WorldWideScience

Sample records for highly charged argon

  1. Charge transfer cross-sections of argon ions colliding on argon atoms

    International Nuclear Information System (INIS)

    Aubert, J.; Bliman, S.; Chan-Tung, N.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-04-01

    A device has been built to measure charge changing cross-sections of Argon ions colliding on argon atoms. It consists of an E.C.R. ion source (Micromafios) that delivers argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given separated charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The pressure is varied in the collision cell in order to check that the single collision condition is satisfied. It is shown that the ions do two types of collisions: charge exchange and stripping whose cross-sections are measured. Interpretation of charge exchange is proposed along yet classic theoretical approaches. As to stripping no available theory allows interpretation

  2. Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

    International Nuclear Information System (INIS)

    Biedermann, C; Radtke, R; Fussmann, G; Allen, F I

    2007-01-01

    Extreme ultraviolet radiation from highly charged argon was investigated at the Berlin Electron Beam Ion Trap with a 2 m grazing incidence spectrometer. Lines in the wavelength range 150 to 660 A originating from C-like Ar 12+ to Li-like Ar 15+ ions have been identified and are compared with database information from solar line lists and predictions. Line ratios for the observed resonance, intercombination and forbidden lines offer important diagnostic capabilities for low density, hot plasmas

  3. Cross sections for charge change in argon and equilibrium charge states of 3.5 MeV/amu uranium ions passing through argon and carbon targets

    International Nuclear Information System (INIS)

    Perumal, A.N.; Horvat, V.; Watson, R.L.; Peng, Y.; Fruchey, K.S.

    2005-01-01

    Cross sections for single and multiple electron capture and loss were measured for 3.5 MeV/amu uranium ions, traveling in argon gas, as a function of incident charge state. Multiple electron loss in single collisions was found to contribute significantly to the total loss cross section. The measured cross sections were used to determine the average equilibrium charge in argon by three different methods. The resulting charges were in good agreement with each other and with the effective charge calculated from stopping powers. In order to investigate the gas-solid (density) effect on the average equilibrium charge, the charge distributions of 3.5 MeV/amu uranium ions emerging from carbon foils of different thicknesses were measured. It was found that the average equilibrium charge of the uranium ions emerging from the solid is 41% larger than that of the uranium ions emerging from the gas. The energy dependences of the average equilibrium charges for uranium ions exiting carbon and argon targets were examined by combining the present results with previous results of other investigators and compared with the predictions of a semiempirical formula developed recently by Schiwietz and Grande

  4. Production of highly charged ions of argon by optical field ionization in a relativistic laser field

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Akahane, Yutaka; Aoyama, Makoto; Nakano, Fumihiko; Yamakawa, Koichi

    2001-01-01

    We observed the highly charged ions of argon by optical field ionization in a relativistic intensity regime. Charge states up to Ar 15+ were produced at the highest intensity of 800 nm, linearly polarized 20 fs Ti: sapphire laser pulses. The peak intensity of the pulse is determined by comparing the measured ion production curve for Ar 9+ with ADK theory. The results of these measurements of the ionization indicate that the maximum peak intensity is achieved to ∼2x10 19 W/cm 2 . (author)

  5. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  6. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  7. Ion charge-state production and photoionization near the K edge in argon and potassium

    International Nuclear Information System (INIS)

    Berry, H.G.; Azuma, Y.; Cowan, P.L.; Gemmell, D.S.; LeBrun, T.; Amusia, M.Y.

    1994-01-01

    We have measured the time-of-flight charge distributions of ions of argon and potassium following x-ray absorption at energies near their respective K edges. We confirm previously observed enhancements of the higher charge states at energies up to 100 eV below the K edge in argon. The measurements confirm recent calculations suggesting excitation of a virtual 1s state in this energy range

  8. First Measurement of one Pion Production in Charged Current Neutrino and Antineutrino events on Argon

    Energy Technology Data Exchange (ETDEWEB)

    Scanavini, Scanavini,Giacomo [Yale U.

    2017-01-01

    This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons in the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.

  9. High rate amplifier-digitizer system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    Droege, T.F.; Lobkowicz, F.; Fukushima, Y.

    1978-01-01

    A low-cost charge amplifier for a liquid argon photon detector and a new method for pulse height analysis are described. This scheme is suitable for high-energy photon detection with high counting rate. Samples of preamplifer output are taken just before and just after the arrival of the charge from the detector. The difference of these samples provides a stable pedestal and rejects low frequency noise. Short two-pulse resolving time (approximately equal to 200ns) is achieved. 6 refs

  10. Argon-ion charge distributions following near-threshold ionization

    International Nuclear Information System (INIS)

    Levin, J.C.

    1990-01-01

    When an atom is photoionized in an inner shell, there are two mechanisms by which the remaining electron cortege relaxes to fill the vacancy: x-ray emission and radiationless Auger and Coster-Kronig transitions. In the former, the inner-shell hole moves to a less tightly bound orbital without increasing the number of atomic vacancies. In Auger processes, however, the energy liberated by transfer of a less-tightly-bound electron to the inner-shell vacancy is transferred to another electron which is ejected into the continuum. In this case, the charge on the residual ion increases by one. Through a series of radiative and non-radiative processes, the initial vacancy bubbles up until all vacancies arrive at the outermost shell. Due to the many possible routes by which this may occur, there can be a broad distribution of residual ion charge states characteristic of the decay of a single inner-shell vacancy. Because so many processes can contribute to each charge state, it is difficult to determine the effect of each by examining the total ion charge distribution; the total-ion charge distribution represents an average over many effects. To overcome this limitation, the author has recently measured argon-ion production as a function of both photon energy and Auger decay channel following photoionization of K-shell electrons with highly monochromatic synchrotron radiation. When measured differential in decay channel, the ion charge distributions are greatly simplified. Analysis, in progress, of these simplified distributions will permit extraction of information about relative decay rates and shakeoff effects that is obscured in the single spectra

  11. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma.

  12. High pressure argon detector of high energy neutrinos

    International Nuclear Information System (INIS)

    Vishnevskii, A.V.; Golutvin, I.A.; Sarantsev, V.L.; Sviridov, V.A.; Dolgoshein, B.A.; Kalinovskii, A.N.; Sosnovtsev, V.V.; Chernyatin, V.K.; Kaftanov, V.S.; Khovanskii, V.D.; Shevchenko, V.G.

    1979-01-01

    In the present paper, we suggest an electron neutrino detector of a new type where track information is available for all charged particles. As a working medium we use Argon compressed up to a pressure of 100 to 150 atm (approximately 0.2-0.3 g/cm 3 ). The spatial reconstruction of tracks are accomplished with an accuracy not inferior to that of bubble chambers. The detector has a high sensitivity in ionization measurements. An assembly with a working medium mass of approximately 100 tons seem to be realisable. This makes it possible to perform tasks with cross-sections of (10 -5 + 10 -3 ) x delty tot at an intensity of the neutrino beam which is available in present-day accelerators. (orig.)

  13. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Barranco-Luque, M.; Fabjan, C.W.; Frandsen, P.K.

    1982-01-01

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  14. A highly segmented and compact liquid argon calorimeter for the LHC the TGT calorimeter

    CERN Document Server

    Berger, C; Geulig, H; Pierschel, G; Siedling, R; Tutas, J; Wlochal, M; Wotschack, J; Cheplakov, A P; Eremeev, R V; Feshchenko, A; Gavrishchuk, O P; Kazarinov, Yu M; Khrenov, Yu V; Kukhtin, V V; Ladygin, E; Obudovskij, V; Shalyugin, A N; Tolmachev, V T; Volodko, A G; Geweniger, C; Hanke, P; Kluge, E E; Krause, J; Putzer, A; Tittel, K; Wunsch, M; Bán, J; Bruncko, Dusan; Kriván, F; Kurca, T; Murín, P; Sándor, L; Spalek, J; Aderholz, Michael; Brettel, H; Dydak, Friedrich; Fent, J; Huber, J; Hajduk, L; Jakobs, K; Kiesling, C; Oberlack, H; Schacht, P; Stiegler, U; Bogolyubsky, M Yu; Chekulaev, S V; Kiryunin, A E; Kurchaninov, L L; Levitsky, M S; Maximov, V V; Minaenko, A A; Moiseev, A M; Semenov, P A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter is proposed as an R&D project for an LHC calorimeter with full rapidity coverage. The proposed ``Thin Gap Turbine'' (TGT) calorimeter offers uniform energy response and constant energy resolution independent of the production angle of the impinging particle and of its impact position at the calorimeter. An important aspect of the project is the development of electronics for fast signal processing matched to the short charge collection time in the TGT read-out cell. The system aspects of the integration of a high degree of signal processing into the liquid argon would be investigated.

  15. High charge state heavy ion production from a PIG source

    International Nuclear Information System (INIS)

    Bex, L.; Clark, D.J.; Ellsworth, C.E.; Flood, W.S.; Gough, R.A.; Holley, W.R.; Meriwether, J.R.; Morris, D.

    1975-03-01

    The comparison of pulsed vs. dc arc operation for nitrogen and argon shows a shift in charge distribution toward the higher charge states for the pulsed case. Tests with various magnetic field shapes along the arc column show a significant increase in high charge state output for a uniform field compared to the case with a field low at the cathodes. (U.S.)

  16. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  17. Charge exchange recombination in X-ray spectra of He-like argon measured at the tokamak TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Schlummer, Tobias

    2014-06-16

    {sub 0}(r) and D {sub perpendicular} {sub to} (r). In most cases the spectra can be reconstructed with high accuracy along the entire radial field of view. The deduced D {sub perpendicular} {sub to} (r) and n{sub 0}(r) are in good agreement with earlier experimental and modeling results. The presented analysis not only resolves the long-standing issues concerning the intensity ratios in the K{sub α}-spectra of He-like ions. It also introduces imaging K{sub α}-spectroscopy as suitable diagnostic for the neutral particle density and the impurity transport behavior in fusion plasmas. Additionally, the radial profiles of the electron and the ion temperature obtained from the K{sub α}-spectra are presented and compared to results from other diagnostics. Charge exchange is not only relevant in regard to the thermal background neutrals. It also plays a key role in charge exchange recombination spectroscopy (CXRS). For impurity density measurements based on CXRS the accuracy of the charge exchange cross sections are of crucial importance. However, so far no experimental verification of the fine-structure resolved cross sections for charge exchange on highly ionized impurity ions has been performed, whereat the available theoretical data sets show significant deviations. In this work the unique diagnostic opportunities at TEXTOR are used to measure the Rydberg series of He-like argon (1snp - 1s{sup 2}, ca. 3 Aa) under direct influence of a neutral particle heating beam (50 keV). The characteristic line enhancement caused by the beam particles is consistent with one set of the theoretical charge exchange cross sections. Both, the absolute values as well as the dependence on the principle and the orbital quantum numbers can be confirmed. The results represent the first experimental verification of the fine-structure resolved cross sections for charge exchange at CXRS relevant collision energies and give confidence in the quality of the theoretical data.

  18. Argon analytical procedures for potassium-argon dating

    International Nuclear Information System (INIS)

    Gabites, J.E.; Adams, C.J.

    1981-01-01

    A manual for the argon analytical methods involved in potassium-argon geochronology, including: i) operating procedures for the ultra-high vacuum argon extraction/purification equipment for the analysis of nanolitre quantities of radiogenic argon in rocks, minerals and gases; ii) operating procedures for the AEI-MS10 gas source mass spectrometer

  19. Commissioning and Charge Readout Calibration of a 5 Ton Dual Phase Liquid Argon TPC

    CERN Document Server

    AUTHOR|(CDS)2098555

    Dual phase time projection chambers with amplification of ionization electrons provide a novel technique for measuring and analyzing rare events with excellent spatial resolution and great calorimetric properties. This thesis describes the commissioning of the WA105 3 x 1 x 1 m3 dual phase liquid argon detector, built to demonstrate the performance of this kind of detector on large scales in order to determine the viability of giant dual phase time projection chambers in long baseline neutrino oscillation experiments. The properties of the insulation and the main tank vessel are described and analyzed, such as the pressure, temperature and argon purity requirements during operation in order to guarantee stable conditions and good event tracking. As signals are induced due to electrons from ionizing radiation, crosstalk is caused by capacitive couplings between strips of the charge readout plane and in the electronics of the data acquisition. These induced signals are studied and compared to capacitance and pu...

  20. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  1. Induced luminescence by charged particles on gaseous, liquid and solid argon

    International Nuclear Information System (INIS)

    Carvalho Torres, M.J.

    1980-01-01

    A spectral and a kinetic study of the scintillation induced by β and α particles in gaseous, liquid and solid argon have been made in the wavelength region comprised between 1100 and 3000A. The radiative lifetimes and some spectroscopic parameters of the lowest dimer states ( 1 Σ + sub(u) and 3 Σ + sub(u)) have been determined: tau 0 ( 1 Σ + sub(u)) = 4.2ns; tau 0 ( 3 Σ + sub(u)) = 3.1μs; ΔE( 1 Σ + sub(u)- 3 Σ + sub(u)) = 52 meV; hω = 230 cm -1 . A non radiative de-excitation rate of the 3 Σ + sub(u) state has been measured: approximately 2x10 -17 cm 3 s -1 . By applying an electric field the contribution of the electron-ion recombination mechanism to the gaseous argon scintillation is studied. For condensed argon, the dependence of the ratio between the fluorescence and the phosphorescence intensities on the ionisation power of the impinging particle is verified. The continuum which extends from 1600 to 2900A and that is present only in the gas phase spectra, is ascribed to the radiative de-excitation of molecular ions. A time resolved study of the luminescence of high pressure (1-15atm) argon excited by a pulsed electric discharge has also been performed and is compared with that of the scintillation induced by nuclear particles [fr

  2. The Argon Dark Matter Experiment

    CERN Document Server

    AUTHOR|(CDS)2071720

    2009-01-01

    The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils. These events will be discerned by their light to charge ratio, as well as the time structure of the scintillation light. The experiment is presently under construction and commissioning on surface at CERN. Cryogenic operation and light detection performance was recently confirmed in a test run of the full 1 ton liquid argon target under purely calorimetric operation and with a prototype light readout system. This note describes the experimental concept, the main detector components and presents some first results.

  3. Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon

    Science.gov (United States)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2018-06-01

    Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.

  4. Charge changing collision cross sections of atomic ions

    International Nuclear Information System (INIS)

    Bliman, S.; Dousson, S.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-05-01

    A device has been built to measure charge changing cross sections of atomic ions. It consists of an E.C.R. ion source (Micromafios) that delivers oxygen ions up to charge + 8, argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The single collision condition is checked. Different collisions are considered: 1- Charge exchange collisions of argon ions with charge 2<=Z<=12 on argon. Cross sections for capture of 1, 2 and 3 electrons are given. 2- Stripping of argon ions (1<=Z<=4) on argon atoms. 3- Charge exchange of oxygen ions (2<=Z<=8) colliding on deuterium. One and two electron capture cross sections are presented

  5. Diagnostics of Argon Injected Hydrogen Peroxide Added High Frequency Underwater Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Muhammad Waqar Ahmed

    2016-05-01

    Full Text Available The effects of hydrogen peroxide addition and Argon injection on electrical and spectral characteristics of underwater capillary discharge were investigated. The flowing water discharge was created in a quartz tube (Φ = 4mm outer; Φ = 2mm inner; thickness 1mm by applying high frequency (25 kHz alternating current voltage (0-15kV across the tungsten electrodes (Φ=0.5mm, in pin-pin electrode configuration, separated by a gap distance of 10 mm. The results of no hydrogen peroxide addition and no Argon gas injection were compared with addition of hydrogen peroxide and Argon injection for different values. The emission spectrum was taken to present the increase in concentration of •OH radicals with and without hydrogen peroxide addition under different argon injection rates. The results demonstrated that addition of hydrogen peroxide do not remarkably affected the conductivity of water, but its addition increased the yield rate of •OH radicals generated by plasma discharge. The addition of Argon generated bubbles and gas channels reduced the high power consumption required for inducing flowing water long gap discharge. The results showed large concentration of •OH radicals due to hydrogen peroxide addition, less required input power for generating flowing water discharge by using high frequency input voltage and due to Argon injection.

  6. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  7. Argon Diffusion Measured in Rhyolite Melt at 100 MPa

    Science.gov (United States)

    Weldon, N.; Edwards, P. M.; Watkins, J. M.; Lesher, C. E.

    2016-12-01

    Argon diffusivity (D_{Ar} ) controls the rate and length scale of argon exchange between melt and gas phases and is used as a parameter to model noble gas fractionation during magma degassing. D_{Ar} may also be useful in geochronology to estimate the distribution of excess (non-radiogenic) atmospheric argon in lavas. Our measurements of D_{Ar} in molten anhydrous rhyolite near 1000 °C and 100 MPa add to the existing dataset. Using a rapid-quench cold seal pressure apparatus we exposed cylindrical charges drilled from a Miocene rhyolite flow near Buck Mtn., CA to a pure argon atmosphere resulting in a gradually lengthening argon concentration gradient between the saturated surface and the argon poor interior. Argon concentration was measured by electron microprobe along radial transects from the center to the surface of bisected samples. D_{Ar} was calculated for each transect by fitting relative argon concentration (as a function of distance from the surface) to Green's function (given each experiment's specific temperature, pressure and runtime). Variability (σ = 1.202{μm }^{2} /s) was smaller than in previous studies, but still greater than what is likely due to analytical or experimental uncertainty. We observed a symmetric geometric bias in the distribution of argon in our samples, possibly related to advective redistribution of argon accompanying the deformation of cylindrical charges into spheroids driven by surface tension. Average diffusivity, D_{Ar} = 4.791{μm }^{2} /s, is close to the predicted value, D_{Ar} = {μm }^{2} /s ( σ_{ \\bar{x} } = 1.576 {μm }^{2} /s), suggesting that Behrens and Zhang's (2001) empirical model is valid for anhydrous rhyolite melts to relatively higher temperatures and lower pressures. Behrens, H. and Y. Zhang (2001). "Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation." Earth and Planetary Science Letters 192: 363-376.

  8. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  9. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  10. High capacity argon extraction and purification system. [Suitable for age estimation of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, K; Morik, Gy [Magyar Tudomanyos Akademia Atommag Kutato Intezete, Debrecen

    1979-01-01

    A high capacity metal-glass argon extraction and purification system has been developed for K/Ar dating of geologic materials. A set of samples can be loaded simultaneously and degassed in turn in the system by high frequency induction heating in a molybdenum crucible. The argon purification is carried out by titanium sponge, molecular sieve, copper oxide and glass and charcoal filled traps cooled by liquid nitrogen. The /sup 38/Ar spike and the atmospheric argon used for calibrating the mass spectrometer are dispensed by a gas-pipette system. 80-120 minutes after starting the degassing of the sample, the purified argon can be introduced into the mass spectrometer; the gettering materials regenerate in 1-5 hours, thus 1-3 samples may be analysed a day. The atmospheric argon inflow during an experimental process is less than 5x10/sup -8/ cc STP.

  11. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  12. Penning traps with unitary architecture for storage of highly charged ions

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  13. Optical spectroscopy of high-L Rydberg states of argon

    International Nuclear Information System (INIS)

    Wright, L. E.; Snow, E. L.; Lundeen, S. R.; Sturrus, W. G.

    2007-01-01

    High-L fine structure patterns in n=9 and n=17 Rydberg levels of argon have been studied using a Doppler-tuned CO 2 laser and a fast beam of argon atoms. Analysis of the measured pattern using the polarization model yields the scalar dipole polarizability and quadrupole moment of the 2 P 3 at ∼sol∼ at 2 Ar + ion. The results are α S =6.83(8)a 0 3 and Q=-0.5177(15)ea 0 2 . Within the precision of this study, no vector component of the structure was observed

  14. Energy resolution in liquid argon doped with allene

    International Nuclear Information System (INIS)

    Ichinose, H.; Doke, T.; Masuda, K.; Shibamura, E.

    1989-01-01

    Studies have been made on liquid argon as detection medium with large volume and good energy and position resolution. It is advantageous to dope liquid argon with molecules with an ionization potential lower than the energy of scintillation light. In the present work, the energy resolution for 5.305MeV alpha particles is examined, and the effect of allene added to liquid argon is investigated. Some preliminary results for 976 KeV electrons are also presented. Allene is purified by two methods: (a) small-quantity purification and (b) mass purification. Three methods are tried for mixing allene with argon. Results concerning the allene purification methods, effect of allene concentration, and allene-argon mixing methods are presented. Discussion is made of the collected charge and energy resolution. It is concluded that the addition of allene to liquid argon greatly improves the energy resolution of 5.305 MeV alpha particles. The best intrinsic resolution is 1.4 percent FWHM obtained for 4 ppm allene doped liquid argon. In the case of 976 KeV electron radiation, energy resolution is not improved by adding allene to liquid argon. The best resolution is 31 KeV FWHM obtaiend for 65ppm allene doped liquid argon. (N.K.)

  15. Moments and mean square charge radii of short-lived argon isotopes

    CERN Document Server

    Klein, A; Georg, U; Keim, M; Lievens, P; Neugart, R; Neuroth, M; Silverans, R E; Vermeeren, L

    1996-01-01

    We report on the measurement of optical isotope shifts for $^{32-40}$Ar and for $^{46}$Ar from which the changes in mean square nuclear charge radii across the N = 20 neutron shell closure are deducted. The investigations were carried out by collinear laser spectroscopy in fast beams of neutral argon atoms. The ultra-sensitive detection combines optical pumping, state-selective collisional ionization and counting of $\\beta$-radioactivity. By reaching far into the sd-shell, the results add new information to the systematics of radii in the calcium region (Z $\\approx$ 20). Contrary to all major neutron shell closures with N $\\geq$ 28, the N = 20 shell closure causes no significant slope change in the development of the radii. Information from the hyperfine structure of the odd-A isotopes includes includes the magnetic moments of $^{33}$Ar (I=1/2) and $^{39}$Ar (I=7/2), and the quadrupole moments of $^{35}$Ar, $^{37}$Ar (I=3/2) and $^{39}$Ar. The electromagnetic moments are compared to shell-model predictions fo...

  16. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  17. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  18. Electron loss from 0.74 and 1.4 MeV/u low-charge-state argon and xenon ions colliding with neon, nitrogen, and argon

    International Nuclear Information System (INIS)

    DuBois, R.D.; Santos, A.C.F.; Olson, R.E.

    2003-07-01

    Absolute total, single, and multiple electron loss cross sections are measured for Ar + -, Ar 2+ -, and Xe 3+ - Ne, N 2 , Ar collisions at 0.74 and 1.4 MeV/u. In addition, a many-body Classical Trajectory Monte Carlo model was used to calculate total and multiple electron loss cross sections for Ar + impact. For N 2 and Ar targets, excellent agreement between the measured and calculated cross sections is found; for the Ne target the experimental data are approximately 40% smaller than the theoretical predictions. The experimental data are also used to examine cross section scaling characteristics for electron loss from fast, low-charge-state, heavy ions. It is shown that multiple electron loss increased the mean charge states of the outgoing argon and xenon ions by two and three respectively. The cross sections decreased with increasing number of electrons lost and scaled roughly as the inverse of the sum of the ionization potentials required to sequentially remove the most weakly bound, next most weakly bound, etc., electrons. This scaling was found to be independent of projectile, incoming charge state, and target. In addition, the experimental total loss cross sections are found to be nearly constant as a function of initial projectile charge state. As a function of impact energy, the theoretical predictions yield an E -1/3 behavior between 0.5 and 30 MeV/u for the total loss cross sections. Within error bars the data are consistent with this energy dependence but are also consistent with an E -1/2 energy dependence. (orig.)

  19. Central depression of nuclear charge density distribution

    International Nuclear Information System (INIS)

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-01-01

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  20. Irradiation tests of ATLAS liquid argon forward calorimeter (FCAL) electronics components

    CERN Document Server

    Leroy, C; Golikov, V; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Merkulov, L; Minashkin, V F; Shalyugin, A N

    2002-01-01

    FCAL resistors, capacitors, and transformers together with capacitors and sintimid disks of the purity monitor have been irradiated in liquid argon to study their possible lead to argon pollution at a maximal neutron fluence of 1016 n cm-2 at the IBR-2 reactor of JINR, Dubna. The results of charge collection measurements before and after irradiation are reported. Electrical measurement on these FCAL capacitors, resistors and transformers were also performed after irradiation. In general, the results of resistance, capacitance, impedance, leakage current and high voltage breakdown measurements after irradiation show minor changes of value only for some parameters from nominal values or values measured before irradiation.

  1. A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers arXiv

    CERN Document Server

    Aimard, B.; Asaadi, J.; Auger, M.; Aushev, V.; Autiero, D.; Badoi, M.M.; Balaceanu, A.; Balik, G.; Balleyguier, L.; Bechetoille, E.; Belver, D.; Blebea-Apostu, A.M.; Bolognesi, S.; Bordoni, S.; Bourgeois, N.; Bourguille, B.; Bremer, J.; Brown, G.; Brunetti, G.; Caiulo, D.; Calin, M.; Calvo, E.; Campanelli, M.; Cankocak, K.; Cantini, C.; Carlus, B.; Cautisanu, B.M.; Chalifour, M.; Chappuis, A.; Charitonidis, N.; Chatterjee, A.; Chiriacescu, A.; Chiu, P.; Conforti, S.; Cotte, Ph.; Crivelli, P.; Cuesta, C.; Dawson, J.; De Bonis, I.; De La Taille, C.; Delbart, A.; Desforge, D.; Di Luise, S.; Dimitru, B.S.; Doizon, F.; Drancourt, C.; Duchesneau, D.; Dulucq, F.; Dumarchez, J.; Duval, F.; Emery, S.; Ereditato, A.; Esanu, T.; Falcone, A.; Fusshoeller, K.; Gallego-Ros, A.; Galymov, V.; Geffroy, N.; Gendotti, A.; Gherghel-Lascu, M.; Giganti, C.; Gil-Botella, I.; Girerd, C.; Gomoiu, M.C.; Gorodetzky, P.; Hamada, E.; Hanni, R.; Hasegawa, T.; Holin, A.; Horikawa, S.; Ikeno, M.; Jiménez, S.; Jipa, A.; Karolak, M.; Karyotakis, Y.; Kasai, S.; Kasami, K.; Kishishita, T.; Kreslo, I.; Kryn, D.; Lastoria, C.; Lazanu, I.; Lehmann-Miotto, G.; Lira, N.; Loo, K.; Lorca, D.; Lutz, P.; Lux, T.; Maalampi, J.; Maire, G.; Maki, M.; Manenti, L.; Margineanu, R.M.; Marteau, J.; Martin-Chassard, G.; Mathez, H.; Mazzucato, E.; Misitano, G.; Mitrica, B.; Mladenov, D.; Molina Bueno, L.; Moreno Martínez, C.; Mols, J.Ph.; Mosu, T.S.; Mu, W.; Munteanu, A.; Murphy, S.; Nakayoshi, K.; Narita, S.; Navas-Nicolás, D.; Negishi, K.; Nessi, M.; Niculescu-Oglinzanu, M.; Nita, L.; Noto, F.; Noury, A.; Onishchuk, Y.; Palomares, C.; Parvu, M.; Patzak, T.; Pénichot, Y.; Pennacchio, E.; Periale, L.; Pessard, H.; Pietropaolo, F.; Piret, Y.; Popov, B.; Pugnere, D.; Radics, B.; Redondo, D.; Regenfus, C.; Remoto, A.; Resnati, F.; Rigaut, Y.A.; Ristea, C.; Rubbia, A.; Saftoiu, A.; Sakashita, K.; Sanchez, F.; Santos, C.; Scarpelli, A.; Schloesser, C.; Scotto Lavina, L.; Sendai, K.; Sergiampietri, F.; Shahsavarani, S.; Shoji, M.; Sinclair, J.; Soto-Oton, J.; Stanca, D.L.; Stefan, D.; Stroescu, P.; Sulej, R.; Tanaka, M.; Toboaru, V.; Tonazzo, A.; Tromeur, W.; Trzaska, W.H.; Uchida, T.; Vannucci, F.; Vasseur, G.; Verdugo, A.; Viant, T.; Vihonen, S.; Vilalte, S.; Weber, M.; Wu, S.; Yu, J.; Zambelli, L.; Zito, M.

    A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and others several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of 3 x1x1 m^3 has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillation and electroluminiscence detection, and purity of the liquid argon from analyses of a collected sample of cosmic ray muons.

  2. Hartree--Slater calculation of the cross section for L-shell ionization of argon by simple heavy charged particles

    International Nuclear Information System (INIS)

    Choi, B.

    1975-01-01

    The cross sections for L-shell and subshell ionization by direct Coulomb excitation of argon by incident heavy charged particles are evaluated. Incident particles are described in the plane-wave Born approximation, and nonrelativistic Hartree-Slater (HS) wave functions are used for the atomic electrons. Form factors, energy distributions, and ionization cross sections are compared with those obtained from screened hydrogenic wave functions. At most incident energies, the HS results for the total ionization cross section are only slightly smaller than those obtained with screened hydrogenic wave functions, but considerable discrepancies are found for form factors and energy distributions near the ionization threshold

  3. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  4. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  5. Study of electron recombination in liquid argon with the ICARUS TPC

    International Nuclear Information System (INIS)

    Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bruzzese, R.; Bueno, A.; Buzzanca, M.; Calligarich, E.; Campanelli, M.; Carbonara, F.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, K.; Cline, D.; Cocco, A.G.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Di Cicco, A.; Dolfini, R.; Ereditato, A.; Felcini, M.; Ferrari, A.; Ferri, F.; Fiorillo, G.; Galli, S.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Mangano, G.; Markiewicz, M.; Martinez de la Ossa, A.; Matthey, C.; Mauri, F.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.R.; Santorelli, R.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Spinelli, N.; Stepaniak, J.; Sulej, R.; Szarska, M.; Szeptycka, M.; Terrani, M.; Velotta, R.; Ventura, S.; Vignoli, C.; Wang, H.; Wang, X.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W.

