (9 refs).

  14. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, August 15, 1990--February 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kostroun, V.O.

    1993-01-29

    This final progress report summarizes the work carried out during the 29 month period from August 15, 1990 to February 15, 1993 under grant DE-FG02-86ER13519. The following experiments were done. We measured the absolute total and one- and two- electron transfer cross sections for Ar{sup q+} (8{le} q {le} 16) on He and H{sub 2} at 2.3 qkeV, the angular distributions of the scattered projectiles in Ar{sup 8+,9+} collisions, with Ar and Kr at 2.3 qkeV, the electron emissions in low energy Ar{sup q+} on Ar collisions, the recoil ion charge state distributions in low energy Ar{sup q+} -Ar collisions, the absolute total and one-and two-electron transfer cross sections for Ar{sup 8+} on Ar at 2.3 qkeV, and the absolute total and one- and two-electron transfer cross sections for Ar{sup 8+} on Ar as a function of energy. We also used energy gain spectroscopy to study Ar{sup q+} on Ar collisions at 40 and 30 qeV, and time of flight spectroscopy to investigate ionization and dissociation of CO and N{sub 2} in collisions with low energy, highly charged argon ions. In addition, we applied the Goldberger and Watson transition theory to derive transition rates and cross sections for atomic radiative and/or non radiative processes, wrote a computer code TRANSIT which can calculate energies, wave functions and radiative and non radiative rates for atoms and ions. The code is highly modular and can easily be modified to calculate higher order processes. Finally, we have done an Ab-Initio molecular orbital electronic energy level calculation for the (ArAr){sup 8+} system as a function internuclear separation.

  15. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  16. High-Q Tunable Filters and High Efficiency Charge Pumps Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The supply voltages of modern baseband digital integrated circuits are well below the required actuation voltages for the MEMS tunable filters. Therefore, a charge...

  17. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  18. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Science.gov (United States)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  19. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  20. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    Science.gov (United States)

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  1. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  2. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    NARCIS (Netherlands)

    Jaspers, R.J.E.; Scheffer, M.; Kappatou, A.; Valk, N.C.J. van der; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G.I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-01-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm 2sr to comply with the measurement requirements [S. Tugarinov, Rev. Sci. Instrum. 74, 2075

  3. Highly-charged ions in a penning trap: mass measurements, etc.

    Science.gov (United States)

    Jertz, R.; Bollen, G.; Kluge, H.-J.; Schweikhard, L.; Stolzenberg, H.; Bergström, I.; Carlberg, C.; Schuch, R.

    1991-03-01

    The use of a Penning trap will start a new generation of precision experiments on highly charged ions. The long storage time of the ions in combination with a controlled confinement in a very small volume will enable accuracies in mass determination better than δ m/ m=10-8.

  4. THE INFLUENCE OF ANGULAR-MOMENTUM ON DOUBLE ELECTRON-CAPTURE BY HIGHLY CHARGED IONS

    NARCIS (Netherlands)

    POSTHUMUS, JH; LUKEY, P; MORGENSTERN, R

    1992-01-01

    Double electron capture during collisions of highly charged ions with H-2 or He is studied by measuring and analysing energy spectra of the resulting autoionization electrons and by comparing the experimentally determined population probabilities for the various states with those calculated from a

  5. Hydrogenated carbon clusters produced by highly charged ion impact on solid C-84

    NARCIS (Netherlands)

    Schlatholter, T; Newman, MW; Niedermayr, TR; Machicoane, GA; McDonald, JW; Schenkel, T; Hoekstra, R; Hamza, AV

    2000-01-01

    The emission of small (hydrogenated) carbon cluster ions: CnHm+ (n = 2-22) upon highly charged Xeq+ (q = 20- 14) impact on C-84 surfaces is studied by means of time-of-flight secundary ion mass spectrometry. The respective stage of hydrogenation/protonation of a certain carbon cluster ion C-n(+) is

  6. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  7. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  8. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  9. Highly charged ion impact on uracil: Cross sections measurements and scaling

    Science.gov (United States)

    Agnihotri, A. N.; Kasthurirangan, S.; Champion, C.; Rivarola, R. D.; Tribedi, L. C.

    2014-04-01

    Absolute total ionization cross sections (TCS) of uracil in collisions with highly charge C, O and F ions are measured. The scaling properties of cross sections are obtained as a function of projectile charge state and energy. The measurements are compared with the CDW-EIS, CB1 and CTMC calculations. The absolute double differential cross sections (DDCS) of secondary electron emission from uracil in collisions with bare MeV energy C and O ions are also measured. Large enhancement in forward emission is observed.

  10. Charged Particle Production in High Q2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, $\\xp$, of charged final state hadrons are measured in deep-inelastic $\\ep$ scattering at high $Q^2$ in the Breit frame of reference. The analysis covers the range of photon virtuality $100 < Q^2 < 20 000 \\GeV^{2}$. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher $Q^{2}$ and to the full range of $\\xp$. The results are compared with $e^+e^-$ annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process.

  11. On the charge dispersion in high-energy proton-xenon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yuming; Massmann, H.; Xu Shuyan; Gross, D.H.E.; Zhang Xiaoze; Lu Zhaoqi; Sa Benhao

    1987-08-06

    The mass yield and the charge dispersion of secondary fragments produced in high-energetic proton-xenon bombardment are analysed in the frame of our statistical multifragmentation model. The critical mass distribution as well as the charge dispersion, which have led to the discussion of a nuclear liquid-gas phase transition, are easily reproduced within our model. A clear signal of a 'phase transition' at T = 5 MeV is found and is analysed in terms of various multifragment correlations.

  12. Inter-electrode charge collection in high-purity germanium detectors with amorphous semiconductor contacts

    Energy Technology Data Exchange (ETDEWEB)

    Looker, Q., E-mail: qlooker@lbl.gov [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Amman, M. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Vetter, K. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    High-purity germanium (HPGe) radiation detectors with segmented signal readout electrodes combine excellent energy resolution with fine spatial resolution, opening exciting possibilities in radiation imaging applications. Segmenting the electrodes provides the ability to determine the positions of radiation interactions in the detector, but it also brings potential challenges that can inhibit performance. A challenge unique to segmented electrode detectors is collection of charge carriers to the gap between adjacent electrodes rather than to the electrodes themselves, which gives a deficit in the summed energy. While amorphous semiconductor electrical contacts have enabled a simplified fabrication process capable of fine electrode segmentation, the amorphous semiconductor passivation layer between electrodes is prone to inter-electrode charge collection. This article presents a study of the impact of fabrication process parameters on the energy deficit due to inter-electrode charge collection for double-sided strip detectors. Eight double-sided strip HPGe detectors were fabricated with amorphous germanium (a-Ge) and amorphous silicon (a-Si) contacts formed by sputter deposition. Each detector was evaluated for inter-electrode charge collection performance, using as a metric the deficit in the summed signal of two adjacent electrodes. It is demonstrated that both a-Ge and a-Si contacts can be produced with nearly non-existent inter-electrode charge collection when the appropriate combination of sputter gas hydrogen content and gas pressure are selected.

  13. Assessing the Impact of Charge Variants on Stability and Viscosity of a High Concentration Antibody Formulation.

    Science.gov (United States)

    Sule, Shantanu V; Fernandez, Jason E; Mecozzi, Vincent J; Kravets, Yana; Yang, William C; Feng, Pamela; Liu, Suli; Zang, Li; Capili, Allan D; Estey, Tia B; Gupta, Kapil

    2017-12-01

    Characterizing molecular charge variants or isoforms is essential for understanding safety, potency, and bioavailability of antibody therapeutics. However, there is little information on how they influence stability and viscosity-properties governing immunogenicity and delivery. To bridge this gap, we studied antibody stability as a function of charge variant content generated via bioreactor process. We were able to systematically vary acidic variant levels as a function of bioreactor harvest time. Importantly, we do not observe any impact on aggregation behavior of a formulated antibody at high protein concentration as a function of acidic variant level. Furthermore, we confirm that acidic variants enriched using fractionation do not influence viscosity, colloidal or conformational stability. Interestingly, variants with the most acidic isoelectric points contribute disproportionately to formulation color. We discuss our findings in context of antibody manufacturing processes that may yield increased charge variant content. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Electron recombination in ionized liquid argon: a computational approach based on realistic models of electron transport and reactions.

    Science.gov (United States)

    Jaskolski, Michal; Wojcik, Mariusz

    2011-05-05

    In this work, we propose a new theoretical approach to modeling the electron-ion recombination processes in ionization tracks in liquid argon at 87 K. We developed a computer simulation method using realistic models of charge transport and electron-ion reactions. By introducing the concept of one-dimensional periodicity in the track, we are able to model very large cylindrical structures of charged particles. We apply our simulation method to calculate the electron escape probability as a function of the initial ionization density in the track. The results are in quantitative agreement with experiment for radiation tracks of relatively high ionization density. At low ionization densities, the simulation results slightly overestimate the experimental data. We discuss possible reasons for this disagreement and conclude that it can be explained by the role of δ tracks (short tracks of secondary electrons) in electron-ion recombination processes. We introduce an approximate model that takes into account the presence of δ tracks and allows the experimental data obtained from a liquid-argon ionization detector to be reproduced over a wide range of ionization density.

  15. Argon plasma coagulation treatment of anal high-grade squamous intraepithelial lesions in men who have sex with men living with HIV: results of a 2-year prospective pilot study.

    Science.gov (United States)

    de Pokomandy, A; Rouleau, D; Lalonde, R; Beauvais, C; de Castro, C; Coutlée, F

    2018-02-01

    Men who have sex with men (MSM) living with HIV are at high risk for anal high-grade squamous intraepithelial lesions (HSILs) and cancer. The best management of anal HSIL remains unclear. Our objective was to assess whether argon plasma coagulation (APC) could be safe, well tolerated and efficient to treat anal HSILs in MSM living with HIV. A prospective phase II, open-label, pilot study was conducted to evaluate APC to treat anal HSILs in 20 HIV-positive MSM. Participants were followed for 2 years after their first treatment. Twenty men with persistent HSILs completed the 2-year study. Their baseline median CD4 count was 490 cells/μL and 85% had undetectable HIV viral loads. Overall, 65% (13/20) of participants were clear of HSILs at their 24-month visit. The initial response rates after the first, second and third APC treatments were 45%, 44% and 67%, respectively, but recurrences were common. The main side effect was pain during and within 1 week after the treatments. There were no long-term side effects, nor serious adverse events related to the procedure. Cost is a drawback. APC can be used to treat anal HSILs in HIV-seropositive MSM, and requires repeated treatment because of a high recurrence rate. As successful treatment of human papillomavirus (HPV) infection or eradication of the anal transitional zone remains impossible, HSIL treatment is challenging and requires long-term follow-up. © 2017 British HIV Association.

  16. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  17. Unconventional charge order in a co-doped high-Tc superconductor

    Science.gov (United States)

    Pelc, D.; Vučković, M.; Grafe, H.-J.; Baek, S.-H.; Požek, M.

    2016-09-01

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8-xEu0.2SrxCuO4. We use three complementary experiments--nuclear quadrupole resonance, nonlinear conductivity and specific heat--to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order.

  18. Unconventional charge order in a co-doped high-Tc superconductor.

    Science.gov (United States)

    Pelc, D; Vučković, M; Grafe, H-J; Baek, S-H; Požek, M

    2016-09-08

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8-xEu0.2SrxCuO4. We use three complementary experiments-nuclear quadrupole resonance, nonlinear conductivity and specific heat-to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order.

  19. Modeling of direct beam extraction for a high-charge-state fusion driver

    Science.gov (United States)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  20. Charge Transfer across Quantum Dot-Oxide Interfaces for High-Efficiency Photovoltaics

    Science.gov (United States)

    Bonn, Mischa

    Metal oxides constitute robust and relatively cheap semiconductor materials that are finding increasing applications in opto-electronics, but their band gaps are typically prohibitively wide for the generation of free charges through the absorption of visible light. Several approaches have been developed to circumvent this drawback. Specifically, the sensitization of mesoporous oxides by semiconductor quantum dot (QD) nanocrystals represents a promising route for the development of low-cost photovoltaics in QD sensitized solar cells. In addition to their tuneable band gap, QDs have the ability to generate multiple charge carriers from single photons by a process called carrier multiplication (CM), which potentially provides a means towards high-efficiency photovoltaics. Although CM has been widely interrogated in colloidal QDs in solution, the collection of those multiple charge carriers at oxide electrodes has not been clearly elucidated. The contribution of CM towards the overall device performance is ultimately determined by a competition between transfer to the electrode material and charge recombination within the QDs. We report interfacial electron transfer dynamics from quantum dots grown directly onto mesoporous oxide films. Such systems are well-suited for achieving efficient multiple charge transfer by CM, as electron transfer from QD-to-oxide is substantially faster than charge recombination. However, despite CM occurring in the QD, only one electron is transferred to the oxide. This seemingly counterintuitive result can be understood by noting that efficient hot electron transfer at the QD-oxide interface can compete with CM within the QDs. Hot electron transfer is observed to occur on sub-100 fs timescales, nulling the CM efficiency. Implications of these results for solar energy conversion are discussed.

  1. Measurement of anomalously strong emission from the 1s-9p transition in the spectrum of H-like phosphorus following charge exchange with molecular hydrogen

    CERN Document Server

    Leutenegger, M A; Brown, G V; Kelley, R L; Kilbourne, C A; Porter, F S

    2010-01-01

    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with $\\sim$6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of 2 for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.

  2. Charging operation with high energy efficiency for electric vehicle valve-regulated lead-acid battery system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry (CRIEPI), Komae Res. Lab., Lithium Battery Project, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power Co., Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power Co. Inc., Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power Co., Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power Co., Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power Co., Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power Co., Osaka (Japan); Kato, Satoru [The Chugoku Electric Power Co., Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst. Inc., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power Co., Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power Co., Fukuoka (Japan)

    2000-12-01

    A new, high-energy-efficiency charging operation with as little amount of overcharge as possible is proposed to improve the energy efficiency and the cycle life for an EV valve-regulated lead-acid battery. Under this operation, the EV battery system is charged with 105% of amount of the preceding discharge five out of six times and once with 115% in order that it is fully charged. The cycle lives were estimated using a valve-regulated lead-acid battery system of 12 modules connected in series, by SFUDS79 pattern discharging and measurement of the amount of discharge every 50 cycles. Three-step constant current charging with 115% of amount of the preceding discharge required more than 5 h with the final charging step of more than 210 min, with coulomb efficiency of only 87% and energy efficiency of 74%. On the other hand, under the high-energy-efficiency charging operation, three-step charging with 105% shortens the final charging time to 132 min. It was completed in less than 4 h with coulomb and energy efficiency of 95% and 84%, respectively. This operation increased the energy efficiency from 74% to 83% on average in six charging, and extended the cycle life by about 30% to more than 400 cycles. Decreasing the amount of charge by as much as possible suppressed the corrosion of the grids in the positive plate and the heat evolution in batteries due to shortening of the final charging step. Although the high-energy-efficiency charging operation led to the accumulation of inactive PbSO{sub 4} at the upper part of the negative plate, possibly due to the decreasing amount of overcharge, this operation could prolong the cycle life. Full charging once every six times is though to be effective in suppressing degradation caused by the accumulation of inactive PbSO{sub 4} in the negative plate due to the shortage of charge. (orig.)

  3. CH{sub 3} and CD{sub 3} radicals isolated in argon: high resolution ESR spectra and analysis by three-dimensional quantum rotor model. A case study of low temperature quantum effects on radicals

    Energy Technology Data Exchange (ETDEWEB)

    Shiotani, Masaru; Yamada, Tomoya; Komaguchi, Kenji [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Engineering; Benetis, N.P.; Lund, A.; Soernes, A.R.

    1998-10-01

    The present study deals with high resolution isotropic ESR spectra of the CH{sub 3} and CD{sub 3} radicals isolated in solid argon matrix at low temperature from 4 K to 40 K. Argon gases mixed with methane (Ar/methane {approx_equal} 500 mole ratio) were condensed at the end of Suprasile ESR tube at 4.2 K. Methyl radicals were generated by X-ray irradiation at 4 K and subjected to an ESR study. The 6.0 K ESR spectrum of the CH{sub 4}/Ar system is shown in Fig. 1. For CH{sub 3} radical the {sup 1}H hyperfine (hf) quartet was observed with an equal intensity (A-lines). The E-lines were absent at 4 K, but became visible at m{sub F} = {+-}1/2 positions above 12 K increased with temperature. The CD{sub 3} gave a peculiar spectrum at 4 K with an abnormally strong central singlet superimposed on a much weaker seven line spectrum of a freely rotating CD{sub 3}. The temperature dependent spectra showed clear quantum effects due to three-dimensional spin-rotation couplings. The spectra were analyzed with the following assumptions: (a) a planar D{sub 3} geometry, (b) a free and three-dimensional quantum rotation and (c) a thermally isolated radical. Application of the Pauli principle in combination to the D{sub 3} point group resulted in interesting selections for ESR-transitions for both the CH{sub 3} and CD{sub 3} spectra. That is, the {sup 1}H hf quartet of CH{sub 3} radical (A-lines) was attributed to the rotational ground state, J=0, with totally symmetric A{sub 1} nuclear states. The central strong singlet of CD{sub 3} was attributed to one spin-rotation state with A{sub 2} antisymmetric nuclear states at the lowest rotational level of J=0. (author)

  4. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density–voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  5. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  6. LArIAT: Liquid Argon TPC in a Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-02-28

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the LArIAT collaboration who have committed to participate in beam tests to be carried out starting during the 2013 Fermilab Test Beam Facility program. The TSW is intended primarily for the purpose of recording expectations for budget estimates and work allocation for Fermilab, the funding agencies and the participating institutions. It reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this TSW to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents. This TSW fulfills Article 1 (facilities and scope of work) of the User Agreements signed (or still to be signed) by an authorized representative of each institution collaborating on this experiment. Precision neutrino physics has entered a new era both with pressing questions to be addressed at short and long baselines, and with increasing interest and development of Liquid Argon Time Projection Chambers (LArTPCs). These open volume liquid argon TPCs drift ionization electrons from passing charged particles to readout wire chamber planes at the edge of the detector. The Signals are then combined to form 2D and 3D pho-quality like millimeter scale images of the charged particles tracks and to provide calorimetric measurements of the deposited energy in the detector.

  7. Spatial and temporal evolution of argon sparks

    OpenAIRE

    Harilal, S.S.

    2004-01-01

    Optical emission spectroscopic studies of laser-created argon sparks are carried out. Pulses of 532 nm and 8 ns from a frequency-doubled Nd:YAG laser are used to create an argon spark at 1 atm. Gated photography of 2 ns is used to investigate spark evolution at early times. Electron temperature and density measurements are made from the spectral data. The Stark broadening of emission lines is used to determine the electron density, and the Boltzmann plot of the singly ionized argon-line inten...

  8. Phonons, electronic charge response and electron-phonon interaction in the high-temperature superconductors

    Science.gov (United States)

    Falter, Claus

    2005-01-01

    We investigate the complete phonon dispersion, the phonon induced electronic charge response and the corresponding self-consistent change of the crystal potential an electron feels as a direct measure of the electron-phonon interaction in the high-temperature superconductors within a microscopic model in the framework of linear response theory. Moreover, dielectric and infrared properties are calculated. The experimentally observed strong renormalization of the in-plane oxygen bond-stretching modes which appears upon doping in the high-temperature superconductors is discussed. It is shown that the characteristic softening, indicating a strong nonlocal electron-phonon interaction, is most likely a generic effect of the CuO plane and is driven by a nonlocal coupling of the displaced ions to the localized charge-fluctuations at the Cu and the Oxy ions. At hand of the oxygen bond-stretching modes it is illustrated how lattice-, charge- and spin-degrees of freedom may act synergetically for anisotropic pairing in the high-temperature superconductors. The different behaviour of these modes during the insulator-metal transition via the underdoped phase is calculated and from a comparison of these generic modes in the different phases conclusions about the electronic state are drawn. For the non-cuprate potassium doped high-temperature superconductor Ba-Bi-O also a very strong and anisotropic renormalization of the oxygen bond-stretching modes is predicted. In another investigation c-axis polarized infrared- and Raman-active modes of the HTSC's are calculated in terms of charge fluctuations and anisotropic dipole-fluctuations. Mode assignments discussed controversially in the literature are proposed. Finally, interlayer phonons propagating along the c-axis and their accompanying charge response are investigated. Depending on the strength of the interlayer coupling calculations are performed ranging from the static, adiabatic response regime to the non-adiabatic regime

  9. The spectra of the multicharged argon hollow ions: Observation, modeling and using for diagnostics of the early stage of the heating of clusters by a super high contrast femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Fortov, V. E.; Boldarev, A. S.; Gasilov, V. A.; Chen, L. M.; Zhang, L.; Yan, W. C.; Yuan, D. W.; Mao, J. Y.; Wang, Z. H.; Colgan, J.; Abdallah, J. Jr.; Fukuda, Y.; Hayashi, Y.; Pirozhkov, A.; Kawase, K.; Shimomura, T.; Kiriyama, H. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 bld.2, Moscow, 125412 (Russian Federation) and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 bld.2, Moscow, 125412 (Russian Federation); Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moscow, 125047 (Russian Federation); Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Los Alamos National Laboratory, NM 87545 Los Alamos (United States); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai Kizugawa, Kyoto 619-0215 (Japan); Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai Kizugawa, Kyoto 619-0215 (Japan); and others

    2012-07-11

    A study is made of the ultra-short laser pulse irradiation of Ar cluster targets. Experiments have been performed with large cluster sizes and using very high laser contrasts, which have allowed clear and unambiguous observation of exotic inner-shell transitions in near-neutral Ar ions. The interaction of the main laser pulse with the unperturbed target is a necessary requirement for observing these lines. Our measurements are supported by kinetics calculations in which a very detailed atomic model is used. The calculations predict all of the spectral features found experimentally, and support the notion that the X-ray emission arises from many ion stages of the Ar plasma, from near-neutral through He-like ions, and from a range of plasma temperatures and densities. Differences between X-ray argon clusters excited at the laser-cluster and laser-droplet interactions have been analyzed. X-ray spectral methods have been proposed to determine the parameters of the plasma formed at the early stages of its evolution. It has been shown that the spectra of hollow ions are the most informative in the first moments of the heating of a cluster, whereas the diagnostics of the late stages can be performed using the conventional lines of multicharged ions.

