WorldWideScience

Sample records for highly asymmetric polyoxybutylene-polyoxyethylene

  1. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  2. Poly(oxyethylene) electrolytes based on lithium pentafluorobenzene sulfonate

    International Nuclear Information System (INIS)

    Paillard, E.; Iojoiu, C.; Alloin, F.; Guindet, J.; Sanchez, J.-Y.

    2007-01-01

    Lithium pentafluorobenzene sulfonate was synthesized by a protocol whereby pollution by aromatic nucleophilic substitutions on the perfluorinated ring was avoided. Its poly(oxyethylene) complexes, although less conductive than lithium imide complexes, provided cationic transference numbers higher than 0.5. Surprisingly, even at fairly low concentrations, this salt markedly increased the mechanical properties of the polymer electrolyte. This effect was attributed to telechelic interactions of the ion pairs with distinct polyether chains and is in agreement with the high cationic transference numbers

  3. STABILITY OF EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE/ BUTYL ACRYLATE/SODIUM MONO(ETHYL POLYOXYETHYLENE) MALEATE

    Institute of Scientific and Technical Information of China (English)

    Mao-gen Zhang; Zhi-xue Weng; Zhi-ming Huang; Zu-ren Pan

    1999-01-01

    A series of new water-soluble bifunctional comonomers having both carboxyl and alkyl polyoxyethylene groups, such as sodium mono(ethyl polyoxyethylene) maleate (ZE series) with various molecular weights of polyoxyethylene ethyl ether, were synthesized and characterized. The effects of the structural factor, the amount and feeding mode of the comonomers, the initiator concentration and polymerization temperature on the stability of emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) in the presence of a small amount of ZE with potassium persulfate as initiator were investigated. Stable, almost monodispersed MMA/BA/ZE emulsifier-free latex particles were prepared.

  4. Novel designed polyoxyethylene nonionic surfactant with improved safety and efficiency for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Li C

    2014-04-01

    Full Text Available Chang Li,1 Chunmeng Sun,1 Shasha Li,1 Peng Han,2 Huimin Sun,3 Ammar Ouahab,1 Yan Shen,1 Yourui Xu,1 Yerong Xiong,1 Jiasheng Tu11State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 2Chinese Pharmacopoeia Commission, Beijing, 3National Institute for Food and Drug Control, Beijing, People's Republic of ChinaAbstract: In order to limit the adverse reactions caused by polysorbate 80 in Taxotere®, a widely used formulation of docetaxel, a safe and effective nanocarrier for this drug has been developed based on micelles formed by a new class of well-defined polyoxyethylene sorbitol oleate (PSO with sorbitol as the matrix in aqueous solution. The physicochemical properties of the amphiphilic surfactant and the resulting micelles can be easily fine-tuned by the homogeneous sorbitol matrix and pure oleic acid. Composition, critical micelle concentration, and entrapment efficiency were investigated by ultraviolet visible spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, fluorospectrophotometry, and high-performance liquid chromatography. In vitro and in vivo evaluation revealed that PSO had exceptionally low hemolysis and histamine release rates compared with commercial polysorbate 80. Moreover, the tumor targeting delivery of PSO was investigated by in vivo imaging in S180 tumor-bearing mice. The results suggest that this novel delivery system, PSO, provides an acceptable alternative to polysorbate 80 for delivery of docetaxel. Further, due to the hypoallergenic nature of PSO, the mechanism of pseudoallergy caused by the polyoxyethylene nonionic surfactant was investigated. Based on in vitro cell analysis, it was assumed that the initial contact of polyoxyethylene nonionic surfactant with mast cells provoked pseudoallergy via polyamine receptor-mediated endocytosis.Keywords: polyoxyethylene nonionic surfactant, sorbitol, isosorbide, pseudoallergy

  5. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80

    Directory of Open Access Journals (Sweden)

    Cindy Wang

    2011-01-01

    Full Text Available The addition of polyoxyethylene sorbitan monooleate (Tween 80 to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.

  6. Determination of trace impurities in high-purity iron using salting-out of polyoxyethylene-type surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki, E-mail: h-matsu@numse.nagoya-u.ac.jp [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakane, Yuto; Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-10-19

    To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low {mu}g g{sup -1} to ng g{sup -1} levels.

  7. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  8. Polyoxyethylene alkyl ether carboxylic acids: An overview of a neglected class of surfactants with multiresponsive properties.