    2004-01-01

    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out

  6. Techniques for enhancing the performance of high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1999-01-01

    Electron Cyclotron Resonance ion source (ECRIS), which produces singly to highly charged ions, is widely used in heavy ion accelerators and is finding applications in industry. It has progressed significantly in recent years thanks to a few techniques, such as multiple-frequency plasma heating, higher mirror magnetic fields and a better cold electron donor. These techniques greatly enhance the production of highly charged ions. More than 1 emA of He 2+ and O 6+ , hundreds of eμA of O 7+ , Ne 8+ , Ar 12+ , more than 100 eμA of intermediate heavy ions with charge states up to Ne 9+ , Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , tens of eμA of heavy ions with charge states up to Xe 28+ , Au 35+ , Bi 34+ and U 34+ were produced at cw mode operation. At an intensity of about 1 eμA, the charge states for the heavy ions increased up to Xe 36+ , Au 46+ , Bi 47+ and U 48+ . More than an order of magnitude enhancement of fully stripped argon ions was achieved (I≥0.1 and h;eμA). Higher charge state ions up to Kr 35+ , Xe 46+ and U 64+ at low intensities were produced for the first time from an ECRIS. copyright 1999 American Institute of Physics

  7. Pressure regulation in the dry-boxes. Argon purification; Regulation de pression dans les boites a gants. Purification d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Pascard, R; Fabre, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author) [French] Chaque boite a gants est munie d'une installation autonome de circulation purification d'argon et de regulation de pression. Cette installation comprend essentiellement un reservoir tampon, un compresseur et deux vannes electromagnetiques commandees par un manometre a contact. Le compresseur et les vannes sont enfermes dans le reservoir de maniere a realiser un ensemble aussi compact que possible. L'argon est purifie par passage dans un four en derivation charge de tournure de titane-zirconium, porte a environ 800 deg. C. Avec ce dispositif, on obtient, outre le maintien automatique d'une depression constante dans la boite, un argon dont la teneur en oxygene est indecelable par la methode a l'hydrate manganeux. (auteur)

  8. Neutrino-argon interactions in the T2K near detector

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Lukas; Radermacher, Thomas; Roth, Stefan; Steinmann, Jochen [III. Physikalisches Institut B, RWTH Aachen (Germany)

    2016-07-01

    The T2K near detector employs three large, argon-filled TPCs with a total fiducial volume of about 10 m{sup 3} at ambient pressure. These TPCs have been exposed to the intense T2K muon-neutrino beam since the start of the experiment. The beam has a mean neutrino energy of 600 MeV and so far, data corresponding to over 6 . 10{sup 20}(4 . 10{sup 20}) protons on target was recorded in neutrino (anti-neutrino) mode. We expect about 600 charged current neutrino-argon interactions in the data. That enables us to do the world's first neutrino-Argon cross section measurement in gaseous argon, thus making an important contribution to constraining nuclear interaction models for future neutrino oscillation measurements. This talk describes the physics goals and present the current status of the analysis.

  9. Pre-breakdown light emission phenomena in low-pressure argon between parabolic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wagenaars, E [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Perriens, N W B [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brok, W J M [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Bowden, M D [Department of Physics and Astronomy, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Veldhuizen, E M van [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Kroesen, G M W [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2006-09-07

    An experimental study on pre-breakdown light emission in low-pressure argon gas was performed. In a pulsed discharge, pre-breakdown phenomena were observed for repetition rates between 100 and 2000 Hz and pulse duration of 100 {mu}s. These phenomena were studied with time-resolved emission imaging using an intensified charge coupled device camera. The origin of the pre-breakdown emission was identified as diffusion of volume charges left over from previous discharges. These charges were accelerated towards the anode in small electron avalanches causing excitation of argon atoms. Different spatial distributions of the pre-breakdown light emission for different times between discharges were measured and the effects of the pre-breakdown phenomena on the main breakdown phase were studied using a double voltage pulse. The observed effects were attributed to the distribution of volume charges, left over from previous discharges, in the discharge gap during the pre-breakdown phase.

  10. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters

    International Nuclear Information System (INIS)

    Adrouche, N.

    2006-09-01

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne 9+- argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne 9+ with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne 9+ beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  11. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  12. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  13. Investigation of the continuum radiation from a high pressure argon arc

    International Nuclear Information System (INIS)

    Glasser, J.; Chapelle, J.

    1975-01-01

    At the high electronic densities existing in high temperature strongly correlated plasmas (with number of electrons in the Debye sphere Nd<<1) it is sometimes difficult to find lines for which Stark broadening allows determination of electronic density. Since the broadening effect is rather strong, the lines overlap or could not be easily extracted from the intense continuous background. The continuum emission in the UV, visible and near infra-red regions, principally due to the radiative recombination, could thus be widely used for the diagnostics of such plasmas. So far a limited number of data on the continuum emission of Argon plasma is available. At the same time certain discrepancies between theoretical predictions and experiments have also been found. The aim of this work is to obtain more elaborated data on the Argon continuum emission at high pressure, where the differences were found to be the largest. (Auth.)

  14. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  15. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  16. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  17. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  18. Electron transfer from H2 and Ar to stored multiply charged argon ions produced by synchrotron radiation

    International Nuclear Information System (INIS)

    Kravis, S.D.; Church, D.A.; Johnson, B.M.; Meron, M.; Jones, K.W.; Levin, J.C.; Sellin, I.A.; Azuma, Y.; Berrah-Mansour, N.; Berry, H.G.; Druetta, M.

    1992-01-01

    The rate coefficients for electron transfer from Ar and H 2 to Ar q+ ions (3≤q≤6) have been measured using an ion-storage technique in a Penning ion trap. The ions were produced in the trap by K-shell photoionization of Ar atoms, using broadband synchrotron x-ray radiation. K-electron removal resulted in vacancy cascading, yielding a distribution of argon-ion charge states peaked near Ar 4+ . The stored ion gas had an initial temperature near 480 K. The basic data determining the rate coefficients k(Ar q+ ) are the storage time constants of each charge state in the trap, in the presence of a measured pressure of target gas. The results of the measurements (in units of 10 -9 cm 3 s -1 ) are k(Ar 3+ ,H 2 )=4.3(0.7), k(Ar 3+ ,Ar)=1.6(0.2), k(Ar 4+ ,H 2 )=5.2(0.6), k(Ar 4+ ,Ar)=2.5(0.3), k(Ar 5+ ,H 2 )=5.9(0.7), k(Ar 5+ ,Ar)=2.9(0.3), k(Ar 6+ ,H 2 )=8.5(1.2), and k(Ar 6+ ,Ar)=2.5(0.3)

  19. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  20. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  1. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

    International Nuclear Information System (INIS)

    Bondarenko, G G; Fisher, M R; Kristya, V I

    2012-01-01

    Simulation of the electron, ion and metastable excited atom transport in the argon-mercury mixture low-current discharge is fulfilled. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained and it is demonstrated that the principal mechanism of mercury ion generation is the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations show that the mercury and argon ion flow densities near the cathode are of the same order already under the relative mercury content of about 10 −4 corresponding at the argon pressure 10 3 Pa to the mixture temperature 30 C. Therefore, at the room temperature the electrodes of mercury illuminating lamps at the stage of their ignition are sputtered predominantly by mercury ions.

  2. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  3. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    Science.gov (United States)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  4. Conclusions from the engineering subgroup of the SSC liquid argon calorimeter working group

    International Nuclear Information System (INIS)

    Bederede, D.; Cooper, W.; Mulholland, G.; Kroon, P.; Guryn, W.; Lobkowicz, F.; Mason, I.; Pohlen, J.; Schindler, R.H.; Scholle, E.A.; Watanabe, Y.; Watt, R.

    1990-01-01

    The SSC Calorimeter Workshop was organized to explore the feasibility of each calorimeter technology for use in a 4π detector at the SSC. The Liquid Argon Calorimeter group further subdivided into four subgroups; Hermeticity, Engineering, Module Details, and Electronics. This is the report of the Engineering Subgroup whose charge was to evaluate the cost, schedule, manpower, safety, and facilities requirements for the construction of a large liquid argon calorimeter for the SSC

  5. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    INSPIRE-00507268

    2017-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  6. Charge Sensitive Amplifier (CSA) in cold gas of Liquid Argon (LAr) Time Projection Chamber (TPC)

    International Nuclear Information System (INIS)

    Bechetoille, E; Mathez, H; Zoccarato, Y

    2011-01-01

    This paper presents our work on a 8-channel low noise Front-End electronic coupled to a Liquid Argon (LAr) TPC (Time Projection Chamber). Each channel consists of a Charge Sensitive Amplifier (CSA), a band pass filter and a 50 Ohms buffer as line driver. A serial link based on a 'i2c-like' protocol, provides multiple configuration features to the circuit by accessing slow control registers. In this paper, we describe the CSA, the shaper and the slow control part. The feedback network of the CSA is made of a capacitance and a resistor. Their values are respectively 250 fF and 4 MΩ. An input referred noise of, at most, 1500 e- rms must be achieved at -100 deg. C with an input detector capacitance of 250 pF to ensure a correct measurement of the minimal signal of 18000e- (2.88 fC). The power consumption in this cryogenic setup must be less than 40 mW from a 3.3 V power supply.

  7. Argon activation analysis, application to dating by the potassium-argon method; Analyse par activation de l'argon. Application a la datation par la methode potassium-argon

    Energy Technology Data Exchange (ETDEWEB)

    Dumesnil, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 10{sup 13} neutrons/cm{sup 2} sec{sup -1} and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author) [French] L'analyse par activation de l'argon 40 radiogenique a ete appliquee a la datation des roches par la methode K-Ar. L'argon est extrait de l'echantillon, purifie, active a saturation dans un flux de 2.10{sup 13} neutrons.cm{sup -2}.s{sup -1} et mesure en spectrometrie gamma. La sensibilite obtenue est telle qu'il est possible de mesurer des quantites d'argon correspondant a des ages de quelques milliers d'annees seulement. Cependant la correction de pollution de l'argon radiogenique par l'argon atmospherique n'ayant pu etre etablie avec precision, la limite d'age mesurable pratique est de l'ordre de 1 Ma. La methode a ete appliquee aux basaltes de la region du Mont-Dore. Les ages obtenus sont en assez bon accord avec les donnees geologiques, stratigraphiques et paleomagnetiques. (auteur)

  8. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  9. Comparison between argon/methane and argon/ethane gas mixtures in cylindrical drift chambers operating in a high transverse magnetic field

    International Nuclear Information System (INIS)

    Binder, U.; Boer, W. de; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Sack, B.

    1983-03-01

    We compare the behaviour of two commonly used gas mixtures argon/methane (90:10) and argon/ethane (50:50) in large cylindrical drift chambers operating in a transverse magnetic field of 1.3 T. The cooler gas argon/ethane was found to exhibit considerably smaller deflection angles, which in our case leads to an improved performance of the chambers. The deflection angles have been determined from a comparison of the experimental non-linear space time relation with the one calculated from a computer simulation of the drift process. For the simulation we use a simple model with only two free parameters. These two parameters are sufficient to obtain an accurate parametrization of the non-linear space time relation. (orig.)

  10. Comparison between argon/methane and argon/ethane gas mixtures in cylindrical drift chambers operating in a high transverse magnetic field

    International Nuclear Information System (INIS)

    Binder, U.; De Boer, W.; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Sack, B.

    1983-01-01

    We compare the behaviour of two commonly used gas mixture argon/methane (90:10) and argon/ethane (50:50) in large cylindrical drift chambers operating in a transverse magnetic field of 1.3 T. The cooler gas argon/ethane was found to exhibit considerably smaller deflection angles, which in our case leads to an improved performance of the chambers. The deflection angles have been determined from a comparison of the experimental non-linear space-time relation with the one calculated from a computer simulation of the drift process. For the simulation we use a simple model with only two free parameters. These two parameters are sufficient to obtain an accurate parametrization of the non-linear space-time relation. (orig.)

  11. Argon activation analysis, application to dating by the potassium-argon method; Analyse par activation de l'argon. Application a la datation par la methode potassium-argon

    Energy Technology Data Exchange (ETDEWEB)

    Dumesnil, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 10{sup 13} neutrons/cm{sup 2} sec{sup -1} and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author) [French] L'analyse par activation de l'argon 40 radiogenique a ete appliquee a la datation des roches par la methode K-Ar. L'argon est extrait de l'echantillon, purifie, active a saturation dans un flux de 2.10{sup 13} neutrons.cm{sup -2}.s{sup -1} et mesure en spectrometrie gamma. La sensibilite obtenue est telle qu'il est possible de mesurer des quantites d'argon correspondant a des ages de quelques milliers d'annees seulement. Cependant la correction de pollution de l'argon radiogenique par l'argon atmospherique n'ayant pu etre etablie avec precision, la limite d'age mesurable pratique est de l'ordre de 1 Ma. La methode a ete appliquee aux basaltes de la region du Mont-Dore. Les ages obtenus sont en assez bon accord avec les donnees geologiques, stratigraphiques et paleomagnetiques. (auteur)

  12. Argon Kα measurement on DIII endash D by Ross filters technique (abstract)

    International Nuclear Information System (INIS)

    Snider, R.T.; Bogatu, I.N.; Brooks, N.H.; Wade, M.R.

    1999-01-01

    Techniques to reduce the heat flux to the divertor plates in tokamak power plants and the consequent erosion of, and subsequent damage to the divertor target plates include the injection of impurities such as argon, that can dissipate the energy (through radiative or collisional processes) before it reaches the target plates. An important issue with this type of scheme is poisoning of the plasma core by the impurities introduced in the divertor region. Subsequently, there is a desire to measure the profiles of the injected impurities in the core. X-ray Ross filters with an effective narrow band pass centered on the argon Kα line at 3.2 keV, have been installed on two of the existing x-ray arrays on DIII endash D in order to help determine the argon concentration profiles. Emissivity profiles of the Kα lines and the emissivity profiles for the argon enhanced continuum can be inferred from the inverted filtered x-ray brightness signals if T e , n e , and Ar 18+ profiles are known. The MIST code is used to couple the filtered x-ray signals to the time dependent measurements of T e and n e . Further, the Ar 16+ profiles measured by charge transfer spectroscopy, are used as a constraint on the MIST code runs to calculate Ar 18+ profiles and unfold the argon emissivity profiles. A discussion of the Ross filters, the DIII endash D argon data, and the data analysis scheme for inferring argon emissivity profiles will be discussed. Estimates of the total argon concentration in the core determined from this technique in DIII endash D argon puff experiments will be presented. copyright 1999 American Institute of Physics

  13. Prospects for photosensitive dopants in liquid argon

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/π ratio. Previous results indicating high voltage problems and no change in the e/π ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs

  14. Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes

    Science.gov (United States)

    Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick

    2017-06-01

    The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.

  15. LBNO-DEMO (WA105): a large demonstrator of the Liquid Argon double phase TPC

    CERN Document Server

    Trzaska, Wladyslaw Henryk

    2015-01-01

    LBNO-DEMO (WA105) is a large demonstrator of the double phase liquid argon TPC intended to develop and test the main elements of the GLACIER-based design for the purpose of scaling it up to the 10–50 kton size needed for Long Baseline Neutrino Oscillation studies. The crucial components of the design are: ultra-high argon purity in non-evacuable tank, long drifts, very high drift voltages, large area Micro Pattern Gas Detectors, and cold preamplifiers. The active volume of the demonstrator is 666 m3 (approximately 300t). WA105 is under construction at CERN and will be exposed to charged particle beams (0.5-20 GeV/c) in the North Area in 2018. The data will provide the necessary calibration of the detector performance and benchmark reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program, including projects like LBNO and DUNE.

  16. Liquid Argon Calorimeter performance at High Rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  17. Muonium formation in xenon and argon up to 60 atmospheres

    International Nuclear Information System (INIS)

    Kempton, J.R.; Senba, M.; Arseneau, D.J.; Gonzalez, A.C.; Pan, J.J.; Tempelmann, A.; Garner, D.M.; Fleming, D.G.

    1991-01-01

    Results of muon polarization studies in xenon and argon up to 60 atm are reported. In argon for pressures up to 10 atm, the muon polarization is best explained by an epithermalcharge exchange model. Above this pressure, the decrease in P D and increase in P L are ascribed to charge neutralization and spin exchange reactions, respectively, in the radiolysis track. Measurements with Xe/He mixtures with a xenon pressure of 1 atm indicate that the lost polarization in the pure xenon at this pressure is due to inefficient moderation of the muon. As the pressure in pure xenon is increased above 10 atm, we find that P L remains roughly constant and P D begins to increase. The lost fraction may be due to the formation of a XeMu Van der Waals type complex, while P D is ascribed to XeMu + formation. This suggests that spur processes appear to be less important in xenon that in argon. (orig.)

  18. Strength, anisotropy, and preferred orientation of solid argon at high pressures

    Science.gov (United States)

    Mao, Ho-kwang; Badro, James; Shu, Jinfu; Hemley, Russell J.; Singh, Anil K.

    2006-06-01

    The elasticity and plasticity of materials at high pressure are of great importance for the fundamental insight they provide on bonding properties in dense matter and for applications ranging from geophysics to materials technology. We studied pressure-solidified argon with a boron-epoxy-beryllium composite gasket in a diamond anvil cell (DAC). Employing monochromatic synchrotron x-radiation and imaging plates in a radial diffraction geometry (Singh et al 1998 Phys. Rev. Lett. 80 2157; Mao et al 1998 Nature 396 741), we observed low strength in solid argon below 20 GPa, but the strength increases drastically with applied pressure, such that at 55 GPa, the shear strength exceeded 2.7 GPa. The elastic anisotropy at 55 GPa was four times higher than the extrapolated value from 30 GPa. Extensive (111) slip develops under uniaxial compression, as manifested by the preferred crystallographic orientation of (220) in the compression direction. These macroscopic properties reflect basic changes in van der Waals bondings under ultrahigh pressures.

  19. Strength, anisotropy, and preferred orientation of solid argon at high pressures

    International Nuclear Information System (INIS)

    Mao, Ho-kwang; Badro, James; Shu, Jinfu; Hemley, Russell J; Singh, Anil K

    2006-01-01

    The elasticity and plasticity of materials at high pressure are of great importance for the fundamental insight they provide on bonding properties in dense matter and for applications ranging from geophysics to materials technology. We studied pressure-solidified argon with a boron-epoxy-beryllium composite gasket in a diamond anvil cell (DAC). Employing monochromatic synchrotron x-radiation and imaging plates in a radial diffraction geometry (Singh et al 1998 Phys. Rev. Lett. 80 2157; Mao et al 1998 Nature 396 741), we observed low strength in solid argon below 20 GPa, but the strength increases drastically with applied pressure, such that at 55 GPa, the shear strength exceeded 2.7 GPa. The elastic anisotropy at 55 GPa was four times higher than the extrapolated value from 30 GPa. Extensive (111) slip develops under uniaxial compression, as manifested by the preferred crystallographic orientation of (220) in the compression direction. These macroscopic properties reflect basic changes in van der Waals bondings under ultrahigh pressures

  20. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Svec, H.J.; Fassel, V.A.

    1981-01-01

    Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas

  1. Preferential site occupancy observed in coexpanded argon-krypton clusters

    International Nuclear Information System (INIS)

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-01-01

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts

  2. Emittance measurements of high charge state argon beams from a pig source

    International Nuclear Information System (INIS)

    Bex, L.; Clark, D.J.; Ellsworth, C.E.; Estrella, R.M.; Gough, R.A.; Holley, W.R.

    1975-10-01

    The emittances of beams of Ar 4+ to Ar 8+ were measured in the axial and radial planes. The extraction voltage was 10 kV and the magnetic field was varied from about 0.5 to 0.6 Tesla. The anode slit was varied in distance from the arc, which was run both dc and pulsed. The emittance was nearly independent of charge state, but increased with total beam current. A small bowing of the arc column, which made evaluation of mirror field effects difficult, was discovered

  3. ArgonCube: a Modular Approach for Liquid Argon TPC Neutrino Detectors for Near Detector Environments

    CERN Document Server

    Auger, M; Sinclair, JR

    2017-01-01

    Liquid Argon Time Projection Chambers (LAr TPCs) are an ideal detector candidate for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently under consideration at the future LBNF/DUNE facility in the United States. That particular endeavor would be on the very large mass scale of 40~kt. Following diverse and long standing R\\&D work conducted over several years, with contributions from international collaborators, we propose a novel LAr TPC based on a fully-modular, innovative design, ArgonCube. ArgonCube will demonstrate that LAr TPCs are a viable detector technology for high-energy and high-multiplicity environments, such as the DUNE near detector. Necessary R\\&D work is proceeding along two main pathways; the first, aimed at the demonstration of modular detector design and the second, at the exploration of new signal readout methods. This two-pronged approach has provided a hig...

  4. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Braunschweig, W. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Schoentag, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Siedling, R. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Wlochal, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Putzer, A. [European Organization for Nuclear Research, Geneva (Switzerland); Wotschack, J. [European Organization for Nuclear Research, Geneva (Switzerland); Cheplakov, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Feshchenko, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kazarinov, M. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kukhtin, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Ladygin, E. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Obudovskij, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Geweniger, C. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Hanke, P. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Kluge, E.E. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Krause, J. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Schmidt, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Stenzel, H. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Tittel, K. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Wunsch, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Zerwas, D. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Bruncko, D. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Jusko, A. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Kocper, B.; RD33 Collaboration

    1994-11-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. (orig.)

  5. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.; Braunschweig, W.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.] [and others

    1995-04-21

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.)).

  6. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1995-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.))

  7. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1994-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  8. Emittance measurements of high charge state argon beams from a PIG source

    International Nuclear Information System (INIS)

    Bex, L.; Clark, D.J.; Ellsworth, C.E.; Estrella, R.M.; Gough, R.A.; Holley, W.R.

    1976-01-01

    The emittances of beams of Ar 4+ to Ar 8+ were measured in the axial and radial planes. The extraction voltage was 10 kV and the magnetic field was varied from about 0.5 to 0.6 Tesla. The anode slit was varied in its distance from the arc which was run both dc and pulsed. The emittance was found to be nearly independent of charge state but to increase with total beam current. A small bowing of the arc column was discovered, which made evaluation of mirror field effects difficult

  9. Nanographene charge trapping memory with a large memory window

    International Nuclear Information System (INIS)

    Meng, Jianling; Yang, Rong; Zhao, Jing; He, Congli; Wang, Guole; Shi, Dongxia; Zhang, Guangyu

    2015-01-01

    Nanographene is a promising alternative to metal nanoparticles or semiconductor nanocrystals for charge trapping memory. In general, a high density of nanographene is required in order to achieve high charge trapping capacity. Here, we demonstrate a strategy of fabrication for a high density of nanographene for charge trapping memory with a large memory window. The fabrication includes two steps: (1) direct growth of continuous nanographene film; and (2) isolation of the as-grown film into high-density nanographene by plasma etching. Compared with directly grown isolated nanographene islands, abundant defects and edges are formed in nanographene under argon or oxygen plasma etching, i.e. more isolated nanographene islands are obtained, which provides more charge trapping sites. As-fabricated nanographene charge trapping memory shows outstanding memory properties with a memory window as wide as ∼9 V at a relative low sweep voltage of ±8 V, program/erase speed of ∼1 ms and robust endurance of >1000 cycles. The high-density nanographene charge trapping memory provides an outstanding alternative for downscaling technology beyond the current flash memory. (paper)

  10. Energy loss of argon in a laser-generated carbon plasma.

    Science.gov (United States)

    Frank, A; Blazević, A; Grande, P L; Harres, K; Hessling, T; Hoffmann, D H H; Knobloch-Maas, R; Kuznetsov, P G; Nürnberg, F; Pelka, A; Schaumann, G; Schiwietz, G; Schökel, A; Schollmeier, M; Schumacher, D; Schütrumpf, J; Vatulin, V V; Vinokurov, O A; Roth, M

    2010-02-01

    The experimental data presented in this paper address the energy loss determination for argon at 4 MeV/u projectile energy in laser-generated carbon plasma covering a huge parameter range in density and temperature. Furthermore, a consistent theoretical description of the projectile charge state evolution via a Monte Carlo code is combined with an improved version of the CasP code that allows us to calculate the contributions to the stopping power of bound and free electrons for each projectile charge state. This approach gets rid of any effective charge description of the stopping power. Comparison of experimental data and theoretical results allows us to judge the influence of different plasma parameters.

  11. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

    Science.gov (United States)

    Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2018-02-01

    Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

  12. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    Science.gov (United States)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  13. Development of a low-cost inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Ripson, P.A.M.

    1983-01-01

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  14. Study of straw chamber lifetime with argon ethane

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.; Cheu, E.; Grab, C.; Mazaheri, G.; Odian, A.; Pitman, D.; Stockhausen, W.; Toki, W.; Wadley, W.; Wood, C.; Mir, R.

    1989-01-01

    We present detailed laboratory measurements of the lifetime of a small test chamber, simulating the Mark III straw vertex chamber conditions. The tests were carried out with an argon-ethane 50/50 gas mixture at 3 atm absolute pressure and 3.9 kV applied to the wires. After the accumulation of ≅ 0.02 C/cm on a single straw, continuous discharges began. The addition of alcohol or water vapor to the gas mixture was found to extend the lifetime of the straws. Continuous flow of the gas mixture with water vapor through the straws prolonged the lifetime significantly. We present results on the effects of changing the gas mixture inside the straws at regular time intervals. Adding a small percentage of water vapor to the argon-ethane gas and flowing the gas mixture in the straws can improve the lifetime by more than an order of magnitude. An accumulated charge of 1.0 C/cm on a single straw has been obtained. (orig.)

  15. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  16. Negative corona current pulses in argon and in mixture argon with SF6

    International Nuclear Information System (INIS)

    Zahoranova, A.; Zahoran, M.; Bucek, A.; Cernak, M.; Bosko, J.

    2004-01-01

    Waveforms of the first negative current pulses in a short negative point-to plane gap in pure argon and argon with SF 6 admixture have been investigated with a nanosecond time resolution at a gas pressure 50 kPa as a function of applied gap voltage and content of SF 6 in the mixture. We have made an attempt to explain the differences in the discharge development in pure argon and in argon with admixture of SF 6 based on the observed changes of the pulse shape. The experimental results obtained will be discussed in context with existing computer simulation models (Authors)

  17. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    International Nuclear Information System (INIS)

    Guenther, K.; Lang, S.; Radtke, R.

    1983-01-01

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements. (author)

  18. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Lang, S; Radtke, R [Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Elektronenphysik

    1983-07-14

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements.

  19. Potassium-argon technology

    International Nuclear Information System (INIS)

    Cassignol, Charles; Cornette, Yves; David, Benjamin; Gillot, P.-Y.

    1978-04-01

    The main features of the method of processing rocks and minerals and measuring the extracted argon, for the purpose of potassium-argon dating are described. It differs in several respects from the conventional one, as described, f.i., in Dalrymple and Lanphere's monography. Principally it was established that the continual purification of the gases in the mass spectrometer cell during the measurement, stops the peaks of current drift, and renders them representative of the introduced argon. This allows on the one hand to improve the reliability and accuracy of measurements, on the other hand to get rid of the isotopic dilution method, with 38 A as a spike. Moreover the reliability of the radiogenic argon is improved by taking into account the mislinearness of the M.S. response. All this results in a higher performance of the K/Ar dating method, especially in the recent ages range. The technological side of the problem was only dealt with [fr

  20. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  1. Nanoparticle formation in a low pressure argon/aniline RF plasma

    Science.gov (United States)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  2. First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply

    CERN Document Server

    Cantini, C; Bueno, L Molina; Murphy, S; Radics, B; Regenfus, C; Rigaut, Y-A; Rubbia, A; Sergiampietri, F; Viant, T; Wu, S

    2016-01-01

    Voltages above a hundred kilo-volt will be required to generate the drift field of future very large liquid Argon Time Projection Chambers. The most delicate component is the feedthrough whose role is to safely deliver the very high voltage to the cathode through the thick insulating walls of the cryostat without compromising the purity of the argon inside. This requires a feedthrough that is typically meters long and carefully designed to be vacuum tight and have small heat input. Furthermore, all materials should be carefully chosen to allow operation in cryogenic conditions. In addition, electric fields in liquid argon should be kept below a threshold to reduce risks of discharges. The combination of all above requirements represents significant challenges from the design and manufacturing perspective. In this paper, we report on the successful operation of a feedthrough satisfying all the above requirements. The details of the feedthrough design and its manufacturing steps are provided. Very high voltages...

  3. Performance of a liquid argon preshower detector integrated with an Accordion calorimeter

    International Nuclear Information System (INIS)

    Aubert, B.; Bazan, A.; Beaugiraud, B.; Colas, J.; Leflour, T.; Maire, M.; Vialle, J.P.; Wingerter-Seez, I.; Zolnierowski, Y.P.; Gordon, H.A.; Radeka, V.; Rahm, D.; Stephani, D.; Bulgakov, N.; Chevalley, J.L.; Fabjan, C.W.; Fournier, D.; Gildemeister, O.; Jenni, P.; Nessi, M.; Nessi-Tedaldi, F.; Pepe, M.; Richter, W.; Soderqvist, J.; Vuillemin, V.; Baze, J.M.; Gosset, L.; Lavocat, P.; Lottin, J.P.; Mansoulie, B.; Meyer, J.P.; Renardy, J.F.; Teiger, J.; Zaccone, H.; Battistoni, G.; Camin, D.V.; Cavalli, D.; Costa, G.; Cravero, A.; Ferrari, A.; Gianotti, F.; Mandelli, L.; Mazzanti, M.; Perini, L.; Pessina, G.; Sciamanna, M.; Auge, E.; Chase, R.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Hrisoho, A.; Jean, P.; Le Meur, G.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Repellin, J.P.; Schaffer, A.; Seguin, N.; Unal, G.; Fuglesang, C.; Lefebvre, M.

    1993-01-01

    A prototype liquid argon preshower detector with a strip granularity of 2.5 mm has been tested at the CERN SPS in front of a liquid argon Accordion calorimeter. For charged tracks a signal-to-noise ratio of 9.4 and a space resolution of 340 μm were measured; the rejection power against overlapping photons produced in the decay of 50 GeV π 0 's is larger than 3; the precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 7 mrad above 40 GeV; the calorimeter performance behind the preshower (≅4X 0 ) is fully preserved. These results make such a detector attractive for future operation at the CERN Large Hadron Collider. (orig.)