  10. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  11. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  12. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  13. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    Science.gov (United States)

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  14. High Performance Charge Breeder for HIE-ISOLDE and TSR@ISOLDE Applications

    CERN Document Server

    Shornikov, Andrey; Mertzig, Robert C.; Pikin, Alexander; Wenander, Fredrik J.C.

    2015-01-01

    We report on the development of the HEC2 (High Energy Compression and Current) charge breeder, a possible high performance successor to REXEBIS at ISOLDE. The new breeder would match the performance of the HIE-ISOLDE linac upgrade and make full use of the possible installation of a storage ring at ISOLDE (the TSR@ISOLDE initiative [1]). Dictated by ion beam acceptance and capacity requirements, the breeder features a 2-3.5 A electron beam. In many cases very high charge states, including bare ions up to Z=70 and Li/Na-like up to Z=92 could be requested for experiments in the storage ring, therefore, electron beam energies up to 150 keV are required. The electron-beam current density needed for producing ions with such high charge states at an injection rate into TSR of 0.5-1 Hz is between 10 and 20 kA/cm2, which agrees with the current density needed to produce A/q<4.5 ions for the HIE-ISOLDE linac with a maximum repetition rate of 100 Hz. The first operation of a prototype electron gun with a pulsed elect...

  15. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  16. High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries

    Science.gov (United States)

    Zhao, Wenjie; Wang, Xiao-Feng; Zheng, Enqiang; Wei, Yingjin; Sanehira, Yoshitaka; Chen, Gang

    2017-05-01

    In this work, we demonstrated the dye-sensitized solar rechargeable batteries devices sharing a structure of Dye-TiO2/electrolyte/Ni/WO3. The WO3 film was prepared by a simple sol-gel process exhibit high cavities and large surface area allowing efficient chemical/electrical reactions. The WO3 films with 2 ± 0.5 μm in thickness as charge collection electrodes exhibited a high energy density over other materials reported thus far. Under irradiation energy of 7.5 mWcm-2 in the photo-charging, the discharging time sustained 1758 s at the current density of 0.05 mA cm-2 in dark, the first specific discharge capacities of WO3 nano-film reach 40.6 mAh g-1 (0.0244 mAh cm-2). This work substantially pushes forward the easy processing solar rechargeable batteries for future potential applications.

  17. On-chip high-voltage generator design design methodology for charge pumps

    CERN Document Server

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  18. Half-life measurements for neutral and highly-charged {alpha}-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Farinon, Fabio [GSI, Darmstadt (Germany); Justus-Liebig Universitaet, Giessen (Germany); Collaboration: E073-Collaboration

    2012-07-01

    The influence of the bound electron cloud on the {alpha}-decay constant {lambda} has been discussed theoretically since the late 50s. Tiny changes in Q-values and {alpha}-decay half-lives of fully stripped ions are expected and can provide information on the electron screening energy, thereby deducing reliable reaction rates in stellar environments. Recently, the measurements of {alpha}-decay half-lives are feasible also for highly-charged radioactive nuclides. Using a {sup 238}U beam at relativistic energies at the present FRS-ESR facility at GSI it is possible to produce, efficiently separate and store highly charged {alpha}-emitters. {sup 213}Fr{sup 86+} have been investigated by using the Schottky Mass Spectrometry technique. In order to establish a solid reference data set, lifetime measurements of the corresponding neutral atoms have been performed directly at the FRS by implanting the separated ions into an active silicon stopper. These results are reported.

  19. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    CERN Document Server

    Shah, Chintan; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; López-Urrutia, José R Crespo; Tashenov, Stanislav

    2016-01-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam energy adjusted to recombination resonances in order to produce $K\\alpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  20. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  1. Characterisation of a Thin Fully Depleted SOI Pixel Sensor with High Momentum Charged Particles

    CERN Document Server

    Battaglia, Marco; Contarato, Devis; Denes, Peter; Giubilato, Piero; Mattiazzo, Serena; Pantano, Devis

    2012-01-01

    This paper presents the results of the characterisation of a thin, fully depleted pixel sensor manufactured in SOI technology on high-resistivity substrate with high momentum charged particles. The sensor is thinned to 70 $\\mu$m and a thin phosphor layer contact is implanted on the back-plane. Its response is compared to that of thick sensors of same design in terms of signal and noise, detection efficiency and single point resolution based on data collected with 300 GeV pions at the CERN SPS. We observe that the charge collected and the signal-to-noise ratio scale according to the estimated thickness of the sensitive volume and the efficiency and single point resolution of the thinned chip are comparable to those measured for the thick sensors.

  2. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields

    OpenAIRE

    Tao, Molei

    2016-01-01

    This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motio...

  3. Superelastic Scattering Of Electrons From Highly Charged Ions With Inner Shell Vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Zavodszky, P. A.; Aliabadi, H.; Bhalla, C. P.; Richard, P.; Toth, G.; Tanis, J. A.

    2001-07-16

    We report the measurement of electrons scattered superelastically from highly charged ions having an initial K -shell vacancy. In this process, the scattered electron gains {approx}725 eV of energy from the deexcitation of an excited He-like F{sup 7+}( 1s2sS{sup 3}) metastable ion to its ground state. Theoretical calculations based on an R -matrix approach agree well in position, shape, and magnitude with the experimental data.

  4. State of charge estimation of high power lithium iron phosphate cells

    Science.gov (United States)

    Huria, T.; Ludovici, G.; Lutzemberger, G.

    2014-03-01

    This paper describes a state of charge (SOC) evaluation algorithm for high power lithium iron phosphate cells characterized by voltage hysteresis. The algorithm is based on evaluating the parameters of an equivalent electric circuit model of the cell and then using a hybrid technique with adequate treatment of errors, through an additional extended Kalman filter (EKF). The model algorithm has been validated in terms of effectiveness and robustness by several experimental tests.

  5. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2000-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  6. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations.

    Science.gov (United States)

    Going, Catherine C; Williams, Evan R

    2015-04-07

    The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate.

  7. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  9. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  10. Clinical periodontics with the argon laser

    Science.gov (United States)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  11. Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes

    Science.gov (United States)

    Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick

    2017-06-01

    The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.

  12. Research and development of a high-performance differential-hybrid charge sensitive preamplifier.

    Science.gov (United States)

    Zeng, Guoqiang; Hu, Chuanhao; Wei, Shilong; Yang, Jian; Li, Qiang; Ge, Liangquan; Tan, Chengjun

    2017-02-01

    A differential-hybrid charge sensitive preamplifier (CSP) was designed by taking a monolithic dual N-Channel Junction Field-effect Transistor (JFET) and a high-speed, low-noise, operational amplifier as the core parts. Input-stage of the circuit employs low-noise differential dual JFET, which ensures high input impedance and low noise. The differential dual transistor makes the quiescent point of the first-stage differential output stable, which is convenient for connecting with the post stage high-speed operational amplifier. Broadband could be amplified by connecting to the double differential dual transistors through the folded cascode-bootstrap. The amplifying circuit which replaces the interstage and post stage discrete components of a traditional CSP with integrated operational amplifier is simpler and more reliable. It simplifies the design of the quiescent point, gives full play to advantages of releasing large open-loop gain, and improves charge-voltage conversion gain stability. Particularly, the charge-voltage conversion gain is larger under a smaller feedback capacitor, thus enabling to gain better signal-noise ratio. The designed CSP was tested, reporting 3.3×10 13 V/C charge sensitivity, about 90ns rise time of signals, 35:1 signal-noise ratio to gamma-rays of 137 Cs (662keV) and a 0.023 fC/pF noise slope. Gamma-rays of 241 Am (59.5keV) were measured by the BPX66 detector and the designed CSP under room temperature, providing 1.97% energy resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Charge Summing in Spectroscopic X-Ray Detectors With High-Z Sensors

    CERN Document Server

    Koenig, Thomas; Cecilia, Angelica; Ballabriga, Rafael; Baumbach, Tilo; Llopart, Xavier; Fiederle, Michael; Zuber, Marcus; Hamann, Elias; Fauler, Alex; Campbell, Michael

    2013-01-01

    The spectroscopic performance of photon counting detectors is limited by the effects of charge sharing between neighboring pixels and the emission of characteristic X-rays. For these reasons, an event can be either missed or counted more than once. These effects become more and more of a concern when pixel pitches are reduced, and for the technology available so far, this meant that there would always be a trade-off between a high spatial and a high spectral resolution. In this work, we present first measurements obtained with the new Medipix3RX ASIC, which features a network of charge summing circuits establishing a communication between pixels which helps to mitigate these effects. Combined with cadmium telluride sensors, we show that this new technology is successful at improving a detector's spectroscopic capabilities even at pixel pitches as small as 55 mu m. At this pitch, we measure an energy response function similar to that observed for a pixel pitch of 165 mu m in the absence of a charge summing cir...

  14. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  15. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  16. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.

    1999-01-01

    Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...... character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications...

  17. Charged particle production in high Q{sup 2} deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Aktas, A. [DESY, Hamburg (DE)] (and others)

    2007-05-15

    The average charged track multiplicity and the normalised distribution of the scaled momentum, x{sub p}, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q{sup 2} in the Breit frame of reference. The analysis covers the range of photon virtuality 100 < Q{sup 2} < 20 000 GeV{sup 2}. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher Q{sup 2} and to the full range of x{sub p}. The results are compared with e{sup +}e{sup -} annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process. (orig.)

  18. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  19. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  20. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  1. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  2. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  3. Reconstruction and Analysis for the DUNE 35-ton Liquid Argon Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, Michael James [Sheffield U.

    2018-01-01

    Neutrino physics is approaching the precision era, with current and future experiments aiming to perform highly accurate measurements of the parameters which govern the phenomenon of neutrino oscillations. The ultimate ambition with these results is to search for evidence of CP-violation in the lepton sector, currently hinted at in the world-leading analyses from present experiments, which may explain the dominance of matter over antimatter in the Universe. The Deep Underground Neutrino Experiment (DUNE) is a future long-baseline experiment based at Fermi National Accelerator Laboratory (FNAL), with a far detector at the Sanford Underground Research Facility (SURF) and a baseline of 1300 km. In order to make the required precision measurements, the far detector will consist of 40 kton liquid argon and an embedded time projection chamber. This promising technology is still in development and, since each detector module is around a factor 15 larger than any previous experiment employing this design, prototyping the detector and design choices is critical to the success of the experiment. The 35-ton experiment was constructed for this purpose and will be described in detail in this thesis. The outcomes of the 35-ton prototype are already influencing DUNE and, following the successes and lessons learned from the experiment, confidence can be taken forward to the next stage of the DUNE programme. The main oscillation signal at DUNE will be electron neutrino appearance from the muon neutrino beam. High-precision studies of these νe interactions requires advanced processing and event reconstruction techniques, particularly in the handling of showering particles such as electrons and photons. Novel methods developed for the purposes of shower reconstruction in liquid argon are presented with an aim to successfully develop a selection to use in a νe charged-current analysis, and a first-generation selection using the new techniques is presented.

  4. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  5. Breakdown voltage of metal-oxide resistors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Bagby, L. F. [Fermilab; Gollapinni, S. [Kansas State U.; James, C. C. [Fermilab; Jones, B. J.P. [MIT; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Naples, D. [Pittsburgh U.; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Schukraft, A. [Fermilab; Strauss, T. [Bern U., LHEP; Weber, M. S. [Bern U., LHEP; Wolbers, S. A. [Fermilab

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  6. Paleoproterozoic high-sulfidation mineralization in the Tapajós gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints

    Science.gov (United States)

    Juliani, Caetano; Rye, Robert O.; Nunes, Carmen M.D.; Snee, Lawrence W.; Correa, Rafael H.; Monteiro, Lena V.S.; Bettencourt, Jorge S.; Neumann, Rainer; Neto, Arnaldo A.

    2005-01-01

    The Brazilian Tapajós gold province contains the first evidence of high-sulfidation gold mineralization in the Amazonian Craton. The mineralization appears to be in large nested calderas. The Tapajós–Parima (or Ventuari–Tapajós) geological province consists of a metamorphic, igneous, and sedimentary sequence formed during a 2.10 to 1.87 Ga ocean−continent orogeny. The high-sulfidation mineralization with magmatic-hydrothermal alunite is related to hydrothermal breccias hosted in a rhyolitic volcanic ring complex that contains granitic stocks ranging in age from 1.89 to 1.87 Ga. Cone-shaped hydrothermal breccias, which flare upward, contain vuggy silica and have an overlying brecciated cap of massive silica; the deposits are located in the uppermost part of a ring-structure volcanic cone. Drill cores of one of the hydrothermal breccias contain alunite, natroalunite, pyrophyllite, andalusite, quartz, rutile, diaspore, woodhouseite–svanbergite, kaolinite, and pyrite along with inclusions of enargite–luzonite, chalcopyrite, bornite, and covellite. The siliceous core of this alteration center is surrounded by advanced argillic and argillic alteration zones that grade outward into large areas of propylitically altered rocks with sericitic alteration assemblages at depth. Several occurrences and generations of alunite are observed. Alunite is disseminated in the advanced argillic haloes that envelop massive and vuggy silica or that underlie the brecciated silica cap. Coarse-grained alunite also occurs in branching veins and locally is partly replaced by a later generation of fine-grained alunite. Silicified hydrothermal breccias associated with the alunite contain an estimated reserve of 30 tonnes of gold in rock that grades up to 4.5 g t−1 Au. Seven alunite samples gave 40Ar/39Ar ages of 1.869 to 1.846 Ga, with various degrees of apparent minor Ar loss. Stable isotopic data require a magmatic-hydrothermal origin for the alunite, typical for high

  7. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal

    Science.gov (United States)

    Weiss, Joel T.; Shanks, Katherine S.; Philipp, Hugh T.; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W.; Gruner, Sol M.

    2017-04-01

    Several charge integrating CMOS pixel front ends utilizing charge removal techniques have been fabricated to extend dynamic range for X-ray diffraction applications at synchrotron sourcesand X-ray free electron lasers (XFELs). The pixels described herein build on the mixed mode pixel array detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 X-rays/pixel/s while maintaining sensitivity to smaller signals, down to single X-rays. To extend dynamic range, charge is removed from the integration node of the frontend amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is, thereby, shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux > 1011 X-rays/pixel/s. Pixel front-end linearity was evaluated by direct current injection and results are presented. A small-scale readout ASIC utilizing these pixel architectures has been fabricated and the use of these architectures to increase single X-ray pulse dynamic range at XFELs is discussed briefly.

  9. Spectroscopy of Highly Charged Tin Ions for AN Extreme Ultraviolet Light Source for Lithography

    Science.gov (United States)

    Torretti, Francesco; Windberger, Alexander; Ubachs, Wim; Hoekstra, Ronnie; Versolato, Oscar; Ryabtsev, Alexander; Borschevsky, Anastasia; Berengut, Julian; Crespo Lopez-Urrutia, Jose

    2017-06-01

    Laser-produced tin plasmas are the prime candidates for the generation of extreme ultraviolet (EUV) light around 13.5 nm in nanolithographic applications. This light is generated primarily by atomic transitions in highly charged tin ions: Sn^{8+}-Sn^{14+}. Due to the electronic configurations of these charge states, thousands of atomic lines emit around 13.5 nm, clustered in a so-called unresolved transition array. As a result, accurate line identification becomes difficult in this regime. Nevertheless, this issue can be circumvented if one turns to the optical: with far fewer atomic states, only tens of transitions take place and the spectra can be resolved with far more ease. We have investigated optical emission lines in an electron-beam-ion-trap (EBIT), where we managed to charge-state resolve the spectra. Based on this technique and on a number of different ab initio techniques for calculating the level structure, the optical spectra could be assigned [1,2]. As a conclusion the assignments of EUV transitions in the literature require corrections. The EUV and optical spectra are measured simultaneously in the controlled conditions of the EBIT as well as in a droplet-based laser-produced plasma source providing information on the contribution of Sn^{q+} charge states to the EUV emission. [1] A. Windberger, F. Torretti, A. Borschevsky, A. Ryabtsev, S. Dobrodey, H. Bekker, E. Eliav, U. Kaldor, W. Ubachs, R. Hoekstra, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Analysis of the fine structure of Sn^{11+} - Sn^{14+} ions by optical spectroscopy in an electron beam ion trap, Phys. Rev. A 94, 012506 (2016). [2] F. Torretti, A. Windberger, A. Ryabtsev, S. Dobrodey, H. Bekker, W. Ubachs, R. Hoekstra, E.V. Kahl, J.C. Berengut, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Optical spectroscopy of complex open 4d-shell ions Sn^{7+} - Sn^{10+}, arXiv:1612.00747

  10. High performance charge breeder for HIE-ISOLDE and TSR@ISOLDE applications

    Energy Technology Data Exchange (ETDEWEB)

    Shornikov, Andrey, E-mail: andrey.shornikov@cern.ch; Mertzig, Robert C.; Wenander, Fredrik J. C. [CERN, Geneva 23, CH-1211 (Switzerland); Beebe, Edward N.; Pikin, Alexander [Brookhaven National Lab, Upton, NY 11973 (United States)

    2015-01-09

    We report on the development of the HEC{sup 2} (High Energy Compression and Current) charge breeder, a possible high performance successor to REXEBIS at ISOLDE. The new breeder would match the performance of the HIE-ISOLDE linac upgrade and make full use of the possible installation of a storage ring at ISOLDE (the TSR@ISOLDE initiative [1]). Dictated by ion beam acceptance and capacity requirements, the breeder features a 2–3.5 A electron beam. In many cases very high charge states, including bare ions up to Z=70 and Li/Na-like up to Z=92 could be requested for experiments in the storage ring, therefore, electron beam energies up to 150 keV are required. The electron-beam current density needed for producing ions with such high charge states at an injection rate into TSR of 0.5–1 Hz is between 10 and 20 kA/cm{sup 2}, which agrees with the current density needed to produce A/q<4.5 ions for the HIE-ISOLDE linac with a maximum repetition rate of 100 Hz. The first operation of a prototype electron gun with a pulsed electron beam of 1.5 A and 30 keV was demonstrated in a joint experiment with BNL [2]. In addition, we report on further development aiming to achieve CW operation of an electron beam having a geometrical transverse ion-acceptance matching the injection of 1{sup +} ions (11.5 μm), and an emittance/energy spread of the extracted ion beam matching the downstream mass separator and RFQ (0.08 μm normalized / ± 1%)

  11. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  12. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R. J. E.; Scheffer, M. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Eindhoven (Netherlands); Kappatou, A. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Nieuwegein (Netherlands); Valk, N. C. J. van der; Durkut, M.; Snijders, B. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Marchuk, O.; Biel, W. [Institut fuer Energie und Klimaforschung-IEK-4 Forschungszentrum, Juelich GmbH, 52425 Juelich (Germany); Pokol, G. I. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Erdei, G. [Department of Atomic Physics, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Zoletnik, S.; Dunai, D. [WIGNER RCP, RMKI, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary)

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  13. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITERa)

    Science.gov (United States)

    Jaspers, R. J. E.; Scheffer, M.; Kappatou, A.; van der Valk, N. C. J.; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G. I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-10-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm2sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)], 10.1063/1.1537443. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  14. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  15. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of anomaly parameter of |α − 1| < 8.7 × 10(-7).

  16. A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator

    Science.gov (United States)

    Loan, Sajad A.; Bashir, Faisal; Rafat, M.; Alamoud, Abdul Rehman M.; Abbasi, Shuja A.

    2014-09-01

    In this paper, we propose a new high performance PN-Schottky collector (PN-SC) lateral bipolar junction transistor (BJT) on silicon-on-insulator (SOI). The proposed device addresses the problem of poor speed of conventional lateral PNP-BJT device by using a Schottky collector. Further, it does not use the conventional ways of ion implantation/diffusion to realize n and p type doped region. However, it uses metal electrodes of different work functions to create n and p type charge plasma in an undoped silicon film. The simulation study of the proposed lateral PN-SC bipolar charge plasma transistor on SOI (PN-SC-BCPT) device has shown a significant improvement in current gain (β), cutoff frequency (f T) and switching performance in comparison to conventional PNP-BJT and PNP-bipolar charge plasma transistor (PNP-BCPT) devices. A significantly high β is obtained in the proposed PN-SC-BCPT (˜2100) in comparison to PNP-BCPT (˜1450) and the conventional BJT (˜9) devices, respectively. It has been observed that there is 89.56% and 153.5% increase in f T for the proposed PN-SC-BCPT device (2.18 GHz) in comparison to conventional PNP-BJT (1.15 GHz) and PNP-BCPT (0.86 GHz) devices, respectively. Further, reductions of 24.6% and 15.4% in switching ON-delay and 66% and 30.76% in switching OFF-delay have been achieved in the proposed device based inverters in comparison to PNP-BCPT and the conventional BJT devices based inverters, respectively. Furthermore, the proposed device does not face doping related issues and the requirement of high temperature processing is absent.

  17. Experimental characterization of a space charge induced modulation in high-brightness electron beam

    Directory of Open Access Journals (Sweden)

    T. Shaftan

    2004-08-01

    Full Text Available We present the experimental investigation of a collective effect driving strong modulation in the longitudinal phase space of a high-brightness electron beam. The measured beam energy spectrum was analyzed in order to reveal the main parameters of modulation. The experimental results were compared with a model of space-charge oscillations in the beam longitudinal phase space. The measurements and analysis allowed us to determine the range of the parameters of the observed effect on the modulation dynamics and illustrate its potential impact on short-wavelength free-electron laser performance.

  18. Plasma Effects On Atomic Data For The K-Vacancy States Of Highly Charged Iron Ions

    OpenAIRE

    Deprince, J; Fritzsche, S; Kallman, T. R.; Palmeri, P; Quinet, Pascal

    2017-01-01

    The main goal of the present work is to estimate the effects of plasma environment on the atomic parameters associated with the K-vacancy states in highly charged iron ions within the astrophysical context of accretion disks around black holes. In order to do this, multiconfiguration Dirac-Fock computations have been carried out by considering a time averaged Debye-H\\"uckel potential for both the electron-nucleus and electron-electron interactions. In the present paper, a first sample of resu...

  19. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Grether, M.; Spieler, A.; Niemann, D. [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A.

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  20. Determination of Charge Component Composition in Self-Propagating High-Temperature Synthesis of Intermetallic Compounds

    Science.gov (United States)

    Evtushenko, A. T.; Lebedeva, O. A.; Torbunov, S. S.

    2005-05-01

    A method for determining the component composition of the charge for the self-propagating high-temperature synthesis of intermetallic compounds from the maximum value of the emitted heat in the combustion of thermit, which is required for melting the alloying components, is suggested. The mass composition of the alloying components is determined by solving a closed system of algebraic equations represented by regression equations derived from the results of physical experiment for obtaining specific properties of the intermetallic compound. Theoretical computations are partially confirmed by experimental results.