    Science.gov (United States)

    Chiappisi, Leonardo

    2017-12-01

    In this work, an overview on aqueous solutions of polyoxyethylene alkyl ether carboxylic acids is given. Unique properties arise from the combination of the nonionic, temperature-responsive polyoxyethylene block with the weakly ionic, pH-responsive carboxylic acid termination in a single surfactant headgroup. Accordingly, this class of surfactant finds broad application across very different sectors. Despite their large use on an industrial and a technical scale, the literature lacks a systematic and detailed characterization of their physico-chemical properties which is provided herein. In addition, a comprehensive overview is given of their self-assembly and interfacial behavior, of their use as colloidal building blocks and for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.

    Science.gov (United States)

    Morral-Ruíz, Genoveva; Melgar-Lesmes, Pedro; García, María Luísa; Solans, Conxita; García-Celma, María José

    2014-01-30

    The design of new, safe and effective nanotherapeutic systems is an important challenge for the researchers in the nanotechnology area. This study describes the formation of biocompatible polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant formed from O/W nano-emulsions by polymerization at the droplet interfaces in systems composed by aqueous solution/Kolliphor(®) ELP/medium chain triglyceride suitable for intravenous administration. Initial nano-emulsions incorporating highly hydrophilic materials were prepared by the phase inversion composition (PIC) method. After polymerization, nanoparticles with a small particle diameter (25-55 nm) and low polydispersity index were obtained. Parameters such as concentration of monomer, O/S weight ratio as well as the polymerization temperature were crucial to achieve a correct formation of these nanoparticles. Moreover, FT-IR studies showed the full conversion of the monomer to polyurethane and polyurea polymers. Likewise the involvement of the surfactant in the polymerization process through their nucleophilic groups to form the polymeric matrix was demonstrated. This could mean a first step in the development of biocompatible systems formulated with polyoxyethylene castor oil derivative surfactants. In addition, haemolysis and cell viability assays evidenced the good biocompatibility of KELP polyurethane and polyurea nanoparticles thus indicating the potential of these nanosystems as promising drug carriers. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Evaluation of some vanillin-modified polyoxyethylene surfactants as additives for water based mud

    Directory of Open Access Journals (Sweden)

    M.M.A. El-Sukkary

    2014-03-01

    Full Text Available Water-based drilling fluids are increasingly being used for oil and gas exploration and are generally considered to be more environmentally acceptable than oil-based or synthetic-based fluids. In this study, new types of vanillin-modified polyoxyethylene surfactants were evaluated as additives in water-based mud. Their rheological properties in water-based mud were investigated which included the apparent viscosity, the plastic viscosity, the yield point, the gel strength, the thixotropy as well as the filtration properties. Also, the effect of high temperature on the rheology of the formulated water based mud was studied. The tested ethoxylated non-ionic surfactants showed good results when utilized in the formulation of water-based mud.

  11. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    Science.gov (United States)

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  12. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  13. Isothermal vapour–liquid equilibrium of binary systems containing polyoxyethylene dodecanoate and alcohols

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2013-01-01

    Highlights: ► An autoclave apparatus was used to measure binary vapor-liquid equilibrium data. ► The studied systems are polyoxyethylene dodecanoate with 2-butanol, tert-butanol, and 1-pentanol. ► The saturated pressure data were fitted accurately to the Antoine equation. ► The UNIQUAC, the NRTL, and the Flory–Huggins models correlated well the phase equilibrium data. ► The solvent activities have been calculated. - Abstract: Isothermal vapour–liquid equilibrium (VLE) data have been measured with a static method for three binary systems of polyoxyethylene dodecanoate {(POEDDA) + butan-2-ol} at T = (333.4 to 424.5) K, (POEDDA + tert-butanol) at (321.1 to 401.5) K, and (POEDDA + pentan-1-ol) at (340.2 to 419.4) K. Four feed compositions were studied over the concentration range of 0.099 to 0.432 of POEDDA mole fractions. The experimental results were fitted to the Antoine equation to regress the Antoine constants. These VLE data were further treated by using the Barker method to obtain the best fit of binary interaction parameters from the UNIQUAC, the NRTL, and the Flory–Huggins models. The results showed good agreement between the experimental and calculated values. The Flory–Huggins model yielded the best result with an overall average absolute relative deviation (AARD) of 2.1%. The solvent activities were also calculated and showed agree well with the calculated values from those three activity coefficient models.