  4. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  5. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    International Nuclear Information System (INIS)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-01-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased

  6. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  7. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  8. Theory of hollow cathode arc discharges. II. Metastable state balance inside the cathode. Application to argon

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Delcroix, J.L.

    1975-01-01

    In the hollow cathode the metastable species are created by fast electrons, which are emitted by the cathode wall and injected in the plasma across a space-charge sheath, and destroyed by Maxwellian electrons. A detailed analysis of the different electronic destruction mechanisms in argon shows that the re-excitation up to 3p 5 4p states plays a very important role. Solutions of the metastable balance equation were obtained in a wide range of variation of the discharge parameters displaying the best conditions of operation to obtain high concentrations [fr

  9. The argon excimer laser

    International Nuclear Information System (INIS)

    Wrobel, W.G.

    1981-02-01

    The electron-beam-pumped argon eximer laser is investigated and tuned for the first time. The electron beam is generated by means of an improved coaxial field emmision diode in which argon gas is excited with power densities of 0.3 GW/cm 3 for 18 ns. The processes in the excited gas of 20 to 65 bar are described in the context of a kinetic model as a sequence of stationary states. Investigations of the amplified spontaneous emission (superfluorescence) confirm the predictions of this model. Only the absorption due to the excited Ar atoms is anomalously high. Reproducible operation of the argon eximer laser was achieved in a wide pressure range with various resonator arrangements. The wavelength of this shortest wavelength of this shortest wavelength excimer laser is 126 nm, the laser line width approx. 1.7 nm, the pulse length 7 to 13 ns, and the laser power 250 kW. The laser emission is tuned from 123.2 nm to 128.4 nm by two different methods (diffraction grating and prism). This tunable laser is thus the one with the shortest wavelength at present. Its line width is 0.25 to 0.4 nm, and the power ue 1.7 kW. (orig.)

  10. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  11. The drift velocity of excess electrons in fluid methane, argon and mixtures of methane and argon

    International Nuclear Information System (INIS)

    Engels, J.M.L.

    1979-01-01

    A description is given of an experimental investigation of the drift velocity of excess electrons in fluid methane at temperatures between 91K and 215K, and at pressures up to 65X10 5 Pa. These measurements that have become possible especially due to the improved purification techniques of the liquids under investigation. The purification prevents the electron from being captured too soon by an electron-impurity. From the results of the measurements in methane it appeared that in some respects the behaviour of excess electrons in methane is qualitatively similar to that in argon. For this reason a number of measurements of the electron drift velocity have been carried out in argon and in mixtures of methane and argon as well. A detailed description of the experimental set-up is presented. The excess electrons are generated with a high-voltage electron gun, which produces a pulse of highly energetic electrons. A fraction of these electrons enters the liquid sample by passing through a thin metal foil which separates the liquid sample and the vacuum present in the electron gun. At the same time the foil is used as one of two plane-parallel electrodes of the measuring capacitor in which the drift velocity of the excess electrons is to be measured. (Auth.)

  12. The Argon Geochronology Experiment (AGE)

    Science.gov (United States)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  13. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  14. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  15. Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Aleena [Kansas State Univ., Manhattan, KS (United States)

    2017-09-25

    Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.

  16. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    CERN Document Server

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  17. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.

    2017-05-20

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

  18. Characterization of DC argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Yan Jianhua; Ma Zengyi; Pan Xinchao; Cen Kefa; Bruno, C

    2006-01-01

    An original DC double anode plasma torch operating with argon at atmospheric pressure which provides a long time and highly stable plasma jet is analyzed through its electrical and optical signals. Effects of gas flow rate and current intensity on the arc dynamics behaviour are studied using standard diagnostic tools such as FFT and correlation function. An increasing current-voltage characteristic is reported for different argon flow rates. It is noted that the takeover mode is characteristic for argon plasma jet and arc fluctuations in our case are mainly induced by the undulation of torch power supply. Furthermore, the excitation temperatures and electron densities of the plasma jet inside and outside the arc chamber have been determined by means of optical emission spectroscopy (OES). The criteria for the existence of local thermodynamic equilibrium (LTE) in plasma is then discussed. The results show that argon plasma jet at atmospheric pressure under our experimental conditions is close to LTE. (authors)

  19. Argon and nitrogen beams influencing membrane permeate fluxes and microbial growth

    International Nuclear Information System (INIS)

    Wanichapichart, P.; Taweepreeda, W.; Choomgan, P.; Yu, L.D.

    2010-01-01

    Porous cellulose and dense chitosan membranes were bombarded with argon and nitrogen-ion beams using two energy levels, 30 and 120 keV, of the same fluency of 5x10 14 ions/cm 2 for a comparison study. The results revealed that both beam types reduced the hydraulic permeability of the membranes. Using a NaCl solution of 4000 ppm concentration as feed, the ability to reject salt of dense chitosan membrane was reduced only if it was pretreated with 120 keV nitrogen-ion beams. A Fourier Transform Infrared Spectroscopy study showed that molecular weight of chitosan was possibly decreased after the bombardment with 120 keV beams. The analysis of the cellulose membranes revealed that a dense structure was created without affecting the OH functional groups. This study found that only chitosan membranes possessed an anti-fungi property if being implanted with positive charges of nitrogen or argon ions of 120 keV.

  20. ATLAS endcap liquid argon calorimeters. Description and construction of the cryostats

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Guy; Prat, Serge; Veillet, Jean-Jacques [Laboratoire de l' Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud 11, BP 34, F-91898 Orsay Cedex (France)

    2006-05-15

    All forward calorimeters of the ATLAS detector use the same detection technique, energy loss in passive plates, followed by ionisation and charge detection in liquid argon. They are therefore all grouped in the same vessel which must basically support and keep in place the heavy plates and the detection electrodes and maintain liquid argon at cold and stable temperature. Taking into account all the constraints as detailed below, and the overall detector size, 5 meter diameter by 3 meter length this was quite a challenge. The design, construction and tests of these two cryostats, up to their delivery at CERN, are described in this document. These two cryostats are a joint 'in kind' contribution to the Atlas experiment of LAL (Orsay), Max Planck Institute (Muenchen) and Wuppertal University (Wuppertal) and have been designed and built under the responsibility of LAL (Orsay) with contributions of the technical groups of the above institutions and of ATLAS-CERN. (authors)

  1. ATLAS endcap liquid argon calorimeters. Description and construction of the cryostats

    International Nuclear Information System (INIS)

    Mace, Guy; Prat, Serge; Veillet, Jean-Jacques

    2006-05-01

    All forward calorimeters of the ATLAS detector use the same detection technique, energy loss in passive plates, followed by ionisation and charge detection in liquid argon. They are therefore all grouped in the same vessel which must basically support and keep in place the heavy plates and the detection electrodes and maintain liquid argon at cold and stable temperature. Taking into account all the constraints as detailed below, and the overall detector size, 5 meter diameter by 3 meter length this was quite a challenge. The design, construction and tests of these two cryostats, up to their delivery at CERN, are described in this document. These two cryostats are a joint 'in kind' contribution to the Atlas experiment of LAL (Orsay), Max Planck Institute (Muenchen) and Wuppertal University (Wuppertal) and have been designed and built under the responsibility of LAL (Orsay) with contributions of the technical groups of the above institutions and of ATLAS-CERN. (authors)

  2. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  3. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  4. Prospects for obtaining a superconducting filter to purify oxygen from argon

    International Nuclear Information System (INIS)

    Sawai, Yuichi; Ishizaki, Kozo; Yayashi, Shigeki; Jain, R.

    1993-01-01

    A possible superconducting filter, through which argon can pass and oxygen can not pass, is discussed theoretically. Oxygen and argon are paramagnetic and diamagnetic materials, respectively. The mixture of oxygen and argon can be separated in a magnetic field higher than 4 T 2 /m of BdB/dx, where B is the magnetic flux density and dB/dx is its gradient. Such a magnetic field can be obtained by a superconducting filter. Because magnetic flux does not pass through a superconducting body of the filter, and instead does along the penetrating pores, B in the penetrating pores and dB/dx on the surface of the filter are very high, which allows separation of argon from oxygen. 3 refs., 3 figs

  5. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  6. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  7. Characterising the light output from Argon bombs by two simultaneous diagnostic techniques

    CSIR Research Space (South Africa)

    Olivier, M

    2013-01-01

    Full Text Available The light output from Argon-bombs was investigated by means of ultra high speed photography (Cordin Model 550-32 camera) and locally developed photodiode sensors. Tubes of various sizes were inflated with Argon gas, and were detonated on one side...

  8. Experimental studies of the argon-puff Z-pinch implosion process

    International Nuclear Information System (INIS)

    Huang Xianbin; Yang Libing; Gu Yuanchao; Deng Jianjun; Zhou Rongguo; Zou Jie; Zhou Shaotong; Zhang Siqun; Chen Guanghua; Chang Lihua; Li Fengping; Ouyang Kai; Li Jun; Yang Liang; Wang Xiong; Zhang Zhaohui

    2006-01-01

    A preliminary experiment for studying the argon-puff Z-pinch implosion process has been performed on the Yang accelerator. The ten-frame nanosecond temporal and spatial gated camera, visible high-speed scanning camera, differential laser interferometer, X-ray time integration pinhole camera and X-ray power system have been used to investigated the evolution of the argon-puff Z-pinch. Some typical results of argon-puff Z-pinch during implosion and pinch phase, including the 'zipper' effect, necking phenomenon, sausage instability, temperature changes and the effect of load current rise time, are given and analyzed as examples, and some relevant conclusions are drawn. (authors)

  9. Pulse shape analysis of enriched BEGe detectors in vacuum cryostat and liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. Germanium diodes of BEGe type (Canberra, Belgium) made from isotopically modified material have been procured for Phase II of Gerda. They will improve the sensitivity of the experiment by additional target mass, improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. The PSD efficiencies of the new enriched BEGe detectors were studied in vacuum cryostats as part of the characterization campaign at the HADES underground laboratory. For a deeper understanding of the pulse shape performance of the enriched BEGe detectors, detailed {sup 241}Am surface scans were performed. Unexpectedly high position-dependence of the pulse shape parameter Amplitude-over-Energy was found for some of the detectors. With further investigation this effect was traced to surface charge effects specific to the operational configuration of the detectors inside the vacuum cryostats. The standard behavior is restored when they are operated in liquid argon in the configuration intended for Gerda Phase II. Finally, five of the enriched BEGe diodes were installed in the Gerda liquid argon cryostat prior to the full upgrade. They show a good performance and are able to reject efficiently multi-site-events as well as β- and α-particles.

  10. OPTICALLY BASED CHARGE INJECTION SYSTEM FOR IONIZATION DETECTORS

    International Nuclear Information System (INIS)

    CHEN, H.; CITTERIO, M.; LANNI, F.; LEITE, M.A.L.; RADEKA, V.; RESCIA, S.; TAKAI, H.

    2001-01-01

    An optically coupled charge injection system for ionization based radiation detectors which allows a test charge to be injected without the creation of ground loops has been developed. An ionization like signal from an external source is brought into the detector through an optical fiber and injected into the electrodes by means of a photodiode. As an application example, crosstalk measurements on a liquid Argon electromagnetic calorimeter readout electrodes were performed

  11. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    Science.gov (United States)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  12. Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma

    International Nuclear Information System (INIS)

    Lee, Dongsoo; Severn, Greg; Oksuz, Lutfi; Hershkowitz, Noah

    2006-01-01

    The Bohm sheath criterion in single- and two-ion species plasma is studied with laser-induced fluorescence using a diode laser. Xenon is added to a low pressure unmagnetized dc hot filament argon discharge confined by surface multidipole magnetic fields. The Ar II transition at 668.614 nm is adopted for optical pumping to detect the fluorescence from the plasma and to measure the argon ion velocity distribution functions with respect to positions relative to a negatively biased boundary plate. The structures of the plasma sheath and presheath are measured by an emissive probe. The ion concentrations of the two-species in the bulk plasma are calculated from ion acoustic wave experiments. Results are compared with previous experiments of Ar-He plasmas in which the argon ions were the heavier ion species. Unlike the previous results, the argon speed is slower than its own Bohm velocity near the sheath-presheath boundary in the Ar-Xe plasma where argon ions are the lighter ion species. We argue that this result is consistent with the behaviour of the helium ion required by the generalized Bohm criterion in the previous experiments with Ar-He plasmas. Further, our results suggest that the measured argon ion speed approaches the ion sound speed of the system

  13. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  14. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  15. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  16. 2D DC Subnormal Glow Discharge in Argon

    International Nuclear Information System (INIS)

    Bouchikhi, A.; Hamid, A.

    2010-01-01

    A two-dimensional time-dependent fluid model was developed and used to describe a DC subnormal glow discharge in argon with Cartesian geometry. This configuration allows us to take into account the transverse expansion of the discharge. A hydrodynamic fluid model used in this paper is based on the moments of the Boltzmann transport equation. The resultant set of governing equations consists of continuity equations (fluxes and densities) for electrons and ions, an energy equation for electrons, and Poisson's equation. Simulation results are presented for the densities of charged particles, the electric voltage, the electric field, and the electron temperature of the discharge. The results were compared with those obtained in the literature.

  17. Ultraviolet transitions from the 2 3P states of helium-like argon

    International Nuclear Information System (INIS)

    Davis, W.A.

    1976-09-01

    This thesis describes the observation of two allowed electric dipole transitions in helium-like argon. The transitions are 2 3 P 2 --2 3 S 1 and 2 3 P 0 --2 3 S 1 . These transitions were observed by using a vacuum ultraviolet monochromator to collect photons from decays-in-flight of a beam-foil excited argon ion beam. The ion beam was generated by the Lawrence Berkeley Laboratory heavy ion linear accelerator (SuperHILAC) and had a beam energy of 138 MeV with a charge current of roughly 500 nanoamperes. After initial observation, the lifetimes and absolute wavelengths of these transitions were measured. The results are tau(2 3 P 2 ) = 1.62 +- 0.08 X 10 -9 sec, tau(2 3 P 0 ) = 4.87 +- 0.44 X 10 -9 sec, lambda(2 3 P 2 --2 3 S 1 ) = 560.2 +- 0.9A, and lambda(2 3 P 0 --2 3 S 1 ) = 660.7 +- 1.1A. This work has demonstrated the observability of these transitions in high-Z ions using beam-foil excitation. Employing a new grazing-incidence spectrometer this work will be pursued in ions of higher Z. Accuracies of at least one part in a thousand should be attainable and will probe the radiative contributions to these transitions to better than 10 percent in a previously unstudied region

  18. Argon cover gas purity control on LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Kobayashi, Takayoshi [PNC (Japan); Ishiyama, Satoshi [Toshiba (Japan); Motonaga, Tetsuji [Hitachi (Japan)

    1987-07-01

    Various control methods on chemical impurities and radioactive materials (fission products) in the primary argon gas of LMFBRs' have been studied based on experiences in Joyo and results of research and development. These results are reflected on MONJU design. On-line gas chromatographs are installed both in the Primary and in the Secondary Argon Gas Systems in JOYO. Also, chemical analysis has been done by batch sampling in JOYO. Though the rise of impurity concentration had been measured after periodical fuel exchange operation, impurity concentration has been controlled sufficiently under target control limits. In MONJU detailed design, the Rare Gas Removal and Recovery System which consisted of cryogenic distillation equipment had been eliminated and the capacity of Charcoal Beds in the Primary Argon Gas System has been improved to keep the concentration of radioactive materials sufficient low levels. The necessity to control the impurities in fresh argon gas which is supplied to the Primary Argon Gas System is now considered to keep the concentration of Kr and Xe isotopes in specified level, because their isotopes may make background rise for the Tagging Gas Failed Fuel Detection and Location System. Based on various investigations performed on sodium vapor trapping to obtain its detailed characteristics, design specifications and operating conditions of MONJU's Vapor Traps have been decided. To keep the level of radioactivity in gaseous effluents to the environment as low as reasonably achievable, the following means are now adopted in MONJU: the Primary Argon Gas System is composed of a closed recirculating path, but the exhaust gas discharged has different path after the Charcoal Beds; fresh argon gas is blown down to prevent Primary Argon Gas from releasing to the circumference during opening of the primary argon gas boundary, such as fuel exchange operations. (author)

  19. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    Ainsworth, E.J.; Jose, J.G.; Yang, V.V.; Barker, M.E.

    1980-01-01

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  20. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K. V.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  1. Geminate recombination in liquid argon

    International Nuclear Information System (INIS)

    Freeman, G.R.

    1984-01-01

    The extended Onsager model for geminate neutralization is supported by the field dependence of the ionization yield in liquid argon irradiated by high energy electrons or x rays. Attempts to employ the model fail unless the distribution of initial separation distances between the thermalized electrons and their sibling ions (secondary electron thermalization ranges) is included. Data of Scalettar and co-workers are reanalyzed

  2. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  3. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  4. Study on heat transfer process during leaks of high pressure argon through a realistic crack

    International Nuclear Information System (INIS)

    Ai, Gang; Liu, Yinghua; Wah Ng, Heong

    2016-01-01

    This paper proposes a method for simulating the heat transfer process of high pressure argon gas leaking through a narrow crack which causes the Joule-Thomson cooling effect (JT cooling effect). A once-through (decoupled) model was developed to firstly calculate the gas pressure drop at different crack depth, followed by the temperature drop. A MATLAB code was also developed to iteratively calculate the properties of leaking gas in a crack which was fitted as formula as boundary conditions in heat transfer simulation in COMSOL program. The simulated lowest temperature of the test plate in the vicinity of the crack is 13.8 C after decreasing from the temperature of 30 C with initial argon gas pressure of 91 bar. An experiment test rig designed and tested under the same conditions showed a good agreement between the simulation and experiment at the obtained lowest temperature in the test plate. The method is useful for predicting the lowest temperature in the vicinity of the crack caused by the JT cooling effect. (authors)

  5. Performance of the electronics for the Liquid Argon Calorimeter system of the SLC large detector

    International Nuclear Information System (INIS)

    Vella, E.; Abt, I.; Haller, G.M.; Honma, A.

    1988-10-01

    Results of performance tests on electronics for the Liquid Argon Calorimeter (LAC) for the SLD experiment at SLAC are presented. The behavior of a sub-unit called a ''tophat,'' which processes 720 detector signals, is described. The electronics consists of charge sensitive preamplifiers, analog memories, A/D converters, and associated control and readout circuitry. An internal charge injection system is used to calibrate the overall response of the devices. Linearity is better than 1% of 0--28 pC charge at the input of the amplifiers. Noise (expressed as equivalent input charge) is less than 3000 electrons at a shaping time of 4 μs, with a slope of 2600 e/sup /minus///nF. Crosstalk to adjacent channels is less than 0.5%. The power consumption at a duty cycle of 13% is 61 W. 3 refs., 7 figs

  6. The electrical and diffusive properties of unattached 218Po in argon gas

    International Nuclear Information System (INIS)

    Leung, H.M.-Y.; Phillips, C.R.

    1987-01-01

    Electrical and diffusive properties of unattached 218 Po were investigated in argon Parameters determined in electrostatic collection experiments were radon concentration, the fraction of 218 Po having a positive charge at the end of the recoil path, the diffusion coefficient of the neutral 218 Po species, and the ratio of the neutralisation rate constant of charged 218 Po species to the electrical mobility of charged 218 Po species. Independent electrical mobility data were obtained using a pulse width modulated ion mobility analyser. The neutralisation rate constant for charged 218 Po species was then determined from the electrostatic collection data together with the independent mobility data. Relative humidity (RH) and radon concentration were found to affect the neutralisation mechanism. Following recoil of the charged 218 Po species, neutralisation through recombination with small negative ions is important for radon concentrations greater than about 1.0 x 10 5 atoms cm -3 . The neutralisation rate constant is proportional to about the 0.6 power of the radon concentration for all relative humidities. At a radon concentration less than about 1.0 x 10 5 atoms cm -3 , the neutralisation rate constant is independent of radon concentration. (author)

  7. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-like Phosphorus Following Charge Exchange with Molecular Hydrogen

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.

    2010-01-01

    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.

  8. Phenomenological modeling of argon Z-pinch implosions

    International Nuclear Information System (INIS)

    Whitney, K.G.; Thornhill, J.W.; Deeney, C.; LePell, P.D.; Coulter, M.C.

    1992-01-01

    The authors investigate some of the effects of plasma turbulence on the K-shell emission dynamics of argon gas puff Z-pinch implosions. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled phenomenologically using multipliers for these quantities in the MHD calculations. The choice of multipliers was made by benchmarking a 1-D MHD simulation of a Physics International Inc. argon gas puff experiment against the inferred densities and temperatures achieved in the experiment. These multipliers were then used to study the parametric dependence of the K-shell emission on the energy input to the argon plasma for a fixed mass loading. Comparisons between turbulent and non-turbulent argon implosions are made

  9. Highly charged ion trapping and cooling

    International Nuclear Information System (INIS)

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-01-01

    In the past few years a cryogenic Penning trap (RETRAP) has been operational at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory. The combination of RETRAP and EBIT provides a unique possibility of producing and re-trapping highly charged ions and cooling them to very low temperatures. Due to the high Coulomb potentials in such an ensemble of cold highly charged ions the Coulomb coupling parameter (the ratio of Coulomb potential to the thermal energy) can easily reach values of 172 and more. To study such systems is not only of interest in astrophysics to simulate White Dwarf star interiors but opens up new possibilities in a variety of areas (e.g. laser spectroscopy), cold highly charged ion beams

  10. Study of highly charged ion production by electron cyclotron resonance ion source. Interactions of Argon 17+ ions with metallic surface at grazing incidence

    International Nuclear Information System (INIS)

    Ban, G.

    1992-04-01

    In this thesis divided in 2 parts, the author first presents the operating of MiniMafios 16/18 GHz ECR ion sources and methods of extracted multicharged ion identification and then, studies the highly charged ion interactions with a metallic surface and the formation of 'hollow atoms'. 556 figs., 17 tabs

  11. Treatment of cancer with heavy charged particles

    International Nuclear Information System (INIS)

    Castro, J.R.

    1981-01-01

    The clinical radiotherapy trial has accured 243 patients irradiated with particles and 13 patients irradiated as controls in randomized studies. Of the 243 particle patients, 194 have been treated with helium ions, either solely or in combination with photon irradiation, and 49 have received all or part of their irradiation with one of the heavier particles, either carbon, neon, or argon ions. The project thus can be divided into two general phases: (1) evaluation of improved dose distribution without significant biologic advantage by use of helium ion irradiation; and (2) evaluation of improved dose distribution and enhanced biologic effect by irradiation with heavy charged particles such as carbon, neon, and argon ions

  12. Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Cristina Yubero

    2017-10-01

    Full Text Available The spectroscopic method for gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure proposed recently by Spectrochimica Acta Part B 129 14 (2017—based on collisional broadening measurements of selected pairs of argon atomic lines, has been applied to other pairs of argon atomic lines, and the discrepancies found in some of these results have been analyzed. For validation purposes, the values of the gas temperature obtained using the different pairs of lines have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using the Boltzmann-plot technique.

  13. L-shell x-ray yields and production cross-sections of molybdenum induced by low-energy highly charged argon ions

    International Nuclear Information System (INIS)

    Du Juan; Xu Jinzhang; Chen Ximeng; Yang Zhihu; Shao Jianxiong; Cui Ying; Zhang Hongqiang; Gao Zhimin; Liu Yuwen

    2007-01-01

    L-shell x-ray yields of molybdenum bombarded by highly charged Ar q+ ions (q=11-16) are measured. The x-ray production cross-sections are extracted from the yields data. The energy of the incident Ar ions ranges from 200 to 350 keV. After the binding energy correction, experimental data are explained in the framework of binary-encounter-approximation (BEA). The direct ionization is treated in the united atom (UA) limit (Lapicki and Lichten 1985 Phys. Rev. A 31 1354), not in the separate atom (SA) limit. The calculation results of BEA (Gacia and Fortner 1973 Rev. Mod. Phys. 45 111) are much lower than the experimental results, while the results of binding energy modified BEA are basically in agreement with the experimental results

  14. Effect of Emergency Argon on FCF Operational Incidents

    International Nuclear Information System (INIS)

    Solbrig, Charles

    2011-01-01

    The following report presents analyses of operational incidents which are considered in the safety analysis of the FCF argon cell and the effect that the operability of the emergency argon system has on the course of these incidents. The purpose of this study is to determine if the emergency argon system makes a significant difference in ameliorating the course of these incidents. Six incidents were considered. The following three incidents were analyzed. These are: 1. Cooling failing on 2. Vacuum Pump Failing on 3. Argon Supplies Failing on. In the remaining three incidents, the emergency argon supply would have no effect on the course of these transients since it would not come on during these incidents. The transients are 1. Loss of Cooling 2. Loss of power (Differs from above by startup delay till the Diesel Generators come on.) 3. Cell rupture due to an earthquake or other cause. The analyses of the first three incidents are reported on in the next three sections. This report is issued realizing the control parameters used may not be optimum, and additional modeling must be done to model the inertia of refrigeration system, but the major conclusion concerning the need for the emergency argon system is still valid. The timing of some events may change with a more accurate model but the differences between the transients with and without emergency argon will remain the same. Some of the parameters assumed in the analyses are Makeup argon supply, 18 cfm, initiates when pressure is = -6 iwg., shuts off when pressure is = -3.1 iwg. 170,000 ft3 supply. Min 1/7th always available, can be cross connected to HFEF argon supply dewar. Emergency argon supply, 900 cfm, initiates when pressure is = -8 iwg. shuts off when pressure is =-4 iwg. reservoir 220 ft3, refilled when tank farm pressure reduces to 1050 psi which is about 110 ft3.

  15. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    Science.gov (United States)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  16. Liquid argon calorimetry for the SSC

    International Nuclear Information System (INIS)

    Gordon, H.A.

    1990-01-01

    Liquid argon calorimetry is a mature technique. However, adapting it to the challenging environment of the SSC requires a large amount of R ampersand D. The advantages of the liquid argon approach are summarized and the issues being addressed by the R ampersand D program are described. 18 refs

  17. 46 CFR 151.50-36 - Argon or nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  18. Virial Coefficients for the Liquid Argon

    Science.gov (United States)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  19. Reconstruction and Analysis for the DUNE 35-ton Liquid Argon Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, Michael James [Sheffield U.

    2018-01-01

    Neutrino physics is approaching the precision era, with current and future experiments aiming to perform highly accurate measurements of the parameters which govern the phenomenon of neutrino oscillations. The ultimate ambition with these results is to search for evidence of CP-violation in the lepton sector, currently hinted at in the world-leading analyses from present experiments, which may explain the dominance of matter over antimatter in the Universe. The Deep Underground Neutrino Experiment (DUNE) is a future long-baseline experiment based at Fermi National Accelerator Laboratory (FNAL), with a far detector at the Sanford Underground Research Facility (SURF) and a baseline of 1300 km. In order to make the required precision measurements, the far detector will consist of 40 kton liquid argon and an embedded time projection chamber. This promising technology is still in development and, since each detector module is around a factor 15 larger than any previous experiment employing this design, prototyping the detector and design choices is critical to the success of the experiment. The 35-ton experiment was constructed for this purpose and will be described in detail in this thesis. The outcomes of the 35-ton prototype are already influencing DUNE and, following the successes and lessons learned from the experiment, confidence can be taken forward to the next stage of the DUNE programme. The main oscillation signal at DUNE will be electron neutrino appearance from the muon neutrino beam. High-precision studies of these νe interactions requires advanced processing and event reconstruction techniques, particularly in the handling of showering particles such as electrons and photons. Novel methods developed for the purposes of shower reconstruction in liquid argon are presented with an aim to successfully develop a selection to use in a νe charged-current analysis, and a first-generation selection using the new techniques is presented.

  20. Influence of argon dilution on growth and properties of hydrogenated nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, A. [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India); Kumar, Sushil; Gope, Jhuma; Rauthan, C.M.S.; Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2010-05-15

    The effect of argon concentration (66-87%) in total gaseous mixture (SiH{sub 4}+H{sub 2}+Ar) on growth and properties of hydrogenated nanocrystalline silicon films deposited by RF (13.56 MHz) PECVD technique was investigated. Raman and XRD measurements revealed increasing argon fraction favored enhancement of crystallinity, enlargement of crystallites and relaxation of strained bonds. Photoluminescence spectra of nc-Si:H films exhibited two radiative transitions in the photon energy ranges of 2.8-3.1 eV and 1.6-2.1 eV. The high energy PL peaks are attributed to surface effect of the films whereas peaks in the range of 1.6-2.1 eV are due to nanocrystallinity in the films. Argon dilution also helped enhancement of deposition rate and conductivity of the films. A film deposited at 81% of argon fraction possesses high crystallinity (75%), conductivity in the order of 10{sup -5} ({omega} cm){sup -1}, size of the crystallite (Raman=12 nm, XRD=18 nm), and low residual stress (125 MPa). (author)

  1. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  2. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    International Nuclear Information System (INIS)

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-01-01

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge

  3. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Majeed, Asif [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, A. K (Pakistan)

    2015-03-15

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  4. Role of metastable atoms in argon-diluted silane Rf plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J.L.; Kroll, U.

    1994-01-01

    The evolution of the argon metastable density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastables in excitation to the argon 2P 2 state has been determined in comparison with production from the ground state. In silane plasmas, emission from SiH* is due essentially to electron impact dissociation of silane, whereas in 4% silane-in-argon plasmas, emission from SiH* seems to be due to electron impact excitation of the SiH ground state. These studies demonstrate that argon is not simply a buffer gas but has an influence on the dissociation rate in the plasma-assisted deposition of amorphous silicon using argon-diluted silane plasmas. (author) 7 figs., 30 refs

  5. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    International Nuclear Information System (INIS)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J; Odic, Emmanuel; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O; DuBow, Michael S

    2015-01-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H 2 O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ∼5.5 and ∼5 log 10 reductions were observed for E. coli DH-1 bacteria (from 10 6 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H 2 O 2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C; the contribution of heating, along with that of H 2 O 2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions. (paper)

  6. Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate

    International Nuclear Information System (INIS)

    Miotk, R; Hrycak, B; Jasinski, M; Mizeraczyk, J

    2012-01-01

    In this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity-resonant type. The aim of research was determination of electron excitation temperature T exc gas temperature Tg and electron number density n e . All experimental tests were performed with a gas flow rate of 100 and 200 l/min and absorbed microwave power PA from 0.25 to 0.9 kW. The emission spectra at the range of 300 – 600 nm were recorded. Boltzmann plot method for argon 5p – 4s and 5d – 4p transition lines allowed to determine T exc at level of 7000 K. Gas temperature was determined by comparing the measured and simulated spectra using LIFBASE program and by analyzing intensities of two groups of unresolved rotational lines of the OH band. Gas temperature ranged 600 – 800 K. The electron number density was determined using the method based on the Stark broadening of hydrogen H β line. The measured n e rang ed 2 × 10 15 − 3.5×10 15 cm −3 , depending on the absorbed microwave power. The described MPS works very stable with various working gases at high flow rates, that makes it an attractive tool for different gas processing.