  1. Estimation of Transformer Parameters and Loss Analysis for High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Ouyang, Ziwei

    2013-01-01

    In a bi-directional DC-DC converter for capacitive charging application, the losses associated with the transformer makes it a critical component. In order to calculate the transformer losses, its parameters such as AC resistance, leakage inductance and self capacitance of the high voltage (HV......) winding has to be estimated accurately. This paper analyzes the following losses of bi-directional flyback converter namely switching loss, conduction loss, gate drive loss, transformer core loss, and snubber loss, etc. Iterative analysis of transformer parameters viz., AC resistance, leakage inductance...

  2. Atomic physics with highly-charged ions at the future FAIR facility. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Beyer, H.F.; Braeuning, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (DE)] (and others)

    2006-11-15

    The key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and setups required to reach the physics goals is given. (orig.)

  3. Atomic physics with highly-charged ions at the future FAIR facility: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany) and Institut fuer Kernphysik, University of Frankfurt (Germany)]. E-mail: t.stoehlker@gsi.de; Beyer, H.F. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning, H. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Brandau, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Hagmann, S. [Institut fuer Kernphysik, University of Frankfurt (Germany); Kozhuharov, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kluge, H.J. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kuehl, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Liesen, D. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Mann, R. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Noertershaeuser, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Quint, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Schramm, U. [LMU, Munich (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden)

    2007-08-15

    Key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and set-ups required to reach the physics goals is given.

  4. Collision of highly charged ion with clusters. Simulation study for electronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yabana, Kazuhiro [Niigata Univ. (Japan)

    1997-05-01

    Collision of highly charged ion with cluster, for example, collision of C{sub 60}-Ar{sup 8+} at E=80 KeV, was simulated by the time-dependence Kohn-Shame equation. The distribution of electron densities and the self-consistent potential were obtained. A part of C{sub 60} potential curve became depressed by the Coulomb force of ion, so that the saddle point was produced on the potential. The behavior of electron transfer on the saddle point was agreed with the classical barrier model. Time-dependent density functional method was explained. (S.Y.)

  5. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    CERN Document Server

    Ulmer, S; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-01-01

    Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available$^{4, 5, 6, 7, 8}$. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H$^−$) carried out in a Penning trap system. From 13,000 frequency measurements we compare th...

  6. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  7. Electron confinement and heating in microwave-sustained argon microplasmas

    Science.gov (United States)

    Hoskinson, Alan R.; Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2015-04-01

    We systematically measure and model the behavior of argon microplasmas sustained by a broad range of microwave frequencies. The plasma behavior exhibits two distinct regimes. Up to a transition frequency of approximately 4 GHz, the electron density, directly measured by Stark broadening, increases rapidly with rising frequency. Above the transition frequency, the density remains approximately constant near 5 × 1020 m-3. The electrode voltage falls with rising frequency across both regimes, reaching approximately 5 V at the highest tested frequency. A fluid model of the plasma indicates that the falling electrode voltage reduces the electron temperature and significantly improves particle confinement, which in turn increases the plasma density. Particles are primarily lost to the electrodes at lower frequencies, but dissociative recombination becomes dominant as particle confinement improves. Recombination events produce excited argon atoms which are efficiently re-ionized, resulting in relatively constant ionization rates despite the falling electron temperature. The fast rates of recombination are the result of high densities of electrons and molecular ions in argon microplasmas.

  8. Argon solvent effects on optical properties of silver metal clusters.

    Science.gov (United States)

    Christen, W; Radcliffe, P; Przystawik, A; Diederich, Th; Tiggesbäumker, J

    2011-08-18

    Argon gas at a high pressure (∼80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry. Besides bare metal clusters, snowballs of silver monomers and dimers encapsulated in up to 50 argon atoms have been observed. The influence of the solvent on the optical absorption of the solute was studied for embedded Ag(8) using resonant two-photon ionization in the ultraviolet. A redshift and broadening of the Ag(8)Ar(droplet) optical spectrum compared to that measured in pure [Federmann et al., Eur. Phys. J. D 1999, 9, 11] and Ar-doped helium droplets [Diederich et al., J. Chem. Phys.2002, 116, 3263] was observed, which is attributed to the interaction with the larger Ar matrix environment. © 2011 American Chemical Society

  9. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction.

    Science.gov (United States)

    Sheikh, Arif D; Munir, Rahim; Haque, Md Azimul; Bera, Ashok; Hu, Weijin; Shaikh, Parvez; Amassian, Aram; Wu, Tom

    2017-10-11

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic (PV) performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After temperature-dependent grazing-incidence wide-angle X-ray scattering, in situ X-ray diffraction, and optical absorption experiments were carried out, the thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10% in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of the crystallinity and p doping in the hole transporter, spiro-OMeTAD, which promotes the efficient extraction of photogenerated carriers. However, further thermal cycles produced a detrimental effect on the PV performance of PSCs, with the short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the PV performance of PSCs degraded at high operation temperatures; both the short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of the fill factor was the opposite. Our impedance spectroscopy analysis revealed a monotonous increase of the charge-transfer resistance and a concurrent decrease of the charge-recombination resistance with increasing temperature, indicating a high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance because of the deteriorated interfacial photocarrier extraction. The present findings suggest that the development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite PVs in harsh

  10. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  11. Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.

    Science.gov (United States)

    Dolliver, D D; Ordonez, C A

    1999-06-01

    A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions.

  12. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    Science.gov (United States)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  13. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  14. Spatial and temporal evolution of argon sparks.

    Science.gov (United States)

    Harilal, Sivanandan S

    2004-07-01

    Optical emission spectroscopic studies of laser-created argon sparks are carried out. Pulses of 532 nm and 8 ns from a frequency-doubled Nd:YAG laser are used to create an argon spark at 1 atm. Gated photography of 2 ns is used to investigate spark evolution at early times. Electron temperature and density measurements are made from the spectral data. The Stark broadening of emission lines is used to determine the electron density, and the Boltzmann plot of the singly ionized argon-line intensities is exploited for determination of the electron temperature. The dependence on electron temperature and density on different experimental parameters, such as distance from the focal point, delay time after the initiation of the spark, and laser energy, are discussed.

  15. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others

    1996-12-31

    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  16. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake.

    Science.gov (United States)

    Zheng, Shou-Tian; Bu, Julia T; Li, Yufei; Wu, Tao; Zuo, Fan; Feng, Pingyun; Bu, Xianhui

    2010-12-08

    The integration of negatively charged single-metal building blocks {In(CO2)4} and positively charged trimeric clusters {In3O} leads to three unique cage-within-cage-based porous materials, which exhibit not only high hydrothermal, thermal, and photochemical stability but also attractive structural features contributing to a very high CO2 uptake capacity of up to 119.8 L/L at 273 K and 1 atm.

  17. Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing

    Science.gov (United States)

    Huang, Tzu‐Yen; Kung, Chung‐Wei; Liao, Yu‐Te; Kao, Sheng‐Yuan; Cheng, Mingshan; Chang, Ting‐Hsiang; Henzie, Joel; Alamri, Hatem R.; Alothman, Zeid A.

    2017-01-01

    Abstract With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4‐ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin‐based metal–organic framework nanocrystals (MOF‐525). The MOF‐525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF‐525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10−6–270 × 10−6 m and the detection limit is estimated to be 0.04 × 10−6 m with high selectivity toward DA. Additionally, a real‐time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5‐25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing. PMID:29201623

  18. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  19. A triple GEM detector with pad readout for high rate charged particle triggering

    CERN Document Server

    Bonivento, W; Felici, G; Murtas, F; Valente, P; Cardini, A; Lai, A; Pinci, D; Saitta, B; Bosio, C

    2002-01-01

    In this paper, results of a time performance study of triple gas electron multiplier (GEM) detectors are discussed. This study was driven by an R&D activity on detectors for the Level 0 LHCb muon trigger. However, the results presented in this paper are of more general interest, i.e. for experiments with high rate charged particle triggering. Little interest was given so far to time performance of GEM detectors. Only one group measured double GEM detector time resolution with the Ar/CO//2 (70/30) gas mixture. Our study aimed at triple GEM detector optimisation for good time performance through a detailed investigation of the role played by detector geometry, electric fields and gas mixture. The results reported here, in particular when using the gas mixture Ar/CO//2/CF //4 (60/20/20), considerably improve the time performance discussed in the above-mentioned paper and make the triple GEM detector a promising option for high rate charged particle triggering.

  20. Modelling and design of high compression electron guns for EBIS/T charge breeders

    CERN Document Server

    AUTHOR|(CDS)2087190; Zschornack, G.; Lettry, J.; Wenander, F.

    In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC2 gun operating at its design limit. The experience gained from the commission of the HEC² gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quali...

  1. Evolution of electronic structure in highly charge doped MoS2 compounds

    Science.gov (United States)

    Bin Subhan, Mohammed; Watson, Matthew; Liu, Zhongkai; Walters, Andrew; Hoesch, Moritz; Howard, Chris; Diamond I05 beamline Collaboration

    Transition-metal dichalcogenides (TMDCs) are a group of layered materials that exhibit a rich array of electronic ground states including semiconductivity, metallicity, superconductivity and charge density waves. In recent years, 2D TMDCs have attracted considerable attention due to their unique properties and potential applications in optoelectronics. It has been shown that the charge carrier density in few layer MoS2 can be tunably increased via electrostatic gating. At high levels of doping, MoS2 exhibits superconductivity with a dome-like dependence of Tc on doping analogous to that found in the cuprate superconductors. High doping can also be achieved via intercalation of alkali metals in bulk MoS2. The origin of this superconductivity is not yet fully understood with predictions ranging from exotic pairing mechanisms in bulk systems to Ising superconductivity in single layers. Despite these interesting properties, there has been limited research to date on the electronic structure of these doped compounds. Here we present our work on alkali metal intercalated MoS2 using the low temperature metal ammonia solution method. Using X-ray diffraction, Raman spectroscopy and ARPES measurements we will discuss the physical and electronic structure of these materials. EPSRC, Diamond Light Source.

  2. Resonance broadening of argon lines in a micro-scaled atmospheric pressure plasma jet (argon μAPPJ)

    Science.gov (United States)

    Pipa, A. V.; Ionikh, Yu. Z.; Chekishev, V. M.; Dünnbier, M.; Reuter, S.

    2015-06-01

    Optical emission from atmospheric pressure micro-jet operating with pure argon (argon μAPPJ) flow has been detected with a moderate resolution spectrometer. Large broadening of the several argon (Ar) lines has been observed in the near infrared spectral region. This effect was attributed to resonance broadening of the s2 (Paschen notation) level in 3p54s configuration. In the present work, corresponding line profiles are suggested for plasma diagnostics. For this, a general case of resonance broadening coefficient of noble gases is discussed. As broadening reflects the Ar density, and the static gas pressure of the jet is in equilibrium with the ambient, the local gas temperature can be inferred. An estimation of gas temperature from the width of the 750 nm Ar line is in agreement with rotational temperature of OH radicals determined from the A2Σ+ → X2Π (0, 0) band. At low temperatures (300-600 K) and at partial Ar pressure near atmospheric, the resonance width of the suggested lines is very sensitive to small temperature variations. High temperature sensitivity and large width make the resonance broadened lines very attractive for diagnostics of low temperature discharges at elevated pressure, e.g., as they are used in plasma-medicine.

  3. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  4. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    Science.gov (United States)

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  5. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  6. Ionisation from the 3s sub-level of highly charged ions

    Science.gov (United States)

    Golden, L. B.; Sampson, D. H.; Omidvar, K.

    1978-01-01

    Scaled electron-impact cross sections are calculated for ionization from the 3s sublevel of hydrogenic ions with Z equal infinity by use of the Born exchange or the Coulomb-Born Oppenheimer approximation (which is exact, apart from relativistic corrections, in this limit). The results are fitted to an analytic expression which goes into the correct Bethe approximation result at high energies and which can readily be integrated over a Maxwellian electron velocity distribution to obtain collision rates. These results permit calculation of the approximate cross section and collision rate for ionization from the 3s sublevel of any highly charged ion with Z/N larger than approximately 2. Results obtained by the described procedure for Fe-14(+) and Fe-15(+) are compared with results obtained by other procedures.

  7. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    Science.gov (United States)

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  8. High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes.

    Science.gov (United States)

    Haldrup, Sofie; Catalano, Jacopo; Hansen, Michael Ryan; Wagner, Manfred; Jensen, Grethe Vestergaard; Pedersen, Jan Skov; Bentien, Anders

    2015-02-11

    The synthesis, characterization, and electrokinetic energy conversion performance have been investigated experimentally in a charged polymeric membrane based on a blend of nitrocellulose and sulfonated polystyrene. The membrane is characterized by a moderate ion exchange capacity and a relatively porous structure with average pore diameter of 11 nm. With electrokinetic energy conversion, pressure can be converted directly into electric energy and vice versa. From the electrokinetic transport properties, a remarkably large intrinsic maximum efficiency of 46% is found. It is anticipated that the results are an experimental verification of theoretical models that predict high electrokinetic energy conversion efficiency in pores with high permselectivity and hydrodynamic slip flow. Furthermore, the result is a promising step for obtaining efficient low-cost electrokinetic generators and pumps for small or microscale applications.

  9. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  10. Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes

    Science.gov (United States)

    Zubair, Ahmed; Tristant, Damien; Nie, Chunyang; Tsentalovich, Dmitri E.; Headrick, Robert J.; Pasquali, Matteo; Kono, Junichiro; Meunier, Vincent; Flahaut, Emmanuel; Monthioux, Marc; Gerber, Iann C.; Puech, Pascal

    2017-11-01

    The origin of highly efficient iodine doping of carbon nanotubes is not well understood. Relying on first-principles calculations, we found that iodine molecules (I2) in contact with a carbon nanotube interact to form monoiodide or/and polyiodide from two and three I2 as a result of removing electrons from the carbon nanotube (p -type doping). Charge per iodine atom for monoiodide ion or iodine atom at end of iodine chain is significantly higher than that for I2. This atomic analysis extends previous studies showing that polyiodide ions are the dominant dopants. Moreover, we observed isolated I atoms in atomically resolved transmission electron microscopy, which proves the production of monoiodide. Finally, using Raman spectroscopy, we quantitatively determined the doping level and estimated the number of conducting channels in high electrical conductivity fibers composed of iodine-doped double-wall carbon nanotubes.

  11. Two-particle Azimuthal Correlations of High-pT Charged Hadrons at the CERN SPS

    CERN Document Server

    Szuba, Marek

    2008-01-01

    Two-particle azimuthal correlations of high-pT hadrons can serve as a probe of interactions of partons with the dense medium produced in high-energy heavy-ion collisions. First NA49 results on such correlations are presented for central and mid-central Pb+Pb collisions at 158A GeV beam energy, for different centrality bins and charge combinations of trigger and associate particles. These results feature a flattened away-side peak in the most central collisions, which is consistent with expectations of the medium-interaction scenario. A comparison with CERES Pb+Au results at the same energy, as well as with PHENIX Au+Au results at the top RHIC energy, is provided.

  12. High efficiency laser-assisted H- charge exchange for microsecond duration beams

    Science.gov (United States)

    Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin; Aleksandrov, Alexander; Danilov, Viatcheslav; Gorlov, Timofey; Liu, Yun; Long, Cary; Menshov, Alexander; Plum, Michael; Shishlo, Andrei; Webster, Andrew; Johnson, David

    2017-12-01

    Laser-assisted stripping is a novel approach to H- charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. The experiment was performed on the Spallation Neutron Source 1 GeV H- beam using a 1 MW peak power UV laser and resulted in ˜95 % stripping efficiency.

  13. LArIAT: Worlds First Pion-Argon Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Pip [Fermilab

    2016-11-02

    The LArIAT experiment has performed the world's first measurement of the total charged-current pion cross-section on an argon target, using the repurposed ArgoNeuT detector in the Fermilab test beam. Presented here are the results of that measurement, along with an overview of the LArIAT experiment and details of the LArIAT collaboration's plans for future measurements.

  14. Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)

    CERN Document Server

    Badertscher, A; Degunda, U; Epprecht, L; Horikawa, S; Knecht, L; Lazzaro, C; Lussi, D; Marchionni, A; Natterer, G; Otiougova, P; Resnati, F; Rubbia, A; Strabel, C; Ulbricht, J; Viant, T

    2010-01-01

    GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground observatory for proton decay search, neutrino astrophysics and CP-violation studies in the lepton sector. Possible underground sites are studied within the FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration with KEK (Japan). The concept is scalable to very large masses.

  15. A Green's function method for high charge and energy ion transport

    Science.gov (United States)

    Chun, S. Y.; Khandelwal, G. S.; Wilson, J. W.

    1996-01-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  16. Charge transfer in high velocity C{sub n}{sup +} + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chabot, M [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Martinet, G [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Mezdari, F [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Diaz-Tendero, S [Departamento de Quimica, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Beroff-Wohrer, K [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Desesquelles, P [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Della-Negra, S [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Hamrita, H [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); LePadellec, A [IRSAMC, Universite Paul Sabatier et CNRS, 31062 Toulouse Cedex 4 (France); Tuna, T [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Montagnon, L [IRSAMC, Universite Paul Sabatier et CNRS, 31062 Toulouse Cedex 4 (France); Barat, M [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Simon, M [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, Universite Paris 6 et CNRS, 11 rue P et M Curie, 75231 Paris Cedex 05 (France); Ismail, I [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France)

    2006-06-14

    Dissociative and non-dissociative charge transfer cross sections in high velocity (v = 2.6 au) collisions between ionic carbon clusters C{sub n}{sup +} (n 2-10) and helium atoms have been measured. The sum of the cross sections has been found to increase significantly with n. Measurements of branching ratios for all fragmentation channels of excited C{sub n} clusters are reported. The summed branching ratios associated with a given number of emitted fragments exhibit odd-even alternations reflecting the higher stability of the species having an odd number of atoms. From an analysis of the summed branching ratios within the statistical microcanonical metropolis Monte Carlo model, and knowing the temperature of the incident clusters, deposited energy distributions due to the charge transfer process are deduced (n = 5-9). These distributions, of similar characteristics whatever n, peak around 4-5 eV and exhibit a large percentage of superexcited states situated above the continuum.

  17. Microscopic observation of highly mobile charge carriers in organic transistors of semicrystalline conducting polymers

    Science.gov (United States)

    Kawamura, Shinya; Wakamatsu, Ayato; Kuroda, Shin-ichi; Takenobu, Taishi; Tanaka, Hisaaki

    2018-02-01

    Charge carrier dynamics in organic field-effect transistors (OFETs) of semicrystalline conducting polymers poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) and poly(3-hexylthiophene) (P3HT) have been investigated down to 4 K by field-induced electron spin resonance (FI-ESR) spectroscopy. The highly mobile nature of charge carriers within the ordered regions of the polymers has been clarified from the observation of the motional narrowing effect of the ESR spectra even below 30 K, where device operation cannot be observed presumably owing to the effect of domain boundaries. The activation energy of carrier motion observed by ESR has been determined as 17 meV for PBTTT and 13 meV for P3HT, which are an order of magnitude smaller than that of FET mobility (>110 meV) obtained for the same devices. These results demonstrate that the intrinsic carrier mobility within the ordered region is much higher than that expected from the macroscopic transport measurements in the semicrystalline polymers.

  18. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  19. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhargavi, R.; Nair, Geetha G., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com; Krishna Prasad, S., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com [Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013 (India); Majumdar, R.; Bag, Braja G. [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore (W) 721 102 (India)

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  20. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    Science.gov (United States)

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.

  1. Energy loss of a high-charge bunched electron beam in plasma: Analysis

    Directory of Open Access Journals (Sweden)

    N. Barov

    2004-06-01

    Full Text Available There has been much recent experimental and theoretical interest in the blowout regime of plasma wakefield acceleration, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. A quantitative understanding of the blowout regime including all these effects has, to this point, been available only through detailed simulations. This paper represents an initial step towards an analytical theory of this regime, in which the mechanism of energy loss in the drive beam is investigated. We find, first from examination of electromagnetic particle-in-cell simulations, and then through analytical investigations, that under short pulse, high-charge conditions, the plasma electrons receive a strong initial push along the direction of beam motion. This nonlinear effect is unanticipated by linear theory, where the return current motion is in the opposite direction. In the limit of short pulses (the δ-function limit, the beam energy loss is shown to be linear in charge even with a nonlinear plasma response dominated by relativistic, electromagnetic effects, despite the fact that the initial plasma electron response changes qualitatively from the familiar electrostatic, nonrelativistic limit.

  2. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  3. Identification of high momentum charged hadrons in ALICE:. detector performance and perspectives

    Science.gov (United States)

    Volpe, G.

    2010-04-01

    The results obtained by the RHIC experiments at BNL from high energy nucleus-nucleus collisions have shown the importance of identifying high momentum charged hadrons. At LHC, the relevant range for particle identification is expected to be wider than at RHIC, i.e. well above 10 GeV/c. In the ALICE experiment, dedicated to the study of heavy-ion collisions at LHC energies, particles with momentum below 10 GeV/c are identified by high-quality particle identification detectors based on the measurements of ionization energy losses in the Time-Projection-Chamber (TPC), Time-of- Flight (TOF) and Cherenkov radiation (HMPID). At higher momenta, statistical identification of hadrons is envisaged by measuring the ionization energy loss in the relativistic rise momentum region of the TPC. However, since the topology of the jets having a baryon leading particle may be different than those with a meson leading particle, it will also be necessary to identify track by track the highest momentum particles. For this reason, a proposal for an up-grade of the high momentum particle identification is being considered. Such an upgrade would consist of a ring imaging Cherenkov detector, called VHMPID (Very High Momentum Particle IDentification), exploiting the focusing properties of a segmented spherical mirror and using C4F10 as Cherenkov radiator. Characteristics and expected performance of the ALICE high momentum identification systems and of the VHMPID will be reviewed in this paper.

  4. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  5. Argon-ion contamination of the plasmasphere

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Y.T.; Cornwall, J.M.; Luhmann, J.G.; Schulz, M.

    1979-07-15

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed.