  7. Charged vortices in high-Tc superconductors

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kumagai, K.

    2002-01-01

    It is well known that a vortex in type II superconductors traps a magnetic flux. Recently the possibility that a vortex can accumulate a finite electric charge as well has come to be realized. The sign and magnitude of the vortex charge not only is closely related to the microscopic electronic structure of the vortex, but also strongly affects the dynamical properties of the vortex. In this chapter we demonstrate that a vortex in high-T c superconductors (HTSC) indeed traps a finite electronic charge, using the high resolution measurements of the nuclear quadrupole frequencies. We then discuss the vortex Hall anomaly whose relation with the vortex charging effect has recently received considerable attention. We show that the sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory and deviation of the magnitude of the charge from the theory is also significant. We also show that the electronic structure of underlying system is responsible for the Hall sign in the vortex state and again the Hall sign is opposite to the sign predicted by the BCS theory. It appears that these unexpected features observed in both electrostatics and dynamics of the vortex may be attributed to the novel electronic structure of the vortex in HTSC. (orig.)

  8. Limited mobility of argon in a metamorphic terrain

    Energy Technology Data Exchange (ETDEWEB)

    Foland, K A [Pennsylvania Univ., Philadelphia (USA). Dept. of Geology

    1979-06-01

    Excess /sup 40/Ar in biotite from some relatively anhydrous charnockitic rocks in the Appalachian Piedmont indicates limited mobility or argon. Biotite from the Arden pluton of the granulite-facies Wilmington Complex apparently formed as a retrograde product at the expense of pyroxene and K-feldspar Rb-Sr ages of biotite from all rocks are approximately 365 Myr. The same micas have apparent K-Ar ages which range from about 365-590 Mye, six of which clearly exceed the Sr isotope whole-rock date of 500 Myr. They contain variable amounts of excess /sup 40/Ar incorporated during crystallization or recrystallization of biotite at about 365 Myr ago. None of the other minerals appears to contain significant amounts of excess argon. The K-Ar apparent ages show strong, positive correlation with whole-rock K concentrations. These relations yield a correlation between excess argon in the biotite phase and rock potassium. This suggests that excess /sup 40/Ar in biotite is of local derivation and is due to an imprint of the local argon activity. If the amount incorporated is roughly proportional to the prevailing argon partial pressure then substantial differences in psub(Ar) existed. Argon did not have a uniform chemical potential over large rock volumes. Analysis of closely spaced samples suggests different argon activity over the scale of less than 10 m. This implies restricted transport of Ar and is probably due to very low effective permeability of the anhydrous assemblages.

  9. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  10. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.

    1979-01-01

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  11. SLD liquid argon calorimeter

    International Nuclear Information System (INIS)

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z 0 decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z 0 events) is discussed

  12. Beta decay of highly charged ions

    International Nuclear Information System (INIS)

    Litvinov, Yuri A; Bosch, Fritz

    2011-01-01

    Beta decay of highly charged ions has attracted much attention in recent years. An obvious motivation for this research is that stellar nucleosynthesis proceeds at high temperatures where the involved atoms are highly ionized. Another important reason is addressing decays of well-defined quantum-mechanical systems, such as one-electron ions where all interactions with other electrons are excluded. The largest modifications of nuclear half-lives with respect to neutral atoms have been observed in beta decay of highly charged ions. These studies can be performed solely at ion storage rings and ion traps, because there high atomic charge states can be preserved for extended periods of time (up to several hours). Currently, all experimental results available in this field originate from experiments at the heavy-ion complex GSI in Darmstadt. There, the fragment separator facility FRS allows the production and separation of exotic, highly charged nuclides, which can then be stored and investigated in the storage ring facility ESR. In this review, we present and discuss in particular two-body beta decays, namely bound-state beta decay and orbital electron capture. Although we focus on experiments conducted at GSI, we will also attempt to provide general requirements common to any other experiment in this context. Finally, we address challenging but not yet performed experiments and we give prospects for the new radioactive beam facilities, such as FAIR in Darmstadt, IMP in Lanzhou and RIKEN in Wako.

  13. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others

    1996-12-31

    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  14. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  15. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  16. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  17. ECRIS sources for highly charged ions

    International Nuclear Information System (INIS)

    Geller, R.

    1991-01-01

    The so-called Philips ionization gauge ion sources (PIGIS) were used until quite recently in heavy ion accelerators so multiply charged ions could only be obtained by incorporating a stripper to remove electrons. Electron cyclotron resonance ion sources (ECRIS) now dominate as they produce more highly charged ions. (orig.)

  18. Modelling electroluminescence in liquid argon

    International Nuclear Information System (INIS)

    Stewart, D Y; Barker, G J; Bennieston, A J; Harrison, P F; McConkey, N; Morgan, B; Ramachers, Y A; Lightfoot, P K; Robinson, M; Spooner, N J C; Thompson, L

    2010-01-01

    We present Monte-Carlo simulations of electron transport through liquid argon motivated by our recent observation of electroluminescence light emanating from a thick gaseous electron multiplier (THGEM) in a liquid argon volume. All known elastic and inelastic reaction cross-sections have been accounted for, providing electroluminescence light yield predictions for arbitrary electrostatic fields. This study concludes that the large field gradients needed to produce electroluminescence cannot be accounted for by straightforward electrostatic field calculations based on ideal THGEM holes, suggesting that further experimental investigations are required.

  19. Two-photon excitation of argon

    International Nuclear Information System (INIS)

    Pindzola, P.S.; Payne, M.C.

    1982-01-01

    The authors calculate two photon excitation parameters for various excited states of argon assuming the absorption of near resonance broad-bandwidth laser radiation. Results are given for the case of two photons absorbed for the same laser beam as well as the case of absorbing photons of different frequency from each of two laser beams. The authors use multiconfiguration Hartree-Fock wave functions to evaluate the second-order sums over matrix elements. Various experimental laser schemes are suggested for the efficient excitation and subsequent ionization of argon

  20. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    International Nuclear Information System (INIS)

    Müller, Matthias; Choudhury, Soumyadip; Gruber, Katharina; Cruz, Valene B.; Fuchsbichler, Bernd; Jacob, Timo; Koller, Stefan; Stamm, Manfred; Ionov, Leonid; Beckhoff, Burkhard

    2014-01-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si 3 N 4 windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one may

  1. Aging tests of ethylene contaminated argon/ethane

    International Nuclear Information System (INIS)

    Atac, M.; Bauer, G.

    1994-01-01

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to ∼1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF's old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain

  2. Cleaning method of aluminium surface by argon discharge for photon factory

    International Nuclear Information System (INIS)

    Mizuno, Hajime; Yamaguchi, Hiroshi; Watabe, Hiromi; Horikoshi, Gen-ichi; Mathewson, A.G.

    1978-01-01

    In the Photon Factory program of High Energy Research Laboratory, in which the electron storage ring as a photon source stores the electron beam of 2.5 GeV and 500 mA, beam intensity the probability of gas discharge from the inner surface of doughnut wall due to electron bombardment (for 100 eV electorns) must be limited to 1 x 10 -6 or less, according to the estimation by A.G. Mathewson and others. The pressure inside the ring can be maintained at 1 x 10 -9 Torr only with the above probability value. The standard surface treatment of degreasing and evacuation for 24 hours with heating at 150 deg. C can be of no practical use. Since the ion bombardment of surfaces by argon glow discharge is effective for decreasing the probability, the reduction of the probability by argon discharge cleaning was measured with the surface of aluminium, which is planned to be used as the doughnut material. Two methods were employed for the measurement; the one is analysis of gases being discharged, by introducting them to the analyzing chamber during argon discharge and the other is the measurement of the probability when bombardment with electrons of 100 eV is applied, after stopping argon introduction and evacuating after argon discharge had been performed for a definite period. As a result, the probability of approximately 2 x 10 -5 at the beginning of electron beam incidence was obtained by adding argon discharge cleaning to the standard method. This is estimated to correspondent to approximately 25 mA of beam intensity, which is equivalent to 1/20 of the planned value. (Wakatsuki, Y.)

  3. Contraction ionization waves in the argon contracted discharge

    International Nuclear Information System (INIS)

    Golubovskij, Yu.B.; Kulikov, V.V.; Nekutchaev, V.O.

    1985-01-01

    An investigation of ionization waves in the argon contracted discharge and a definition of their arising propagation mechanism accounting for the specificity of elementary pocesses characteristic of argon are presented. (author)

  4. Data relative to (e, argon) and (e, ethane) interactions necessary for strong field transport calculations

    International Nuclear Information System (INIS)

    Florent, J.J.

    1988-01-01

    Collisions between electrons and argon atoms and ethane molecules are studied in order to better understand phenomena occurring at each stage of detection in gas detectors used in nuclear and high energy physics. Elastic collisions between an electron and argon, those producing an electronic excitation of the atom, and those leading to its ionisation are reviewed. For the ethane collisions, vibrational excitation is considered. Photoionisation of argon and ethane is also examined. Total or partial cross sections, and differential cross sections are presented [fr

  5. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  6. Synodic and semiannual oscillations of argon-40 in the lunar exosphere

    Science.gov (United States)

    Hodges, R. Richard; Mahaffy, Paul R.

    2016-01-01

    The neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft collected a trove of exospheric data, including a set of high-quality measurements of radiogenic 40Ar over a period of 142 days. Data synthesis studies, using well-established exosphere simulation tools, show that the LADEE argon data are consistent with an exosphere-regolith interaction that is dominated by adsorption and that the desorption process generates the Armand distribution of exit velocities. The synthesis work has uncovered an apparent semiannual oscillation of argon that is consistent with temporal sequestration in the seasonal cold traps created at the poles by the obliquity of the Moon. In addition, the LADEE data provide new insight into the pristine nature of lunar regolith, its spatially varying sorption properties, and the influence of sorption processes on the synodic oscillation of the argon exosphere.

  7. Argon isotopes as recorders of magmatic processes

    Science.gov (United States)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.

    2003-12-01

    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  8. Atomic structure of highly-charged ions. Final report

    International Nuclear Information System (INIS)

    Livingston, A. Eugene

    2002-01-01

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems

  9. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s 5 and 1s 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s 5 level is metastable and the 1s 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s 5 and 1s 4 argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl 2 or BCl 3 increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl 2 or BCl 3 was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the

  10. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    Hübner, S; Hofmann, S; Van Veldhuizen, E M; Bruggeman, P J

    2013-01-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial n e -overshoot with a maximum of 7 × 10 19  m −3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  11. Heavy ion beam-ionosphere interactions: Charging and neutralizing the payload

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Arnoldy, R.L.; Walker, D.N.; Holmes, J.C.; Pollock, C.J.; Cahill, L.J. Jr.; Kintner, P.M.

    1989-01-01

    The argon release controlled studies (ARCS 1-3) rocket flights carried ion generators to altitudes of 400-500 km in the nighttime auroral ionosphere. Three distinct electrical charging and neutralization processes were seen on the payloads during gun operation: steady or dc vehicle charging, brief charging at gun turn-on, and extended oscillatory sequences. Many of the unexpected consequences of gun firings are attributed to these payload charging and neutralization processes. Electrical charging is regulated by the rate at which low-energy electrons escape from the generator, which in turn is dependent on magnetic field geometry. Each ion generator produced a dipolar magnetic field which merged with the Earth's field near the rocket. The resulting local magnetic field guided electrons back to the rocket for certain gun orientations, thereby inhibiting neutralization. Transient charging was attributed to the formation of an electron cloud around at least some vehicles, while dc charging altered the rocket's surroundings until the electron escape rate balanced the ion beam flux. The authors concluded that during oscillatory events the entire environment of a payload could alternate between hot electron and cold electron configurations at very high rates, possibly exceeding 10 kHz. These changes in the plasma environment did not produce substantial electric field perturbations at the dc or ac high impedance electric field sensors, so were not seen in data from typical wave detectors. However, changes in plasma density and temperature produced dramatic effects on low impedance electric current sensors such as Langmuir probes

  12. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  13. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    International Nuclear Information System (INIS)

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V fd ), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V fd *, which is the full depletion voltage traditionally determined by the extrapolation of the fast component amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V fd ) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V fd for highly irradiated detectors

  14. Experimental study of interactions of highly charged ions with atoms at keV energies: Progress report, February 16, 1987-January 15, 1988

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1988-01-01

    This report describes the progress made during the past year towards the understanding of the behavior of electron beam ion sources and using the sources constructed in this laboratory to investigate interactions of highly charged ions with atoms at keV energies. The operational status of the two sources in use, CEBIS I and CEBIS II is described. At present, the sources are producing beams of bare, hydrogen and helium like ions of C, N, and O, and argon ions up to Ar 13+ with peak current pulses in the electric nanoampere range. Some of the problems encountered in the development of the sources and their resolution are discussed, and a brief description of experimental apparatus and ion beam transport line is presented. Experiments in progress are described

  15. Shear viscosity of liquid argon and liquid rubidium

    International Nuclear Information System (INIS)

    Chiakwelu, O.

    1978-01-01

    A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon

  16. Differential electron emission in multi-charged ion atom collisions: Systematics for distant and close collisions

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toburen, L.H.; Middendorf, M.E.; Jagutzki, O.

    1992-09-01

    Absolute doubly differential cross sections for electron emission are presented for 0.5 MeV/u multi-charged ion impact on helium, neon, and argon targets. For the helium target, Bq+, Cq+ (q = 2--5) and Oq+, Fq+ (q = 3--6) projectiles were studied; for neon and argon, only Cq+ (q = 2--5) projectiles were used. Electron emission for 10 degrees ≤ Θ ≤ 60 degrees was studied. The measured cross sections were assumed to scale as the square of an effective projectile charge, Z eff , which was determined as a function of emitted electron energy and angle. For distant collisions (low emitted electron energies), we find that Z eff ∼ q for small q and Z eff eff > Z and increases as q decreases. This is true for all angles and targets investigated

  17. Search for space charge effects in the ICARUS T600 LAr-TPC

    Science.gov (United States)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.

  18. Search for space charge effects in the ICARUS T600 LAr-TPC

    International Nuclear Information System (INIS)

    Torti, Marta

    2016-01-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown

  19. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  20. Argon laser induced changes to the carbonate content of enamel

    International Nuclear Information System (INIS)

    Ziglo, M.J.; Nelson, A.E.; Heo, G.; Major, P.W.

    2009-01-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2 ) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  1. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  2. Argon laser induced changes to the carbonate content of enamel

    Science.gov (United States)

    Ziglo, M. J.; Nelson, A. E.; Heo, G.; Major, P. W.

    2009-05-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation ( p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  3. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    Aramyan, A.R.

    2003-01-01

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  4. Fast sampling calorimetry with solid argon ionization chambers

    International Nuclear Information System (INIS)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-01-01

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed

  5. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  6. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  7. A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2011-01-01

    The current front-end electronics of the ATLAS Liquid Argon calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. This upgrade calls for an optical link system of 100 Gbps per front-end board (FEB). A high speed, low power, radiation tolerant serializer is the critical component in this system. In this paper, we present the design and test results of a single channel 16:1 serializer and the design of a double-channel 16:1 serializer. Both designs are based on a commercial 0.25 μm silicon-on-sapphire CMOS technology. The single channel serializer consists of a serializing unit, a PLL clock generator and a line driver implemented in current mode logic (CML). The serializing unit multiplexes 16 bit parallel LVDS data into 1-bit width serial CMOS data. The serializing unit is composed of a cascade of 2:1 multiplexing circuits based on static D-flip-fl...

  8. Plasma flow in a pressure pulsed argon cascade arc

    NARCIS (Netherlands)

    de Haas, J.C.M.; Bol, L.; Kroesen, G.M.W.; Timmermans, C.J.; Timmermans, C.J.

    1985-01-01

    Flowing thermal plasmas are frequently used e . g. in welding, cutting, plasma deposition and testing materials at high temperatures . In most of the applications the geometry is complex . In the cascade arc the argon plasma flows through a straight circular channel with a constant area. The study

  9. Effect of argon addition into oxygen atmosphere on YBCO thin films deposition

    International Nuclear Information System (INIS)

    Mozhaev, P. B.; Borisenko, I. V.; Ovsyannikov, G. A.; Kuehle, A.; Bindslev-Hansen, J.; Johannes, L.; Skov, J. L.

    2002-01-01

    Multicomponent nature of the YBa 2 Cu 3 O x (YBCO) high-temperature superconductor makes difficult fabrication of smooth thin films: every local deviation from stoichiometry can result in seeding of a non-superconducting oxide particle. High density of such particles on typical YBCO thin film surface, however, presumes overall non-stoichiometry of the film. Such an effect can result from (i) non-uniform material transport from target to substrate, and (ii) re-evaporation or re-sputtering from the growing film surface. The first reason is more usual for laser ablation deposition technique, the second is typical for long sputtering deposition processes. Substitution of oxygen with argon in the deposition atmosphere improves surface quality of YBCO thin films deposited both by laser ablation and DC-sputtering at high pressure techniques. In the first case, the ablated species are scattered different ways in the oxygen atmosphere. Addition of argon decreases the inelastic scattering of barium; the proper part of Ar in the deposition atmosphere makes scattering and, hence, transport of all atoms uniform. The YBCO films deposited by DC-sputtering at high pressure technique are Ba-deficient also, but the reason is re-sputtering of Ba from the growing film as a result of negative oxygen ions bombardment. Such bombardment can lead also to chemical interaction of the deposited material with the substrate, as in the case of deposition of YBCO thin film on the CeO 2 buffer layer on sapphire. Substitution of oxygen with argon not only suppresses ion bombardment of the film, but also increases discharge stability due to presence of positive Ar + ions. The limiting factor of argon substitution is sufficient oxygenation of the growing oxide film. When oxygen partial pressure is too small, the superconducting quality of the YBCO thin film decreases and such a decrease cannot be overcome by prolonged oxygenation after deposition. (Authors)

  10. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  11. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  12. Argon spill in the hall of the ATLAS experiment

    CERN Document Server

    Peón-Hernández, G

    1998-01-01

    A hazard analysis is in progress to determine the operation mode of the ventilation system in the ATLAS hall in case of an Argon spill. Two risk scenarios have been investigated so far. In the first, the behaviour of an Argon gas pool is calculated for different ventilation strategies. In the second, the behaviour of Argon gas leaking from the bottom part of the detector is studied for different flows. The description of the study, results and conclusions are presented.

  13. Electrical and spectroscopic diagnostic of an atmospheric double arc argon plasma jet

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An atmospheric argon plasma jet generated by an original dc double anode plasma torch has been investigated through its electrical and spectroscopic diagnostics. The arc instabilities and dynamic behavior of the argon plasma are analyzed using classical tools such as the statistical method, fast Fourier transform (FFT) and correlation function. The takeover mode is identified as the fluctuation characteristic of the double arc argon plasma jet in our experiment. The FFT and correlation analysis of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating parameters. No high frequency fluctuations (1-15 kHz) are observed. This indicates that the nature of fluctuations in an argon plasma jet is induced mainly by the undulation of the tri-phase rectified power supply. It is found that each arc root attachment is diffused rather than located at a fixed position on the anode wall. Moreover, the emission spectroscopic technique is performed to determine the electron temperature and number density of the plasma jet inside and outside the arc chamber. Along the torch axis, the measured electron temperature and number density of the double arc argon plasma drop from 12 300 K and 7.6 x 10 22 m -3 at the divergent part of the first anode nozzle, to 10 500 K and 3.1 x 10 22 m -3 at the torch exit. In addition, the validity criteria of the local thermodynamic equilibrium (LTE) state in the plasma arc are examined. The results show that the measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the double arc argon plasma at atmospheric pressure is close to the LTE state under our experimental conditions

  14. Thermal spike analysis of highly charged ion tracks

    International Nuclear Information System (INIS)

    Karlušić, M.; Jakšić, M.

    2012-01-01

    The irradiation of material using swift heavy ion or highly charged ion causes excitation of the electron subsystem at nanometer scale along the ion trajectory. According to the thermal spike model, energy deposited into the electron subsystem leads to temperature increase due to electron–phonon coupling. If ion-induced excitation is sufficiently intensive, then melting of the material can occur, and permanent damage (i.e., ion track) can be formed upon rapid cooling. We present an extension of the analytical thermal spike model of Szenes for the analysis of surface ion track produced after the impact of highly charged ion. By applying the model to existing experimental data, more than 60% of the potential energy of the highly charged ion was shown to be retained in the material during the impact and transformed into the energy of the thermal spike. This value is much higher than 20–40% of the transferred energy into the thermal spike by swift heavy ion. Thresholds for formation of highly charged ion track in different materials show uniform behavior depending only on few material parameters.

  15. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    International Nuclear Information System (INIS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-01-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy

  16. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  17. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    CERN Document Server

    Andeen, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background ejection rates. For the first upgrade phase cite{pahse1loi} in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies a digital filtering and id...

  18. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  19. Precision laser spectroscopy of highly charged ions

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  20. Pressure regulation in the dry-boxes. Argon purification

    International Nuclear Information System (INIS)

    Pascard, R.; Fabre, R.

    1958-01-01

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author) [fr

  1. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Kim, Eunae; Yeom, Min Sun

    2014-01-01

    Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge

  2. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  3. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  4. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    Science.gov (United States)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  5. Three-dimensional calculations of charge neutralization by neutral gas release

    International Nuclear Information System (INIS)

    Mandell, M.J.; Jongeward, G.A.; Katz, I.

    1993-01-01

    There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data

  6. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  7. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe 37+ , 1 e μA of Xe 43+ , and 0.16 e μA of Ne-like Xe 44+ . To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi 31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi 31+ , 22 e μA of Bi 41+ , and 1.5 e μA of Bi 50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  8. Sodium evaporation into a forced argon flow

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1975-01-01

    Evaporation from a rectangular sodium free surface into an argon flow was measured. Tests were carried out with varying sodium temperature, argon velocity and argon temperature respectively under conditions of fog formation being possible. In order to clarify the enhancement of evaporation by fog formation, convection heat transfer from a plate of the same geometry into an air flow was also measured. The evaporation rate and Sherwood number were compared with those predicted by both the heat transfer experiment and the theory proposed by Hill and Szekely, and also a comparison was run with the previously reported experimental results of sodium evaporation. As a result it was shown that the sodium evaporation rate in this experiment is at least four times as large as that predicted by the heat transfer experiment and varies almost linearly with the heat transfer rate and the sodium vapour pressure. (auth.)

  9. Argon-41 production and evolution at the Oregon State University TRIGA Reactor (OSTR)

    International Nuclear Information System (INIS)

    Anellis, L.G.; Johnson, A.G.; Higginbotham, J.F.

    1988-01-01

    In this study, argon-41 concentrations were measured at various locations within the reactor facility to assess the accuracy of models used to predict argon-41 evolution from the reactor tank, and to determine the relationship between argon gas evolution from the tank and subsequent argon-41 concentrations throughout the reactor room. In particular, argon-41 was measured directly above the reactor tank with the reactor tank lids closed, at other accessible locations on the reactor top with the tank lids both closed and open, and at several locations on the first floor of the reactor room. These measured concentrations were then compared to values calculated using a modified argon-41 production and evolution model for TRIGA reactor tanks and ventilation values applicable to the OSTR facility. The modified model was based in part on earlier TRIGA models for argon-41 production and release, but added features which improved the agreement between predicted and measured values. The approximate dose equivalent rate due to the presence of argon-41 in reactor room air was calculated for several different locations inside the OSTR facility. These dose rates were determined using the argon-41 concentration measured at each specific location, and were subsequently converted to a predicted quarterly dose equivalent for each location based on the reactor's operating history. The predicted quarterly dose equivalent values were then compared to quarterly doses measured by film badges deployed as dose-integrating area radiation monitors at the locations of interest. The results indicate that the modified production and evolution model is able to predict argon-41 concentrations to within a factor of ten when compared to the measured data. Quarterly dose equivalents calculated from the measured argon-41 concentrations and the reactor's operating history seemed consistent with results obtained from the integrating area radiation monitors. Given the argon-41 concentrations measured

  10. Improvement of helium characteristics using argon in cylindrical ion source

    International Nuclear Information System (INIS)

    Abdel salam, F.W.; El-Khabeary, H.; Abdel reheem, A.M.; Kassem, N.E.; Ahmed, M.M.

    2004-01-01

    the discharge characteristics of pure helium gas were measured at different pressures in the range of 10 -4 torr. in order o improve its characteristics, argon gas was added . different percentages of argon gas ,1%,2%,3%,4%,5%,10% and 20% were used at constant values of pressures . Measurements of the efficiency of the cylindrical ion source in case of adding different percentages of argon gas to pure helium gas were made . an optimum value of the output ion beam current was obtained when 2% argon gas was added to pure helium gas . an output ion beam current of 105 μA was obtained at a pressure of 7X10 -4 torr inside the vacuum chamber and discharge current of 0.6 m A

  11. Characterisation of GERDA Phase-I detectors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik; Schoenert, Stefan [Max-Planck-Institut fuer Kernphysik (Germany); Gusev, Konstantin [Russian Research Center, Kurchatov Institute (Russian Federation); Joint Institute for Nuclear Research (Russian Federation)

    2009-07-01

    GERDA will search for neutrinoless double beta decay in {sup 76}Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  12. Active background suppression with the liquid argon scintillation veto of GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ˜10-3 cts/(keV·ky·yr) has been confirmed.

  13. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  14. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  15. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1995-04-01

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  16. Transport of charged particles in the plasma of an ECRIS; Transport des particules chargees dans le plasma d'ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A.; Perrer, Douysset; Melin, G. [Dept. de Recherche Fondamentale sur la Matiere Condensee CEA Centre d' Etudes de Grenoble, 38 (France)

    1999-07-01

    The paper has the following contents: 1. Introduction; 2. Electron transport. 2.1. Experiments - Lifetime measurements - Contradiction. 2.2. Modelling; 3. Ion transport. 3.1. Experiments - Measurement of argon K{sub {alpha}}. 3.2. Lifetime. 3.3. Proposed model, controversy; 4. Conclusion. A setup of the experiment and the results concerning the electron density, energy content, mean energy, current density, electron lifetime and lifetime of electron energy as a function of rf power are presented. The results are interpreted and modelled. Also, the experimental setup for the study of ion transport is presented. The density of argon ions is determined by means of the high resolution X ray spectra which, by making use of a simple collisional radiative model, is able to single out the argon K{sub {alpha}} rays corresponding to different ions. These results are also interpreted and modelled. In conclusion, with an electron dynamics controlled by rf, due to a high mirror ratio, the losses are limited. According to the scale law the higher the frequency the higher is the energy content of the electrons and consequently the higher are the performances. The ions are cool and colliding. Their lifetime increases with the charge. If it increases linearly their transport is controlled by the spatial diffusion in the ambipolar electric field. A correct lifetime requires plasma of high dimensions and low ionic temperature.

  17. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  18. Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms

    Science.gov (United States)

    Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.

    2018-04-01

    The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.

  19. Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators

    International Nuclear Information System (INIS)

    Tornow, W.; Huck, H.; Koeber, H.J.; Mertens, G.

    1976-01-01

    Investigations of scintillation light output and energy resolution have been made at pressures up to 90 atm in gaseous mixtures of nitrogen with both argon and xenon by stopping of 210 Po-alpha particles. In the absence of a wavelength shifter, the N 2 -Ar mixtures gave a maximum pulse height at a ratio of nitrogen to argon partial pressures rsub(N 2 /Ar) approximately =0.2. However, when using the wavelength shifter diphenyl stilbene (DPS), the measured light output was much larger at lower values of rsub(N 2 /Ar), whereas for rsub(N 2 /Ar)>0.2 pulse height and energy resolution of the studied N 2 -Ar mixtures were roughly indentical with and without DPS. The N 2 -Xe gas mixtures exhibited a similar dependence of pulse height and energy resolution to that of the N 2 -Ar mixtures employing DPS, but the pulse height was larger by a factor of about 7. A 40 atm 50% N 2 -50% Xe gas scintillator showed an energy resolution ΔE/E=0.25, while an 80 atm 75% N 2 -25% Xe scintillator gave ΔE/E=0.6. The pulse height from the 80 atm N 2 -Xe scintillator was smaller by a factor of about 240 than the pulse height from a 20 atm pure Xe gas scintillator, but larger by a factor of about 20 than the pulse height from a 75 atm pure N 2 gas scintillator. The N 2 -Xe mixtures showed a remarkable increase of light output as the temperature of the gas was descreased. (Auth.)

  20. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  1. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  2. Dynamics of ZnO laser produced plasma in high pressure argon

    International Nuclear Information System (INIS)

    Kaydashev, V.E.; Lunney, J.G.

    2011-01-01

    Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 x 10 3 -10 4 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 10 9 -10 10 cm -3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.

  3. Thermal conductivity in an argon arc at atmospheric pressure

    NARCIS (Netherlands)

    Bol, L.; Timmermans, C.J.; Schram, D.C.

    1984-01-01

    The thermal conductivity of an argon plasma has been determined in a phi 5 mm wall stabilized atmospheric argon arc in the temperature range from 10000 to 16000 K. The calculations are based on the energy balance, and include non-LTE effects like ambipolar diffusion and overpopulation of the ground

  4. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  5. ARAPUCA a new device for liquid argon scintillation light detection

    International Nuclear Information System (INIS)

    Machado, A.A.; Segreto, E.

    2016-01-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R and D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm 2 with an active coverage of 2 × 2 cm 2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors

  6. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  7. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  8. Studies on EOS of shock-generated argon plasmas

    International Nuclear Information System (INIS)

    Wang Fanhou; Jing Fuqian

    2001-01-01

    The equation of state for argon plasma, covering the thermodynamic states of 10000-30000 K in temperature and 0.0133-0.166 GPa in pressure, is computed using the Saha model and Debye-Huckel correction. Comparisons of the measured EOS with the calculated ones demonstrate the Saha model and Debye-Huckel correction can be used to well describe the essential behavior of argon plasma under the thermodynamic condition above-mentioned

  9. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation, and LHC relative luminosity measurement.

    CERN Document Server

    Arfaoui, Samir; Monnier, E

    2011-01-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In oder to do so,it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity ...

  10. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation and LHC relative luminosity measurement

    International Nuclear Information System (INIS)

    Arfaoui, S.

    2011-10-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In order to do so, it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity determination. (author)

  11. Thermal information regarding the cooldown and operation of liquid argon calorimeters

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Cooper, W.E.; Dixon, K.D.; Krempetz, K.J.; Mulholland, G.T.; Primdahl, K.; Urbin, J.B.

    1993-07-01

    Three liquid argon calorimeters were cooled down and operated as part of the D-Zero detector at Fermi National Accelerator laboratory. The largest vessel contains 248 metric tons of uranium and copper plates and 19 kL (5000 gal.) of liquid argon. The other two vessels are mirror images, each containing 185 metric tons of uranium and stainless steel plates and 12.1 kL (3200 gal.) of liquid argon. The cool down was accomplished by convection heat transfer between boiling liquid nitrogen filled finned heat exchangers and argon gas inside the vessels. Information regarding the general internal geometry of the calorimeters, cool down, operation, and steady state heat loads will be presented

  12. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  13. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    International Nuclear Information System (INIS)

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  14. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  16. WARP: a double phase argon programme for dark matter detection

    International Nuclear Information System (INIS)

    Ferrari, N

    2006-01-01

    WARP (Wimp ARgon Programme) is a double phase Argon detector for Dark Matter search under construction at Laboratori Nazionali del Gran Sasso. We present recent results obtained operating a prototype with a sensitive mass of 2.3 litres deep underground

  17. Properties of hotspots in plasma focus discharges operating in hydrogen-argon mixtures

    International Nuclear Information System (INIS)

    Silva, P; Favre, M

    2002-01-01

    We have investigated the properties of hotspots formed in low energy plasma focus (PF) discharges operating in hydrogen-argon mixtures, at 140 kA current level. A combination of filtered pinhole and slit-wire camera is used to measure the hotspot size and temperature. The results show that the best conditions for reproducible and localized hotspot formation are obtained by adjusting the base pressure in such a way that the mass load allows the time of first radial collapse to coincide with peak current. When the PF is operated with 20% argon content, rather uniform hotspots, of 115 μm characteristic size and 300 eV characteristic temperature, are produced with a better than 80% reproducibility in their axial localization. The electron density in the hotspots is estimated to be ∼10 20 cm -3 . Calculations performed with a CRE code indicate that a significant fraction of the radiation is emitted in the 3.2 to 3.88 keV region, corresponding to K α emission from highly ionized argon

  18. Mathematical identification of homogenisation processes in argon stirred ladle

    Directory of Open Access Journals (Sweden)

    K. Michalek

    2009-10-01

    Full Text Available Mathematical models processed results of experimental investigation obtained during ladle gas argon bubbling realized by stir elements situated in the ladle bottom. Exact theoretical description of processes occurring at argon bubbling into steel would be very complex and it would lead to a system of non-linear partial differential equations describing transfer of momentum, heat, components, and with excitation function in the form of equation of so called deterministic chaos (argon bubbling. On the basis of pouring ladle model diagram and concentrations courses, the simplified linear physically adequate model was proposed, which described behavior of steel concentration in pouring ladle during its bubbling. The analysed process was understood in the form of a cybernetic model.

  19. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  20. New read-out electronics for ICARUS-T600 liquid Argon TPC. Description, simulation and tests of the new front-end and ADC system arXiv

    CERN Document Server

    Bagby, L.; Bellini, V.; Bonesini, M.; Braggiotti, A.; Castellani, L.; Centro, S.; Cervi, T.; Cocco, A.G.; Fabris, F.; Falcone, A.; Farnese, C.; Fava, A.; Fichera, F.; Franciotti, D.; Galet, G.; Gibin, D.; Guglielmi, A.; Guida, R.; Ketchum, W.; Marchini, S.; Menegolli, A.; Meng, G.; Menon, G.; Montanari, C.; Nessi, M.; Nicoletto, M.; Pedrotta, R.; Picchi, P.; Pietropaolo, F.; Rampazzo, G.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Scaramelli, A.; Sergiampietri, F.; Spanu, M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Zani, A.; Zatti, P.G.

    The ICARUS T600, a liquid argon time projection chamber (LAr-TPC) detector mainly devoted to neutrino physics, underwent a major overhauling at CERN in 2016-2017, which included also a new design of the read-out electronics, in view of its operation in Fermilab on the Short Baseline Neutrino (SBN) beam from 2019. The new more compact electronics showed capability of handling more efficiently the signals also in the intermediate Induction 2 wire plane with a significant increase of signal to noise (S/N), allowing for charge measurement also in this view. The new front-end and the analog to digital conversion (ADC) system are presented together with the results of the tests on 50 liters liquid argon TPC performed at CERN with cosmic rays.

  1. Diffusion of lithium ions in argon

    International Nuclear Information System (INIS)

    Stefansson, T.

    1983-01-01

    Published measurements of transport coefficients for Li + ions in argon seem to be limited to the mobility and the longitudinal diffusion coefficient in the field-to-density ratio range at and below 200 Td 1-5 . In this paper results are presented from measurements of the transverse diffusion coefficient to mobility ratio (Dsub(T)/μ) for Li + ions in argon in the field-to-density ratio range 10 < E/n < 800 Td. The measurements were made with a drift tube mass spectrometer at a gas temperature of 295 +- 1 K using the modified Townsend method of Skullerud. The experimental curve is compared to a calculation by H.R. Skullerud in the same proceedings. (G.Q.)

  2. Concept for high-charge-state ion induction accelerators

    International Nuclear Information System (INIS)

    Logan, B.G.; Perry, M.D.; Caporaso, G.J.

    1996-01-01

    This work describes a particular concept for ion induction linac accelerators using high-charge-state ions produced by an intense, short pulse laser, and compares the costs of a modular driver system producing 6.5 MJ for a variety of ion masses and charge states using a simple but consistent cost model

  3. Development of 16.5 GHz ECR ion source in KEK

    International Nuclear Information System (INIS)

    Mori, Yoshiharu; Kinsho, Michikazu; Ikegami, Kiyoshi; Takagi, Akira

    1992-01-01

    An electron cyclotron resonance (ECR) ion source is useful for generating not only highly charged heavy ions but intense protons. We have developed the 16.5 GHz ECR ion source for the optically pumped polarized ion source (OPPIS). Recently, we have modified it to extract highly charged heavy ions and succeeded in producting highly charged argon ions of which charge-states were from 2 to 8. When we introduced electrons into the plasma with a LaB 6 filament, the argon ion beam whose charge-state up to 11 could be extracted. The intensity was also enhanced in factor 2 to 6 for each charge-state ions. (author)

  4. The radiolytic formation of nitric acid in argon/air/water systems

    International Nuclear Information System (INIS)

    May, R.; Stinchcombe, D.; White, H.P.

    1992-01-01

    The extent of nitric acid formation in the γ-radiolysis of argon/air/water mixtures has been assessed. The yields of nitric acid are found to increase as water vapour pressure is increased but are lower in the presence of a discrete water phase. G values for the formation of nitric acid from argon/air mixtures based on energy absorbed in the air are increased in the presence of argon but the yields in an atmosphere of argon containing small amounts of moist air are smaller than from an atmosphere of moist air alone. The G value for nitric acid formation from pure air in the presence of a distinct water phase is 2, based on energy absorbed in the air. (author)

  5. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  6. Influence of local irradiation by argon on structure of sulsurface layers in GaAs

    International Nuclear Information System (INIS)

    Uskov, V.A.; Krasnov, A.A.; Krivelevich, S.A.; Rats, Yu. V.; Sterkhov, A.L.; Trapeznikov, V.A.

    1986-01-01

    A study was made on the influence of irradiation by argon ions with energy from 5 up to 75 keV on the structure and surface layer properties of gallium arsenie in the vicinity of pseudoboundary exposed-unexposed surface. Methods of measuring contact potential difference, electron microscopy and electron diffraction were used. It was established that irradiation by low energy ions results to sharp increase of dislocation density both in exposed and unexposed crystal part. Space charge of the value proportional to the product of irradiation dose and ion energy occurs in pseudoboundary vicinity. Dislocation distribution in pseudoboundary vicinity is determined on condition that the force affecting length per unit of each dislocation equals zero

  7. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Songhi

    2014-01-01

    We have carried out a series of equilibrium molecular dynamics (EMD) simulations of gaseous argon at 273.15 K and 1.00 atm for the calculation of transport properties as a function of the number of argon molecules (N). While the diffusion coefficients (D) of gaseous argon approach to the experimental measure with increasing N, the viscosities (η) and thermal conductivities (λ) obtained for N = 432 are unreliable due to the high fluctuation of the time correlation functions and those for N = 1728 are rather acceptable. Increasing further to N = 6912 has improved the MD results a little closer to the experimental measures for η and λ. Both the EMD results for η and λ for N = 6912 underestimate the experimental measures and it is not expected that the more increasing N makes the closer results to the experimental measures. One possible explanation for the large disagreement between MD results and the experimental measures for η and λ may be due to the use of LJ parameters which were used for liquid argon. In a recent study, we have examined the Green-Kubo formula for the calculation of transport properties (diffusion coefficient, viscosity, and thermal conductivity) of noble gases (He, Ne, Ar, Kr, and Xe) by carrying out a series of equilibrium molecular dynamics (EMD) simulations for the system of N=1728 at 273.15 K and 1.00 atm.1 While the diffusion coefficients (D) of noble gases were obtained through the original Green-Kubo formula, the viscosities (η) and thermal conductivities (λ) were obtained by utilizing the revised Green-Kubo formulas. The structural and dynamic properties of gaseous argon are completely different from those of liquid argon at 94.4 K and 1.374 g/cm 3 . The results for transport properties (D, η, and λ) at 273.15 K and 1.00 atm obtained from our EMD simulations are in general agreement with the experimental data and superior to the rigorous results of the kinetic theory

  8. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma

    International Nuclear Information System (INIS)

    Liu Hengjun; Pei Yanan; Xie Dong; Deng Xingrui; Leng, Y.X.; Jin Yong; Huang Nan

    2010-01-01

    In this work, argon (Ar) plasma generated by microwave electron cyclotron resonance (MWECR) has been used to modify the UHMWPE in order to increase the wear resistance. The results showed that the wettability, anti-scratch and wear resistance of UHMWPE treated by the Ar plasma had been improved, comparing with native UHMWPE. The FTIR and XPS spectra indicated the improvement of wettability should come from the oxygen based functional groups generated on the surface of UHMWPE. The improvement of anti-scratch and wear resistance may come from the enhancement of crosslinking of UHMWPE by Ar plasma treatment.

  9. Application of argon-helium cryoablation in resection of intracranial tumors

    Directory of Open Access Journals (Sweden)

    Yu-hao ZHOU

    2017-07-01

    Full Text Available Objective To summarize the curative effect of argon-helium cryoablation in resection of intracranial tumors.  Methods and Results A total of 11 patients with primary intracranial tumors, including 7 cases of glioma and 4 cases of meningioma, were enrolled in this study. The tumor was located in left frontal lobe in 4 cases, left fronto-parietal lobe in 2 cases, left temporal lobe in 2 cases and right temporo-parietal lobe in 3 cases. Argon-helium cryoablation was used to assist intracranial tumor resection. Among 7 cases of glioma, 4 cases were totally removed and 3 cases were partially resected. Four cases of meningioma were totally removed. The average intraoperative blood loss was 80 ml, and average operation time was 80 min. Postoperative clinical symptoms were improved, and head CT or MRI showed no rebleeding. Patients were followed up for an average of 4 years, and none of them suffered from operation-related or postoperative complications such as intracranial infection, or tumor recurrence.  Conclusions Argon - helium cryoablation is suitable for intracranial tumors with different diameters and in different locations. It is safe and effective, with few operation-related or postoperative complications, less rebleeding and low risk of recurrence, which is a highly efficient and relatively low?cost assistant surgical method. DOI: 10.3969/j.issn.1672-6731.2017.06.011

  10. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  11. Highly charged atomic physics at HIRFL-CSR

    International Nuclear Information System (INIS)

    Ma Xinwen; Wang Youde; Hou Mingdong; Jin Gengmin

    1996-01-01

    HIRFL-CSR is a proposed electron cooling storage ring optimized to accelerate and store beams of highly charged heavy ions. Several possibilities for advanced atomic physics studies are discussed, such as studies of electron-ion, ion-atoms, photon-ion-electron interactions and high resolution spectroscopy

  12. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  13. Formation of carbon nanostructures using acetylene, argon-acetylene and argon-hydrogen-acetylene plasmas

    International Nuclear Information System (INIS)

    Marcinauskas, L.; Grigonis, A.; Minialga, V.; Marcinauskas, L.; Valincius, V.

    2013-01-01

    The films prepared in argon-acetylene plasma are attributed to graphite-like carbon films. Addition of the hydrogen decreases growth rate and the surface roughness of the films and lead to the formation of nanocrystalline graphite. The carbon nanotubes were formed at low (≤ 450°C; p = 40 Pa) temperature in pure acetylene plasma. (authors)

  14. Study of hadrons energy resolution in a liquid argon calorimeter for the H1 experiment and study of supersymmetric particles detection at Hera

    International Nuclear Information System (INIS)

    Besancon, M.

    1989-08-01

    Tests of liquid Argon calorimeters have been carried out at CERN in 1986 and 1987 in order to study the properties of the forthcoming H1 detector calorimeter installed at the HERA collider. In the first part of this work, from data analysis, several weighting methods of the measured charge for hadronic showers are proposed and discussed. These weighting methods allow to correct the non compensation of liquid Argon calorimeters and so to optimize the hadrons energy resolution. The problem of electrons and pions identification is also met. In the second part, selectron and squark production is considered in the electrons protons collisions of HERA. Signal extraction from standard background is studied with the help of a simulation of supersymmetric and deep inelastic scattering processes as well as a rough simulation of the H1 detector [fr

  15. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  16. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  17. Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    CERN Document Server

    Antonello, M

    2013-01-01

    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  18. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    Directory of Open Access Journals (Sweden)

    M. Antonello

    2013-01-01

    Full Text Available Liquid Argon Time Projection Chamber (LAr TPC detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  19. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Eslami, E.; Barjasteh, A.; Morshedian, N.

    2015-01-01

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap

  20. Measurements of the Properties of Highly-charged high-Z ions

    International Nuclear Information System (INIS)

    Augustine J. Smith, Ph.D.

    2007-01-01

    We had proposed carrying out a systematic experimental investigation of the atomic physics of highly charged, high-Z ions, produced in the Lawrence Livermore National Laboratory LLNL electron beam ion trap (EBIT-I) in its high energy mode, superEBIT. In particular we were going to accurately measure line positions for Δn=0 transitions in few electron high-Z ions; this was meant to enable us to investigate relativistic and quantum electrodynamics QED contributions to the energy levels as well as the nuclear properties of heavy ions. We were also going to measure cross sections for various electron-ion interactions, the degree of polarization of emitted x-rays, and radiation cooling rates of various ionization stages of highly charged, high-Z ions. This would enable us to study fundamental atomic physics of high-Z ions at relativistic electron impact energies and in the intense nuclear fields of highly ionized, high-Z ions. This would extend previous measurements we have carried out to a regime where there is a paucity of good data. These measurements were expected to generate increased theoretical interest and activity in this area. The project will extend a very successful collaboration between Morehouse College (MC) and a national laboratory LLNL, Minority student training and development are major components of the proposal

  1. Charging of Dust Grains in a Nuclear-Induced Plasma at High Pressures

    International Nuclear Information System (INIS)

    Pal’, A. F.; Starostin, A. N.; Filippov, A. V.

    2001-01-01

    The process of dust-grain charging in plasmas produced by radioactive decay products or spontaneous fission fragments in air and xenon at high pressures is studied numerically in the hydrodynamic approximation. It is shown that, at sufficiently high rates of gas ionization, the dust grains in air are charged by electrons rather than ions, so that the grain charge in air is comparable to that in electropositive gases. The results of numerical calculations based on a complete model agree well with the experimental data. The time evolution of the grain charge is investigated, and the characteristic time scales on which the grains acquire an electric charge are established. The validity of approximate theories of dust-grain charging in electropositive and electronegative gases at high pressures is examined

  2. High-resolution n = 3 to n = 2 spectra of neonlike silver

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Bitter, M.; von Goeler, S.

    1986-01-01

    Spectra of the n = 3 to n = 2 transitions in neonlike silver emitted from the Princeton Large Torus have been recorded with a high-resolution Bragg-crystal spectrometer. The measurements cover the wavelength region 3.3--4.1 A-circle and include the forbidden 3p→2p electric quadrupole lines. Transitions in the adjacent sodiumlike, magnesiumlike, and aluminumlike charge states of silver have also been observed and identified. The Ly-α spectra of hydrogenlike argon and iron, the Kα spectra of heliumlike argon, potassium, manganese, and iron, and the Kβ spectrum of heliumlike argon fall in the same wavelength region in first or second order and have been measured concurrently. These spectra provide a coherent set of wavelength reference data obtained with the same spectrometer and from the same tokamak. This set is used as a basis to compare wavelength predictions for one- and two-electron systems to each other and to determine the transition energies of the silver lines with great accuracy

  3. Ionizing Shocks in Argon. Part 2: Transient and Multi-Dimensional Effects (Preprint)

    Science.gov (United States)

    2010-09-09

    stability in ionizing monatomic gases. Part 1. Argon ,” J. Fluid Mech., 84, 55 (1978). 2M. P. F. Bristow and I. I. Glass, “ Polarizability of singly...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ionizing Shocks in Argon . Part 2: Transient...Physics. 14. ABSTRACT We extend the computations of ionizing shocks in argon to unsteady and multi-dimensional, using a collisional-radiative

  4. Sodium evaporation into a forced argon flow, (1)

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1976-01-01

    Measurements were made on the rate of evaporation from a rectangular-shaped free surface of liquid sodium into argon flow. Tests were carried out at various levels of sodium temperature, of argon velocity and of argon temperature, under conditions where fog formation could be expected. To gain information on the enhancement of evaporation occasioned by fog formation, a supplementary experiment was performed on convection heat transfer into flowing air from a heated plate of the same geometry as the free surface of the sodium in the preceding measurements. The values obtained for the rate of evaporation and Sherwood number were compared with those predicted by the heat transfer experiment and by the theory by Hill and Szekely. The overall results revealed that the rate of sodium evaporation can amount to as much as three times that predicted by the heat transfer experiment, and that it varies roughly linearly with the heat transfer rate and with the sodium vapor pressure prevailing at the free surface. (auth.)

  5. The ICARUS T600 Liquid Argon Detector Operation in the Underground Gran Sasso Laboratory

    CERN Document Server

    Vignoli, C

    2014-01-01

    The ICARUS T600 Module is the largest liquid argon detector (760 t LAr mass) ever realized to study neutrino oscill ations and matter stability in the deep underground Gran Sasso Laboratory. One of t he key elements for the detector performance is the liquid argon purity: residual electronegative compounds in argon have to be kept as low as 0.1 part s per billion all over the detector run. The T600 Module design was finalized by the ICARUS Collaboration after years of R&D studies that brought to the viable and scalable industrial solutions necessary for sized experiments with severe safety prescriptions for the underground operation . We present the T600 Module successful commissioning and the 3-years efficient, stable and continuous operation with extraordinary LAr purity, high performance and zero dead time data taking . This result demonstrates for the first time the feasibility of activation and long-term run in safe conditions of sized cryogenic detectors even in a confined underground location and r...

  6. A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2014-01-01

    We have been developing a serializer application-specific integrated circuit (ASIC) based on a commercial 0.25-μm silicon-on-sapphire (SOS) CMOS technology for the ATLAS liquid argon calorimeter front-end electronics upgrade. The first prototype, a 5 Gbps 16:1 serializer has been designed, fabricated, and tested in lab environment and in 200 MeV proton beam. The test results indicate that the first prototype meets the design goals. The second prototype, a double-lane, 8 Gbps per lane serializer is under development. The post layout simulation indicates that 8 Gbps is achievable. In this paper we present the design and the test results of the first prototype and the design and status of the second prototype.

  7. Study of the low-energy ER/NR discrimination and its electric-field dependence with liquid argon

    Science.gov (United States)

    Washimi, T.; Kikuchi, T.; Kimura, M.; Tanaka, M.; Yorita, K.

    2018-02-01

    A two-phase argon detector is generally suitable for the direct detection of weakly interacting massive particle (WIMP) dark matter owing to its high rejection power against electron recoil background events. However, ionization signal (S2) has not been effectively used for argon in current experiments because its basic properties and discrimination power from S2 signal in the low-energy region are not well known, as compared with xenon. The scope of this study is evaluation of S2 properties at a low-energy region of about 40 keVnr and its discrimination power between electron recoils and nuclear recoils based on results from a prototype LAr time projection chamber. The drift-field was varied from null to 3 kV/cm. The detection feasibility for low-mass WIMP with argon is also discussed.

  8. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  9. Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    International Nuclear Information System (INIS)

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; Koi, T.; Fukushima, C.; Ogawa, S.; Shibasaki, M.; Shibuya, H.

    2006-01-01

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

  10. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    International Nuclear Information System (INIS)

    Amos, N.A.; Anderson, D.F.

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/π ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the Dφ uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/π ratio

  11. Improvement of highly charged ion output from an ECR source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1995-01-01

    The physical limitations of the highly charged ion production in the ECR source is analyzed in this report. General methods to increase the output ion current and the attainable charged states of heavy ions are discussed. Some new ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the mathematical simulation of heavy ion production in the ECR ion source is used for numerical experiments to test these ways for improving the operation of the ECR source. (orig.)

  12. The ICARUS Front-end Preamplifier Working at Liquid Argon Temperature

    CERN Document Server

    Baibussinov, B; Casagrande, F; Cennini, P; Centro, S; Curioni, A; Meng, G; Picchi, P; Pietropaolo, F; Rubbia, C; Sergiampietri, F; Ventura, S

    2011-01-01

    We describe characteristics and performance of the low-noise front-end preamplifier used in the ICARUS 50-litre liquid Argon Time Projection Chamber installed in the CERN West Area Neutrino Facility during the 1997-98 neutrino runs. The preamplifiers were designed to work immersed in ultra-pure liquid Argon at a temperature of 87K.

  13. Photoproduction of charged particle with high transverse momentum

    International Nuclear Information System (INIS)

    Campos Costa Ramos, S.E. de.

    1986-09-01

    Inclusive cross sections of high transverse moment charged pions induced by a high energy photon beam have been measured. These results do not account, neither in slope nor in normalisation, for the VDM component of the photon, evaluated with pion induced data taken in the same experimental conditions after VDM subtraction, excellent agreement is found with QCD calculations up to second order in α s , in an extended cinematic region, different choices of the gluon fragmentation function do not alter this conclusion. Our measures of the inclusive final state charge asymmetries also confirm QCD expectations. 42 refs [fr

  14. Comparison study of nitrogen and argon processing in a plasma arc centrifugal treatment system

    International Nuclear Information System (INIS)

    Shuey, M.; Tsuji, Y.

    2000-01-01

    Recent testing performed at the plasma research center of Retech Services, Inc. compared nitrogen with argon as plasma gas in the processing of simulated wastes. The testing took place in a full-scale production PACT system under a cooperative research and development study between Retech Services Inc. and Toyo Engineering Corporation. This study shows that simulated waste can be processed by both nitrogen and argon plasmas. Heat losses to the torch nozzle were significantly lower with argon and should be studied further. Both argon and nitrogen plasma were able to process feeds containing both metals and oxides. Some of the drawbacks to using argon plasma are cost, higher volume flow rates, and dual mode torch nozzle erosion. (authors)

  15. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  16. Evolution of subsurface nanocavities in copper under argon bombardment and annealing

    NARCIS (Netherlands)

    Kulikov, D.V.; Kurnosikov, O.; Kharlamov, V.S.; Trushin, Yu.V.

    2013-01-01

    The experimental and theoretical studies of evolution of nanocavities in argon-irradiated copper under annealing are presented. The subsurface argon-filled nanocavities are formed during a short annealing at a temperature around 1000 K by migration and interaction of complexes of the simplest

  17. Interaction of slow highly-charged ions with metals and insulators

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    Interaction of slow highly charged ions with insulator as well as metallic surfaces is discussed. In addition to the usual flat surface targets, studies with thin foils having a multitude of straight holes of ∼100 nm in diameter (micro-capillary foil) are introduced, which provide various unique information on the above surface interaction. In the case of an insulator micro-capillary foil, a so-called guiding effect was observed, where slow highly charged ions can transmit through the capillary tunnel keeping their initial charge state even when the capillary axis is tilted against the incident beam. A similar guiding effect has recently been found for slow highly-charged ions transmitted through a single tapered glass capillary. In both cases, the guiding effects are expected to be governed by a self-organized charging and discharging of the inner-wall of the insulator capillary. One of the prominent features of this guiding effect with the tapered capillary is the formation of a nano-size beam, which can be applied in various fields of science including surface nano-modification/analysis, nano-surgery of living cells, etc

  18. Liquid-argon calorimetry

    International Nuclear Information System (INIS)

    Fabjan, C.W.

    1989-01-01

    In this paper the viability of liquid-argon calorimetric techniques in the experimental environment of the Superconducting Super Collider (SSC) is briefly analyzed. The authors compare the required and achievable energy resolution with benchmark figures obtained using practical instruments. Comments on the desirable (i.e. required) temporal performance are made and compared with the state of the art. Some of the major engineering challenges are listed, for which solutions will have to be developed if such instruments are to find a place in an SSC experimental area

  19. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  20. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  1. Non-linear behaviour of power density and exposure time of argon laser on ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, E M; Talaat, M S; Salem, E F [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    1997-12-31

    In ophthalmology, the thermal effect of argon laser is the most widely used category of laser- tissue interaction. The rise in tissue temperature has to exceed a threshold value for photo coagulation of retinal blood vessels. This value mainly depends on the laser. The most suitable argon laser power P and exposure time (t) which would be more effective for thermal and electrical behaviour of chicken eye was studied. This was achieved by measuring the variations in ocular temperature in electroretinogram (ERG) records under the effect of argon experiment, while power density (P) and exposure time (t) were varied in four different ways for each dose (pt). Results indicated that for the same laser dose, the temperature distribution of the eye, using low power density and high exposure time was higher than that high power density and low exposure time, indicating non-linearity of the laser dose. This finding was confirmed by ERG records which showed similar variations in b-wave latency, amplitude and duration, for the laser exposure conditions. This indicates variations in retinal function due to laser-dependent temperature variations. 5 figs., 3 tabs.

  2. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    International Nuclear Information System (INIS)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  3. Reconstruction of the time-averaged sheath potential profile in an argon RF plasma using the ion energy distribution

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Schwarzenbach, W.; Howling, A.A.; Hollenstein, C.

    1994-10-01

    Charge-exchange collisions and radio-frequency excitation combine to give peaks in the ion energy distribution measured at the ground electrode of an argon plasma in a capacitive reactor. These peaks are used as a diagnostic to reconstruct the profile of the time-averaged potential in the sheath. Particle-In-Cell simulations show that the method is accurate. The method is applied to investigate the sheath thickness as a function of excitation frequency at constant plasma power. The time-averaged potential is found to be parabolic in both experimental measurements and numerical simulation. (author) 6 figs., 1 tab., 15 refs

  4. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  5. Electron impact ionization of highly charged lithiumlike ions

    International Nuclear Information System (INIS)

    Wong, K.L.

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti 19+ ) and Z=26 (iron, Fe 23+ ) and to Z=56 (barium, Ba 53+ ). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented

  6. Charge exchange of muons in gases

    International Nuclear Information System (INIS)

    Turner, R.E.; Senba, M.

    1983-06-01

    The effects of the charge exchange process on muon spin dynamics have been investigated using a density operator formalism with special interest placed upon the diamagnetic muon and paramagnetic muonium signals observed after thermalization. In the charge exchange region the dynamics of the spin density operator is assumed to be determined by the muonium hyperfine interaction and by electron capture and loss processes for muons. Analytical expressions are obtained for the amplitudes and phases of the diamagnetic muon and paramagnetic muonium signals as a function of the duration of the charge exchange region, tsub(c), which is inversely proportional to the number density of the moderating gas. The theoretical signals exhibit three features which have, as yet, to be experimentally observed, namely: i) that the amplitudes associated with the muonium Larmor frequency and with the hyperfine frequency are not, in general, equal, ii) that all the amplitudes are, in general, damped oscillatory functions of tsub(c) (temperature/pressure) and iii) that phase jumps occur when an amplitude decreases to zero and then increases with falling pressure. Fits to the experimental argon data are discussed in light of the above points

  7. Calibration of a large volume argon-41 gas-effluent monitor

    International Nuclear Information System (INIS)

    Wilson, William E.; Lovas, Thomas A.

    1976-01-01

    In September of 1975, a large volume Argon-41 sampler was calibrated using a series connected calibration chamber of known sensitivity and a constant flow of activated Argon gas. The calibration included analysis of the effects of flow rate through the large volume sampler and yielded a calibration constant of 2.34 x 10 -8 μc/cm 3 /CPM. (author)

  8. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  9. Highly charged ions: a miniature laboratory for new fundamental science

    International Nuclear Information System (INIS)

    Gillaspy, J.D.