  6. Antiapoptotic activity of argon and xenon

    Science.gov (United States)

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  7. High resolution interferometry as a tool for characterization of swelling of weakly charged hydrogels subjected to amphiphile and cyclodextrin exposure

    OpenAIRE

    Gao, Ming; Gawel, Kamila; Stokke, Bjørn Torger

    2013-01-01

    A high resolution interferometric technique was used to determine swelling behavior of weakly charged polyacrylamide hydrogels in the presence of oppositely charged surfactants and subsequent exposure to cyclodextrins. Hydrogels of copolymerized acrylamide and 2-acrylamido-2-methyl-1-propanesulfonic acid (0.22, 0.44, 0.88 mol%) and crosslinked with bisacrylamide (3, 6, 12 mol%) were employed. The equilibrium swelling and swelling kinetics of the hydrogels were determined with 2 nanometer reso...

  8. 46 CFR 151.50-36 - Argon or nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  9. Highly positive-charged zinc(II) phthalocyanine as non-aggregated and efficient antifungal photosensitizer.

    Science.gov (United States)

    Li, Xing-Shu; Guo, Jun; Zhuang, Jing-Jing; Zheng, Bi-Yuan; Ke, Mei-Rong; Huang, Jian-Dong

    2015-06-01

    A new tetra-α-substituted zinc(II) phthalocyanine containing dodeca-amino groups (compound 4) and its quaternized analogue (compound 5) have been prepared and evaluated for their photoactivities against Candida albicans. Compared with the dodeca-amino phthalocyanine 4, the dodeca-cationic phthalocyanine 5 exhibits a higher photodynamic inactivation against C. albicans with an IC90 value down to 1.46 μM, which can be attributed to its non-aggregated nature in aqueous environments and more efficient cellular uptake. More interestingly, 5 shows a higher photodynamic inactivation on C. albicans due to its stronger affinity to C. albicans cells than mammalian cells. These results suggest that the highly positive-charged phthalocyanine 5 is a potential non-aggregated antifungal photosensitizer, which shows some selectivity toward the fungus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong Lin [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sampson, Douglas H [PENNSYLVANIA STATE UNIV

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  11. Splitting of a high-energy positively-charged particle beam with a bent crystal

    Science.gov (United States)

    Bandiera, L.; Kirillin, I. V.; Bagli, E.; Berra, A.; De Salvador, D.; Guidi, V.; Lietti, D.; Mazzolari, A.; Prest, M.; Shul'ga, N. F.; Sytov, A.; Vallazza, E.

    2017-07-01

    The possibility of high-energy positively-charged particle beam splitting by means of a short bent axially oriented silicon crystal was recently reported in an experiment carried out at CERN SPS H8 extracted line with a 400 GeV/c proton beam. Here, we investigate more deeply such a possibility focusing our attention on the efficiency of beam splitting and its modulation for different crystal-to-beam orientations. New experimental results confirm the possibility of modulating the 400 GeV/c proton beam intensity in different planar channels by adjusting the orientation of the crystal. Furthermore, an analysis of the beam splitting efficiency vs. the curvature of the crystal was carried out through simulation, highlighting that there exists a bending radius for which the efficiency is maximal.

  12. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites.

    Science.gov (United States)

    Yan, Zhuojun; Yuan, Ye; Tian, Yuyang; Zhang, Daming; Zhu, Guangshan

    2015-10-19

    The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF-23, PAF-24, and PAF-25 are built up by a tetrahedral building unit, lithium tetrakis(4-iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira-Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their "breathing" dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal-organic frameworks, and porous organic frameworks) reported to date. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Three dimensional space charge model for large high voltage satellites. [plasma sheath

    Science.gov (United States)

    Cooks, D.; Parker, L. W.; Mccoy, J. E.

    1980-01-01

    High power solar arrays for satellite power systems with dimensions of kilometers, and with tens of kilovolts distributed over their surface face many plasma interaction problems that must be properly anticipated. In most cases, the effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Two computer programs were developed to provide fully self consistent plasma sheath models in three dimensions as a result of efforts to model the experimental plasma sheath studies at NASA/JSC. Preliminary results indicate that for the conditions considered, the Child-Langmuir diode theory can provide a useful estimate of the plasma sheath thickness. The limitations of this conclusion are discussed. Some of the models presented exhibit the strong ion focusing observed in the JSC experiments.

  14. HITRAP - a facility for experiments on heavy highly charged ions and on antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Andjelkovic, Z; Barth, W; Brantjes, N P M; Braeuning-Demian, A; Dahl, L; Herfurth, F; Kester, O; Kluge, H J; Koszudowski, S; Kozhuharov, C; Maero, G; Noertershaeuser, W [GSI, Darmstadt (Germany); Birkl, G [Technische Universitaet Darmstadt (Germany); Blank, I; Goetz, S [Universitaet Freiburg (Germany); Blaum, K [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Bodewits, E; Hoekstra, R [KVI Groningen (Netherlands); Church, D [Texas AM University, Texas (United States); Pfister, J, E-mail: w.quint@gsi.d [Universitaet Frankfurt (Germany)

    2009-11-01

    HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has been demonstrated and studied in detail. The commissioning of the RFQ structure and the cooler trap is ongoing.

  15. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  16. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

  17. Development of a Bragg spectrometer for experiments with highly charged ions at storage rings

    Science.gov (United States)

    Banas, D.; Jagodzinski, P.; Pajek, M.; Stöhlker, Th; Trassinelli, M.; Beyer, H. F.; Reuschl, R.; Spillmann, U.

    2007-03-01

    The construction and results of the Monte-Carlo ray-tracing simulations for a low energy x-ray crystal spectrometer designed for future experiments at the ESR storage ring with fast highly charged ions are presented. The spectrometer has a radius of the Rowland circle R = 0.5 m and operates in the Johann geometry. The x-rays emitted from a source are di.racted by spherically bent silicon Si(111) crystal and registered by two-dimensional deep depleted back-illuminated CCD camera. The estimated spectrometer e.ciency, calculated according to a dynamical theory of x-ray di.raction is about 10-6. The energy resolution of the spectrometer obtained from the simulations is about 0.5 eV. influence of the source size and Doppler broadening on the spectrometer resolution is discussed.

  18. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  19. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  20. Facile Access to Twisted Intramolecular Charge-Transfer Fluorogens Bearing Highly Pretwisted Donor-Acceptor Systems Together with Readily Fine-Tuned Charge-Transfer Characters.

    Science.gov (United States)

    Luo, Yanju; Wang, Yan; Chen, Shiqi; Wang, Ning; Qi, Yige; Zhang, Xiaogen; Yang, Minghui; Huang, Yan; Li, Ming; Yu, Junsheng; Luo, Daibing; Lu, Zhiyun

    2017-05-01

    Twisted intramolecular charge-transfer (TICT) fluorogens bearing highly pretwisted geometries and readily-fine-tuned charge-transfer characters are quite promising sensor and electroluminescence (EL) materials. In this study, by using 4-aryloxy-1,8-naphthalimide derivatives as the molecular framework, it is demonstrated for the first time that a CO bond could serve as the central bond to construct new TICT D-A systems. Photophysical and quantum chemical studies confirm that rotation around central CO bonds is responsible for the formation of a stable TICT state in these compounds. More importantly, owing to the structural adjustability of the aryl moiety and the strong steric interactions between the naphthalimide and the aryl ring systems, these compounds can display readily-fine-tuned TICT characters, hence exhibiting an adjustable solvent polarity threshold for aggregation-induced emission (AIE) activity, and could be AIE-active even in less-polar toluene and nonpolar cyclohexane. Furthermore, these compounds could possess highly-pretwisted ground-state geometries, hence could show good EL performance. The findings reveal a facile but effective molecular constructive strategy for versatile, high-performance optoelectronic TICT compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effect of laser contrast on generation of highly charged Fe ions by ultra-intense femtosecond laser pulses

    Science.gov (United States)

    Faenov, Anatoly Ya.; Alkhimova, Maria A.; Pikuz, Tatiana A.; Skobelev, Igor Yu.; Nishiuchi, Mamiko; Sakaki, Hironao; Pirozhkov, Alexander S.; Sagisaka, Akito; Dover, Nicholas P.; Kondo, Kotaro; Ogura, Koichi; Fukuda, Yuji; Kiriyama, Hiromitsu; Andreev, Alexander; Nishitani, Keita; Miyahara, Takumi; Watanabe, Yukinobu; Pikuz, Sergey A.; Kando, Masaki; Kodama, Ruosuke; Kondo, Kiminori

    2017-07-01

    Experimental studies on the formation of highly charged ions of medium-Z elements using femtosecond laser pulses with different contrast levels were carried out. Multiply charged Fe ions were generated by laser pulses with 35 fs duration and an intensity exceeding 1021 W/cm2. Using high-resolution X-ray spectroscopic methods, bulk electron temperature of the generated plasma has been identified. It is shown that the presence of a laser pre-pulse at a contrast level of 105-106 with respect to the main pulse drastically decreases the degree of Fe ionization. We conclude that an effective source of energetic, multiply charged moderate and high- Z ions based on femtosecond laser-plasma interactions can be created only using laser pulses of ultra-high contrast.

  2. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  4. Ultrafast high harmonics for probing the fastest spin and charge dynamics in magnetic materials

    Science.gov (United States)

    Grychtol, Patrick

    2015-03-01

    Ultrafast light based on the high-harmonic up-conversion of femtosecond laser pulses have been successfully employed to access resonantly enhanced magnetic contrast at the Mabsorption edges of the 3d ferromagnets Fe, Co and Ni in a table-top setup. Thus, it has been possible to study element-specific dynamics in magnetic materials at femtosecond time scales in a laboratory environment, providing a wealth of opportunities for a greater fundamental understanding of correlated phenomena in solid-state matter. However, these investigations have so far been limited to linear polarized harmonics, since most techniques by which circular soft x-rays can be generated are highly inefficient reducing the photon flux to a level unfit for scientific applications. Besides presenting key findings of our ultrafast studies on charge and spin dynamics, we introduce a simple setup which allows for the efficient generation of circular harmonics bright enough for XMCD experiments. Our work thus represents a critical advance that enables element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution on the tabletop. In collboration with Ronny Knut, Emrah Turgut, Dmitriy Zusin, Christian Gentry, Henry Kapteyn, Margaret Murnane, JILA, University of Colorado, Boulder; Justin Shaw, Hans Nembach, Tom Silva, Electromagnetics Division, NIST, Boulder, CO; and Ofer Kfir, Avner Fleischer, Oren Cohen, Extreme Nonlinear Optics Group, Solid State Institute, Technion, Israel.

  5. Characterization of Cs-Sb cathodes for high charge RF photoinjectors

    CERN Document Server

    AUTHOR|(CDS)2082505; Beghi, Marco

    Future accelerators such as CLIC (Compact LInear Collider), require high brightness electron beams that could be produced with a photoinjector (laser-driven electron source). Cs2Te photocathodes in combination with ultra-violet (UV) laser beams are currently used in many photoinjector facilities, but requirements to the electron sources for future accelerators like CLIC are more demanding. The main challenge for the CLIC drive beam photoinjector is to achieve high bunch charges (8.4 nC), high bunch repetition rates (500 MHz) within long trains (140 s) and with suciently long cathode lifetimes. In particular the laser pulse energy in UV, for such long pulse trains, is currently limited due to a degradation of the beam quality during the 4th harmonic frequency conversion process. Using the 2nd harmonic (green laser beam), provided it is matched with a low photoemission threshold photocathode material, would overcome this limitation. Cesium antimonide (Cs3Sb), being a photoemissive material in the visible range,...

  6. EUV magnetic-dipole lines from highly-charged high-Z ions with an open 3d shell

    CERN Document Server

    Osin, D; Reader, J; Ralchenko, Yu

    2012-01-01

    The electron beam ion trap (EBIT) at the National Institute of Standards and Technology was used to produce highly-charged ions of hafnium, tantalum and gold with an open 3d shell. The extreme-ultraviolet (EUV) spectra from these ions were recorded with a flat-field grazing-incidence spectrometer in the wavelength range of 4.5 nm to 25 nm. A total of 133 new spectral lines, primarily due to magnetic-dipole transitions within the ground-state $3d^n$ configurations of the Co-like to K-like ions, were identified by comparing energy-dependent experimental spectra with a detailed collisional-radiative modeling of the EBIT plasma.

  7. Measurements of charge state distributions of 0.74 and 1.4  MeV/u heavy ions passing through dilute gases

    Directory of Open Access Journals (Sweden)

    P. Scharrer

    2017-04-01

    Full Text Available In many modern heavy-ion accelerator facilities, gas strippers are used to increase the projectile charge state for improving the acceleration efficiency of ion beams to higher energies. For this application, the knowledge on the behavior of charge state distributions of heavy-ions after passing through dilute gases is of special interest. Charge state distributions of uranium (^{238}U, bismuth (^{209}Bi, titanium (^{50}Ti, and argon (^{40}Ar ion beams with energies of 0.74  MeV/u and 1.4  MeV/u after passing through hydrogen (H_{2}, helium (He, carbon dioxide (CO_{2}, nitrogen (N_{2}, oxygen (O_{2}, neon (Ne, and argon (Ar gases were measured. Gas stripper target thicknesses up to 100  μg/cm^{2} were applied. The observed behavior of the charge state distributions, including their width and mean charge state, are discussed. The measurements show the highest equilibrium charge state at 1.4  MeV/u for ^{238}U on H_{2} gas of 29.2±1.2. Narrow charge state distributions are observed for ^{238}U and ^{209}Bi on H_{2} and He gas, which are highly beneficial, e.g., for the production of beams of high intensities in accelerators.

  8. Measurements of charge state distributions of 0.74 and 1.4 MeV /u heavy ions passing through dilute gases

    Science.gov (United States)

    Scharrer, P.; Düllmann, Ch. E.; Barth, W.; Khuyagbaatar, J.; Yakushev, A.; Bevcic, M.; Gerhard, P.; Groening, L.; Horn, K. P.; Jäger, E.; Krier, J.; Vormann, H.

    2017-04-01

    In many modern heavy-ion accelerator facilities, gas strippers are used to increase the projectile charge state for improving the acceleration efficiency of ion beams to higher energies. For this application, the knowledge on the behavior of charge state distributions of heavy-ions after passing through dilute gases is of special interest. Charge state distributions of uranium (238U), bismuth (209Bi), titanium (50Ti), and argon (40Ar) ion beams with energies of 0.74 MeV /u and 1.4 MeV /u after passing through hydrogen (H2 ), helium (He), carbon dioxide (CO2 ), nitrogen (N2 ), oxygen (O2 ), neon (Ne), and argon (Ar) gases were measured. Gas stripper target thicknesses up to 100 μ g /cm2 were applied. The observed behavior of the charge state distributions, including their width and mean charge state, are discussed. The measurements show the highest equilibrium charge state at 1.4 MeV /u for 238U on H2 gas of 29.2 ±1.2 . Narrow charge state distributions are observed for 238U and 209Bi on H2 and He gas, which are highly beneficial, e.g., for the production of beams of high intensities in accelerators.

  9. EV Charging Analysis with High EV Penetration in the Nordic Region

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei

    This report covers the driving pattern analysis and the electric vehicle (EV) charging ananlysis of Denmark, Sweden, Norway and Finland. The contents in the report are driving pattern analysis of the passenger cars and electrical charging load profiles of EVs based on the analyzed driving patterns...

  10. Highly charged ions impinging on a stepped metal surface under grazing incidence

    NARCIS (Netherlands)

    Robin, A; Niemann, D; Stolterfoht, N; Heiland, W

    We report on energy loss measurements and charge state distributions for 60 keV N6+ and 75 keV N5+ ions scattered off a Pt(110)(1x2) single crystal surface. In particular, the influence of surface steps on the energy loss and the outgoing charge states is discussed. The scattering angle and the

  11. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  12. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Directory of Open Access Journals (Sweden)

    J. Grames

    2011-04-01

    Full Text Available GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c using a large drive laser beam to distribute ion damage over a larger area, and (d by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  13. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Energy Technology Data Exchange (ETDEWEB)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  14. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    Science.gov (United States)

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  15. A fast multi-GEM-based detector for high-rate charged-particle triggering

    CERN Document Server

    Bencivenni, G; Cardini, A; Deplano, C; De Simone, P; Felici, G; Marras, D; Murtas, F; Pinci, D; Poli-Lener, M; Raspino, D

    2002-01-01

    In this paper, results of a time performance study of gas electron multiplier (GEM)-based detectors are discussed. This study was driven by an R & D activity on detectors for the Level 0 LHCb muon trigger. Results presented in this paper are of more general interest, i.e., for experiments in which high-rate charged-particle triggering is needed. Little interest was given so far to time performance of GEM- based detectors, with the exception of one paper reporting the measurement of a double-GEM detector time resolution with an Ar/CO//2 (70/30) gas mixture where the authors quoted a time resolution such that high-efficiency muon triggering at LHCb would be impossible. The results reported here, obtained with the addition of CF//4 and isobutane to the Ar/CO//2 standard mixture, considerably improve the time performance discussed in the above-mentioned paper, allowing one to reach a time distribution root mean square of 5 ns with an isobutane-based mixture. In these conditions, a spark probability per incomi...

  16. Diamond growth by microwave plasma enhanced chemical vapour deposition: Optical emission characterisation and effect argon addition

    Science.gov (United States)

    Mortet, V.; Hubicka, Z.; Vorlicek, V.; Jurek, K.; Rosa, J.; Vanecek, M.

    2004-09-01

    Diamond thin films were grown in an ellipsoidal 6 kWatt microwave plasma chemical vapour deposition reactor [1, 2] in a pressure range of 150 to 250 mbar. Effect of total pressure, methane concentration and argon concentration on diamond growth on mechanically seeded silicon substrates and on plasma characteristics were investigated. Optically good thick diamond films were obtained with high growth rate (4.5 m/h) at high-pressure. The argon concentration affects strongly the deposition rate, the surface morphology and the grain size. The microwave plasma was characterized by optical emission spectroscopy (OES) during deposition. Diamond films were characterized by Raman Spectroscopy and Scanning Electron Microscopy (SEM). The temperatures of the excited CH and C2 species, as well as the excitation temperature were determined from the OES measurements. The plasma composition is sensitive to the methane concentration and especially to the argon concentration in the discharge.

  17. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  18. Argon gas flow through glass nanopipette

    Science.gov (United States)

    Takami, Tomohide; Nishimoto, Kiwamu; Goto, Tadahiko; Ogawa, Shuichi; Iwata, Futoshi; Takakuwa, Yuji

    2016-12-01

    We have observed the flow of argon gas through a glass nanopipette in vacuum. A glass nanopipette with an inner diameter of 100 nm and a shank length of 3 mm was set between vacuum chambers, and argon gas was introduced from the top of the nanopipette to the bottom. The exit pressure was monitored with an increase in entrance pressure in the range of 50-170 kPa. Knudsen flow was observed at an entrance pressure lower than 100 kPa, and Poiseuille flow was observed at an entrance pressure higher than 120 kPa. The proposed pressure-dependent gas flow method provides a means of evaluating the glass nanopipette before using it for various applications including nanodeposition to surfaces and femtoinjection to living cells.

  19. Argon laser irradiation of the otolithic organ

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, T.; Nomura, Y.; Young, Y.H.; Hara, M. (Univ. of Tokyo (Japan))

    1990-12-01

    An argon laser was used to irradiate the otolithic organs of guinea pigs and cynomolgus monkeys. After stapedectomy, the argon laser (1.5 W x 0.5 sec/shot) irradiated the utricle or saccule without touching the sensory organs. The stapes was replaced over the oval window after irradiation. The animals used for acute observation were killed immediately for morphologic studies; those used for long-term observation were kept alive for 2, 4, or 10 weeks. Acute observation revealed that sensory and supporting cells were elevated from the basement membrane only in the irradiated area. No rupture of the membranous labyrinth was observed. Long-term observation revealed that the otolith of the macula utriculi had disappeared in 2-week specimens. The entire macula utricili had disappeared in 10-week specimens. No morphologic changes were observed in cochlea, semicircular canals, or membranous labyrinth. The saccule showed similar changes.

  20. Abnormal epidermal changes after argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, R.A.; Knobler, R.M.; Aberer, E.; Klein, W.; Kocsis, F.; Ott, E. (Univ. of Vienna (Austria))

    1991-02-01

    A 26-year-old woman with a congenital port-wine stain on the forehead was treated three times at 2-month intervals with an argon laser. Six months after the last treatment, moderate blanching and mild scaling confined to the treated area was observed. A biopsy specimen of the treated area revealed a significant decrease in ectatic vessels. However, epidermal changes similar to those of actinic keratosis with disorganized cell layers and marked cytologic abnormalities were seen. Analysis of peripheral blood lymphocytes for a defect in DNA repair was negative. Multiple, argon laser-induced photothermal effects may be responsible for the changes observed in our case and may lead to premalignant epidermal transformation.

  1. High rate partial-state-of-charge operation of VRLA batteries

    Science.gov (United States)

    Moseley, Patrick T.

    The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in

  2. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse.

    Science.gov (United States)

    Laitano, R F; Guerra, A S; Pimpinella, M; Caporali, C; Petrucci, A

    2006-12-21

    The correction for charge recombination was determined for different plane-parallel ionization chambers exposed to clinical electron beams with low and high dose per pulse, respectively. The electron energy was nearly the same (about 7 and 9 MeV) for any of the beams used. Boag's two-voltage analysis (TVA) was used to determine the correction for ion losses, k(s), relevant to each chamber considered. The presence of free electrons in the air of the chamber cavity was accounted for in determining k(s) by TVA. The determination of k(s) was made on the basis of the models for ion recombination proposed in past years by Boag, Hochhäuser and Balk to account for the presence of free electrons. The absorbed dose measurements in both low-dose-per-pulse (less than 0.3 mGy per pulse) and high-dose-per-pulse (20-120 mGy per pulse range) electron beams were compared with ferrous sulphate chemical dosimetry, a method independent of the dose per pulse. The results of the comparison support the conclusion that one of the models is more adequate to correct for ion recombination, even in high-dose-per-pulse conditions, provided that the fraction of free electrons is properly assessed. In this respect the drift velocity and the time constant for attachment of electrons in the air of the chamber cavity are rather critical parameters because of their dependence on chamber dimensions and operational conditions. Finally, a determination of the factor k(s) was also made by zero extrapolation of the 1/Q versus 1/V saturation curves, leading to the conclusion that this method does not provide consistent results in high-dose-per-pulse beams.

  3. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  4. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  5. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  6. Development and test in liquid argon of the light readout system for the ArDM experiment

    Science.gov (United States)

    Boccone, V.

    2009-12-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon (LAr) underground detector. The project relies on the read out of the VUV scintillation light and on the extraction of the electrons produced by ionization from the liquid into the gas phase of the detector. The light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. I describe the light readout system and the tests of the prototype with liquid argon in the full size detector.

  7. Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst.