    2002-01-01

    Full text: Highly charged ions are 10-100 times smaller than ordinary atoms, yet they present within themselves a remarkably rich arena for testing fundamental aspects of physics. These tests are based on a precise analysis of the energy distribution of the photons that are emitted as electrons hop between energy levels within the highly charged ions. With sufficiently precise analysis, it may be possible to obtain new information about the structure of the vacuum, the effect of special relativity on many-body correlation, physics beyond the Standard Model, and the fundamental nature of quantum measurements. This talk will review the current state-of-the-art in the spectroscopy of highly charged ions, and give a look towards the future

  10. Local effects of ECRH on argon transport at ASDEX upgrade

    International Nuclear Information System (INIS)

    Sertoli, Marco

    2010-01-01

    Future deuterium-tritium magnetically confined fusion power plants will most probably rely an high-Z Plasma Facing Components (PFCs) such as tungsten. This choice is determined by the necessity of low erosion of the first wall materials (to guarantee a long lifetime of the wall components) and by the need to avoid the too high tritium wall retention of typical carbon based PFCs. The experience gathered at the ASDEX Upgrade (AUG) tokamak has demonstrated the possibility of reliable and high performance plasma operation with a full tungsten-coated first wall. The observed accumulation of tungsten which can lead to excessive radiation losses is mitigated with the use of Electron Cyclotron Resonance Heating (ECRH). Although this impurity control method is routinely performed at AUG, the underlying physics principles are still not clear. This thesis aims an providing further knowledge an the effects of ECRH an the transport of impurities inside the core plasma. The transport of argon has been therefore investigated in-depth in purely ECR heated L-mode (low-confinement) discharges. Studies an impurity transport in centrally ECR heated nitrogen-seeded H-mode (high-confinement) discharges have also been performed. To this scope, a new crystal X-ray spectrometer of the Johann type has been installed an AUG for argon concentration and ion temperature measurements. New methods for the experimental determination of the total argon density through the integrated use of this diagnostic and of the Soft X-Ray (SXR) diode arrays have been developed. This gives the possibility of evaluating the full profiles of the argon transport coefficients from the linear flux-gradient dependency of local argon density. In comparison to classical χ 2 -minimization methods, the approach proposed here delivers transport coefficients intrinsically independent of the modelling of periodic relaxation mechanisms such as those Lied to sawtooth MHD (Magneto-Hydro-Dynamic) activity. Moreover, the good

  11. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  12. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  13. The H1 liquid argon calorimeter system

    International Nuclear Information System (INIS)

    Andrieu, B.; Babayev, A.; Ban, J.

    1993-06-01

    The liquid argon calorimeter of the H1 detector presently taking data at the HERA ep - collider at DESY, Hamburg, is described here. The main physics requirements and the most salient design features relevant to this calorimeter are given. The aim to have smooth and hermetic calorimetric coverage over the polar angular range 4 ≤ θ ≤ 154 is achieved by a single liquid argon cryostat containing calorimeter stacks structured in wheels and octants for easy handling. The absorber materials used are lead in the electromagnetic part and stainless steel in the hadronic part. The read-out system is pipelined to reduce the dead time induced by the high trigger rate expected at the HERA collider where consecutive bunches are separated in time by 96 ns. The main elements of the calorimeter, such as the cryostat, with its associated cryogenics, the stack modules, the read-out, calibration and trigger electronics as well as the data acquisition system are described. Performance results from data taken in calibration runs with full size H1 calorimeter stacks at a CERN test beam, as well as results from data collected with the complete H1 detector using cosmic rays during the initial phase of ep operations are presented. The observed energy resolutions and linearities are well in agreement with the requirements. (orig.)

  14. NBS measurement system for natural argon-37

    International Nuclear Information System (INIS)

    Currie, L.A.; Lindstrom, R.M.

    1973-01-01

    A project to determine the cosmic-ray production rate and the natural levels of 35-day half-life 37 Ar in the atmosphere has been underway at the National Bureau of Standards for about the past year. The prime objective of this project is to determine the spatial dependence of 37 Ar production in the atmosphere, and the spatial distribution of the naturally-produced 37 Ar (observed concentrations). The results of this study are to be used, in cooperation with L. Machta (National Oceanographic and Atmospheric Administration), to derive information about atmospheric mixing. The purpose of this communication, however, is to present a general description of the various components of the measurement system. As the lowest concentrations of interest are but approximately equal to 10 -3 dpm ( 37 Ar)/l-Ar, very high sensitivity measurement techniques are required. Among the techniques which we have adopted are: quantitative separation of the noble gases from about 1 m 3 of air, using a CaC 2 reactor; gas chromatographic separation of the argon fraction; isotopic enrichment (by a factor of approximately equal to 100) of purified argon; use of specially selected low-level gas proportional counters together with massive shielding and anticoincidence meson cancellation; and the application of pulse discrimination based upon both amplitude (energy) and pulse shape. Finally, on-line computer techniques are being applied for data acquisition and system control

  15. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  16. Inner-Shell Excitations of 2p Electrons of Argon Investigated by Fast Electron Impact with High Resolution

    International Nuclear Information System (INIS)

    Ren Lin-Mao; Wang You-Yan; Li Dong-Dong; Yuan Zhen-Sheng; Zhu Lin-Fan

    2011-01-01

    Electron energy loss spectra of inner-shell excitations of 2p electrons of argon are measured at an incident electron energy of 2500 eV and scattering angles of 0° and 4°. The dipole-forbidden transitions of 2p −1 3/2 4p and 2p −1 3/2 5p are observed in the measured spectra and assigned based on the calculations of the Cowan code. The positions and line widths for the excitations of 2p −1 3/2 nl and 2p −1 1/2 nl (n ≤ 5) of argon are determined. The present results show that the line widths of the electric quadrupole transitions of 2p −1 3/2 4p[5/2 + 3/2] 2 and the electric monopole one of 2p −1 3/2 4p[1/2] 0 are less than those of the dipole-allowed transitions. (atomic and molecular physics)

  17. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    Heisel, Mark

    2011-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76 Ge, by operating naked germanium detectors submersed into 65 m 3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m 3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10 -2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42 Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  18. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  19. The interactions of high-energy, highly charged Xe ions with buckyballs

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1994-01-01

    Ionization and fragmentation have been measured for C 60 molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented

  20. RFLP analysis of rice semi-dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Zhuang Chuxiong; Hu Weimin; Mei Mantong

    1997-01-01

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi-dwarf mutants induced by high energy argon ion radiation, Ar-10, and Xiang-Ar-1, were examined with restriction fragment length polymorphism (RFLP) analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes. Among the markers screened, 9 detected polymorphism were between Bianpizhen and Ar-10, and 11 detected polymorphism were between Xiangzhan and Xiang-Ar-1. Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5.15% and 6.39% for Ar-10 and Xiang-Ar-1 respectively. These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation. Genetic analysis and gene tagging of semi-dwarf mutation in one of the mutant line, Ar-10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4

  1. RFLP Analysis of rice semi dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Zhuang Chuxiong; Hu Weimin; Mei Mantong

    1997-01-01

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi dwarf mutants induced by high energy argon ion radiation, Ar 10, and Xiang Ar 1, were examined with restriction fragment length polymorphism(RFLP)analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes.Among the markers screened, 9 detected polymorphism were between Bianpizhan and Ar 10, and 11 detected polymorphism were between Xiangzhan and Xiang Ar 1.Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5 15% and 6 39% for Ar 10 and Xiang Ar 1 respectively.These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation.Genetic analysis and gene tagging of semi dwarf mutation in one of the mutant line, Ar 10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4. (author)

  2. Computational study of plasma-solid interaction in DC glow discharge in argon plasma at medium pressures

    International Nuclear Information System (INIS)

    Havlickova, E; Bartos, P; Hrach, R

    2007-01-01

    In the presented contribution two groups of techniques of computational physics-fluid modelling and non self-consistent particle technique were used to study plasma-solid interaction in argon plasma. We focused both on the physical processes taking place in the sheath at various pressures and on the problems of computational physics. The attention was given to preparation of two-dimensional fluid models with realistic assumptions about physical processes taking place in plasma during the plasma-solid interaction, further to improvement of the non self-consistent technique of particle modelling, where the external electric field was obtained either from the fluid model or directly from the trajectories of charged particles and finally to efficiency of individual algorithms

  3. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  4. The interactions of high-energy, highly-charged ions with fullerenes

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  5. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  6. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.; Clark, D.J.; Guy, A.; Lundgren, S.A

    1998-06-01

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10 -6 down to about 7 x 10 -7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe 27+ at 603 MeV, more than doubled for a Bi 41+ beam (from 1.9% to 4.6%) at 904 MeV and tripled for a U 47+ beam (from 1.2% to 3.6%) at 1,115 MeV. At about 5 NeV/nucleon 92 enA (2.2 pnA) for Bi 41+ and 14 enA (0.3 pnA) for U 47+ were extracted ut of the 88-Inch Cyclotron Ion beams with charge states as high as U 64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models

  7. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.; Clark, D.J.; Guy, A.; Lundgren, S.A.

    1999-01-01

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10 -6 down to about 7 x 10 -7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe 27+ at 603 MeV, more than doubled for a Bi 41+ beam (from 1.9% % to 4.6%) at 904 MeV and tripled for a U 47+ beam (from 1.2% to 3.6%) at 1115 MeV. At about 5 MeV/nucleon 92 enA (2.2 pnA) for Bi 41+ and 14 enA (0.3 pnA) for U 47+ were extracted out of the 88-Inch Cyclotron Ion beams with charge states as high as U 64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models. (authors)

  8. Ionization and scintillation signals produced by relativistic La ions in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, H J; Doke, T; Hitachi, H; Kikuchi, J; Lindstrom, P J; Masuda, K; Shibamura, E; Nagamiya, S

    1987-04-15

    We have observed simultaneously the ionization and scintillation signals produced by relativistic La ions in liquid argon. The two signals are highly correlated and the sums of these signals are constant with the standard deviation of 1.2% over the range of the electric field from 0 to 7.5 kV/cm. The ratio of the sum signals expressed in unit of the number of species to the value N/sub i/ + N/sub ex/ is close to unity where N/sub i/ and N/sub ex/ are the numbers of ion pairs and excitons, respectively, produced by La ions in liquid argon. The pulse height resolution of the sum of the signals is better than that of ionization or scintillation alone. Almost no quenching is found in the scintillation signal from relativistic La ions when compared to signals from lighter ions.

  9. Performance of a liquid argon electromagnetic calorimeter with a cylindrical accordion geometry

    International Nuclear Information System (INIS)

    Aubert, B.; Bazan, A.; Beaugiraud, B.; Colas, J.; Leflour, T.; Maire, M.; Vialle, J.P.; Wingerter-Seez, I.; Zolnierowski, Y.P.; Gordon, H.A.; Radeka, V.; Rahm, D.; Stephani, D.; Bulgakov, N.; Chevalley, J.L.; Fabjan, C.W.; Fournier, D.; Gildemeister, O.; Jenni, P.; Nessi, M.; Nessi-Tedaldi, F.; Pepe, M.; Richter, W.; Soderqvist, J.; Vuillemin, V.; Baze, J.M.; Gosset, L.; Lavocat, P.; Lottin, J.P.; Mansoulie, B.; Meyer, J.P.; Renardy, J.R.; Teiger, J.; Zaccone, H.; Battistoni, G.; Camin, D.V.; Cavalli, D.; Costa, G.; Cravero, A.; Ferrari, A.; Gianotti, F.; Mandelli, L.; Mazzanti, M.; Perini, L.; Sciamanna, M.; Auge, E.; Chase, R.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Hrisoho, A.; Jean, P.; Iconomidou-Fayard, L.; Le Meur, G.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Repellin, J.P.; Schaffer, A.; Seguin, N.; Unal, G.; Fuglesang, C.; Lefebvre, M.

    1993-01-01

    A prototype of a lead liquid argon accordion calorimeter with two types of cylindrical geometry was constructed and equipped with high speed readout electronics. The energy resolution for electrons is 10%/√E (GeV) with a local constant term of 0.65%. The resolutions obtained for position and angular measurements are given. (orig.)

  10. Formation of oxide-trapped charges in 6H-SiC MOS structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Masahito; Ohshima, Takeshi; Itoh, Hisayoshi; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Okumura, Hajime; Yoshida, Sadafumi

    1997-03-01

    The silicon and the carbon faces of hexagonal silicon carbide (6H-SiC) substrates were oxidized pyrogenically at 1100degC, and the metal-oxide-semiconductor structures were formed on these faces. The MOS capacitors developed using the silicon and the carbon faces were irradiated with {sup 60}Co gamma-rays under argon atmosphere at room temperature. The bias voltages with the different polarity were applied to the gate electrode during irradiation to examine the formation mechanisms of the trapped charges in the oxides of these MOS capacitors. The amount of the trapped charges in the oxide were obtained from capacitance pulse voltage characteristics. The generation of the trapped charges are affects with not only the absorbed dose but also the bias polarity applied to the gate electrodes during irradiation. The formation mechanisms of the trapped charges in the oxides were estimated in conjunction with the surface orientation of 6H-SiC substrates. (author)

  11. Tests of industrial ethylene-propylene rubber high voltage cable for cryogenic use

    CERN Document Server

    Balhan, B; Goddard, B; Muratori, G; Otwinowski, S; Rieubland, Jean Michel; Wang, H; CERN. Geneva. SPS and LEP Division

    1999-01-01

    At the beginning of 1999 UCLA has received a prototype High Voltage Cryogenic Cable supplied fee of charge by Pirelli. The cable is intended for more than ten years of service at 100 kV D.C. and liquid argon temperature. Thecable uses an all welded construction, whichi is axially tight and free of ionizable voids. The cable was submitted to a number of mechanical and electrical tests as described below.

  12. Towards a liquid Argon TPC without evacuation filling of a 6$m^3$ vessel with argon gas from air to ppm impurities concentration through flushing

    CERN Document Server

    Curioni, A; Gendotti, A; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Resnati, F; Rubbia, A; Coleman, J; Lewis, M; Mavrokoridis, K; McCormick, K; Touramanis, C

    2010-01-01

    In this paper we present a successful experimental test of filling a volume of 6 $m^3$ with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to $all$ sources of impurities affecting directly the argon scintillation.

  13. Use of the big liquid argon spectrometer BARS for neutrino and cosmic-ray studies

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Belikov, S.N.; Gurzhiev, S.N.; Denisov, A.G.; Denisov, S.P.; Fedjakin, N.N.; Kochetkov, V.I.; Korablev, V.M.; Koreshev, V.I.; Lipaev, V.V.; Los, S.V.; Mikhailin, V.N.; Rybin, A.M.; Sytin, A.N.; Bogdanov, A.G.; Kirina, T.M.; Kokoulin, R.P.; Reznikov, M.A.; Petrukhin, A.A.; Yanson, E.E.; Alexeyev, E.N.; Chernyaev, A.B.; Petkov, V.B.; Smirnov, D.V.; Tsyabuk, A.L.; Voevodsky, A.V.; Gennaro, G.; Sergiampietri, F.; Spandre, G.; Lanfranchi, M.; Marchionni, A.; Conforto, G.; Martelli, F.

    1998-01-01

    The design of the fine grained 300 t liquid argon calorimeter BARS is described. The BARS electronics include about 30 K channels of low noise amplifiers and ADCs. The DAQ system makes it possible to select channels with signals above the chosen threshold. 48 scintillation horoscopes placed inside the liquid argon are used to form the first level trigger. The total number of scintillation counters in liquid argon is 384. Sums of ionization signals are used to produce the second level trigger. Results of the first use of liquid argon calorimetry for the measurements of tagged neutrino interactions, cosmic-ray muon spectra and composition of extensive atmospheric showers are discussed. (author)

  14. Elastic properties of liquid and solid argon in nanopores

    International Nuclear Information System (INIS)

    Schappert, Klaus; Pelster, Rolf

    2013-01-01

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β Ar,ads of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β Ar,surf increases with the thickness of the solid layers reaching the bulk value β Ar,liquid only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid–solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. (paper)

  15. Experimental determination of two-body spectrum and pair polarizability of argon

    International Nuclear Information System (INIS)

    Barocchi, F.; Zoppi, M.

    1980-01-01

    Despite the considerable amount of experimental and theoretical work which has been done in the past ten years on collision-induced light scattering (CILS) with investigation of depolarized scattering in moderate- and high-pressure gases, liquids and even solids of isotropic molecules, various discrepancies, as far as the quantitative comparison is concerned, do still remain among the various experiments. In order to understand in detail the scattering mechanism and make useful connections between experiments and theory, those discrepancies must be understood and results reconciled. To try to derive reliable information from CILS, we performed an experiment in gaseous argon at T = 298 K between 10 and 250 amagat devoting particular attention to possible sources of discrepancies. First, we introduce the general expressions for the moments of the two-body spectrum and briefly discuss the results of preceding experiments for the integrated intensity, then the experimental procedure and results of the present experiment in argon will be described in some detail. (KBE)

  16. Ion-atom charge-transfer system for a heavy-ion-beam pumped laser

    International Nuclear Information System (INIS)

    Ulrich, A.; Gernhaeuser, R.; Kroetz, W.; Wieser, J.; Murnick, D.E.

    1994-01-01

    An Ar target to which Cs vapor could be added, excited by a pulsed beam of 100-MeV 32 S ions, was studied as a prototype ion-atom charge-transfer system for pumping short-wavelength lasers. Low-velocity Ar 2+ ions were efficiently produced; a huge increase in the intensity of the Ar II 4d-4p spectral lines was observed when Cs vapor was added to the argon. This observation is explained by a selective charge transfer of the Cs 6s electron into the upper levels of the observed transitions. A rate constant of (1.4±0.2)x10 -9 cm 3 /s for the transfer process was determined

  17. Liquid argon dielectric breakdown studies with the MicroBooNE purification system

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  18. Computer simulation of cooling properties of UF5 hot-clusters in argon

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Ohno, Fubito

    1999-01-01

    Brownian collision-coalescence models have been proposed by many researchers to describe a cluster or a particle growth process. In these mathematical models, the effect of a cluster temperature on a sticking probability is not included, although the cluster temperature is one of the most important factors which determines the particle growth rate at the incipient stage of coagulation. A hot-cluster consisting of 30 UF 5 molecules is formed in a computer and is bombarded with argon atoms. Measuring a kinetic energy of argon atom scattered from the hot-cluster, the cluster temperature can be estimated by molecular dynamics simulations. It is concluded that the hot-cluster is rapidly cooled under the conditions of molecular laser isotope separation (MLIS) process, so that the cluster-argon system can reach its thermal equilibrium state. Therefore, in the analysis of the dynamics of clustering process, the temperature of UF 5 molecular cluster may be set equal to that of argon gas. (author)

  19. ATLAS Liquid Argon Calorimeters Operation and Data Quality During the 2016 Proton Run

    CERN Document Server

    Pascuzzi, Vincent; The ATLAS collaboration

    2017-01-01

    ATLAS operated with high efficiency during the 2016 pp data-taking period with 25ns bunch spacing at ⎷s = 13 TeV, recording approximately 34 fb-1 of good physics data. The Liquid Argon (LAr) Calorimeters contributed to to this effort by providing a high data quality efficiency. This poster highlights the overall status, operations, data quality and performance of the LAr Calorimeters in 2016.

  20. Resonance charge exchange mechanism at high and moderate energies

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-01-01

    Charge exchange mechanisms at high and medium energies are investigated, ta king the resonance charge exchange of a proton by an hydrogen atom as an example . It is established that there are two classical charge exchange mechanisms rel ated to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to anoth er. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms a re presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made

  1. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    Science.gov (United States)

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  2. Measurement of argon concentrations in a TRIGA Mark-III pool

    Energy Technology Data Exchange (ETDEWEB)

    Simms, R [California State University, Northridge, CA (United States)

    1974-07-01

    Argon-41, the principal radioactive effluent from a pool type reactor during normal operation, is produced by the {sup 40}A (n,{gamma}) reaction. The reactant, {sup 40}A, is introduced into the pool water by contact with the air. Reduction in radioactive argon release can be accomplished by reducing the concentration of dissolved {sup 40}A and retaining the {sup 41}A within the pool. However, little data were available concerning the mechanisms of argon introduction, production, retention, and release from a reactor pool. Experiments have therefore been performed at the Torrey Pines TRIGA Mark-III Reactor to develop techniques to sample dissolved argon and to provide data on argon concentrations in the pool for release modeling studies. Significant results for argon dissolved at different pool depths can only be obtained if the water samples are sealed at the point of collection. A special handling tool was developed to perform this remote operation. Pool samples were counted for {sup 41}A soon after collection with a NaI spectrometer. After allowing one day for decay of {sup 41}A, the concentration of {sup 40}A in the water sample was determined by neutron activation analysis. In each case, the 1.29 MeV gamma-ray peak of {sup 41}A was used. Interference from the 1.37 MeV {sup 24}Na peak was considered and its effect subtracted after determining {sup 24}Na content from the 2.75 MeV {sup 24}Na peak and a sodium standard. A Ge(Li) detector was tried and found to eliminate the problem, but it introduced an unacceptable geometrical effect dependent on bubble size within the sample bottles. Samples were taken from the 27 ft deep TRIGA pool at various locations. Results were obtained for samples taken on several different days along the same vertical line about 3-1/2 ft from the reactor centerline. Temperature measurements along this vertical traverse indicated a sharp temperature gradient at about 15 ft below the surface ({approx}6 ft above the top of the reactor). The

  3. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  4. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    Science.gov (United States)

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  5. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  6. High resolution n = 3 to n = 2 spectra of neon-like silver

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Bitter, M.; von Goeler, S.

    1986-04-01

    Spectra of the n = 3 to n = 2 transitions in neon-like silver emitted from the Princeton Large Torus have been recorded with a high-resolution Bragg-crystal spectrometer. The measurements cover the wavelength region 3.3 to 4.1 A and include the forbidden 3p → 2p electric quadrupole lines. Transitions in the adjacent sodium-like, and aluminum-like charge states of silver have also been observed and identified. The Ly-α spectra of hydrogen-like argon and iron, the Kα spectra of helium-like argon, potassium, manganese, and iron, and the Kβ spectrum of helium-like argon fall in the same wavelength region in first or second order and have been measured concurrently. These spectra provide a coherent set of wavelength reference data obtained with the same spectrometer and from the same tokamak. This set is used as a basis to compare wavelength predictions for one- and two-electron systems to each other and to determine the transition energies of the silver lines with great accuracy

  7. Simulation of argon response and light detection in the DarkSide-50 dual phase TPC

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; et al.

    2017-07-18

    A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.

  8. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  9. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  10. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  11. LET dependence of scintillation yields in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Doke, Tadayoshi; Hitachi, Akira; Kikuchi, Jun; Crawford, H J; Lindstrom, P J; Masuda, Kimiaki; Shibamura, Eido; Takahashi, Tan

    1988-06-01

    Scintillation yields (scintillation intensity per unit absorbed energy) in liquid argon for ionizing particles are reviewed as a function of LET for the particles. The maximum scintillation yield, which is obtained for relativistic heavy ions from Ne to La, is about 1.2 times larger than that for gamma rays in NaI(Tl) crystal. In the low LET region, the scintillation yields for relativistic electrons, protons and He ions are 10-20% lower than the maximum yield. This tendency can be explained by taking into account the existence of the electrons which have escaped from their parent ions. In the high LET region, a quenching effect due to high ionization density is observed for alpha particles, fission fragments and relativistic Au ions.

  12. Silicon compounds of neon and argon

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    -, č. 46 (2009), s. 8788-8790 ISSN 1433-7851 R&D Projects: GA ČR GA203/09/1223 Grant - others: ERC (XE) Adg HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : argon * bond formation * dications * neon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.829, year: 2009

  13. Positron annihilation in low-temperature rare gases. II. Argon and neon

    International Nuclear Information System (INIS)

    Canter, K.F.; Roellig, L.O.

    1975-01-01

    Lifetime measurements of slow-positron and ortho-positronium (o-Ps) annihilation were made in argon and neon gases at room temperature and below. The argon experiments cover the temperature range 115 to 300 0 K and the density range 0.0356 to 0.0726 g/cm 3 (approximately equal to 20 to 40 amagat). The slow-positron spectra in argon exhibit a departure from free-positron annihilation below 200 0 K. The departure becomes more marked as the temperature is lowered. No deviation from free o-Ps pickoff annihilation is observed in argon at low temperatures. The neon measurements cover the temperature range 30 to 300 0 K and the density range 0.032 to 0.89 g/cm 3 (approximately equal to 35 to 980 amagat). No effect of temperature on the slow-positron spectra throughout the temperature and density ranges investigated in neon is observed. The spectra are very exponential with a corresponding decay rate which is temperature as well as time independent and is directly proportional to density over the ranges investigated. The o-Ps data are more eventful in that the o-Ps lifetime at near-liquid densities is approximately 20 nsec, a factor of nearly 4 greater than the value obtained using the pickoff-annihilation coefficient obtained at lower densities. This is evidence for positronium-induced cavities in low-temperature neon. A brief discussion of the argon and neon results is given in the context of the explanations offered for the low-temperature effects observed in helium gas

  14. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  15. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  16. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  17. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, Michael F.; Bruhwiler, David L.

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach

  18. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  19. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    Science.gov (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  20. Theoretical and experimental comparisons of Gamble 2 argon gas puff experiments

    International Nuclear Information System (INIS)

    Thornhill, J.W.; Young, F.C.; Whitney, K.G.; Davis, J.; Stephanakis, S.J.

    1990-01-01

    A one-dimensional radiative MHD analysis of an imploding argon gas puff plasma is performed. The calculations are set up to approximate the conditions of a series of argon gas puff experiments that were carried out on the NRL Gamble II generator. Annular gas puffs (2.5 cm diameter) are imploded with a 1.2-MA peak driving current for different initial argon mass loadings. Comparisons are made with the experimental results for implosion times, K, L-shell x-ray emission, and energy coupled from the generator to the plasma load. The purpose of these calculations is to provide a foundation from which a variety of physical phenomena which influence the power and total energy of the x-ray emission can be analyzed. Comparisons with similar experimental and theoretical results for aluminum plasmas are discussed

  1. Scintillation trigger system of the liquid argon neutrino detector

    International Nuclear Information System (INIS)

    Belikov, S.V.; Gurzhiev, S.N.; Gutnikov, Yu.E.; Denisov, A.G.; Kochetkov, V.I.; Matveev, M.Yu.; Mel'nikov, E.A.; Usachev, A.P.

    1994-01-01

    This paper presents the organization of the Scintillation Trigger System (STS) for the Liquid Argon Neutrino Detector of the Tagged Neutrino Facility. STS is aimed at the effective registration of the needed neutrino interaction type and production of a fast trigger signal with high time resolution. The fast analysis system of analog signal from the trigger scintillation planes for rejection of the trigger signals from background processes is described. Real scintillation trigger planes characteristics obtained on the basis of the presented data acquisition system are shown. 10 refs., 12 figs., 3 tabs

  2. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  3. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  4. Neutrino Event Reconstruction in a Liquid Argon TPC

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Gary, E-mail: G.J.Barker@Warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2011-07-25

    We present some preliminary findings and results from activities in Europe and the USA working towards an automated, algorithmic, reconstruction of particle interactions in liquid argon time projection chambers.

  5. On the dependence of structural and sensing properties of sputtered MoO{sub 3} thin films on argon gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Khojier, K., E-mail: k_khojier@yahoo.com [Department of Physics, Chalous Branch, Islamic Azad University, Chalous (Iran, Islamic Republic of); Savaloni, H. [Department of Physics, University of Tehran, North Kargar Street, Tehran (Iran, Islamic Republic of); Zolghadr, S. [Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • MoO{sub 3} thin films are sputter coated and their structure are analyzed. • Effect of argon gas flow on the structural and some properties is studied. • CO sensing ability of MoO{sub 3} increases with argon gas flow. • MoO{sub 3} nano-strain decreases with argon gas flow. - Abstract: Nitrogen and carbon oxides (CO, NO and NO{sub 2}), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO{sub 3}) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO{sub 2}. In this paper we report the structural characteristics and sensing properties of the sputtered MoO{sub 3} thin films as a function of argon gas flow. MoO{sub 3} thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5–20 sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO{sub 3} stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15 sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO

  6. SLD liquid argon calorimeter prototype test results

    International Nuclear Information System (INIS)

    Dubois, R.; Eigen, G.; Au, Y.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses

  7. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, Mark S

    2009-01-01

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies are presented. These include a coherent noise study, a measurement of the quality of the physics pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  8. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Bernardini, P; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Corso, F Dal; De Mitri, I; De Serio, M; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Garfagnini, A; Grella, G; Kose, U; Laveder, M; Loverre, P; Longhin, A; Marsella, G; Mancarella, G; Mandrioli, G; Mauri, N; Medinaceli, E; Mezzetto, M; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance ca...

  9. Generation of high-power-density atmospheric pressure plasma with liquid electrodes

    International Nuclear Information System (INIS)

    Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia

    2004-01-01

    We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed

  10. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, H., E-mail: nishino@post.kek.j [Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582 (Japan); Awai, K.; Hayato, Y.; Nakayama, S.; Okumura, K.; Shiozawa, M.; Takeda, A. [Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582 (Japan); Ishikawa, K.; Minegishi, A. [Iwatsu Test Instruments Corporation, Tokyo 168-8511 (Japan); Arai, Y. [The Institute of Particle and Nuclear Studies, KEK, Ibaraki 305-0801 (Japan)

    2009-11-11

    A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector's PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0.3mVapprox3V; 0.2approx2500pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.

  11. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Nishino, H.; Awai, K.; Hayato, Y.; Nakayama, S.; Okumura, K.; Shiozawa, M.; Takeda, A.; Ishikawa, K.; Minegishi, A.; Arai, Y.

    2009-01-01

    A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector's PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0.3mV∼3V; 0.2∼2500pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.

  12. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  13. Study of argon-oxygen flowing afterglow

    Science.gov (United States)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  14. Argon-ion contamination of the plasmasphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Cornwall, J.M.; Luhmann, J.G.; Schulz, M.

    1979-01-01

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed

  15. Study of electromagnetic and hadronic showers with liquid-argon calorimeters

    International Nuclear Information System (INIS)

    Rauschnabel, K.

    1978-05-01

    High energy electrons, pions and protons have been detected by two liquid-argon calorimeters. Measurements of the linearity and energy resolution of the detectors have been performed. As one of the detectors consisted of 80 sections, the spatial development of hadronic cascades could be studied. The results are in reasonable agreement with Monte-Carlo simulations. The spatial and angular resolutions of the detector have been evaluated. Using their different longitudinal shower development, electrons and hadrons could be separated. (orig.) [de

  16. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  17. 21 CFR 868.1075 - Argon gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... thermal conductivity. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  18. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  19. Cataract production in mice by heavy charged particles

    International Nuclear Information System (INIS)

    Ainsworth, E.H.; Jose, J.; Yang, V.V.; Barker, M.E.

    1981-03-01

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron ( 56 Fe) or argon ( 40 Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of 60 Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of 12 C doses over 24 weeks

  20. Argon laser irradiation of the otolithic organ

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, T.; Nomura, Y.; Young, Y.H.; Hara, M. (Univ. of Tokyo (Japan))

    1990-12-01

    An argon laser was used to irradiate the otolithic organs of guinea pigs and cynomolgus monkeys. After stapedectomy, the argon laser (1.5 W x 0.5 sec/shot) irradiated the utricle or saccule without touching the sensory organs. The stapes was replaced over the oval window after irradiation. The animals used for acute observation were killed immediately for morphologic studies; those used for long-term observation were kept alive for 2, 4, or 10 weeks. Acute observation revealed that sensory and supporting cells were elevated from the basement membrane only in the irradiated area. No rupture of the membranous labyrinth was observed. Long-term observation revealed that the otolith of the macula utriculi had disappeared in 2-week specimens. The entire macula utricili had disappeared in 10-week specimens. No morphologic changes were observed in cochlea, semicircular canals, or membranous labyrinth. The saccule showed similar changes.

  1. ATLAS Liquid Argon Calorimeter Performance in Run 1 and Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00286685; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{−2}$ s$^{−1}$ . Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudo-rapidity region $\\eta < 3.2$, and for hadronic calorimetry in the region from $\\eta = 1.5$ to $\\eta = 4.9$. In the first LHC run a total luminosity of $27$ fb$^{−1}$ has been collected at center-of-mass energies of 7-8 TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately $3.9$ fb$^{-1}$ of data at a center-of-mass energy of 13 TeV recorded in this year. The well calibrated and highly granular Liquid Argon Calorimeter achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successful discovery of a Higgs boson in the di-photon decay channel. This contribution will give ...

  2. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  3. High sensitivity amplifier/discriminator for PWC's

    International Nuclear Information System (INIS)

    Hansen, S.

    1983-01-01

    The facility support group at Fermilab is designing and building a general purpose beam chamber for use in several locations at the laboratory. This pwc has 128 wires per plane spaced 1 mm apart. An initial production of 25 signal planes is anticipated. In proportional chambers, the size of the signal depends exponentially on the charge stored per unit of length along the anode wire. As the wire spacing decreases, the capacitance per unit length decreases, thereby requiring increased applied voltage to restore the necessary charge per unit length. In practical terms, this phenomenon is responsible for difficulties in constructing chambers with less than 2 mm wire spacing. 1 mm chambers, therefore, are frequently operated very near to their breakdown point and/or a high gain gas containing organic compounds such as magic gas is used. This argon/iso-butane mixture has three drawbacks: it is explosive when exposed to the air, it leaves a residue on the wires after extended use and is costly. An amplifier with higher sensitivity would reduce the problems associated with operating chambers with small wire spacings and allow them to be run a safe margin below their breakdown voltage even with an inorganic gas mixture such as argon/CO2, this eliminating the need to use magic gas. Described here is a low cost amplifier with a usable threshold of less than 0.5 μA. Data on the performance of this amplifier/discriminator in operation on a prototype beam chamber are given. This data shows the advantages of the high sensitivity of this design

  4. Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc

    International Nuclear Information System (INIS)

    Nemchinsky, Valerian

    2012-01-01

    The motion of an evaporated atom of the cathode material in a near-cathode plasma is considered. It is shown that the evaporated atom is ionized almost instantly. The created ion, under the influence of a strong electric field existing in the cathode proximity, has a high probability of returning to the cathode. A small fraction of evaporated atoms are able to diffuse away from the cathode to the region where they are involved in plasma flow and lose their chance to return to the cathode. The fraction of the total evaporated atoms, which do not return to the cathode, the escape factor, determines the net erosion rate. In order to calculate this factor, the distributions of the plasma parameters in the near-cathode plasma were considered. Calculations showed that the escape factor is on the order of a few per cent. Using experimental data on the plasma and cathode temperatures, we calculated the net erosion rate for a free-burning 200 A argon arc with a thoriated tungsten cathode. The calculated erosion rate is close to 1 µg s -1 , which is in agreement with available experimental data. (paper)

  5. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  6. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    International Nuclear Information System (INIS)

    Jones, B J P; Chiu, C S; Conrad, J M; Ignarra, C M; Katori, T; Toups, M

    2013-01-01

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15) × 10 −4 cm −1 ppm −1 , corresponding to an absorption cross section of (4.99±0.51) × 10 −21 cm 2 molecule −1 . We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±3 meters

  7. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    Science.gov (United States)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  8. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  9. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  10. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  11. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996)

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. copyright 1997 American Institute of Physics

  12. Liquid argon calorimetry with LHC-performance specifications

    International Nuclear Information System (INIS)

    Gianotti, F.; Battistoni, G.; Camin, D.; Cavalli, D.; Costa, G.; Ferrari, A.; Mandelli, L.; Mazzanti, M.; Perini, L.; Pessina, G.; Aubert, B.; Bazan, A.; Beaugiraud, B.; Cavanna, F.; Colas, J.; Lebeau, M.; Leflour, T.; LeMarec, J.C.; Maire, M.; Petitpas, P.; Thion, J.; Vialle, J.P.; Wingerter-Seez, I.; Gordon, H.A.; Polychronakos, V.; Radeka, V.; Rahm, D.; Stephani, D.; Baisin, L.; Berset, J.C.; Chevalley, J.L.; Fabjan, C.W.; Franz, A.; Farthouat, P.; Gildemeister, O.; Jenni, P.; Lefebvre, M.; Marin, C.P.; Nessi, M.; Nessi-Tedaldi, F.; Pepe, M.; Polesello, G.; Richter, W.; Sigrist, A.; Stevenson, G.R.; Willis, W.J.; Baze, J.M.; Gosset, L.; Lavocat, P.; Mansoulie, B.; Meyer, J.P.; Renardy, J.F.; Teiger, J.; Zaccone, H.; Auge, E.; Chase, R.L.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Fournier, D.; Guilhem, G.; Hrisoho, A.; Iconomidou-Fayard, L.; Jean, P.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Repellin, J.P.; Schaffer, A.; Seguin, N.; Veillet, J.J.; Fuglesang, C.

    1992-01-01

    A novel geometry liquid argon calorimeter with accordion-shaped electrodes and converter plates has been recently conceived. Such a design allows for a fast readout and for a high granularity over large volumes with minimal dead spaces, properties which are considered essential for operation at the future hadron colliders. The first electromagnetic prototype based on this scheme has been built and tested at the CERN SPS. For a response peaking time of 140 ns an energy resolution of 10%/√E(GeV) and a space resolution of 4.4 mm/√E(GeV) with 2.7 cm cell size were achieved for electrons. A few preliminary results from a test with fast readout (response peaking time of less than 40 ns) are also presented. (orig.)

  13. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  14. Moment-Preserving Computational Approach for High Energy Charged Particle Transport

    Science.gov (United States)

    2016-05-16

    posed, but with modified cross sections such that the resulting single-event Monte Carlo simulation is computationally efficient (minutes vs . days...configurations, which are all characteristics of real world applications. In other words , it is possible to simulate real, physical phenomena using charged...0 < 0.95) ~ 1 2() ≫ 1, (3) Demonstrating that scattering is highly forward peaked. Thus, the picture of charged particle interactions

  15. Readout Electronics Upgrades of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Anelli, Christopher Ryan; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  16. Death during laparoscopy: can 1 gas push out another? Danger of argon electrocoagulation.

    Science.gov (United States)

    Sezeur, Alain; Partensky, Christian; Chipponi, Jacques; Duron, Jean-Jacques

    2008-08-01

    We report the death of a young man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst. The report analyzes the very particular mechanism of a gas embolism, which caused death here. This analysis leads us to recommend a close attention on the use of argon coagulators during laparoscopy. The aim of this article is to draw surgeons' attention to the conclusions of a court-ordered expert assessment intended to elucidate the mechanisms responsible for the death of a 20-year-old man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst.

  17. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  18. Strong charge state dependence of H+ and H2+ sputtering induced by slow highly charged ions

    International Nuclear Information System (INIS)

    Kakutani, N.; Azuma, T.; Yamazaki, Y.; Komaki, K.; Kuroki, K.

    1995-01-01

    Secondary ion emission has been studied for very slow ( similar 0.01ν B ) highly charged Ar and N ions bombarding C 60 containing hydrogen as an impurity. It is found that the fragmentations of C 60 are very rare even for Ar 16+ bombardments. On the other hand, the sputtering of H + and H 2 + has been observed to increase drastically as a function of incident charge q like q γ (e.g., γ similar 4.6 for H + sputtering by 500 eV Ar q+ ). (orig.)

  19. Ionization relaxation in shock-heated krypton-argon mixtures

    International Nuclear Information System (INIS)

    Ezumi, Hiromichi; Kawamura, Masahiko; Yokota, Toshiaki.

    1977-01-01

    The ionization relaxation processes behind shock waves in pure krypton and krypton-argon mixtures have been investigated using a Mach-Zehnder interferometer technique. The incident shock velocity was fixed in the neighborhood of Us=2800 m/sec, and the initial pressure was fixed at 0.95 Torr. The experimental results were compared with theoretical values based on the two-step collisional ionization model taking into account of the wall boundary-layer effect. The slope constants of excitation cross section against relative kinetic energy between krypton atom-atom collisions, krypton atom-electron collisions, and krypton-argon atom-atom collisions were determined to be 4.2 x 10 -19 cm 2 /eV, 1.2 x 10 -17 cm 2 /eV, and 4.2 x 10 -19 cm 2 /eV, respectively. (auth.)

  20. Excited argon 1s5 production in micro-hollow cathode discharges for use as potential rare gas laser sources

    Science.gov (United States)

    Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.

  1. Acceleration of high charge density electron beams in the SLAC linac

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures

  2. High-performance liquid chromatographic separation of biologically important arsenic species utilizing on-line inductively coupled argon plasma atomic emission spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Spall, W.D.; Lynn, J.G.; Andersen, J.L.; Valdez, J.G.; Gurley, L.R.

    1986-06-01

    An anion exchange, high-performance liquid chromatography technique using a 15-min linear gradient from water to 0.5 M ammonium carbonate to separate arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid from neutral arsenic containing compounds was developed for application to a study of arsenic metabolism in cultured cell suspensions. Arsenic detection was accomplished by the direct coupling of the column effluent to an inductively coupled argon plasma atomic emission spectrometer (ICAP-AES) set to monitor the arsenic emission line at 197.19 nm. The analysis requires 20 min and is sensitive to as low as 60 ng of arsenic injected to the column.

  3. Study on electron density and average degree of ionization for the non-ideal argon plasmas

    International Nuclear Information System (INIS)

    Jing Ming; Huang Hua; Zhou Yisu; Wang Caixia

    2008-01-01

    Electron density and average degree of ionization of the non-ideal argon plasmas under different plasma temperature and density are calculated by using SHM model. It comes to a conclusion that the average degree of ionization is less than 0.5 for the non-ideal argon plasmas at temperature T=2.0eV and plasma density ρ=(0.01-0.5)g·cm -3 , and the average degree of ionization is reduced with the increase of plasma density ρ. This indicates that the non-ideal argon plasma has a very low degree of ionization so that most argon has not been ionized. In addition, the discussion on the ionization decrease with the increase of plasma density ρ is given. (authors)

  4. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    Science.gov (United States)

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  5. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  6. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    Ginzel, Rainer

    2010-01-01

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  7. Radiative recombination of highly charged ions: Enhanced rates at low energies

    International Nuclear Information System (INIS)

    Frank, A.; Mueller, A.; Haselbauer, J.; Schennach, S.; Spies, W.; Uwira, O.; Wagner, M.

    1992-01-01

    In a single-pass merged-beams experiment employing a dense cold electron target recombination of highly charged ions is studied. Unexpected high recombination rates are observed at low energies E cm in the electron-ion center-of-mass frame. In particular, theoretical estimates for radiative recombination are dramatically exceeded by the experimental recombination rates at E cm =0 eV for U 28+ and for Au 25+ ions. Considerable rate enhancement is also observed for Ar 15+ . This points to a general phenomenon which has to be interpreted as a consequence of high electron densities, low electron beam temperatures, high ion charge states and presence of strong magnetic fields. (orig.)

  8. Argon laser phototherapy of human malignancies using rhodamine-123 as a new laser dye: The intracellular role of oxygen

    International Nuclear Information System (INIS)

    Castro, D.J.; Saxton, R.E.; Markley, J.; Foote, C.S.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1990-01-01

    Recent studies demonstrated that the cationic, mitochondrial-specific dye Rhodamine-123 (Rh-123), is an efficient tumor photosensitizer for Argon laser treatment of human cancer cells both in vitro and in tumors grown as xenografts in athymic mice. To demonstrate the photodynamic mechanism of action of this reaction, the intracellular role of oxygen and temperature changes in treated cells have to be defined. In the current study, a large panel of human tumor cell lines of diverse histologic origin were tested for in vitro sensitivity to Rh-123 and the Argon laser (514.5 nm) in oxygen, deuterium oxide (D2O), and nitrogen (N2) environment. Tumor cells in suspension were first sensitized to Rh-123 (1 or 20 micrograms/ml for 1 hour), cooled on ice to 4 degrees C, and then exposed to the Argon laser (delta T = 14 +/- 1 degree C). Cell proliferation measured by [3H]-thymidine uptake 24 hours after sensitization with Rh-123 and laser treatment was significantly decreased in tumor cells kept in oxygen and D2O atmospheres. No decrease in DNA synthesis was seen in Rh-123 and laser treated cells kept in an N2 environment. Control tumor cells treated with Rh-123 or the Argon laser separately did not show any decreased [3H]-thymidine uptake in oxygen, D2O or N2 environment. These results provide evidence of a photodynamic process since Rh-123 sensitization and Argon laser activation occur at nonthermal levels of energy and are oxygen dependent. The high effectiveness of this technique of photodynamic therapy with the Argon laser, and low toxicity of Rh-123 could make its clinical use very attractive for the treatment of superficial malignancies

  9. The WA105-3x1x1 m3 dual phase LAr-TPC demonstrator

    CERN Document Server

    Murphy, Sebastien

    2016-11-15

    The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides excellent signal-to-noise ratio. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multiplier detectors provides amplification of the charges before its collection onto an anode with strip readout. The charge amplification enables constructing fully homoge- nous giant LAr-TPCs with tuneable gain, excellent charge imaging performance and increased sensitivity to low energy events. Following a staged approach the WA105 collaboration is con- structing a dual phase LAr-TPC with an active volume of 3x1x1m3 that will soon be tested with cosmic rays. Its construction and operation aims to test scalable solutions for the crucial aspects of this technology: ultra high argon purity in non-evacuable tank, la...

  10. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  11. Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters

    International Nuclear Information System (INIS)

    Leroy, C.; Cheplakov, A.; Golikov, V.; Golubykh, S.; Kukhtin, V.; Kulagin, E.; Lushchikov, V.; Minashkin, V.; Shalyugin, A.

    2000-01-01

    Various readout chain components of the ATLAS liquid argon calorimeters have been exposed to high neutron fluences and γ doses at the irradiation test facility of the IBR-2 reactor of JINR, Dubna. Results of the capacitance and impedance measurements of coaxial cables are presented. Results of peeling tests of PC board samples (carton and copper strips) as a measure of the bonding agent irradiation hardness are also reported

  12. Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters

    CERN Document Server

    Leroy, C; Golikov, V; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Minashkin, V F; Shalyugin, A N

    1999-01-01

    Various readout chain components of the ATLAS liquid argon calorimeters have been exposed to high neutron fluences and $gamma$-doses at the irradiation test facility of the IBR-2 reactor of JINR, Dubna. Results of the capacitance and impedance measurements of coaxial cables are presented. Results of peeling tests of PC board samples (kapton and copper strips) as a measure of the bonding agent irradiation hardness are also reported.

  13. Novel charge sensitive preamplifier without high-value feedback resistor

    International Nuclear Information System (INIS)

    Xi Deming

    1992-01-01

    A novel charge sensitive preamplifier is introduced. The method of removing the high value feedback resistor, the circuit design and analysis are described. A practical circuit and its measured performances are provided

  14. Spectroscopic characterization of post-cluster argon plasmas during the blast wave expansion

    International Nuclear Information System (INIS)

    Chung, H.-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Lee, R.W.; Cattolica, R.; Ditmire, T.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 1017 W/cm deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II-Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  15. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    International Nuclear Information System (INIS)

    Ching, H-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Cattolica, R.; Ditmire, T.; Lee, R.W.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 10 17 W/cm 2 deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II - Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  16. High-resolution VUV spectra of carbon, neon and argon in a wavelength range of 250 to 2300 A for plasma diagnostics observed with a 3 m normal incidence spectrometer in LHD

    International Nuclear Information System (INIS)

    Katai, Ryuji; Morita, Shigeru; Goto, Motoshi

    2007-01-01

    Intrinsic impurities have been much reduced in toroidal fusion devices through the development of several wall-conditioning techniques as well as by the use of carbon materials in the first wall and divertor plates. Impurity elements useful for passive plasma spectroscopy have been then extremely limited. At present, only carbon is a subject for spectroscopic diagnostics in most discharges except for fuel atoms. The use of rare gas as a brighter light source is a method to overcome the present difficulty in passive spectroscopy. Recently, rare gases have also been used for edge cooling to reduce the divertor heat flux. Therefore, high-resolution spectra (Δλ - 0.2 A) from neon and argon in a 250 to 2300 A wavelength range have been measured using a 3 m normal incidence spectrometer in Large Helical Device (LHD) and the measured spectra were precisely analyzed. The VUV spectra of carbon, neon and argon are presented for spectroscopic use and their wavelengths are tabulated with their relative intensities. The spectral profiles of almost all the spectral lines measured here are formed by the Doppler broadening and self-absorption processes. The Doppler broadening of neon and argon spectra are plotted against the ionization energies and Doppler spectra from carbon lines are presented. The self-absorption spectra of the hydrogen Lyman-α line, which are found in the LHD high-density discharge, are also presented and the neutral density is analytically estimated. (author)

  17. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, A.

    2008-01-01

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ∼ 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 (micro)s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states

  18. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  19. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  20. Kinetics of Ar+*(2G9/2) metastable ions and transport of argon ions in ICP reactor

    NARCIS (Netherlands)

    Sadeghi, N.; Derouard, J.; Grift, van de M.; Kroesen, G.M.W.; Hoog, de F.J.; Tachibana, K.; Watanabe, Y.

    1997-01-01

    The decay time of the argon Ar~~(2G912) metastable ions was measured in the afterglow of a low pressure pulsed helicon reactor. From the argon pressure and electron density dependence of this decay time, rate coefficients for quenching of these ions by argon atoms and by plasma electrons have been

  1. Cover gases in nuclear reactors with special reference to argon

    International Nuclear Information System (INIS)

    Jose, C.J.; Shah, G.C.; Prabhu, L.H.; Vartak, D.G.

    1975-01-01

    The report describes the specifications of an ideal cover gas for the smooth operation of a nuclear reactor. The advantages of using helium as cover gas, the sources of impurities in helium cover gas and the methods of purification of helium are given in detail. Various problems associated with the use of argon as cover gas and methods to purify and decontaminate argon cover gas are discussed on the basis of experimental data collected. A laboratory model of the system which can be used to evaluate the performance of the gas purification adsorbents is also described. (author)

  2. Operation of the D0 uranium liquid-argon calorimeter system

    International Nuclear Information System (INIS)

    Guida, J.

    1992-12-01

    The DO calorimeter consists of three separate cryostats containing uranium modules in liquid argon. This odorimeter has transverse segmentation of 0.1 x 0.1 in η x 0 and consists of eight or nine longitudinal readout segments. The coverage in η extends to 4. As a result of the large coverage and fine segmentation there are 50,000 channels of electronics. After a brief description of the electronics, stability and noise aspects will be investigated. Results of the liquid-argon purity studies will be discssed. The backgrounds in the calorimeter due to the Fermilab main ring will also be examined

  3. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    Science.gov (United States)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  4. Measurement of W values for protons, {sup 4}He- and {sup 12}C ions in air, argon and nitrogen; Messung von W-Werten fuer Protonen, {sup 4}He- und {sup 12}C-Ionen in Luft, Argon und Stickstoff

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Jeannine

    2012-06-27

    In particle therapy for cancer the dosimetry of charged-particle radiation is usually performed by measuring the ionization produced in air-filled ionization chambers. The conversion of the reading of ionization chambers into absorbed dose requires W-values, which are defined as the average energy needed to produce an ion pair. Because of the increasing importance of ion therapy and the lack of experimental data for heavy charged particles in air, new measurements of W-values are being carried out at the Physikalisch-Technische Bundesanstalt Braunschweig (PTB) and the Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt (GSI). Existing measurements for protons in air indicate an uncertainty of ±4 %. The main goals of the present work are to achieve consistent measurements for protons, helium and carbon ions in air, argon and nitrogen in the energy region of 1 MeV/u up to 7 MeV/u and to reduce the uncertainties. A low rate of 200 incoming ions per second is produced by scattering the primary beam from the accelerators off a thin gold foil at the center of a scattering chamber. At 45 an either side relative to the beam direction, the scattered ions are detected in a semiconductor detector and stopped in a gas-filled ionization chamber. In this way, the number and the energy of the particles entering the active volume of the ionization chamber can be determined using two independent methods. The number of ion pairs produced in the gas volume is determined from the simultaneous measurement of the ionization current collected at the lower electrode of the chamber using a calibrated electrometer. The W-value is calculated from the ionization current, the number and the energy of particles. Furthermore, several corrections like recombination effects, background from beam induced γ-radiation, measurement of the beam stability and gas cleaning are applied and will be discussed in this thesis. The measured W-values tend to be smaller than existing data and Show an

  5. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  6. Sodium aerosol formation in an argon flow over hot sodium

    International Nuclear Information System (INIS)

    Clement, C.F.; Dolias, M.J.; UKAEA Atomic Energy Research Establishment, Harwell. Thermal Hydraulics Div.)

    1987-01-01

    Vapour evaporation, which partly forms aerosol, occurs when a cold gas flows over a hot liquid. A previous well-mixed model is extended to predict the final vapour plus aerosol content of such a flow in terms of its initial and final temperatures. The predictions are compared to results of the Copacabana II experiment in which argon passed over a sodium pool. Agreement is obtained for the final sodium density at moderate flow rates, and physical reasons are given as to why deviations occur at low and high flow rates. (author)

  7. THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES

    International Nuclear Information System (INIS)

    Doschek, G. A.; Warren, H. P.

    2016-01-01

    Recently we discussed an enhancement of the abundance of Ar xiv relative to Ca xiv near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The observed Ar xiv/Ca xiv ratio yields an argon/calcium abundance ratio seven times greater than expected from the photospheric abundance. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as being due to an inverse first ionization potential (FIP) effect. In the published work, two lines of Ar xiv were observed, and one line was tentatively identified as an Ar xi line. In this paper, we report observing a similar enhancement in a full-CCD EIS flare spectrum in 13 argon lines that lie within the EIS wavelength ranges. The observed lines include two Ar xi lines, four Ar xiii lines, six Ar xiv lines, and one Ar xv line. The enhancement is far less than reported in Doschek et al. but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and the abundance could be photospheric. This enhancement occurs in association with a sunspot in a small area only a few arcseconds (1″ = about 700 km) in size. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. indicate a depletion of low-FIP elements.

  8. Highly charged cyanine fluorophores for trafficking scaffold degradation

    International Nuclear Information System (INIS)

    Owens, Eric A; Alyabyev, Sergey; Henary, Maged; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Park, GwangLi; Ashitate, Yoshitomo; Choi, Jungmun; Hong, Gloria H; Choi, Hak Soo; Lee, Sang Jin; Khang, Gilson

    2013-01-01

    Biodegradable scaffolds have been extensively used in the field of tissue engineering and regenerative medicine. However, noninvasive monitoring of in vivo scaffold degradation is still lacking. In order to develop a real-time trafficking technique, a series of meso-brominated near-infrared (NIR) fluorophores were synthesized and conjugated to biodegradable gelatin scaffolds. Since the pentamethine cyanine core is highly lipophilic, the side chain of each fluorophore was modified with either quaternary ammonium salts or sulfonate groups. The physicochemical properties such as lipophilicity and net charge of fluorophores played a key role in the fate of NIR-conjugated scaffolds in vivo after biodegradation. The positively charged fluorophore-conjugated scaffold fragments were found in salivary glands, lymph nodes, and most of the hepatobiliary excretion route. However, halogenated fluorophores intensively accumulated into lymph nodes and the liver. Interestingly, balanced-charged gelatin scaffolds were degraded into urine in a short period of time. These results demonstrate that the noninvasive optical imaging using NIR fluorophores can be useful for the translation of biodegradable scaffolds into the clinic. (paper)

  9. The longitudinal space charge problem in the high current linear proton accelerators

    International Nuclear Information System (INIS)

    Lustfeld, H.

    1984-01-01

    In a linear proton accelerator peak currents of 200 mA lead to high space charge densities and the resultant space charge forces reduce the effective focussing considerably. In particular the longitudinal focussing is affected. A new concept based on linear theory is proposed that restricts the influence of the space charge forces on the longitudinal focussing by increasing a, the mean transverse bunch radius, as a proportional(βγ)sup(3/8). This concept is compared with other concepts for the Alvarez (1 MeV - 100 MeV) and for the high energy part (100 MeV - 1100 MeV) of the SNQ linear accelerator. (orig.)

  10. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  11. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  12. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  13. CHARGED PARTICLE MOTION IN AN EXPLOSIVELY GENERATED IONIZING SHOCK

    International Nuclear Information System (INIS)

    Boswell, Christopher J.; O'Connor, Patrick D.

    2009-01-01

    Different aspects of the plasma generated in a gas contained in a tube due to detonation of a small explosive charge located at one end of the tube are presented. The motion of the charged particles within the plasma is monitored using Rogowski coils. Using time-resolved emission spectroscopy the temperature and species in the detonation products and compressed gas behind the shock wave are recorded. From the spectral lines of the emission profiles the temperatures and electron density were evaluated to be in the vicinity of 7,000 K and 5x10 22 m -3 . An ultra fast wave traveling down the guide tube ahead of the hydrodynamic shock and causing any charged particles there to move fast enough to be detected by the Rogowski coils was recorded. From the measurements the phase velocity of the wave was calculated at 525 km/s when krypton filled the tube, and 1300 km/s in the case of argon. The temperature and density measurements are consistent with the data reported in the literature for similar tests. The electrostatic pulse measurements are a new phenomena not previously observed.

  14. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  15. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  16. Study of argon-based Penning gas mixtures for use in proportional counters

    International Nuclear Information System (INIS)

    Agrawal, P.C.; Ramsey, B.D.; Weisskopf, M.C.

    1989-01-01

    Results from an experimental investigation of three Penning gas mixtures, namely argon-acetylene (Ar-C 2 H 2 ), argon-xenon (Ar-Xe) and argon-xenon-trimethylamine (Ar-Xe-TMA), are reported. The measurements, carried out in cylindrical geometry as well as parallel plate geometry detectors, demonstrate that the Ar-C 2 H 2 mixtures show a significant Penning effect even at an acetylene concentration of 10% and provide the best energy resolution among all the argon-based gas mixtures (≤13% FWHM at 5.9 keV and 6.7% at 22.2 keV). In the parallel plate detector the Ar-C 2 H 2 fillings provide a resolution of ≅7% FWHM at 22.2 keV up to a gas gain of at least ≅10 4 . The nonmetastable Penning mixture Ar-Xe provides the highest gas gain among all the argon-based gas mixtures and is well suited for use in long-duration space-based experiments. Best results are obtained with 5% and 20% Xe in Ar, the energy resolution being ≅7% FWHM at 22.2 keV and ≅4.5% at 59.6 keV for gas gain 3 . Addition of ≥1% TMA to an 80% Ar-20% Xe mixture produces a dramatic increase in gas gain but the energy resolution remains unaffected (≅7% FWHM at 22.2 keV). This increase in gas gain is attributed to the occurrence of a Penning effect between Xe and TMA, the ionization potential of TMA being 8.3 eV, just below the xenon metastable potential of 8.39 eV. (orig.)

  17. High-k shallow traps observed by charge pumping with varying discharging times

    International Nuclear Information System (INIS)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-01-01

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO 2 /metal gate stacks. N T -V high level characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N T for extra contribution of I cp traps. N T is the number of traps, and I cp is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I cp traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti x N 1−x metal gate concentrations. Next, N T -V high level characteristic curves with different falling times (t falling time ) and base level times (t base level ) show that extra contribution of I cp traps decrease with an increase in t falling time . By fitting discharge formula for different t falling time , the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t falling time . This current cannot be measured by the charge pumping technique. Subsequent measurements of N T by charge pumping technique at t base level reveal a remainder of electrons trapped in high-k bulk shallow traps

  18. Generation of the line radiation of argon added to DT gas in Iskra-5 experiments

    International Nuclear Information System (INIS)

    Bel'kov, S.A.; Bessarab, A.V.; Veselov, A.V.; Gaidash, V.A.; Dolgoleva, G.V.; Zhidkov, N.V.; Izgorodin, V.M.; Kirillov, G.A.; Kochemasov, G.G.; Litvin, D.N.; Martynenko, S.P.; Mitrofanov, E.I.; Murugov, V.M.; Mkhitar'yan, L.S.; Petrov, S.I.; Pinegin, A.V.; Punin, V.T.; Suslov, N.A.