    Science.gov (United States)

    Zhu, Jian; Fan, Fengtao; Chen, Ruotian; An, Hongyu; Feng, Zhaochi; Li, Can

    2015-07-27

    Spatially resolved surface photovoltage spectroscopy (SRSPS) was employed to obtain direct evidence for highly anisotropic photogenerated charge separation on different facets of a single BiVO4 photocatalyst. Through the controlled synthesis of a single crystal with preferentially exposed {010} facets, highly anisotropic photogenerated hole transfer to the {011} facet of single BiVO4 crystals was observed. The surface photovoltage signal intensity on the {011} facet was 70 times stronger than that on the {010} facets. The influence of the built-in electric field in the space charge region of different facets on the anisotropic photoinduced charge transfer in a single semiconductor crystal is revealed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction

    Science.gov (United States)

    2016-01-01

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency. PMID:27213219

  9. Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

    Directory of Open Access Journals (Sweden)

    Roshani Silwal

    2017-09-01

    Full Text Available Extreme ultraviolet spectra of the L-shell ions of highly charged yttrium (Y 26 + –Y 36 + were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength range of 4 nm-20 nm. The electron beam energy was systematically varied from 2.3 keV–6.0 keV to selectively produce different ionization stages. Fifty-nine spectral lines corresponding to Δ n = 0 transitions within the n = 2 and n = 3 shells have been identified using detailed collisional-radiative (CR modeling of the non-Maxwellian plasma. The uncertainties of the wavelength determinations ranged between 0.0004 nm and 0.0020 nm. Li-like resonance lines, 2s– 2 p 1 / 2 and 2s–2 p 3 / 2 , and the Na-like D lines, 3s– 3 p 1 / 2 and 3s– 3 p 3 / 2 , have been measured and compared with previous measurements and calculations. Forbidden magnetic dipole (M1 transitions were identified and analyzed for their potential applicability in plasma diagnostics using large-scale CR calculations including approximately 1.5 million transitions. Several line ratios were found to show strong dependence on electron density and, hence, may be implemented in the diagnostics of hot plasmas, in particular in fusion devices.

  10. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  11. Spectroscropy of middle charge state high-z ions in the ultraviolet for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Utter, Steven Bryan [Auburn Univ., AL (United States)

    1999-12-11

    The quest for the creation of an economically feasible thermonuclear fusion energy reactor is sttill active after many decades of research. Modern machines produce plasmas which are both hotter and more dense than those created 30 years ago and future devices promise to continue this trend. Paramount to this research is the capability to adequately measure certain parameters of the plasma such as temperature, density, impurity concentration and radiation loss. This dissertation reports three sets of spectroscopic measurements from intermediate charge state of high-Z ions, which have been performed at the Electron Beam Ion Trap (EBIT) facility of the Lawrence Livermore National Laboratory, relevant to the development of spectral plasma diagnostics and to the understanding of radiative energy loss from heavy impurity ions of today's and future fusion devices: measurements of W radiation from 40 - 85 A, precision measurements along the Cu isoelectric sequence, and UV spectroscopy of Ti-like W. The results are also compared to the best available theoretical calculations.

  12. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  13. PREFACE: 14th International Conference on the Physics of Highly Charged Ions (HCI 2008)

    Science.gov (United States)

    Azuma, Toshiyuki; Nakamura, Nobuyuki; Yamada, Chikashi

    2009-07-01

    This volume contains the Proceedings of the 14th International Conference on the Physics of Highly Charged Ions (HCI2008), held at the University of Electro-Communications, Chofu, Tokyo, Japan from 1-5 September 2008. This series of conferences began in Stockholm, Sweden in 1982 and has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992), Vienna, Austria (1994), Omiya, Japan (1996), Bensheim, Germany (1998), Berkeley, USA (2000), Caen, France (2002), Vilnius, Lithuania (2004) and Belfast, UK (2006). Highly charged ions (HCI), which are defined as highly ionized (i.e. positively charged atomic) ions here, mainly exist in hot plasmas such as the solar corona and fusion plasmas. It is true that its importance in plasma physics has driven researchers to the spectroscopic studies of HCIs, but the spectroscopy of few-electron ions is not only important for plasmas but also interesting for fundamental atomic physics. Electrons moving fast near a heavy nucleus give a suitable system to test the fundamental atomic theory involving relativistic and quantum electro-dynamic effects in a strong field. Also, the huge potential energy of a HCI induces drastic reaction in the interaction with matter. This unique property of HCIs, coupled with the recent development of efficient ion sources, is opening the possibility to utilize them in new technologies in the field such as nano-fabrication, surface analysis, medical physics, and so on. Hence, this conference is recognized as a valuable gathering place for established practitioners and also for newcomers; we exchange information, we are introduced to the subject itself, and to unexpected interfaces with other fields. On 31 August, the day before the opening of HCI2008, we welcomed the delegates at the university's restaurant—and we were greeted with an unusually heavy summer shower! The conference then opened on

  14. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  15. Suppression of the high-p(T) charged-hadron R(AA) at the LHC.

    Science.gov (United States)

    Majumder, A; Shen, C

    2012-11-16

    We present a parameter-free postdiction of the high-p(T) charged-hadron nuclear modification factor (R(AA)) in two centralities, measured by the CMS Collaboration in Pb-Pb collisions at the LHC. The evolution of the bulk medium is modeled using viscous fluid dynamics, with parameters adjusted to describe the soft hadron yields and elliptic flow. Assuming the dominance of radiative energy loss, we compute the medium modification of the R(AA) using a perturbative QCD-based formalism, the higher twist scheme. The transverse momentum diffusion coefficient q[over ^] is assumed to scale with the entropy density and is normalized by fitting the R(AA) in the most central Au-Au collisions at the Relativistic Heavy-Ion Collider. This setup is validated in noncentral Au-Au collisions at the Relativistic Heavy-Ion Collider and then extrapolated to Pb-Pb collisions at the LHC, keeping the relation between q[over ^] and entropy density unchanged. We obtain a satisfactory description of the CMS R(AA) over the p(T) range from 10 to 100 GeV.

  16. Direct electron-pair production by high energy heavy charged particles

    Science.gov (United States)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  17. Review of Liquid-Argon Detectors Development at the CERN Neutrino Platform

    Science.gov (United States)

    Pietropaolo, F.

    2017-09-01

    The European Strategy for Particle Physics of 2013 classified the short and long baseline neutrino program as one of the four highest-priority scientific objectives with required international infrastructure. In this framework, CERN has created a "Neutrino Platform” for detector R&D and support to future international neutrino experiments, as well as to provide a basis for European neutrino communities towards contributing to the US and Japanese projects. In particular, significant R&D effort is made on the Liquid Argon Time Projection Chamber technologies. As a part of the Neutrino Platform facilities, CERN is constructing a large test area (EHN1 extension of the SPS North Area) with charged beams capabilities devoted to neutrino detectors. An overview will be given of the main Liquid Argon neutrino detector projects presently under development in the framework of the CERN Neutrino platform.

  18. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    Energy Technology Data Exchange (ETDEWEB)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications

  19. Equation of state of dense argon; a comparison of shock and static studies. [R

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M.; Mao, H.K.; Bell, P.M.; Xu, J.A.

    1985-07-01

    In the present paper we report new diamond anvil cell (DAC) measurements for room temperature solid argon to 800 kbars. This isotherm is in excellent agreement with one predicted from a theoretical analysis of shockwave data. These results are important for several reasons. First they demonstrate agreement between shock and static techniques even in cases where shock temperatures are extremely high and a large thermal correction is required to reduce the Hugoniot to an isotherm. Secondly the results suggest that solid argon may provide a useful pressure standard up to 3 Mbar. 12 refs., 3 figs.

  20. Molecular-dynamics simulations of hillocks induced by highly-charged Arq+, Xeq+ ions impact on HOPG surface

    Science.gov (United States)

    Zhang, Zhengrong; Cheng, Xinlu; Li, Huifang; Song, Ting; Guo, Fen; Liu, Zijiang; Chen, Jianhong

    2015-11-01

    The hillocks on highly oriented pyrolytic graphite (HOPG) surface induced by highly charged Arq+, Xeq+ ions are studied by using molecular-dynamics (MD) simulations. And a hybrid potential created by combining the ReaxFF potential with the repulsive ZBL potential is used to describe the interatomic interactions. The effects of incident highly charged ion (HCI)'s kinetic energy and the energy gain due to the interaction of HCI with its own image on the formation of the hillocks are considered in the present simulations. Our results show that both potential and kinetic energy of HCI may affect the hillock size. However, the potential energy of HCI increases dramatically with charge state, which is more important than kinetic energy in the formation of the hillock in extremely high charge states. And it is found that both the height and width of the hillock agree well with experimental data. In addition, the bond breaking and bond formation during the formation of the hillock are also investigated, and the results show that there are many σ bonds breaking and interlayer bonds formation in one layer or between two layers during this process. Furthermore, most of the interlayer bonds in HOPG surface induced by HCI impact are sp2 bond, although some interlayer sp3 bonds are also observed in the present work.

  1. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  2. FORMATION OF CARBON NANOSTRUCTURES USING ACETYLENE, ARGON-ACETYLENE AND ARGON-HYDROGEN-ACETYLENE PLASMAS

    OpenAIRE

    Marcinauskas, Liutauras; Grigonis, Alfonsas; Valincius, Vitas

    2013-01-01

    The amorphous carbon films were deposited on silicon-metal substrates by plasma jet chemical vapor deposition (PJCVD) and plasma enchanted CVD (PECVD). PJCVD carbon films have been prepared at atmospheric pressure in argon-acetylene and argon-hydrogen-acetylene plasma mixtures. The films deposited in Ar-C2H2 plasma are attributed to graphite-like carbon films. The formation of the nanocrystalline graphite was obtained in Ar-H2-C2H2 plasma. Addition of the hydrogen gas lead to the ...

  3. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P.A.; /Fermilab; Bromberg, C.; /Michigan State U.; Lu, C.; McDonald, T.; /Princeton U.; Gallagher,; Mann, A.; Schneps, J.; /Tufts U.; Cline, D.; Sergiampietri, F.; Wang, H.; /UCLA; Curioni, A.; Fleming, B.T.; /Yale U.; Menary, S.; /York U., Canada

    2005-09-01

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC) [2], which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in {nu}{sub e} charged current interactions can be maintained at an efficiency of 80%. Backgrounds for {nu}{sub e} appearance searches from neutral current events with a {pi}{sup 0} are reduced well below the {approx} 0.5-1.0% {nu}{sub e} contamination of the {nu}{sub {mu}} beam [3]. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC [4], a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept [5] based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very

  4. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell

    Directory of Open Access Journals (Sweden)

    Victor Manuel García Fernández

    2016-11-01

    Full Text Available The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-constant voltage (CV/fast discharge (4C in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a thermal model. Heat generation is dominated by the irreversible component associated with cell overpotential, although evidence of the reversible component is also observed, associated with the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell-specific heats and the cell materials’ thickness. The model adjustment of the experimental data during the 2 min resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.

  5. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  6. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  7. Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils.

    Science.gov (United States)

    Stuckey, Jason W; Neaman, Alexander; Ravella, Ramesh; Komarneni, Sridhar; Martínez, Carmen Enid

    2008-12-15

    Smelting of copper (Cu) results in the atmospheric deposition of Cu onto surrounding soils. Excess concentrations of Cu in soils can be absorbed by soil biota to toxic levels or leached into the groundwater, threatening the entire ecosystem. A means to restrict Cu mobility and uptake by plants is to remove it from the aqueous phase by applying an adsorptive material. A synthetic clay (highly charged swelling mica) was tested for its ability to decrease the levels of free and 0.1 M KNO3-extractable Cu in 15 surface soils from three different Cu mining areas in central Chile. The soils contained excessive total Cu levels (112-2790 mg Cu (kg soil)(-1)), while extractable Cu ranged from 0.3 to 22.9 mg Cu L(-1). The mica was applied to each soil at rates of 0.1%, 1%, and 2% (w/w). A 2% sodium-montmorillonite treatment and the nonamended soil served as controls. The order of treatment efficacy in reducing extractable Cu and free Cu2+ for low pH soils ( 1% mica > 2% montmorillonite > 0.1% mica. At 120 days, the 2% mica treatment maintained reductions of up to 93% in the free Cu2+ activity and up to 75% in the extractable Cu concentration upon acidification to the original soil pH value. In addition, Cu retention in mica-treated soils was more resistant to acidification than in lime-treated soils. This mica has promise for the remediation of acidic soils with metal contamination at the surface.

  8. Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach.

    Science.gov (United States)

    Alp, Murat; Parihar, Vipan K; Limoli, Charles L; Cucinotta, Francis A

    2015-08-01

    In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron's morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy (56)Fe, (12)C, and (1)H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale.

  9. End-label, free-solution capillary electrophoresis of highly charged oligosaccharides.

    Science.gov (United States)

    Sudor, J; Novotny, M V

    1995-11-15

    The effect of fluorescent tags on the separation of negatively charged oligosaccharides, derived from a partially hydrolyzed kappa-carrageenan, was studied. When the charge-to-friction ratio of oligosaccharides is increased by the end-label, the migration order is from smaller to larger oligomers, and the resolution of larger oligomers could be improved by using a sieving medium. The migration order can be entirely reversed when the charge-to-friction ratio of the solute is decreased by the end-label. The experimental electrophoretic mobilities obtained in this work are in excellent agreement with the recently reported theoretical model (Mayer, P.; Slater, G. W.; Drouin, G. Anal. Chem. 1994, 66, 1777-1780). The maximum number of separated oligomers (Mmax) as a function of applied voltage and injection time was also studied, but no strong dependencies were found. Resolution between small oligomers could be significantly improved by following this separation principle.

  10. Dijet Production in Charged and Neutral Current $e^{+}p$ Interactions at High $Q^{2}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Krucker, D.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

  11. Argon generation in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@NRCKI.ru

    2015-10-15

    Highlights: • A relatively long-lived Ar-39 (T{sub 1/2} = 269 yr) may appear in fusion reactor materials. • Ar-39 activities may become apparent after tritium removal. • Initial impurity control of K is definitely recommended. • A substantiation of the effective dose rates for exposure to inert argon is urgent. - Abstract: Different candidate plasma facing materials (as tungsten, beryllium), the low activation structure materials (as vanadium alloys, silicon carbides), liquid breeders (lithium and lithium-lead) and some others have been suggested for future fusion power reactor cores as corresponding to maintenance, recycling and for waste disposal acceptance after 50 and 100 years of cooling. It is shown by the neutron activation analysis that a relatively short-lived Ar-41 (T{sub 1/2} = 1.85 h), Ar-37 (T{sub 1/2} = 35 days) and rather long lived Ar-39 (T{sub 1/2} = 269 yr) may appear in these materials under the fusion neutron irradiation conditions. While argon production is essentially less than helium production in irradiated materials, at other times its impact, e.g., in the inhalation dose, becomes significant. In some cases the Ar-39 activity is comparable or even exceeds the C-14 activity and may become apparent after tritium removal from plasma exhaust and dust, from the liquid breeders, during plasma-facing and structural component recycling and waste management. The main source terms of argon-39 activity for these materials are identified and the specific production rates are evaluated relative to radiation conditions of a power or DEMO fusion reactor and to electric power production.

  12. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M., E-mail: nishiuchi.mamiko@jaea.go.jp; Sakaki, H.; Esirkepov, T. Zh.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Bulanov, S. V.; Kondo, K. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto (Japan); Nishio, K.; Orlandi, R.; Koura, H.; Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai, Ibaraki (Japan); Pikuz, T. A.; Faenov, A. Ya. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto (Japan); Joint Institute for High Temperature of RAS, Izhorskaya St. 13 Bd. 2, Moscow (Russian Federation); Skobelev, I. Yu. [Joint Institute for High Temperature of RAS, Izhorskaya St. 13 Bd. 2, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai, Ibaraki (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai, Ibaraki (Japan); Matsukawa, K. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto (Japan); Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukae-minami, Higashinada, Kobe (Japan); and others

    2015-03-15

    Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  13. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  14. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  15. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  16. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  17. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  18. On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents

    DEFF Research Database (Denmark)

    Groot, Jens; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    Li-ion batteries are known to undergo complex ageing processes, where the operating conditions have a profound and non-linear effect on both calendar life and cycle life. This is especially a challenge for the automotive industry, where the requirements on product lifetime and reliability...... are demanding. The aim of the present work is to quantify the ageing in terms of capacity fade and impedance growth as a function of operating conditions typical to high-power automotive applications; high charge and discharge rate, elevated temperatures and wide state-of-charge windows. The cycle life of 34...

  19. The evolution of dielectric properties of sodium, silicon and argon clusters

    Science.gov (United States)

    Jackson, Koblar; Yang, Mingli; Ma, Li; Jellinek, Julius

    2012-02-01

    We used a computational scheme based on site-specific polarizabilities to study the evolution of the dielectric properties of sodium, silicon and argon clusters. In this approach, the total cluster polarizability is decomposed into local dipole (LD) and charge-transfer (CT) parts. The local dipole part measures the redistribution of charge within an atomic volume, while the CT part describes the movement of charge between volumes. We find distinct differences in the relative contributions of the LD and CT components to the total polarizability as a function of cluster size for the different cluster types and relate this to the development of metallic behavior. The method also directly probes the extent of electrostatic screening of the cluster interior to an applied electric field.

  20. Epoxy Based Nanodielectrics for High Voltage DC Applications : Synthesis, Dielectric Properties and Space Charge Dynamics

    NARCIS (Netherlands)

    Smit, J.J.; Andritsch, T.M.

    Main goal of the research described in this PhD thesis was to determine the influences of filler size, material and distribution on the DC breakdown strength, permittivity and space charge behaviour of nanocomposites. This should lay the groundwork for tailored insulation materials for HVDC

  1. Epoxy Based Nanodielectrics for High Voltage DC Applications : Synthesis, Dielectric Properties and Space Charge Dynamics

    NARCIS (Netherlands)

    Andritsch, T.M.

    2010-01-01

    Main goal of the research described in this PhD thesis was to determine the influences of filler size, material and distribution on the DC breakdown strength, permittivity and space charge behaviour of nanocomposites. This should lay the groundwork for tailored insulation materials for HVDC

  2. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  4. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    NARCIS (Netherlands)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram Harold; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther; Sîretanu, Igor

    2016-01-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the

  5. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  6. Real Experiments versus Phet Simulations for Better High-School Students' Understanding of Electrostatic Charging

    Science.gov (United States)

    Ajredini, Fadil; Izairi, Neset; Zajkov, Oliver

    2014-01-01

    This research investigates the influence of computer simulations (virtual experiments) on one hand and real experiments on the other hand on the conceptual understanding of electrical charging. The investigated sample consists of students in the second year (10th grade) of three gymnasiums in Macedonia. There were two experimental groups and one…

  7. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  8. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  9. PREFACE: 15th International Conference on the Physics of Highly Charged Ions

    Science.gov (United States)

    Zou, Yaming; Hutton, Roger

    2011-07-01

    This issue contains papers presented at the 15th International Conference on the Physics of Highly Charged Ions, HCI2010. The conference was held at Fudan University, Shanghai, 29 August-3 September 2010. HCI is a biannual conference series going back to the very first conference held in Stockholm, Sweden in 1982. Previous editions in this millennium were held in Berkeley, USA, 2000; Caen, France, 2002; Vilnius, Lithuania, 2004; Belfast, UK, 2006, and Tokyo, Japan, 2008. The physics of highly charged ions, HCIs, is of great interest due to their key role in testing quantum electrodynamics in strong fields, and possible testing of parity non-conservation. However, HCIs also play crucial roles in the physics of hot plasmas, for example those produced in tokamak fusion devices and in inertial confinement fusion experiments. Much of the diagnostics of matter under such extreme environments relies very heavily on high quality atomic data of HCIs. The field of x-ray astronomy hinges almost entirely on the use of spectral lines from HCIs to provide information from distant astrophysical plasmas and objects. Given these fundamental interests and the current rapid developments in fusion and x-ray astronomy, it is clear that the physics of HCIs is a rich area of research with strong and important connections to many important subfields of physics. New application areas of HCI physics are also under development: two examples are (a) to provide 13.5 nm—and later half of this wavelength—radiation for lithography and (b) applications in medical research. The need for high quality atomic data of HCIs is as important now as it has ever been. HCI2010 was attended by over 200 scientists from around 20 countries; see the following table. Over 70 of the participants were students, which is very encouraging for the future of HCI related physics. The academic programme was organized based on the suggestions from the International Advisory Board, and consisted of six review lectures

  10. Commissioning of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Gibson, A; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter (LAr) is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The LAr calorimeter has been installed in the ATLAS cavern and filled with liquid argon since 2006. The electronic calibration of the readout system, a critical system for precision measurements, has been continuously exercised in the commissioning phase, resulting in a fully commissioned calorimeter with its readout and a small number of problematic channels. A total of only 0.02% of the read out channels are dead beyond repair and 0.4% need special treatment for calibration. Throughout the last two years a large amount of calibration data has been collected. Cosmic muon data, first triggered via specially developed trigger boards on the LVL1 output of the Tile calorimeter and later with the standard ATLAS LVL1 calorimeter trigger, have been recorded at various stages of commissio...

  11. Electron scattering and transport in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G. J.; Cocks, D. G.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville 4810 (Australia); McEachran, R. P. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  12. Pollution of liquid argon after neutron irradiation

    CERN Document Server

    Andrieux, M L; Collot, J; de Saintignon, P; Ferrari, A; Hostachy, J Y; Hoummada, A; Martin, P; Merkel, B; Puzo, P; Sauvage, D; Wielers, M

    2001-01-01

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem. (17 refs).

  13. Modeling Neutral-Current Neutrino Interactions in Liquid Argon

    Science.gov (United States)

    Nunez, Cynthia; Scholberg, Kate; Conley, Erin; Deep Underground Neutrino Experiment Collaboration

    2017-09-01

    Studies of supernova neutrinos provide knowledge of neutrino oscillations and supernova physics. The Deep Underground Neutrino Experiment (DUNE) will enable exploration of the three-flavor model of neutrino physics and solve questions in regards to the dynamics of supernova, the stability of matter, and matter-antimatter asymmetry. DUNE will use a Liquid Argon Time-Projection Chamber (LArTPC) which will be able to detect charged-current, neutral-current, and elastic-scattering interactions. The neutral current ν-40 Ar interaction leaves an excited 40 Ar nucleus that releases a 9.8 MeV gamma which is analyzed for the LArTPC. This project creates a smearing file for SNOwGLoBES, an event rate calculator, that corresponds to the DUNE detector simulation for this interaction. The expected number of neutral current supernova neutrino events in liquid 40 Ar is determined and the observable energy distribution is examined. NSF REU Program (NSF-PHY-1461204).

  14. Liquid argon scintillation light studies in LArIAT

    Energy Technology Data Exchange (ETDEWEB)

    Kryczynski, Pawel [Fermilab

    2016-10-12

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  15. Liquid argon scintillation light studies in LArIAT

    Science.gov (United States)

    Kryczynski, Pawel; LArIAT Collaboration

    2017-09-01

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  16. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    Science.gov (United States)

    2015-01-01

    The 17th edition of the International Conference on the Physics of Highly Charged Ions (HCI 2014) was held in San Carlos de Bariloche, in the southern region of Argentina known as Patagonia, from August 31 to September 5, 2014. This meeting corresponds to a series of HCI conferences, which has been held every other year since 1982 in cities in Europe, USA, Japan and China. This was the first time that the conference took place in Latin America. This edition was organized by a Local Committee made up of physicists mainly from the cities of Bariloche and Rosario and also from Buenos Aires and Bahía Blanca, all sites where research on Atomic Collisions is developed. The conference was attended by delegates coming from 18 countries, more that 23% of whom were women. The field of highly charged ions has seen in recent years a promising evolution originating from bold progress in theory and significant advances in experimental techniques. The HCI conferences aim at bringing together experimentalists and theoreticians from as wide a range of fields as, for instance, Fundamental Aspects, Structure and Spectroscopy, Collisions with Electrons, Ions, Atoms and Molecules, Interaction with Clusters, Surfaces and Solids, Interactions with Photons and Plasmas, Strong Field Processes, and Production, Experimental Developments and Applications. The Scientific Programme, selected by an International Advisory Board, included 5 Review Lectures, 11 Progress Reports, 1 Local Report and 24 Special Reports. In addition, the results of 132 contributed works were presented as poster communications and a Public Lecture on 'The wonders of the Southern Skies' was delivered by an Argentinean expert. Thus, a wide range of subjects comprising a balanced mix of topics was covered throughout the course of the conference. The HCI 2014 was a resounding success for the international and local communities, from both the scientific and social aspects, considering that the attendees and accompanying

  17. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Al Amin [Kent State Univ., Kent, OH (United States)

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  18. Space charge

    CERN Document Server

    Schindl, Karlheinz

    2005-01-01

    The Coulomb forces between the charged particles of a high-intensity beam in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes. A beam moving with speed n is accompanied by a magnetic field which partially cancels the electrostatic defocusing effect, with complete cancellation at c, the speed of light. The effect of this 'direct space charge' is evaluated for transport lines and synchrotrons where the number of betatron oscillations per machine turn, Q, is reduced by DQ. In a real accelerator, the beam is also influenced by the environment (beam pipe, magnets, etc.) which generates 'indirect' space charge effects. For a smooth and perfectly conducting wall, they can easily be evaluated by introducing image charges and currents. These 'image effects' do not cancel when n approaches c, thus they become dominant for high-energy synchrotrons. Each particle in the beam has its particular incoherent tune Q and incoherent tune...

  19. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    Science.gov (United States)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance

  20. Surface discharge induced interactions of filaments in argon dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Zhang, Panpan; Chu, Jingdi; Zhang, Qi; Lin, Xiaotong; Jia, Pengying; Dong, Lifang

    2017-10-01

    A needle-plate geometry is used to generate two barrier-discharge filaments composed of volume discharge and surface discharge in atmospheric pressure argon, interactions of which are investigated for the first time on the nanosecond timescale using an intensified charge-coupled device. The results indicate that the onset of volume discharges for the two filaments have a periodical discharge sequence, which implies interactions of the two filaments. Moreover, strong interactions of the two filaments are controlled through surface discharges, one of which is induced by that of the other filament during the positive discharge. Different from repulsive streamers, counter-propagating streamers are attractive between the two filaments.

  1. 16th international conference on the physics of highly charged ions

    Science.gov (United States)

    Fritzsche, Stephan; Stöhlker, Thomas; Surzhykov, Andrey

    2013-09-01

    This volume contains the proceedings of the 16th International Conference on the Physics of Highly Charged Ions (HCI 2012) held at the Ruprecht-Karls University in Heidelberg, Germany, 2-7 September 2012 (figure 1). This conference has been part of a biannual conference series that was started in Stockholm in 1982 and, since then, has been organized at various places around the world, with recent venues in Belfast (UK, 2006), Tokyo (Japan, 2008) and Shanghai (China, 2010). The physics of highly charged ions (HCI) is a rapidly developing and attractive field of research with impact upon many other research disciplines. Apart from fundamental studies on the structure and dynamics of matter in extreme fields, or the search for physics beyond the standard model, detailed knowledge about the properties and behavior of HCI is crucial for other areas, from astro- and solar physics to hot plasma and fusion research to extreme ultra-violet and ion lithography, or even to medical research, to name just a few. In fusion research, for example, of whether tokamak, stellarator or confinement fusion facilities, most models and diagnostics deeply rely on the understanding of HCI and the (theoretical) prediction of accurate atomic data for these systems. In life science, moreover, ion therapy or the laser acceleration of ions and electrons may help save and improve the quality of life in the future. Many of these and further topics are addressed in these proceedings. After 30 years, the HCI conference series, and especially the meeting in Heidelberg, is appreciated much as a key forum for bringing together senior experts with students, young researchers and scientists from related disciplines who make use and give back impact upon the research with HCI. More than 250 scientists from 23 countries participated in HCI 2012 and presented the current status of the field. About one third of them were post-graduate students, showing that the field attracts many young and talented

  2. Optimal radius of crystal curvature for planar channeling of high-energy negatively charged particles in a bent crystal

    Directory of Open Access Journals (Sweden)

    I. V. Kirillin

    2017-10-01

    Full Text Available The problem of planar channeling of high-energy negatively charged particles in a bent crystal was considered on the basis of analytical calculation and numerical simulation. We show the existence of an optimal radius of crystal curvature for planar channeling, corresponding to the maximum deflection of the particle beam. The analytical calculation was carried out in the parabolic planar potential approximation, and in the numerical simulation the Doyle-Turner approximation was used.

  3. Optimal radius of crystal curvature for planar channeling of high-energy negatively charged particles in a bent crystal

    Science.gov (United States)

    Kirillin, I. V.

    2017-10-01

    The problem of planar channeling of high-energy negatively charged particles in a bent crystal was considered on the basis of analytical calculation and numerical simulation. We show the existence of an optimal radius of crystal curvature for planar channeling, corresponding to the maximum deflection of the particle beam. The analytical calculation was carried out in the parabolic planar potential approximation, and in the numerical simulation the Doyle-Turner approximation was used.

  4. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  5. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    Science.gov (United States)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  6. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  7. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    Science.gov (United States)

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  8. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    Science.gov (United States)

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  9. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    Science.gov (United States)

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  11. Self-assembly of highly charged polyelectrolyte complexes with superior proton conductivity and methanol barrier properties for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaztuerk, Serpil; Deligoez, Hueseyin; Yilmazoglu, Mesut; Damyan, Hakan; Oeksuezoemer, Faruk; Koc, S. Naci; Durmus, Ali; Ali Guerkaynak, M. [Istanbul University, Engineering Faculty, Chemical Engineering Dept., 34320 Avcilar-Istanbul (Turkey)

    2010-02-01

    The paper is concerned with the formation of Layer-by-Layer (LbL) self-assembly of highly charged polyvinyl sulfate potassium salt (PVS) and polyallylamine hydrochloride (PAH) on Nafion membrane to obtain the multilayered composite membranes with both high proton conductivity and methanol blocking properties. Also, the influences of the salt addition to the polyelectrolyte solutions on membrane selectivity (proton conductivity/methanol permeability) are discussed in terms of controlled layer thickness and charge density. The deposition of the self-assembly of PAH/PVS is confirmed by SEM analysis and it is observed that the polyelectrolyte layers growth on each side of Nafion membrane regularly. (PAH/PVS){sub 10}-Na{sup +} and (PAH/PVS){sub 10}-H{sup +} with 1.0 M NaCl provide 55.1 and 43.0% reduction in lower methanol permittivity in comparison to pristine Nafion, respectively, while the proton conductivities are 12.4 and 78.3 mS cm{sup -1}. Promisingly, it is found that the membrane selectivity values ({phi}) of all multilayered composite membranes in H{sup +} form are much higher than those of Na{sup +} form and perfluorosulfonated ionomers reported in the literature. These encouraging results indicate that composite membranes having both superior proton conductivity and improved methanol barrier properties can be prepared from highly charged polyelectrolytes including salt for fuel cell applications. (author)

  12. High-resolution peptide mapping separations with MS-friendly mobile phases and charge-surface-modified C18.

    Science.gov (United States)

    Lauber, Matthew A; Koza, Stephan M; McCall, Scott A; Alden, Bonnie A; Iraneta, Pamela C; Fountain, Kenneth J

    2013-07-16

    Ionic analytes, such as peptides, can be challenging to separate by reverse-phase chromatography with optimal efficiency. They tend, for instance, to exhibit poor peak shapes, particularly when eluted with mobile phases preferred for electrospray ionization mass spectrometry. We demonstrate that a novel charged-surface C18 stationary phase alleviates some of the challenges associated with reverse-phase peptide separations. This column chemistry, known as CSH (charged-surface hybrid) C18, improves upon an already robust organosilica hybrid stationary phase, BEH (ethylene-bridged hybrid) C18. Based on separations of a nine-peptide standard, CSH C18 was found to exhibit improved loadability, greater peak capacities, and unique selectivity compared to BEH C18. Its performance was also seen to be significantly less dependent on TFA-ion pairing, making it ideal for MS applications where high sensitivity is desired. These performance advantages were evaluated through application to peptide mapping, wherein CSH C18 was found to aid the development of a high-resolution, high-sensitivity LC-UV-MS peptide mapping method for the therapeutic antibody, trastuzumab. From these results, the use of a C18 stationary phase with a charged surface, such as CSH C18, holds significant promise for facilitating challenging peptide analyses.

  13. Retrospective analysis for detecting seismic precursors in groundwater argon content

    Directory of Open Access Journals (Sweden)

    P. F. Biagi

    2004-01-01

    Full Text Available We examined the groundwater Argon content data sampled from 1988 to 2001 at two wells in Kamchatka (Russia and anomalous increases appeared clearly during June-July 1996. On 21 June, a shallow (1km earthquake with M=7.1 occurred at a distance less than 250km from the wells and so the previous increases could be related to this earthquake and, in particular, could be considered premonitory anomalies. In order to support this raw interpretation, we analysed the data collected in details. At first we smoothed out the high frequency fluctuations arising from the errors in a single measurement. Next we considered the known external effects on the water of a well that are the slow tectonic re-adjustment processes, the meteorology and the gravity tides and we separated these effects applying band-pass filters to the Argon content raw trends. Then we identified the largest fluctuations in these trends applying the 3 σ criterion and we found three anomalies in a case and two anomalies in other case. Comparing the time occurrence of the anomalies at the two wells we found out that a coincidence exists only in the case of the premonitory anomalies we are studying. The simultaneous appearance of well definite anomalies in the residual trends of the same parameter at two different sites supports their meaning and the possibility that they are related to some large scale effect, as the occurrence of a strong earthquake. But, other earthquakes similar to the June 1996 event took place during the Argon content measurements time and no anomaly appeared in this content. In the past, some of the authors of this paper studied the Helium content data collected in three natural springs of the Caucasus during seven years. A very similar result, that is the simultaneous appearance of clear premonitory anomalies only on the occasion of a strong (M=7.0 but shallow (2–4km earthquake, was obtained. The correspondence with the case of the Caucasus validates the

  14. Charge Dynamics in Low Dimensional Prototype Correlated Systems: A View with High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Md-Zahid

    2002-03-20

    The electronic structure of Mott systems continues to be an unsolved problem in physics despite more than half-century of intense research efforts. Well-developed momentum-resolved spectroscopies such as photoemission and neutron scattering cannot directly address problems associated with the full Mott gap as angle-resolved photoemission probes the occupied states and neutrons do not couple to the electron's charge directly. Our observation of dispersive particle- hole pair excitations across the charge gap (effective Mott gap) in several low dimensional prototype Mott insulators using high resolution resonant inelastic x-ray scattering suggests that the excitations across the gap are highly anisotropic and momentum dependent. The results indirectly provide some information about the momentum dependence of unoccupied states in these correlated systems. The x-ray scattering results are complementary to the electron scattering results by the possibility of studying the excitations in the high momentum transfer regimes (near the zone boundaries and comers). This is also demonstrated in case of studying plasmons near the wave vector regime where Landau damping starts to dominate. X-ray scattering also allows one to probe the symmetry characters of localized electrons and the excitations through the strong polarization dependence of scattering near a core resonance. The study of charge-orbital localization is demonstrated in case of manganese oxides. Given its deeply bulk-sensitive and weak-coupling nature and the ability to probe dispersive behavior of charge fluctuations over several Brillouin zones, inelastic x-ray scattering shows the promise to become an important experimental tool to study the electronic structure of complex quantum systems.

  15. Modified morphology of graphene sheets by Argon-atom bombardment: molecular dynamics simulations.

    Science.gov (United States)

    Wei, Xiao-Lin; Zhang, Kai-Wang; Wang, Ru-Zhi; Liu, Wen-Liang; Zhong, Jian-Xin

    2011-12-01

    By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area. The results indicate that, there is an exponential accumulated-damage for the impact of both the incident energy and the particle flux density and there is a critical incident energy ranging from 20-30 eV/atom in Argon-atom bombardment. Different configurations, such as sieve-like and circle-like graphene can be formed by controlling of different particle flux density as the incident energy is more than the critical value. Our results supply a feasible method on fabrication of porous graphene-based materials for gas-storages and molecular sieves, and it also helps to understand the damage mechanism of graphene-based electronic devices under high particle radiation.

  16. High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas; Martinson, Alex B. F.; Pellin, Michael J.; Farha, Omar K.; Hupp, Joseph T.

    2014-06-11

    Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

  17. Optimization of High-Current Ion Beam Acceleration and Charge Compensation in Two Cusps of Induction Linac

    CERN Document Server

    Karas, Vyacheslav I

    1996-01-01

    Results of the numerical simulation of the hollow high-current ion beam (HHCIB) dynamics in two magnet-isolated accelerat- ing gaps separated by the drift gap are presented. The previous study has shown that the good charge and current compensations of the ion beam by the specially injected electron beam occur in the accelerating gaps of the i nduction linac. However in the drift gap the high positive electric potential due to the positive space charge of HHCIB was obtained because the essential dif- ference between the electron and ion drift velocities exists un- der this compensation method. This disadvantage impairing the brightness of the ion beam can be considerably reduced by the additional injection of the thermal electrons into the drift region. In present report the some cases of the cold electron injection into drift gap are considered. The more optimal regime for the effec- tive charge and current compensations of HHCIB without loss in the stability of ion beam was found

  18. Novel technique for the synthesis of ultra-fine porosity metal foam via the inclusion of condensed argon through cryogenic mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian K., E-mail: bkv5016@psu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3000, Raleigh, NC 27695-7907 (United States); Darling, Kristopher A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-B, Aberdeen Proving Ground, MD 21005-5069 (United States); Koch, Carl C.; Scattergood, Ron O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3000, Raleigh, NC 27695-7907 (United States)

    2011-02-25

    It was discovered that mechanical milling of metal powders in an ultra high purity argon atmosphere at cryogenic temperatures can result in argon being incorporated into the metal. This incorporated argon causes expansion by increasing the porosity when the material is annealed. The resulting annealed material can be classified as metal foam due to its highly porous nature. The most porous samples were measured to have nearly 50% porosity. This effect was observed in nominally pure copper and an alloy of 81 at% palladium and 19 at% zirconium.

  19. High stability X-ray spectroscopy system with on-chip front-end in charge amplifier configuration

    Energy Technology Data Exchange (ETDEWEB)

    Guazzoni, Chiara; Chiesa, Marco; Sampietro, Marco E-mail: marco.sampietro@polimi.it; Lechner, Peter

    2003-10-11

    This paper presents the performance of a two-chip detector system based on a silicon drift detector and on a charge amplifier, part of the latter being integrated in the detector chip. The two-chip system is intended for high-resolution X-ray spectroscopy experiments in which stability of operation is mandatory to avoid on-line calibration procedures. Experimental measurements have been carried out to test the stability of the whole system with a quantitative analysis of the gain stability obtained by comparing X-ray spectra taken at different operating conditions, varying the temperature and/or the detector bias. A gain variation of less than 0.4% has been obtained at extreme operating conditions. The problems and critical aspects of the two-chip charge amplifier solution are discussed.

  20. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)]. E-mail: a.gumberidze@gsi.de; Bosch, F. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Braeuning-Demian, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Hagmann, S. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Kuehl, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Liesen, D. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Stoehlker, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)

    2005-05-01

    The proposed new international accelerator Facility for Antiproton and Ion Research (FAIR) will open up exciting and far-reaching perspectives for atomic physics research in the realm of highly-charged heavy ions: it will provide the highest intensities of relativistic beams of both stable and unstable heavy nuclei. In combination with the strongest possible electromagnetic fields produced by the nuclear charge of the heaviest nuclei, this will allow to extend atomic spectroscopy up to the virtual limits of atomic matter. Based on the experience and results already achieved at the experimental storage ring (ESR), a substantial progress in atomic physics research has to be expected in this domain, due to a tremendous improvement of intensity, energy and production yield of both stable and unstable nuclei.

  1. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source.

    Science.gov (United States)

    Krása, J; Velyhan, A; Margarone, D; Krouský, E; Krouský, L; Jungwirth, K; Rohlena, K; Ullschmied, J; Parys, P; Ryć, L; Wołowski, J

    2012-02-01

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

  2. High resolution probe of coherence in low-energy charge exchange collisions with oriented targets

    CERN Document Server

    Leredde, A; Cassimi, A; Hennecart, D; Pons, B

    2013-01-01

    The trapping lasers of a magneto-optical trap (MOT) are used to bring Rb atoms into well defined oriented states. Coupled to recoil-ion momentum spectroscopy (RIMS), this yields a unique MOTRIMS setup which is able to probe scattering dynamics, including their coherence features, with unprecedented resolution. This technique is applied to the low-energy charge exchange processes Na$^+$+Rb($5p_{\\pm 1}$) $\\rightarrow$ Na($3p,4s$)+Rb$^+$. The measurements reveal detailed features of the collisional interaction which are employed to improve the theoretical description. All of this enables to gauge the reliability of intuitive pictures predicting the most likely capture transitions.

  3. Surgery of fast, highly charged ions studied by zero-degree Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Miller, P.D.; Krause, H.F.; Yamazaki, Y.; Swenson, J.K.; Bruch, R.; Dittner, P.F.; Pepmiller, P.L.; Datz, S.

    1986-01-01

    Zero-degree Auger spectra were measured in collisions of oxygen and carbon on He with incident charge states of q = 2 to 5 and for energies from 5 to 30 MeV. Since the light target particle He acts selectively on the projectile ion, we refer to the present method as ion surgery. Apart from the one-electron processes single excitation and single loss, two-electron processes such as transfer excitation and transfer loss are studied. 17 refs., 4 figs., 1 tab.

  4. Factorization breaking in high-transverse-momentum charged-hadron production at the Tevatron?

    Science.gov (United States)

    Albino, S; Kniehl, B A; Kramer, G

    2010-06-18

    We compare the transverse-momentum (pT) distribution of inclusive light-charged-particle production measured by the CDF Collaboration at the Fermilab Tevatron with the theoretical prediction evaluated at next-to-leading order in quantum chromodynamics using fragmentation functions recently determined through a global data fit. While in the lower pT range the data agree with the prediction within the theoretical error or slightly undershoot it, they significantly exceed it in the upper pT range, by several orders of magnitude at the largest values of pT, potentially challenging the factorization theorem.

  5. Measurement of the spatial specific impulse distribution due to buried high explosive charge detonation

    Directory of Open Access Journals (Sweden)

    V. Denefeld

    2017-06-01

    The momentum transfer to a vehicle depends on a number of influencing factors such as: charge mass, embedding material (e.g. sand, gravel, clay, density, water content, saturation, depth of burial, ground clearance and vehicle shape. The presented technology is applied to quantify the influence of the embedding material (alluvial sand, quartz sand, the burial depth and the water content on the local specific impulse distribution. The obtained data can be used as initial condition for the numerical simulation of occupant safety assessment and as input for empirical modeling of momentum transfer on structures.

  6. Charge and orbital orders and structural instability in high-pressure quadruple perovskite CeCuMn6O12

    Science.gov (United States)

    Zhang, Lei; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Yamaura, Kazunari; Belik, Alexei A.

    2018-02-01

    We prepared a quadruple perovskite CeCuMn6O12 under high-pressure and high-temperature conditions at 6 GPa and about 1670 K and investigated its structural, magnetic and transport properties. CeCuMn6O12 crystallizes in space group Im-3 above T CO  =  297 K below this temperature, it adopts space group R-3 with the 1:3 (Mn4+:Mn3+) charge and orbital orders. Unusual compressed Mn3+O6 octahedra are realized in CeCuMn6O12 similar to CaMn7O12 with the  ‑Q 3 Jahn–Teller distortion mode. Below about 90 K, structural instability takes place with phase separation and the appearance of competing phases; and below 70 K, two R-3 phases coexist. CeCuMn6O12 exhibits a ferromagnetic-like transition below T C  =  140 K, and it is a semiconductor with the magnetoresistance reaching about  ‑40% at 140 K and 70 kOe. We argued that the valence of Ce is  +3 in CeCuMn6O12 with the Ce3+(C{{u}2+}Mn23+ )(Mn33+M{{n}4+} )O12 charge distribution in the charge-ordered R-3 phase and Ce3+(C{{u}2+}Mn23+ )(Mn43.25+ )O12 in the charge-disordered Im-3 phase.

  7. Engineering the Charge Transport of Ag Nanocrystals for Highly Accurate, Wearable Temperature Sensors through All-Solution Processes.

    Science.gov (United States)

    Joh, Hyungmok; Lee, Seung-Wook; Seong, Mingi; Lee, Woo Seok; Oh, Soong Ju

    2017-06-01

    All-nanocrystal (NC)-based and all-solution-processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All-solution-based, one-step photolithography techniques that integrate two distinct opposite-sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion-free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phase transitions to dipolar clusters and charge density waves in high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saarela, M., E-mail: Mikko.Saarela@oulu.fi [Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Kusmartsev, F.V. [Department of Physics, Loughborough University, LE11 3TU (United Kingdom)

    2017-02-15

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  9. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  11. Structure and rheological behavior of highly charged colloidal particles in a cylindrical pore I. Effect of pore size.