    1998-01-01

    The first experiments measuring the density of a compressed deuterium and tritium mixture in microtargets of indirect irradiation (x-ray targets) were performed at the Iskra-5 facility. The density was determined according to the broadening of the lines of hydrogen- and helium-like argon added to the DT gas as a diagnostics material. A series of three experiments was performed with x-ray targets in which the central capsule filled with a DT+Ar mixture over a range of shell thicknesses. In two of the experiments, argon emission spectra were recorded and the density of the compressed gas was determined. For a microtarget approximately 280 μm in diameter with a wall approximately 7 μm thick, an analysis of the experimental results yielded an estimated density in the compressed gas of ∼1 g/cm 3 . Gas-dynamic calculations using the SNDA (spectral nonequilibrium diffusion with absorption) program show that argon emission takes place just after reaching maximum temperature, but much sooner than maximum compression. The results of a calculation for an experiment with low relative Ar concentration are in overall agreement with the experimental data. Additional investigations are needed to interpret experiments at a relatively high concentration

  19. A High-Level Functional Architecture for GNSS-Based Road Charging Systems

    DEFF Research Database (Denmark)

    Zabic, Martina

    2011-01-01

    , a short introduction is provided followed by a presentation of the system engineering methodology to illustrate how and why system architectures can be beneficial for GNSS-based road charging systems. Hereafter, a basic set of system functions is determined based on functional system requirements, which...... charging systems, it is important to highlight the overall system architecture which is the framework that defines the basic functions and important concepts of the system. This paper presents a functional architecture for GNSS-based road charging systems based on the concepts of system engineering. First...... defines the necessary tasks that these systems must accomplish. Finally, this paper defines the system functionalities; and provides a generic high-level functional architecture for GNSS-based road charging systems....

  20. Simulation of argon response and light detection in the DarkSide-50 dual phase TPC

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D' Angelo, D.; D' Incecco, M.; Davini, S.; de Candia, A.; Cecco, S. De; Deo, M. De; Filippis, G. De; Vincenzi, M. De; Derbin, A. V.; Rosa, G. De; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.

    2017-10-01

    Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon.

  1. Cluster-assistant generation of multiply charged atomic ions in nanosecond laser ionization of seeded methyl iodide beam

    International Nuclear Information System (INIS)

    Luo Xiaolin; Niu Dongmei; Kong Xianglei; Wen Lihua; Liang Feng; Pei Kemei; Wang Bin; Li Haiyang

    2005-01-01

    The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10 10 -2 x 10 11 W/cm 2 . Multiply charged ions of I q+ (q = 2-3) and C 2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH 3 I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions

  2. Characterization of weakly ionized argon flows for radio blackout mitigation experiments

    Science.gov (United States)

    Steffens, L.; Koch, U.; Esser, B.; Gülhan, A.

    2017-06-01

    For reproducing the so-called E × B communication blackout mitigation scheme inside the L2K arc heated facility of the DLR in weakly ionized argon §ows, a §at plate model has been equipped with a superconducting magnet, electrodes, and a setup comprising microwave plasma transmission spectroscopy (MPTS). A thorough characterization of the weakly ionized argon §ow has been performed including the use of microwave interferometry (MWI), Langmuir probe measurements, Pitot probe pro¦les, and spectroscopic methods like diode laser absorption spectroscopy (DLAS) and emission spectroscopy.

  3. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology

    Science.gov (United States)

    Gaiser, Christof; Fellmuth, Bernd

    2018-03-01

    With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.

  4. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    Science.gov (United States)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  5. Performance of a uranium liquid argon calorimeter

    International Nuclear Information System (INIS)

    Tuts, P.M.

    1987-01-01

    The author presents results on the performance of a uranium and liquid argon colorimeter in the NW test beam at Fermilab. This study describes the calorimeter, and discusses its performance with electrons, pions and muons from 10 GeV to 150 GeV. The performance parameters measure response, linearity, resolution, compensation, and e/π separation

  6. Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An In Vitro Study

    Science.gov (United States)

    Miresmaeili, Amirfarhang; Etrati Khosroshahi, Mohammad; Motahary, Pouya; Rezaei-Soufi, Loghman; Mahjub, Hossein; Dadashi, Maryam; Farhadian, Nasrin

    2014-01-01

    Objective This study was designed to evaluate the effect of argon laser irradiation on development and progress of enamel demineralization around orthodontic brackets. Materials and Methods: Fifty caries-free, intact human premolars were randomly assigned to one of the following five equal groups: Groups 1 (control) and 2: The brackets were bonded using conventional halogen light for 40s and argon laser for 10s, respectively. Teeth in group 3 were lased with argon laser for 10s before bracket bonding with halogen light. Group 4 was the same as group 3 except that brackets were also bonded with argon laser. In group 5 samples were bonded conventionally, immersed in an artificial caries solution for two days and then irradiated for 10s with argon laser. All samples were subjected to demineralization by artificial caries solution for 10 days. After bracket removal, samples were buccolingually sectioned and evaluated by polarized light microscopy. Decalcified lesion depth in each section was measured by a trained examiner in a blind fashion. Data were analyzed in SPSS 14 using one-way ANOVA and Tukey’s HSD post hoc test. Results: The control group showed the greatest mean lesion depth while group 5 revealed the lowest. The laser-treated groups had significantly lower mean lesion depth compared with the control group (Pbracket bonding can increase caries resistance of intact and demineralized enamel. PMID:25584052

  7. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats.

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich

    Full Text Available Retinal ischemia and reperfusion injuries (IRI permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC of the rat's eye.IRI was performed on the left eyes of rats (n = 8 with or without inhaled Argon postconditioning (25, 50 and 75 Vol% for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours. Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001. Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01, as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001. Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option.

  8. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  9. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  10. Skinning of argon clusters by Coulomb explosion induced with an intense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Sakabe, S.; Shirai, K.; Hashida, M.; Shimizu, S.; Masuno, S.

    2006-01-01

    The energy distributions of ions emitted from argon clusters Coulomb exploded at an intensity of 17 W/cm 2 with an intense femtosecond laser have been experimentally studied. The power m of energy E of the ion energy distribution (dN/dE∼E m ) is expected to be 1/2 for spherical ion clusters, but it is in fact reduced smaller than 1/2 as the laser intensity is decreased. This reduction can be well interpreted as resulting from the instantaneous ionization of the surface of the cluster. The validity of this interpretation was confirmed by experiments with double pulse irradiation. A cluster irradiated by the first pulse survives as a skinned cluster, and the remaining core part is Coulomb exploded by the second pulse. It is shown that a cluster can be skinned by an intense short laser pulse, and the laser-intensity dependence of the skinned layer thickness can be reasonably explained by the laser-induced space charge field created in the cluster

  11. Experimental investigations of helium cryotrapping by argon frost

    International Nuclear Information System (INIS)

    Mack, A.; Perinic, D.; Murdoch, D.; Boissin, J.C.

    1992-01-01

    At the Karlsruhe Nuclear Research Centre (KfK) cryopumping techniques are being investigated by which the gaseous exhausts from the NET/ITER reactor can be pumped out during the burn-and dwell-times. Cryosorption and cryotrapping are techniques which are suitable for this task. It is the target of the investigations to test the techniques under NET/ITER conditions and to determine optimum design data for a prototype. They involve measurement of the pumping speed as a function of the gas composition, gas flow and loading condition of the pump surfaces. The following parameters are subjected to variations: Ar/He ratio, specific helium volume flow rate, cryosurface temperature, process gas composition, impurities in argon trapping gas, three-stage operation and two-stage operation. This paper is a description of the experiments on argon trapping techniques started in 1990. Eleven tests as well as the results derived from them are described

  12. Electron scattering and transport in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G. J.; Cocks, D. G.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville 4810 (Australia); McEachran, R. P. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  13. Electron scattering and transport in liquid argon

    International Nuclear Information System (INIS)

    Boyle, G. J.; Cocks, D. G.; White, R. D.; McEachran, R. P.

    2015-01-01

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies

  14. Phase shift PWM with double two-switch bridge for high power capacitor charging

    International Nuclear Information System (INIS)

    Karandikar, U.S.; Singh, Yashpal; Thakurta, A.C.

    2013-01-01

    Pulse power supply systems working at higher voltage and high repetition rate demands for higher power from capacitor chargers. Capacitor charging requirement become more challenging in such cases. In pulse power circuits, energy storage capacitor should be charged to its desired voltage before the next switching occurs. It is discharged within a small time, delivering large pulse power. A capacitor charger has to work with wide load variation repeatedly. Many schemes are used for this purpose. The proposed scheme aims at reducing stresses on switches by reducing peak current and their evils. A high voltage power supply is designed for capacitor charging. The proposed scheme is based on a Phase-Shifted PWM without using any extra component to achieve soft switching. Indirect constant average current capacitor charging is achieved with a simple control scheme. A double two-switch bridge is proposed to enhance reliability. Power supply has been developed to charge a capacitor of 50 μF to 2.5 kV at 25 Hz. (author)

  15. Mean charged hadron multiplicities in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albini, E [Istituto di Matematica dell' Universita Cattolica di Brescia (Italy); Capiluppi, P; Giacomelli, G; Rossi, A M [Bologna Univ. (Italy). Istituto di Fisica

    1976-03-01

    A collection of mean charged hadron multiplicities per inelastic collision in various high-energy processes is presented. An extensive list of fits of as a function of energy is presented and discussed. As the energy increases the multiplicities for different collisions tend to a unique curve, independent of the type of colliding particles.

  16. The design of an optical link for the ATLAS Liquid Argon Calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2012-01-01

    We present the design of an optical link for the ATLAS liquid argon calorimeter upgrade. Challenging requirements are high data bandwidth (over 150 Gb/s raw data rate per board), radiation tolerance, low power consumption, high reliability, and low transmission latency. We discuss the link system design and component developments, especially those for the transmitting side that has to operate in the radiation environment. This presentation also serves as a summary of a few other presentations that detail in a particular function block of this link.

  17. Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Murboeck, Tobias

    2017-07-01

    important step towards the sympathetic cooling of highly charged ions (HCI) and paves the way to future investigations of HCI, which will enable a stringent test of bound-state quantum electrodynamics. For supply of HCI to the SpecTrap experiment, the HITRAP low-energy beamline - including the pulsed drift tubes for ion deceleration and the electron beam ion source - were commissioned. Ion bunches containing several tens of thousands of argon ions (Ar{sup 13+}) were transported to the SpecTrap Penning trap. These ion numbers are sufficient for future spectroscopy of the fine structure splitting in boron-like Ar{sup 13+}. In future experiments, the HCI shall be delivered by HITRAP and will possess large kinetic energies immediate after capture into the Penning trap, so that initial sympathetic cooling is not very efficient. Therefore, the SpecTrap Penning trap features axial resonators for pre-cooling of the HCI to the kelvin-regime by means of resistive cooling. An analytical model for resistive cooling of highly charged ions was developed in this work, which for the first time explained the measured resistive cooling signals of HCI given in literature. This model allows for a deeper understanding of the interaction between radial and axial degrees of freedom, it predicts the set of experimental parameters for optimum cooling, and it provides the time evolution of the HCI density and temperature during the cooling process.

  18. Novel non-equilibrium modelling of a DC electric arc in argon

    Science.gov (United States)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  19. Novel non-equilibrium modelling of a DC electric arc in argon

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Almeida, N A

    2016-01-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current–voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7–2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A. (paper)

  20. Effects of uranium bombardment by 20-40 KeV argon ions, Annex 2

    International Nuclear Information System (INIS)

    Nenadovic, T.; Jurela, Z.

    1966-01-01

    This paper shows the results of argon ions interaction with the polycrystal natural uranium. Thin foil of uranium about 200 μ was bombarded by 20-40 KeV argon ions. Coefficients of cathode scattering δ and secondary electrons emission γ were measured, during the process A + →U. The foil was then studied by transmission method and method of single step replica using an electron microscope [sr

  1. Update on the high speed serializer ASIC development for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2011-01-01

    We have been developing a serializer application-specific integrated circuit (ASIC) based on a commercial 0.25-μm silicon-on-sapphire (SOS) CMOS technology for the ATLAS liquid argon calorimeter front-end electronics upgrade. The first prototype, a 5 Gbps 16:1 serializer has been designed, fabricated, and tested in lab environment and in a 200 MeV proton beam. The test results indicate that the first prototype meets the design goals. The second prototype, a double-lane, 8 Gbps per lane serializer is under development. The post-layout simulation indicates that 8 Gbps is achievable. In this paper we present the design and the test results of the first prototype and the design and status of the second prototype.

  2. Relative efficacy of the argon green, argon blue-green, and krypton red lasers for 10-0 nylon subconjunctival laser suture lysis.

    Science.gov (United States)

    Mudgil, A V; To, K W; Balachandran, R M; Janigian, R H; Tsiaras, W G

    1999-01-01

    To determine the optimal wavelength for subconjunctival laser suture lysis. 130 black monofilament 10-0 nylon sutures were sewn subconjunctivally into the bare sclera of enucleated rabbit globes. The lowest energy levels facilitating laser suture lysis were determined for the argon green (514.5 NM), argon blue-green (488.0 NM, 514.5 NM), and krypton red (647.1 NM) wavelengths. In addition, absorption spectroscopy was performed on the suture material and conjunctiva using the Perkin Elmer W/VIS Lambda 2 spectrometer. Krypton red produced the fewest buttonhole defects, and it was also the most efficient energy source for suture lysis (P = 0.0001) under nontenectomized conjunctiva. Absorbance spectra studies revealed peak absorbance at 628 NM for the 10-0 nylon suture material. Based on animal and absorption spectroscopy studies, krypton red may be a safer and more efficient wavelength for subconjunctival laser suture lysis.

  3. DWBA calculation of positron impact ionization of argon

    Energy Technology Data Exchange (ETDEWEB)

    Campeanu, R I; Alam, M, E-mail: campeanu@yorku.ca [Department of Physics and Astronomy, York University, Toronto, M3J 1P3 (Canada)

    2011-01-01

    The ionization of the 3p and 3s orbitals of argon by 200 eV incident positrons is studied with the DWBA approximation. Our TDCS results for the 3p orbital ionization are found to be in good agreement with recent CDW-EIS data.

  4. Pressure effects on some argon spectral lines belonging to the 3p54p-3p5nd (n=5-7) transitions

    International Nuclear Information System (INIS)

    Wolnikowski, J.; Wawrzynski, J.; Bielski, A.; Szudy, J.

    1987-01-01

    Low pressure broadening and shift of four spectral lines of argon: 518.7 nm (3p 5 4p-3p 5 5d'), 522.1 nm (3p 5 4p-3p 5 7d), 549.6 nm (3p 5 4p-3p 5 6d) and 603.2 nm (3p 5 4p-3p 5 5d) have been investigated by means of a Fabry-Perot interferometer. The values of the pressure broadening and shift coefficients for argon-argon, argon-neon and argon-helium interactions in the low-current glow discharge conditions are determined. For all lines in the pure argon a red shift and in the argon-neon and argon-helium mixtures a blue shift has been found. The results cannot be interpreted on the basis of the existing simple interaction potential models within the framework of the adiabatic impact broadening theory. (orig.)

  5. Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas

    Directory of Open Access Journals (Sweden)

    Anke Höllig

    2014-10-01

    Full Text Available Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon.

  6. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  7. Charge redistribution and properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Khomskii, D.I.; Kusmartsev, F.V.

    1992-01-01

    We show that in high-T c superconductors (HTSC) with two groups of electrons (e.g., holes in CuO 2 planes and in a ''reservoir'') there should exist a charge redistribution with the temperature: the hole concentration N h in ''active'' superconducting CuO 2 planes increases below T c . This effect may explain structural changes such as the shift of the apical oxygen atom, anomalous thermal expansion, the shift of nuclear quadrupole resonance lines, the change of the positron lifetime, and the modification of the ion channeling below T c . Some other possible consequences of the charge redistribution (the modification of the temperature dependence of a gap Δ and of the ratio 2Δ 0 /T c , the phenomena at a contact of HTSC with normal metals and semiconductors) are discussed

  8. Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Young-Min Kim

    2010-09-01

    Full Text Available Specimen charging that is associated with the electron bombardment on the sample is a practical hindrance to high-resolution transmission electron microscopy (HRTEM analysis because it causes a severe loss of resolution in either diffraction or image data. Conductive thin film deposition on an insulating specimen has been proposed as an effective approach to the mitigation of the specimen charging; however, this method is generally not useful in HRTEM imaging of materials because the deposited film induces another artifact in the HRTEM image contrast. In this study, we propose practical methods to mitigate the specimen charging that takes place during the HRTEM of materials. For bulk-type specimens prepared by either an ion-thinning or focused-ion beam (FIB process, a plasma cleaning treatment is significantly effective in eliminating the charging phenomenon. In the case of low-dimensional nanomaterials such as nanowires and nanoparticles, the plasma cleaning is not feasible; however, the charging effect can be effectively eliminated by adjusting the electron illumination condition. The proposed methods facilitate a decrease in the buildup of specimen charging, thereby enhancing the quality of high-resolution images significantly.

  9. Dynamics of imploding argon plasmas

    International Nuclear Information System (INIS)

    Clark, W.; Richardson, R.; Brannon, J.; Wilkinson, M.; Katzenstein, J.

    1982-01-01

    The BLACKJACK 5 pulse generator has been used to implode annular argon plasmas to form dense Z pinches. Visible streak photography, framing photography, and laser shadowgraphy were used to observe the radial position and velocity of the plasmas as they imploded. The measured position and velocity of the imploding plasmas have been compared with the results of calculations based on a one-dimensional snowplow model. Good agreement is obtained between the snowplow calculations and the optical measurements. Empirically determined optimum implosion parameters are also found to agree with those predicted by the model

  10. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  11. Modelling of prompt losses of high energy charged particles in Tokamaks

    International Nuclear Information System (INIS)

    Dillner, Oe.; Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    A simple analytical expression for the total prompt loss fraction of high energy charged particles in an axisymmetric Tokamak is derived. The results are compared with predictions obtained from numerical simulations and show good agreement. An application is made to sawtooth induced changes in the losses of fusion generated high energy charged particles. Particular emphasis is given to the importance of sawtooth induced profile changes of the background ion densities and temperature as well as to redistribution of particles which have accumulated during the sawtooth rise but are being lost by redistribution at the sawtooth crash. (au)

  12. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  13. Mechanisms for production of highly charged ions

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1987-01-01

    Various experimental data at high collision velocity are interpreted in terms of direct (D) and rearrangement (R) mechanisms for production of multiply charged ions. We consider double ionization in helium by protons, electrons, heavy ions, antiprotons, positrons and photons. Qualitative differences are discussed in the context of the R and D mechanisms. Multiple ionization in many electron atoms is considered as is simultaneous capture and ionization and fragmentation of methane molecules. Some other theoretical methods are briefly discussed. (orig.)

  14. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    Science.gov (United States)

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  15. Experimental behaviour of a argon plasma, which is passed by a high current intensity, with different magnetic field configurations

    International Nuclear Information System (INIS)

    Lozano, J.

    1964-01-01

    In a lineal discharge, the longitudinal and azimuthal magnetic fields produced by the current through the tube and the returning conductors, which have 4 different forms, are determined with a magnetic probe, which has a radial and longitudinal displacement. The plasma is produced discharging a 135μF and 9 KV capacitor bank through Argon at 10 - 1 Torr. (Author) 5 refs

  16. Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219286; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter channels at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented.

  17. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high

  18. High-k shallow traps observed by charge pumping with varying discharging times

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wang, Bin-Wei; Cao, Xi-Xin [Department of Embedded System Engineering, Peking University, Beijing, P.R.China (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan (China)

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  19. Structural and Thermodynamic Properties of the Argon Dimer: A Computational Chemistry Exercise in Quantum and Statistical Mechanics

    Science.gov (United States)

    Halpern, Arthur M.

    2010-01-01

    Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…

  20. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  1. The 14th Werner Brandt workshop on charged particle penetration phenomena

    International Nuclear Information System (INIS)

    1992-11-01

    This report discusses the following topics: Phase effect in the energy loss of H projectiles in Zn targets: Experimental evidence and theoretical explanation; Molecular orbital theory for the stopping power of atoms in condensed matter: The case of He on metals; Non-linear screening at finite projectile velocities; Effect of image charge and charge exchange on the trajectory in grazing ion-surface collisions ''skipping motion'' and acceleration of multi-charged ions; Threshold ionization processes; The surface barrier for a simple metal: A first principles comparison between density functional theory and self-energy calculations; Multiphonon interactions in atom-surface scattering; Calculations of radiation-induced DNA damage; Radiation damage to DNA; Monte Carlo calculations of electron transport in high electric fields; Knock-on electrons produced in collisions of 6.4 TeV sulfur ions with fixed targets; Collective surface excitations in metals and thin films; Electron emission during multicharged ion-metal surface interaction; Intramolecular secondary collision contributions to cusp shapes and yields; Self energy approach to the energy loss in STEM; Atomic force microscopy of DNA strands absorbed on Mica; Photon scanning tunneling spectroscopy; Luminescence and electron emission from ion bombardment of solid Argon;Evaluation of soft X-ray yield of Al from 27.557 MeV neutral particles; Interpretation of EELS near edge fine structure at the 50 MeV Level; Organic ion imaging using Sims; Energy gap effect in stopping power; Stopping power data analysis; Calculations of electron ionization cross sections for K, L, and M shells; and Fractofusion mechanism (theory of cold fusion)

  2. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More?

    Science.gov (United States)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  3. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  4. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  5. Two-dimensional simulation of argon dielectric barrier discharge excited by a Gaussian voltage at atmospheric pressure

    Science.gov (United States)

    Xu, Yonggang; Wang, Jing; Li, Jing; Lei, Bingying; Tang, Jie; Wang, Yishan; Li, Yongfang; Zhao, Wei; Duan, Yixiang

    2017-04-01

    A two-dimensional self-consistent fluid model was employed to investigate the spatiotemporal characteristics of discharges in atmospheric pressure argon (Ar) dielectric barrier discharge driven by a Gaussian voltage. The simulation results show that a discharge with multiple current pulses occurs each half-cycle in the gas gap. A transition from the Townsend mode to the glow mode is observed with the increasing applied voltage each half-cycle at a lower driving frequency (7.5 kHz). It is also found that the glow mode survives all the discharge phases at a higher driving frequency (12.5 kHz and 40 kHz). The change in the discharge mode with the driving frequency mainly lies in the fact that a lot of charged particles created in the discharge gap have no enough time to drift and diffuse around, and then these particles are assembled in the discharge space at higher frequency. Additionally, the spatial distributions of the electron density indicate that a center-advantage discharge is ignited at the driving frequencies of interest, resulting in the radial non-uniformity of discharge because of the edge effects. However, this overall non-uniformity is weakened with the driving frequency increased to 40 kHz, at which concentric ring patterns are observed. These distinct behaviors are mainly attributed to the fact that many charged particles generated are trapped in the gas gap and then accumulated to make the extension along the radial direction due to the charged particles transport and diffusion, and that the effective overlapping of a large number of avalanches induced by the increased "seed" electron density with the driving frequency. Meanwhile, the surface charged particles accumulated on the dielectric barriers are also shown to play a role in the formation of the discharge structure.

  6. The Atlas Liquid Argon Calorimeter: Commissioning with Cosmic Muons and First LHC Beams

    CERN Document Server

    Trocmé, B

    2008-01-01

    In 2009, the Large Hadron Collider at CERN will collide protons with a center of mass energy of 14 TeV. ATLAS is a general purpose experiment that will allow to explore the wide potential of discovery and achieve high precision measurements. The ATLAS liquid argon calorimeters are presented, with an emphasis on their in situ commissioning using cosmic muons and their response during the first LHC single beam runs on September 2008.

  7. High-resolution X-ray spectra from low-temperature, highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1996-09-01

    The electron beam ion traps (EBIT) at Livermore were designed for studying the x-ray emission of highly charged ions produced and excited by a monoenergetic electron beam. The precision with which the x-ray emission can be analyzed has recently been increased markedly when it became possible to decouple the temperature of the ions from the energy of the electron beam by several orders of magnitude. By adjusting the trap parameters, ion temperatures as low as 15.8±4.4 eV for Ti 20+ and 59.4±9.9 eV for Cs 45+ were achieved. These temperatures were more than two orders of magnitude lower than the energy of the multi-keV electron beam used for the production and excitation of the ions. A discussion of the techniques used to produce and study low-temperature highly charged ions is presented in this progress report. The low ion temperatures enabled measurements heretofore impossible. As an example, a direct observation of the natural line width of fast electric dipole allowed x-ray transitions is described. From the observed natural line width and b making use of the time-energy relations of the uncertainty principle we were able to determine a radiative transition rate of 1.65 fs for the 2p-3d resonance transition in neonlike Cs 45+ . A brief discussion of other high-precision measurements enabled by our new technique is also given

  8. Anisotropy in highly charged ion induced molecule fragmentation

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Fremont, F.; Chesnel, J.Y.; Hajaji, A.

    2006-01-01

    Complete text of publication follows. Studying fragmentation processes of biologically relevant molecules due to highly charged ion impact is important to understand radiation damage in biological tissues. Energy spectra of the charged molecule fragments may reveal the different fragmentation patterns meanwhile the angular distributions of the fragments characterize the dependence of fragmentation probability on the initial orientation of the molecule. The research to explore the angular distribution of the molecule fragments has only recently been started[1]. In 2006 we performed measurements at ARIBE facility at GANIL, Caen (France), in order to investigate orientation effects in molecule fragmentation. Fragmentation of H 2 O, C 6 H 6 and CH 4 , which represent different level of symmetry, have been studied by 60 keV N 6+ ion impact. Energy spectra of the charged fragments at different observation angles have been taken. As our example spectra show the different protonic peaks can be attributed to different fragmentation processes. Significant anisotropy can be seen in the different processes. The strongest evidence for the anisotropy can be seen in the spectra of C 6 H 6 , where the spectra appear isotropic in almost the whole observed energy range except one peak, which has a strong angular dependence and is maximal around 90 deg. (author)

  9. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  10. ERC sources for the production of highly charged ions (invited)

    International Nuclear Information System (INIS)

    Lyneis, C.M.; Antaya, T.A.

    1990-01-01

    Electron cyclotron resonance ion sources (ECRIS) using rf between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this article we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz

  11. Possibility of resonant capture of antiprotons by highly charged hydrogenlike ions

    International Nuclear Information System (INIS)

    Genkin, M.; Lindroth, E.

    2009-01-01

    Recently, an experimental setup was proposed by Lapierre et al. which would allow antiprotons and highly charged ions to collide repeatedly in an electron beam ion trap (EBIT) due to a nested trap configuration. As mentioned by the authors, such a setup may open the possibility to study antiproton capture into well-defined states through a resonant process which involves simultaneous electron excitation. In the present work, we give some theoretical estimations of the feasibility of that process. It appears that the exotic dielectronic-like process of resonant anti-proton capture in highly charged ions does not seem to be completely out of reach

  12. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  13. Performance of the PHIN High Charge Photo Injector

    CERN Document Server

    Petrarca, M; Doebert, S; Dabrowski, A; Divall, M; Fedoseev, V; Lebas, N; Lefevre, T; Losito, R; Egger, D; Mete, O

    2010-01-01

    The high charge PHIN photo injector is studied at CERN as an electron source for the CLIC Test Facility (CTF3) drive beam as an alternative to the present thermionic gun. The objective of PHIN is to demonstrate the feasibility of a laser-based electron source for CLIC. The photo injector operates with a 2.5 cell, 3 GHz RF gun using a Cs2Te photocathode illuminated by UV laser pulses generated by amplifying and frequency quadrupling the signal from a Nd:YLF oscillator running at 1.5GHz. The challenge is to generate a beam structure of 1908 micro bunches with 2.33nC per micro bunch at 1.5GHz leading to a high integrated train charge of 4446nC and nominal beam energy of 5.5MeV with current stability below 1%. In this paper we report and discuss the time resolved transverse and longitudinal beam parameters measurements. The performance of the photo cathodes made at CERN with a peak quantum efficiency of 18 % is shown as well. Laser pointing and amplitude stability results are discussed taking into account correla...

  14. Peculiarities of spectroscopic determination of the isotopic hydrogen composition in a mixture with neon and argon

    International Nuclear Information System (INIS)

    Nemets, V.M.; Petrov, A.A.; Solov'ev, A.A.

    1987-01-01

    The dependence of the relative intensity of atomic lines of hydrogen isotopes in the mixture with neon and argon during excitation in a high-frequency discharge under medium and high pressures is investigated. A physical model is suggested for processes determining the isotopic effects in the atomic hydrogen spectrum due to isotopic differences in velocity constants of dissociation-association, transfer and ionic-molecular reactions in a gas discharge plasma

  15. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  16. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Thorn, D. B.

    2008-01-01

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  17. Behaviour of Charge Carriers in As-Deposited and Annealed Undoped TCO Films

    International Nuclear Information System (INIS)

    Zhou Yan-Wen; Wu Fa-Yu; Zheng Chun-Yan

    2011-01-01

    We examine the structures, cut-off points of transmittance spectra and electric properties of undoped ZnO, SnO 2 and CdO films by scanning electron microscopy, x-ray diffraction, spectrophotometer and Hall-effect measurements, respectively. The films are deposited by using an rf magnetron sputtering system from powder targets in argon and then annealed in vacuum. The structures and properties of the as-deposited films are compared with those of the annealed one. We try to explain the behaviour of charge carriers based on the semiconductor physics theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Thermal decomposition of Yttrium(III) isovalerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2016-01-01

    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  19. NOx emission control in SI engine by adding argon inert gas to intake mixture

    International Nuclear Information System (INIS)

    Moneib, Hany A.; Abdelaal, Mohsen; Selim, Mohamed Y.E.; Abdallah, Osama A.

    2009-01-01

    The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides and improve the performance of the engine. A research engine Ricardo E6 with variable compression was used in the present work. A special test rig has been designed and built to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas, oxygen and nitrogen gases at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and air to fuel ratio. The results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, volumetric efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO 2 , NO and O 2 . It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively and also it caused the brake power and thermal efficiency of the engine to increase. Mathematical program has been used to obtain the mixture properties and the heat release when the Argon gas is used.

  20. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process.

    Science.gov (United States)

    Liu, Xuan; Xue, Jilai; Zhao, Qiang; Le, Qichi; Zhang, Zhiqiang

    2018-03-01

    In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal. Copyright © 2017 Elsevier B.V. All rights reserved.