    Science.gov (United States)

    Valdez, Miguel A; Gámez-Corrales, Rogelio

    2003-11-01

    In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.

  12. Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System

    Science.gov (United States)

    Jeevarajan, Judith A.; Irlbeck, Brad

    2006-01-01

    Although it looks like module level voltage drives the cutoff for charge, the actual cutoff is due to unbalanced cell voltages that drive the module voltage up. Individual cell voltage drives the cutoff for discharge Low resistance cells are the first to reach the low-voltage cutoff Cell-to-Cell voltage differences are generally small and show similar trends for each cycle Increase for a distinct window during charge and at the end of discharge Increase in max to min cell voltage difference with time/cycles Decrease in max to min cell voltage difference during high current pulses with time/cycles Individual cell voltage trends (with respect to other cells) are very repeatable from cycle to cycle, although voltage slowly degrades with time/cycles (resistance growth) Much more difference observed near end of discharge Little change in order of cell voltage (cell with highest voltage to cell with lowest voltage) Temp sensor on the side of cell (between 2 cells) shows much greater rise during discharge than for single cell tests (18 C vs 5 C) Conclusion: Serial Charging of this string of cells is feasible as it has only a minor impact on useful capacity

  13. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Yatao, E-mail: zhangyatao@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); UNESCO Center for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Yuanming; Zhang, Haoqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Liu, Jindun, E-mail: liujindun@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China)

    2015-04-28

    Highlights: • SiO{sub 2} spheres were modified by poly (ionic liquid) brushes via RATRP. • Positively charged NF membranes were fabricated by incorporation of SiO{sub 2}-PIL. • The membranes exhibited higher rejection for dyes and superior penetration for salts. - Abstract: Silica spheres modified by poly (ionic liquid) brushes, a novel positively charged nanomaterial is prepared by atom transfer radical polymerization (ATRP). A high flux positively charged loose nanofiltration membrane is fabricated via “blending-phase inversion” method. The morphology structures, hydrophilicity, thermal and mechanical properties, permeation performance of these membranes are investigated in detail. The results reveal that the hybrid membranes have enhanced surface hydrophilicity, water permeability, thermal stability, and mechanical properties. Characterization of membrane separation properties shows that the hybrid membranes possess higher salt permeability and relatively higher rejection for reactive dyes, which may open opportunities for the recycling of reactive dyes wastewater. Moreover, such hybrid membranes have an outstanding operational stability and salts concentration showed little effect on the separation properties.

  14. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Science.gov (United States)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bullard, B.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; De Geronimo, G.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, S.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rescia, S.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Thorn, C.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Yu, B.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-08-01

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

  15. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.

    2017-05-20

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

  16. ATLAS Liquid Argon Calorimeters Operation and Data Quality During the 2016 Proton Run

    CERN Document Server

    Pascuzzi, Vincent; The ATLAS collaboration

    2017-01-01

    ATLAS operated with high efficiency during the 2016 pp data-taking period with 25ns bunch spacing at ⎷s = 13 TeV, recording approximately 34 fb-1 of good physics data. The Liquid Argon (LAr) Calorimeters contributed to to this effort by providing a high data quality efficiency. This poster highlights the overall status, operations, data quality and performance of the LAr Calorimeters in 2016.

  17. Wireless power charging using point of load controlled high frequency power converters

    Science.gov (United States)

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  18. Azimuthal asymmetries in production of charged hadrons by high energy muons on polarized deuterium targets

    CERN Document Server

    Savin, Igor A.

    2010-01-01

    Search for azimuthal asymmetries in semi-inclusive production of charged hadrons by 160 GeV muons on the longitudinally polarized deuterium target, has been performed using the 2002- 2004 COMPASS data. The observed asymmetries integrated over the kinematical variables do not depend on the azimuthal angle of produced hadrons and are consistent with the ratio $g_1^d(x)/f_1^d(x)$. The asymmetries are parameterized taking into account possible contributions from different parton distribution functions and parton fragmentation functions depending on the transverse spin of quarks.They can be modulated (either/or/and) with $\\sin(\\phi), \\sin(2\\phi), \\sin(3\\phi)$ and $\\cos(\\phi)$. The $x$-, $z$- and $p_h^T$-dependencies of these amplitudes are studied.

  19. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    CERN Document Server

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  20. Design of a charge pump for high voltage driver applications based on 0.35 μm BCD technology

    Science.gov (United States)

    Zhu, Tiezhu; Zhang, Yuning; Ji, Rendong

    2017-07-01

    Based on the switched capacitor system theory, a new charge pump is designed as the driver of the H-bridge power circuits. The proposed circuit is added with the output feedback control module to realize the steady output, lower the ripple and power noise, and improve the transforming efficiency. Simulation based on 0.35 μm BCD350GE process demonstrates that the circuit has a ripple voltage as low as 200 mV and reaches a high efficiency up to 70% with a load as much as 20 mA when the supply voltage changes from 8 V to 36 V.

  1. Quightness: A proposed figure of merit for sources of low-energy, high-charge-state ions

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W. (Sandia National Laboratories, Livermore, California 94551 (US))

    1990-03-01

    A variety of ion sources, including the EBIS and ECRIS, are distinguished by their ability to produce low-energy ions of very high charge state. It would be useful to have some figure of merit that is particularly sensitive to this performance. I propose here such a quantity, called Quightness,'' which is related to brightness but which enhances the contrast between sources supplying multicharged ions of low energy. The rationale for introducing this quantity, its etymology and relationship to other figures of merit, and some representative values are presented.

  2. Polyoxometalates as artificial nucleases: hydrolytic cleavage of DNA promoted by a highly negatively charged Zr(IV)-substituted Keggin polyanion.

    Science.gov (United States)

    Luong, T K N; Govaerts, I; Robben, J; Shestakova, P; Parac-Vogt, T N

    2017-01-03

    A highly negatively charged binuclear Zr(IV)-substituted Keggin polyoxometalate [{α-PW11O39Zr(μ-OH)(H2O)}2](8-) (ZrK 2 : 2) has been shown to promote the hydrolytic cleavage of phosphoester bonds in the supercoiled plasmid pUC19 DNA under physiological pH and temperature, giving relaxed and linear forms of pUC19 as hydrolysis products. The interaction between ZrK 2 : 2 and DNA was experimentally proven by circular dichroism (CD) spectroscopy and (31)P diffusion ordered NMR spectroscopy.

  3. A vacuum double-crystal spectrometer for reference-free highly charged ions X-ray spectroscopy

    CERN Document Server

    Amaro, P; Schlesser, S; Gumberidze, Alexandre; Kessler, Ernest G; Henins, Albert; Bigot, E -O Le; Trassinelli, M; Isac, Jean-Michel; Travers, Pascal; Guerra, Mauro; Santos, J P; Indelicato, Paul

    2012-01-01

    We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describe in detail the instrument and its performances. Furthermore, we present a few spectra of transitions in Ar$^{14+}$, Ar$^{15+}$ and Ar$^{16+}$. We have developed an \\emph{ab initio} simulation code that allows us to obtain accurate line profiles. It can reproduce experimental spectra with unprecedented accuracy. The quality of the profiles allows the direct determination of line width.

  4. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  5. Optimization of tetravalent manganese feroxyhyte's negative charge density: A high-performing mercury adsorbent from drinking water.

    Science.gov (United States)

    Kokkinos, E; Simeonidis, K; Pinakidou, F; Katsikini, M; Mitrakas, M

    2017-01-01

    This study demonstrates an optimization procedure for the development of an Hg-specified adsorbent able to comply with the regulation limit for drinking water of 1μg/L. On this purpose, the synthesis of Mn(IV)-feroxyhyte was modified to achieve high negative charge density by combining alkaline and extreme oxidizing conditions. In particular, precipitation of FeSO4 at pH9 and excess of KMnO4 follows a very fast nucleation step providing a product with very small nanocrystal size (1-2nm), high specific surface area (300m(2)/g) and maximum negative charge density (1.8mmol H(+)/g). The adsorbent was validated for Hg removal in batch experiments and column tests using natural-like water indicating an adsorption capacity as high as 2.5μg/mg at equilibrium concentration 1μg/L under reliable conditions of application. Importantly, the adsorption is an exothermic spontaneous process, resulting in the formation of inner sphere complexes by sharing both A-type and B-type oxygen atoms with the metal surface octahedral as revealed by the X-ray absorption fine structure results. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pressure broadening of acetylene rotational Raman lines by argon

    NARCIS (Netherlands)

    Ceruti, M.; Frenkel, D.; McTaque, J.P.

    1980-01-01

    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole

  7. High resolution interferometry as a tool for characterization of swelling of weakly charged hydrogels subjected to amphiphile and cyclodextrin exposure.

    Science.gov (United States)

    Gao, Ming; Gawel, Kamila; Stokke, Bjørn Torger

    2013-01-15

    A high resolution interferometric technique was used to determine swelling behavior of weakly charged polyacrylamide hydrogels in the presence of oppositely charged surfactants and subsequent exposure to cyclodextrins. Hydrogels of copolymerized acrylamide and 2-acrylamido-2-methyl-1-propanesulfonic acid (0.22, 0.44, 0.88 mol%) crosslinked with bisacrylamide (3, 6, 12 mol%) were employed. The equilibrium swelling and swelling kinetics of the hydrogels were determined with 2nm resolution of the optical length and sampled at approximately 1 Hz. These properties were determined for the hydrogels exposed to cationic surfactants dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB) at concentrations from 10(-7) up to 2×10(-3)M. The distribution of surfactant within one AAM-co-AMPSA hydrogel equilibrated in CTAB/perylene solution was investigated by confocal laser scanning microscopy. Hydrogels equilibrated at selected surfactant concentrations were subsequently exposed to cyclodextrins (α-CD, β-CD, methyl-β-CD and γ-CD) forming inclusion complexes with the surfactants. The results show different types of behavior for the two surfactants used, arising from the difference in the length of surfactant hydrophobic tail. The changes in the surfactant induced swelling of the hydrogels are suggested to arise from the net effect of electrostatic screening of sulfonic acid-amide group interactions and surfactant micellization. Hydrogels with the largest charge density and the lowest crosslink density yielded the most pronounced changes in swelling properties on exposure to DTAB or CTAB. The hydrogels displayed swelling kinetics on stepwise changes in surfactant concentrations that depended on the surfactant concentration range. The high resolution monitoring of hydrogel swelling associated with supramolecular complex formation in three-component systems hydrogel-amphiphilic molecule-cyclodextrin provides more details on the swelling behavior than

  8. A pulse-width modulated, high reliability charge controller for small photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, K. [Morningstar Corp., Olney, MD (United States); Welsh, D. [Morningstar Corp., Encinitas, CA (United States)

    1997-02-01

    This report presents the results of a development effort to design, test and begin production of a new class of small photovoltaic (PV) charge controllers. Sandia National Laboratories provided technical support, test data and financial support through a Balance-of-System Development contract. One of the objectives of the development was to increase user confidence in small PV systems by improving the reliability and operating life of the system controllers. Another equally important objective was to improve the economics of small PV systems by extending the battery lifetimes. Using new technology and advanced manufacturing techniques, these objectives were accomplished. Because small stand-alone PV systems account for over one third of all PV modules shipped, the positive impact of improving the reliability and economics of PV systems in this market segment will be felt throughout the industry. The results of verification testing of the new product are also included in this report. The initial design goals and specifications were very aggressive, but the extensive testing demonstrates that all the goals were achieved. Production of the product started in May at a rate of 2,000 units per month. Over 40 Morningstar distributors (5 US and 35 overseas) have taken delivery in the first 2 months of shipments. Initial customer reactions to the new controller have been very favorable.

  9. An automated, high-throughput experimental system for induced charge electrokinetics.

    Science.gov (United States)

    Pascall, Andrew J; Squires, Todd M

    2010-09-21

    Recent experiments in induced charge electrokinetics (ICEK) have shown that the standard theory generally overpredicts experimentally observed velocities. Such discrepancies reduce the efficacy of practical ICEK devices, and highlight our incomplete understanding of electrokinetic phenomena. Here, we present an automated experimental system that allows for the rapid collection of ICEK data under a variety of conditions ( approximately 1000 per day) to help develop and constrain new theories. We demonstrate this system by studying the ICEK slip flows over electrodes that have been controllably "contaminated" with a dielectric layer, either SiO(2) or an alkanethiol self-assembled monolayer, of known thickness. We also develop a theory that accounts for the effects of the dielectric coatings surface chemistry that yields quantitative agreement with experiments over nearly a thousand distinct conditions in the SiO(2) system and present an additional three thousand experiments of flows over alkanethiol monolayers. Our experimental system allows the direct interrogation of the physico-chemical effects that influence ICEK flows and for the optimization of these flows in lab-on-a-chip systems.

  10. Azimuthal asymmetries of charged hadrons produced in high-energy muon scattering off longitudinally polarised deuterons

    CERN Document Server

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A

    2016-01-01

    Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...

  11. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement

    Science.gov (United States)

    Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.

    2017-08-01

    In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.

  12. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  13. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  14. High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    CERN Document Server

    Csatari Divall, M; Bolzon, B; Bravin, E; Chevallay, E; Dabrowski, A; Doebert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Olvegaard, M; Petrarca, M; Rabiller, A N; Egger, D; Mete, O

    2011-01-01

    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the schem...

  15. Coulomb crystals in a cryogenic Paul trap for sympathetic cooling of molecular ions and highly charged ions

    Science.gov (United States)

    Windberger, A.; Schwarz, M.; Versolato, O. O.; Baumann, T.; Bekker, H.; Schmöger, L.; Hansen, A. K.; Gingell, A. D.; Klosowski, L.; Kristensen, S.; Schmidt, P. O.; Ullrich, J.; Drewsen, M.; Crespo López-Urrutia, J. R.

    2013-03-01

    Electron beam ion traps used for spectroscopy of highly charged ions (HCI) produce a deep trapping potential leading to high temperatures of the stored ions, and thus limiting the achievable spectral resolution. A novel device at the Max-Planck-Institut für Kernphysik, the Cryogenic linear Paul Trap Experiment (CryPTEx), attached to an electron beam ion trap, provides a new experimental platform to overcome these limitations. The trap assembly operates at a temperature of 4 K and offers optical access for quantum manipulation and imaging of the trapped ions. Since forbidden optical transitions in HCI do not support direct laser cooling, sympathetic cooling with Coulomb crystals of singly charged ions such as Be+ or Mg+ will be applied in order to reach the natural linewidth of optical forbidden transitions in HCI of interest. With the added advantage of long ion trapping times resulting from residual gas pressures of H2 at 4 K below 10-15 mbar, CryPTEx has been commissioned in collaboration with the Ion Trap Group in Århus using rovibrationally cooled MgH+ ions. Strong suppression of the black body radiation at the trap center, ion storage times of about 28 hours, and largely enhanced population of the rovibrational ground state were achieved.

  16. A new instrument to measure charged and neutral cometary dust particles at low and high impact velocities

    Science.gov (United States)

    Economon, T.; Simpson, J. A.; Tuzzolino, A. J.

    1986-01-01

    A new class of dust particle detector, the PVDF dust detector, was designed for space missions such as the Halley Comet missions where the particle impact velocity is very high. It is demonstrated that this same PVDF detector (operating in a different mode) also has the capability of detecting dust particles having low velocity (approx. 100 m/s). This low velocity detection capability is extremely important in terms of planned missions requiring measurement of low velocity dust particles such as comet rendezvous missions. An additional detecting element (charge induction cylinder) was also developed which, when combined with a PVDF detector, yields a system which will measure the charge (magnitude and sign) carried by a cometary particle as well as the particle velocity and mass for impact velocities in the range 100 to 500 m/s. Since the cylinder-PVDF detector system has a relatively small geometry factors, an array of PVDF detectors was included having a total sensing area of 0.1 sq m for measurements in regions of space where the dust flux is expected to be low. The characteristics of the detectors in this array have been chosen to provide optimum mass sensitivity for both low-velocity cometary dust as well as high-velocity asteroid associated and interplanetary dust.

  17. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    Science.gov (United States)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  18. Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration

    Directory of Open Access Journals (Sweden)

    Kyungsung An

    2017-05-01

    Full Text Available This research aims to improve the operational efficiency and security of electric power systems at high renewable penetration by exploiting the envisioned controllability or flexibility of electric vehicles (EVs; EVs interact with the grid through grid-to-vehicle (G2V and vehicle-to-grid (V2G services to ensure reliable and cost-effective grid operation. This research provides a computational framework for this decision-making process. Charging and discharging strategies of EV aggregators are incorporated into a security-constrained optimal power flow (SCOPF problem such that overall energy cost is minimized and operation within acceptable reliability criteria is ensured. Particularly, this SCOPF problem has been formulated for Jeju Island in South Korea, in order to lower carbon emissions toward a zero-carbon island by, for example, integrating large-scale renewable energy and EVs. On top of conventional constraints on the generators and line flows, a unique constraint on the system inertia constant, interpreted as the minimum synchronous generation, is considered to ensure grid security at high renewable penetration. The available energy constraint of the participating EV associated with the state-of-charge (SOC of the battery and market price-responsive behavior of the EV aggregators are also explored. Case studies for the Jeju electric power system in 2030 under various operational scenarios demonstrate the effectiveness of the proposed method and improved operational flexibility via controllable EVs.

  19. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hanyu; Wang, Xu; Yu, Junsheng, E-mail: luzhiyun@scu.edu.cn, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhou, Jie; Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn, E-mail: jsyu@uestc.edu.cn [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-08-11

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-(3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy)-2- (4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 10{sup 11} Jones at −3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm{sup 2}, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m{sup 2}. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  20. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  1. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    Science.gov (United States)

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  2. High resolution spectral signatures of X-ray emission following charge exchange recombination between highly charged iron and neutral helium, molecular hydrogen and molecular nitrogen: A comparison between theory and experiment

    Science.gov (United States)

    Brown, Gregory V.; Cumbee, Renata; Gu, Liyi; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick S.; Beiersdorfer, Peter

    2017-08-01

    We have used the LLNL electron beam ion trap EBIT-I and a NASA/GSFC quantum microcalorimeter to measure the X-ray emission following charge exchange recombination between highly charged Fe25+ and Fe 26+ and neutral helium, molecular hydrogen, and molecular nitrogen. The ~ 5 eV energy resolution of the microcalorimeter has made it possible to measure and resolve n to 1 K-shell transitions from up to n = 14. We compare the measurements to a model based on the Landau-Zener theory and also the models found in SPEX and APEC. Our results include relative intensities of the 1P1 resonance line to the 3S1 forbidden line, commonly referred to as lines w and z. These results are especially useful for interpreting spectra from celestial sources measured with XARM's Resolve and ATHENA's X-IFU. These data have also proved useful in the interpretation of Hitomi's SXS spectrum of the Perseus cluster.Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters

    CERN Document Server

    Leroy, C; Golikov, V; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Minashkin, V F; Shalyugin, A N

    1999-01-01

    Various readout chain components of the ATLAS liquid argon calorimeters have been exposed to high neutron fluences and $gamma$-doses at the irradiation test facility of the IBR-2 reactor of JINR, Dubna. Results of the capacitance and impedance measurements of coaxial cables are presented. Results of peeling tests of PC board samples (kapton and copper strips) as a measure of the bonding agent irradiation hardness are also reported.

  4. Study of SiPM custom arrays for scintillation light detection in a Liquid Argon Time Projection Chamber

    Science.gov (United States)

    Cervi, T.; Babicz, M. E.; Bonesini, M.; Falcone, A.; Kose, U.; Nessi, M.; Menegolli, A.; Pietropaolo, F.; Raselli, G. L.; Rossella, M.; Torti, M.; Zani, A.

    2017-03-01

    Liquid Argon Time Projection Chamber (LAr-TPC) technique has been established as one of the most promising for the next generation of experiments dedicated to neutrino and rare-event physics. LAr-TPCs have the fundamental feature to be able to both collect the charge and the scintillation light produced after the passage of a ionizing particle inside the Argon volume. Scintillation light is traditionally detected by large surface Photo-Multiplier Tubes (PMTs) working at cryogenic temperature. Silicon Photo-Multipliers (SiPMs) are semiconductor-based devices with performances comparable to the PMT ones, but with very small active areas. For this reason we built a prototype array composed by SiPMs connected in different electrical configurations. We present results on preliminary tests made with four SiPMs, connected both in parallel and in series configurations, deployed into a 50 liters LAr-TPC exposed to cosmic rays at CERN.

  5. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    KAUST Repository

    Bartynski, Andrew N.

    2015-04-29

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between ECT and qVOC of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

  6. High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.

    Science.gov (United States)

    Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis

    2014-08-25

    High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering

    DEFF Research Database (Denmark)

    Gruber, Mathias; Jung, Seok-Heon; Schott, Sam

    2015-01-01

    side-chain on the DPP-unit leads to an increase in thin-film order and charge-carrier mobility if a sufficiently solubilizing, branched, side chain is attached to the BTZ. We compare two different synthetic routes, direct arylation and Suzuki-polycondensation, by a direct comparison of polymers...... exceptionally high and near balanced average electron and hole mobilities >2 cm2 V-1 s-1 which are among the highest, robustly extracted mobility values reported for DPP copolymers in a top-gate configuration to date. Our results demonstrate clearly that linear side chain substitution of the DPP unit together...... with co-monomers that allow for the use of sufficiently long or branched solubilizing side chains can be an attractive design motif for solution processable, high mobility DPP copolymers....

  8. Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver

    Directory of Open Access Journals (Sweden)

    Ambra Giovannelli

    2017-11-01

    Full Text Available Solar Dish Micro Gas Turbine (MGT systems have the potential to become interesting small-scale power plants in off-grid or mini-grid contexts for electricity or poly-generation production. The main challenging component of such systems is the solar receiver which should operate at high temperatures with concentrated solar radiations, which strongly vary with time. This paper deals with the design and the analysis of a novel solar receiver integrated with a short-term storage system based on Phase Change Materials to prevent sudden variations in the maximum temperature of the MGT working fluid. Particularly, the charge and discharge behavior of the storage system was analyzed by means of Computational Fluid Dynamic methods to evaluate the potentiality of the concept and the component capabilities. Achieved results were highly satisfactory: the novel solar receiver has a good thermal inertia and can prevent relevant fluctuations in the working fluid temperature for 20–30 min.

  9. Argon systematics of neutron irradiated submarine basalt glasses from the deep south rift zone of Loihi seamount and the {sup 40}Ar/{sup 36}Ar ratio of the Hawaiian plume source

    Energy Technology Data Exchange (ETDEWEB)

    Trieloff, M.; Falter, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jessberger, E.K. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)]|[Muenster Univ. (Germany). Inst. fuer Planetologie

    1998-12-31

    Submarine basalt glasses from Loihi seamount dredged at the southern rift zone between 3 and 5 km depth were studied. These glasses contain neon with the highest {sup 20}Ne/{sup 22}Ne ratios measured so far in submarine volcanics and constrain a well defined correlation line in a Ne-3-isotope plot (Valbracht et al., 1997). Within this study that focussed on argon isotopes an increased resolution regarding temperature and crushing steps was used: High {sup 40}Ar/{sup 36}Ar ratios at intermediate temperatures and in several crushing steps were measured which are related to argon from vesicle populations containing the most pristine mantle signature. This argon is highly improbable to be related to olivine phenocrysts and a possible contamination by MORB type noble gases. Our best constraint on the argon isotopic composition of the Loihi glasses is {sup 40}Ar/{sup 36}Ar=6590{+-}840, providing a lower limit of >5750 for the Hawaiian lower mantle source, further attesting its partially degassed nature concerning primordial noble gases. The argon distribution in the investigated Loihi glasses shows characteristic features very similar to MORB glasses. The isotopic composition of vesicle argon released by crushing covers the complete range between the atmospheric and the mantle endmember. In low vesicularity glasses mantle argon shows a nearly perfect correlation with the glass dissolved, neutron induced argon isotopes in the course of stepheating, while in glasses of higher vesicularity mantle argon partitioned into the vesicles. This is independently confirmed by the comparison of the argon yield by crushing and heating. On the other hand, the stepheating release pattern of the atmospheric component does hardly correlate with glass dissolved argon, independent on vesicularity. A significant fraction of the atmospheric contaminant is related to vesicles and pyroxene microlites, and is moreover associated with microdefects or, alternatively, is inhomogeneously distributed

  10. Benchmarking charge exchange theory in the dawning era of space-born high-resolution X-ray spectrometers

    Science.gov (United States)

    Betancourt-Martinez, Gabriele

    2017-08-01

    Charge Exchange (CX) is a process in which a highly charged ion captures one or more electrons from a neutral atom or molecule into an excited state during a close interaction. The electron's subsequent radiative cascade to the ground state produces diagnostic line emission in the X-ray band. CX with solar wind ions occurs frequently in the solar system, and CX may also occur astrophysically. In order to properly identify CX in astrophysical spectra and make use of its diagnostic properties, we must be able to model the emission. Theoretical treatments of CX are often computationally expensive, experimental benchmarks at high resolution are fairly scarce, and there is often poor agreement between the two. This dissertation seeks to build a better understanding of the mechanics and spectral signatures of CX through high-resolution experimental data paired with theoretical calculations of CX. Chapter 1 outlines the necessary ingredients for modeling and identifying CX spectra, describes several astrophysical environments in which CX has been observed or postulated to occur, and presents some of the challenges we are facing in identifying and understanding this emission. Chapter 2 describes the theoretical and computational tools used in this work. Chapter 3 discusses the experimental tools and facilities we use, namely an Electron Beam Ion Trap (EBIT) and an X-ray microcalorimeter. Chapter 4 presents experimental K-shell data that highlights both the subtle nature of the CX interaction and the difficulty in including those nuances in spectral synthesis codes. Chapter 5 presents the first high-resolution L-shell CX spectra of Ne-like Ni and describes what we can learn from these results. In Chapter 6, we take these data a step further and present a pipeline to calculate relative state-selective capture cross sections, previously only available from theoretical modeling. We then compare some of our results to theory. In Chapter 7, we discuss several future steps for

  11. Study on high breakdown voltage GaN-based vertical field effect transistor with interfacial charge engineering for power applications

    Science.gov (United States)

    Du, Jiangfeng; Liu, Dong; Liu, Yong; Bai, Zhiyuan; Jiang, Zhiguang; Liu, Yang; Yu, Qi

    2017-11-01

    A high voltage GaN-based vertical field effect transistor with interfacial charge engineering (GaN ICE-VFET) is proposed and its breakdown mechanism is presented. This vertical FET features oxide trenches which show a fixed negative charge at the oxide/GaN interface. In the off-state, firstly, the trench oxide layer acts as a field plate; secondly, the n-GaN buffer layer is inverted along the oxide/GaN interface and thus a vertical hole layer is formed, which acts as a virtual p-pillar and laterally depletes the n-buffer pillar. Both of them modulate electric field distribution in the device and significantly increase the breakdown voltage (BV). Compared with a conventional GaN vertical FET, the BV of GaN ICE-VFET is increased from 1148 V to 4153 V with the same buffer thickness of 20 μm. Furthermore, the proposed device achieves a great improvement in the tradeoff between BV and on-resistance; and its figure of merit even exceeds the GaN one-dimensional limit.

  12. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  13. Liquid Argon Time Projection Chamber research and development in the United States

    Science.gov (United States)

    Baller, B.; Bromberg, C.; Buchanan, N.; Cavanna, F.; Chen, H.; Church, E.; Gehman, V.; Greenlee, H.; Guardincerri, E.; Jones, B.; Junk, T.; Katori, T.; Kirby, M.; Lang, K.; Loer, B.; Marchionni, A.; Maruyama, T.; Mauger, C.; Menegolli, A.; Montanari, D.; Mufson, S.; Norris, B.; Pordes, S.; Raaf, J.; Rebel, B.; Sanders, R.; Soderberg, M.; St. John, J.; Strauss, T.; Szelc, A.; Tope, T.; Touramanis, C.; Thorn, C.; Urheim, J.; Van de Water, R.; Wang, H.; Yu, B.; Zuckerbrot, M.

    2014-05-01

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.

  14. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Shyamal, E-mail: shyamal@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Behera, Akshaya K. [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Banerjee, Amarabha; Tribedi, Lokesh C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, Almost-Equal-To 100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  15. Synthesis of boron nitride nanotubes by Argon supported Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-03-01

    Thermal Chemical Vapor Deposition technique is modified with the use of Argon gas flow inside the chamber as an alternative for vacuum and orientation of one end closed quartz test tube. The use of Argon gas not only simplified the experimental set up, but also made it ~ 18 % cost effective compared to the conventional set up. Field Emission Scanning Electron Microscopy micrographs show straight and long BNNTs along with some cotton like morphologies. Transmission electron microscopy revealed bamboo like structure inside the tube and ~0.34 nm interlayer spacing for highly crystalline nature of boron nitride nanotubes. X-ray photon spectroscopy shows B 1s peak at 191.08 eV and N 1s peak at 398.78 eV that represents h-BN. Whereas, Raman spectrum indicates a major peak at ~1379.60 (cm-1) that correspond to E2g mode of h-BN.

  16. [Technical peculiarities of the argon-plasma welding of gastrointestinal walls wounds in experimental environment].

    Science.gov (United States)

    Terekhov, G V; Furmanov, Iu A; Gvozdetskiĭ, V S; Savitskaia, I M

    2008-06-01

    A new method of the live biological tissues connection, using thermal energy of a high-temperature argon plasma, constituting perspective trend of application of a new nonsuture methods of the tissues connection, original for the world practice, was elaborated in the Department of Experimental Surgery together with the Institute of welding named after Academician E. O. Paton NAS of Ukraine. The argon-plasma welding application secure safe adhesion of the connecting surfaces formation due to the protein complexes temperature denaturation occurrence. The absence of foreign bodies in the connection zone as well as the presence of the plasma flow bacterocidal properties secure, while application of this new method, a significant lowering of a bacterial soiling of the formatted anastomoses, not interfering with the tissue natural regeneration process course.

  17. Simulation of propagation of the HPM in the low-pressure argon plasma

    Science.gov (United States)

    Zhigang, LI; Zhongcai, YUAN; Jiachun, WANG; Jiaming, SHI

    2018-02-01

    The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation. The two-dimensional transmission model was built based on the wave equation, the electron drift-diffusion equations and the heavy species transport equations, which were solved by means of COMSOL Multiphysics software. The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma. The attenuation of the transmitted wave increased nonlinearly with the electron density. Specifically, the growth of the attenuation slowed down as the electron density increased uniformly. In addition, the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.

  18. Charge collection performance of a segmented planar high-purity germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom)], E-mail: R.Cooper@liverpool.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Dobson, J. [Rosemere Cancer Centre, Royal Preston Hospital, Preston PR2 9HT (United Kingdom)

    2008-10-01

    High-precision scans of a segmented planar high-purity germanium (HPGe) detector have been performed with a range of finely collimated gamma ray beams allowing the response as a function of gamma ray interaction position to be quantified. This has allowed the development of parametric pulse shape analysis (PSA) techniques and algorithms for the correction of imperfections in performance. In this paper we report on the performance of this detector, designed for use in a positron emission tomography (PET) development system.

  19. High-Surface-Area Porous Platinum Electrodes for Enhanced Charge Transfer

    OpenAIRE

    Hu Yelin; Yella Aswani; Guldin Stefan; Schreier Marcel; Stellacci Francesco; Grätzel Michael; Stefik Morgan

    2014-01-01

    Cobalt based electrolytes are highly tunable and have pushed the limits of dye sensitized solar cells enabling higher open circuit voltages and new record effi ciencies. However the performance of these electrolytes and a range of other electrolytes suffer from slow electron transfer at platinum counter electrodes. High surface area platinum would enhance catalysis but pure platinum structures are too expensive in practice. Here a material effi cient host guest architecture is developed that ...

  20. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  2. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  3. Ion-pair dissociation of highly excited carbon clusters: Size and charge effects

    OpenAIRE

    Launoy, Thibaut; Béroff, Karine; Chabot, Marin; Martinet, Guillaume; Le Padellec, A.; Pino, Thomas; Bouneau, S.; Vaeck, Nathalie; Liévin, Jacques; Féraud, Géraldine G.; Loreau, Jérôme; Mahajan, Thejus T. M

    2017-01-01

    We present measurements of ion-pair dissociation (IPD) of highly excited neutral and ionized carbon clusters Cn=2-5(q=0-3)+. The tool for producing these species was a high-velocity collision between Cn+ projectiles (v=2.25 a.u.) and helium atoms. The setup allowed us to detect in coincidence anionic and cationic fragments, event by event, leading to a direct and unambiguous identification of the IPD process. Compared with dissociation without anion emission, we found typical 10-4 IPD rates, ...

  4. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    V) in series with a high voltage blocking diode is added, in parallel with a high voltage freewheeling diode of a conventional flyback topology, to enable bidirectional operation. Experimental result from a digitally controlled bidirectional flyback converter shows that the discharge energy efficiency...... by lower voltage rating MOSFETs driven by a gate drive transformer. Simulation results to compare the operation of conventional and proposed converters are provided. The advantages of proposed implementation are improved energy efficiency and lower cost. Experimental results with two series connected...

  5. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan

    2014-12-03

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  6. Magnetic dipole self-organization of charge carriers in high-temperature superconductors and kinetics of phase transformation

    CERN Document Server

    Voronov, A V; Shuvalov, V V

    2001-01-01

    The phenomenological model, describing the magnetic dipole self-organization of charge carriers (formation of so-called stripe-structures and energy gap in the states spectrum), is designed for interpreting the data on the nonstationary nonlinear spectroscopy of the high-temperature superconductors. It is shown that after fast heating of the superconducting sample the kinetics of the subsequent phase transition depends on the initial temperature T. The destruction of the stripe-structures at low overheating T* < T < T sub m approx = (1.4-1.5)T*, whereby T sub c and T* approx = T sub c are the temperatures of transition into the superconducting state and formation of the stripe-structures occurs slowly (the times above 10 sup - sup 9 s) in spite of practically instantaneous disappearance of the superconductivity

  7. Charge collection efficiency characterization of a HgI 2 Frisch collar spectrometer with collimated high energy gamma rays

    Science.gov (United States)

    Kargar, A.; Ariesanti, E.; James, S.; McGregor, D. S.

    2011-10-01

    In this study, a 2.1×2.1×4.1 mm 3 HgI 2 Frisch collar device was characterized through probing the device with a highly collimated 662 keV gamma rays ( 137Cs check source) along the length and width of the device. In a systematic series of experiments, the detector was probed along its central line under different operating voltages of 1600, 1300, 1000, 800, 600 and 500 V. The experimental results were confirmed through a simulation of the charge collection for a device with the same size and operating conditions. It is shown that the HgI 2 Frisch collar device has a uniform response to gamma rays over two-thirds of the detector volume. The HgI 2 crystals and the Frisch collar detectors were grown and fabricated within the S.M.A.R.T Laboratory at Kansas State University.

  8. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  9. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  10. EUV spectral lines of highly-charged Hf, Ta and Au ions observed with an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Draganic, Ilija N; Ralchenko, Yuri; Reader, Joseph; Gillaspy, J D; Tan, Joseph N; Pomeroy, Joshua M; Brewer, Samuel M; Osin, Dmitry, E-mail: yuri.ralchenko@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2011-01-28

    Extreme ultraviolet spectra of highly-charged hafnium, tantalum and gold were produced with an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST) and recorded with a flat-field grazing-incidence spectrometer in the wavelength range 4-20 nm. The beam energy was varied between 1.84 and 5.15 keV to selectively enhance spectra from specific ionization stages. Identifications of strong n = 4-n = 4 transitions from Rb-like hafnium (35+) to Co-like gold (52+) were determined with the aid of collisional-radiative modelling of the EBIT plasma. Good quantitative agreement between simulated and measured spectra was achieved. Over 150 spectral lines were identified, 115 of which are new.

  11. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  12. Highly compact and accurate circuit-level macro modeling of gate-all-around charge-trap flash memory

    Science.gov (United States)

    Kim, Seunghyun; Lee, Sang-Ho; Kim, Young-Goan; Cho, Seongjae; Park, Byung-Gook

    2017-01-01

    In this paper, a highly reliable circuit model of gate-all-around (GAA) charge-trap flash (CTF) memory cell is proposed, considering the transient behaviors for describing the program operations with improved accuracy. Although several compact models have been reported in the previous literature, time-dependent behaviors have not been precisely reflected and the failures tend to get worse as the operation time elapses. Furthermore, the developed SPICE models in this work have been verified by the measurement results of the fabricated flash memory cells having silicon-oxide-nitride-oxide-silicon (SONOS). This more realistic model would be beneficial in designing the system architectures and setting up the operation schemes for the leading three-dimensional (3D) stack CTF memory.

  13. Electron acceleration via high contrast laser interacting with submicron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Faenov, Anatoly; Pikuz, Tatiana [Joint Institute for High Temperature of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 (Russian Federation); Quantum Beams Science Directorate, JAEA, Kizugawa, Kyoto (Japan); Li Dazhang [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Sheng Zhengming [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Jie [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  14. Optimization of the cycle life performance of VRLA batteries, working under high rate, partial state of charge (HRPSOC) conditions

    Science.gov (United States)

    Fernández, M.; Trinidad, F.; Valenciano, J.; Sánchez, A.

    On hybrid vehicle applications, batteries must work in a rather low state of charge (SOC), in order to be able to recover as much of the regenerative braking energy as possible. Usually SOC values around 60% are used, which promotes the development of new unexpected failure modes not previously found, mainly associated with heavy sulphation of the negative plates. In order to try to optimise the cycle life performance to the point of making these batteries a real alternative for the application of hybrid vehicles, a series of tests have been undertaken, aimed to optimise the key parameters that from previous experience are known to determine life duration in high rate low state of charge (HRPSOC) conditions. Previous works have been focused on trying to determine the optimum composition of positive and negative active material, concerning paste density in the positive, and additives in negative. In order to overcome the deleterious effect of heavy sulphation in negative plates on cycle life, the use of conductivity enhancers additives such as graphite has been proposed. The objective of this project is to optimize the performance of the glass microfiber separators, in order to maintain a high degree of compression in the group, as well as to avoid acid stratification and development of short circuits along the battery life. To do this, different glass microfiber separators with inert additives, as well as different fiber composition have been tested. Results obtained up to now, indicate a remarkable good performance of the VRLA batteries with the new separators containing very fine fiberglass and silica fillers as an additive.

  15. Strong directional out-of-plane scattering in multiple ionizing highly charged ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.; Hagmann, S.; Quinteros, T. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Kraessig, B. [Freiburg Univ. (Germany). Fakultaet fuer Physik; Koch, R.; Schmidt-Boecking, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Skutlartz, A. [East Carolina Univ., Greenville, NC (United States)

    1990-12-31

    The azimuthal ({phi}{sub r}) and polar angle ({theta}{sub r}) scattering of projectiles in coincidence with recoil ions has been studied for 0.53 MeV/u F{sup 8+} + Ne. For high degree of ionization of the target we find the resultant transverse momentum of all electrons emitted into the continuum to increase with the number of ejected electrons and to have a direction mostly not co-planar with the scattering plane.

  16. Theory of charge transfer at the high-Tc superconductor/electrolyte interface

    DEFF Research Database (Denmark)

    Gluzman, Sasha; Kuznetsov, Alexander M.

    1995-01-01

    We discuss the kinetics of electrochemical process on the high-T-c superconducting electrodes dependent on the type of superconductivity. The existence of the hump of an appreciable height in the temperature dependence of the current clearly points towards the BCS s-type superconductivity......) mechanism. Low-temperature tails at the current/temperature curve are also informative being determined by the electronic states within the gap typical of the unconventional d-wave pairing....

  17. Surface state charge dynamics of a high-mobility three-dimensional topological insulator.

    Science.gov (United States)

    Hancock, Jason N; van Mechelen, J L M; Kuzmenko, Alexey B; van der Marel, Dirk; Brüne, Christoph; Novik, Elena G; Astakhov, Georgy V; Buhmann, Hartmut; Molenkamp, Laurens W

    2011-09-23

    We present a magneto-optical study of the three-dimensional topological insulator, strained HgTe, using a technique which capitalizes on advantages of time-domain spectroscopy to amplify the signal from the surface states. This measurement delivers valuable and precise information regarding the surface-state dispersion within <1 meV of the Fermi level. The technique is highly suitable for the pursuit of the topological magnetoelectric effect and axion electrodynamics.

  18. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.

    Science.gov (United States)

    Kim, Do Hong; Andoshe, Dinsefa M; Shim, Young-Seok; Moon, Cheon-Woo; Sohn, Woonbae; Choi, Seokhoon; Kim, Taemin Ludvic; Lee, Migyoung; Park, Hoonkee; Hong, Kootak; Kwon, Ki Chang; Suh, Jun Min; Kim, Jin-Sang; Lee, Jong-Heun; Jang, Ho Won

    2016-09-14

    Vertically ordered hematite nanotubes are considered to be promising photoactive materials for high-performance water-splitting photoanodes. However, the synthesis of hematite nanotubes directly on conducting substrates such as fluorine-doped tin oxide (FTO)/glass is difficult to be achieved because of the poor adhesion between hematite nanotubes and FTO/glass. Here, we report the synthesis of hematite nanotubes directly on FTO/glass substrate and high-performance photoelectrochemical properties of the nanotubes with NiFe cocatalysts. The hematite nanotubes are synthesized by a simple electrochemical anodization method. The adhesion of the hematite nanotubes to the FTO/glass substrate is drastically improved by dipping them in nonpolar cyclohexane prior to postannealing. Bare hematite nanotubes show a photocurrent density of 1.3 mA/cm(2) at 1.23 V vs a reversible hydrogen electrode, while hematite nanotubes with electrodeposited NiFe cocatalysts exhibit 2.1 mA/cm(2) at 1.23 V which is the highest photocurrent density reported for hematite nanotubes-based photoanodes for solar water splitting. Our work provides an efficient platform to obtain high-performance water-splitting photoanodes utilizing earth-abundant hematite and noble-metal-free cocatalysts.

  19. Factors associated with recurrence of primary aneurysmal bone cysts: is argon beam coagulation an effective adjuvant treatment?

    Science.gov (United States)

    Steffner, Robert J; Liao, Chuanhong; Stacy, Gregory; Atanda, Alfred; Attar, Samer; Avedian, Raffi; Peabody, Terrance D

    2011-11-02

    Our goal was to assess the effectiveness and safety of argon beam coagulation as an adjuvant treatment for primary aneurysmal bone cysts, to reevaluate the adjuvant effectiveness of the use of a high-speed burr alone, and, secondarily, to identify predictors of aneurysmal bone cyst recurrence. We retrospectively reviewed the records of ninety-six patients with primary aneurysmal bone cysts who were managed at our institution from January 1, 1983, to December 31, 2008. Forty patients were managed with curettage, a high-speed burr, and argon beam coagulation; thirty-four were managed with curettage and a high-speed burr without argon beam coagulation; and the remaining twenty-two were managed with curettage with argon beam coagulation alone, curettage with no adjuvant treatment, or resection of the entire lesion. Demographic, clinical, and radiographic data were viewed comparatively for possible predictors of recurrence. Kaplan-Meier survival analysis with a log-rank test was performed to measure association and effectiveness. The median age at the time of diagnosis was fifteen years (range, one to sixty-two years). The median duration of follow-up was 29.5 months (range, zero to 300 months). The overall rate of recurrence of aneurysmal bone cyst after surgical treatment was 11.5%. The rate of recurrence was 20.6% after curettage and high-speed-burr treatment alone and 7.5% after curettage and high-speed-burr treatment plus argon beam coagulation. The five-year Kaplan-Meier survival estimate was 92% for patients managed with curettage and adjuvant treatment with a high-speed burr and argon beam coagulation, compared with 73% for patients managed with curettage and a high-speed burr only (p = 0.060). Surgical treatment of aneurysmal bone cyst with curettage and adjuvant argon beam coagulation is effective. Postoperative fracture appears to be a common complication of this treatment and needs to be studied further. Treatment with curettage and high-speed burr alone may

  20. Tests of industrial ethylene-propylene rubber high voltage cable for cryogenic use

    CERN Document Server

    Balhan, B; Goddard, B; Muratori, G; Otwinowski, S; Rieubland, Jean Michel; Wang, H; CERN. Geneva. SPS and LEP Division

    1999-01-01

    At the beginning of 1999 UCLA has received a prototype High Voltage Cryogenic Cable supplied fee of charge by Pirelli. The cable is intended for more than ten years of service at 100 kV D.C. and liquid argon temperature. Thecable uses an all welded construction, whichi is axially tight and free of ionizable voids. The cable was submitted to a number of mechanical and electrical tests as described below.