  14. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors

    Science.gov (United States)

    Chen, Gao-Feng; Liu, Zhao-Qing; Lin, Jia-Ming; Li, Nan; Su, Yu-Zhi

    2015-06-01

    An advanced asymmetric supercapacitor with high energy density, exploiting hierarchical polypyrrole (PPy) based composites as both the anode [three dimensional (3D) chuzzle-like Ni@PPy@MnO2] and (3D cochleate-like Ni@MnO2@PPy) cathode, has been developed. The ultrathin PPy and flower-like MnO2 orderly coating on the high-conductivity 3D-Ni enhance charge storage while the unique 3D chuzzle-like and 3D cochleate-like structures provide storage chambers and fast ion transport pathways for benefiting the transport of electrolyte ions. The 3D cochleate-like Ni@MnO2@PPy possesses excellent pseudocapacitance with a relatively negative voltage window while preserved EDLC and free transmission channels conducive to hold the high power, providing an ideal cathode for the asymmetric supercapacitor. It is the first report of assembling hierarchical PPy based composites as both the anode and cathode for asymmetric supercapacitor, which exhibits wide operation voltage of 1.3-1.5 V with maximum energy and power densities of 59.8 Wh kg-1 and 7500 W kg-1.

  15. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  16. High Q-factor metasurfaces based on miniaturized asymmetric single split resonators

    Science.gov (United States)

    Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin

    2009-04-01

    We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.

  17. A Review on the Environmental Behavior of the Polyoxyethylene Type Nonionic Surfactants Adjuvants in Pesticides

    Directory of Open Access Journals (Sweden)

    KONG Xiang-ji

    2017-05-01

    Full Text Available Polyoxyethylene type nonionic surfactants such as alkylphenol ethoxylates(APEOs, alcohol ethoxylates(AEOs and alkylamine ethoxylates(ANEOs are typical pesticide adjuvants. Their unique environmental behavior characteristic is reflected in the parameters describing the fate e.g.distribution coefficient, adsorption to soil, degradation and effects of these substances. The major environmental problem related to these compounds is their part metabolites' relatively higher environmental risk. In views of their chemical structure, this paper outlined present knowledge on occurrence, fate and environment effect of the three adjuvants:AEOs, ANEOs and APEOs. The adsorption behaviour of ANEOs in contrast to AEOs was particularly variable and matrix dependent due to the ability of the compound to ionise at environmentally relevant pH. Probably because the compounds exceeded high soil adsorption and were easily degradable which were reflected in the low environmental concentrations generally found in monitoring studies.

  18. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.

    Science.gov (United States)

    Wu, Zhong-Shuai; Ren, Wencai; Wang, Da-Wei; Li, Feng; Liu, Bilu; Cheng, Hui-Ming

    2010-10-26

    In order to achieve high energy and power densities, we developed a high-voltage asymmetric electrochemical capacitor (EC) based on graphene as negative electrode and a MnO(2) nanowire/graphene composite (MGC) as positive electrode in a neutral aqueous Na(2)SO(4) solution as electrolyte. MGC was prepared by solution-phase assembly of graphene sheets and α-MnO(2) nanowires. Such aqueous electrolyte-based asymmetric ECs can be cycled reversibly in the high-voltage region of 0-2.0 V and exhibit a superior energy density of 30.4 Wh kg(-1), which is much higher than those of symmetric ECs based on graphene//graphene (2.8 Wh kg(-1)) and MGC//MGC (5.2 Wh kg(-1)). Moreover, they present a high power density (5000 W kg(-1) at 7.0 Wh kg(-1)) and acceptable cycling performance of ∼79% retention after 1000 cycles. These findings open up the possibility of graphene-based composites for applications in safe aqueous electrolyte-based high-voltage asymmetric ECs with high energy and power densities.

  19. Effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions.

    Science.gov (United States)

    Cheong, Jean Ne; Mirhosseini, Hamed; Tan, Chin Ping

    2010-06-01

    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.

  20. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  1. A highly asymmetric dijet event of the ATLAS experiment

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    A highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, and with high energy calorimeter cell deposits distributed over a wide azimuthal region. Only tracks with pT > 2.6 GeV are shown, and only calorimeter energy deposits with cell energy ET > 700 MeV in the electromagnetic calorimeter, and E > 1 GeV in the hadronic calorimeter.

  2. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  3. Asymmetric Membranes Containing Micron-Size Silicon for High Performance Lithium Ion Battery Anode

    International Nuclear Information System (INIS)

    Byrd, Ian; Wu, Ji

    2016-01-01

    Micron-size Si anode is notorious for having extremely poor cycle life. It is mainly caused by the large volume change (∼300%) and poor mechanical strength of the Si electrode. Satisfying methods to address this issue are seriously lacking in literature. In this study, novel single-layer, double-layer and triple-layer asymmetric membranes containing micron-size silicon have been fabricated using a simple phase inversion method to dramatically improve its cyclability. The electrochemical performance of these asymmetric membranes as lithium ion battery anodes are evaluated and compared to pure micron-size Si powders and carbonaceous asymmetric membranes. All three types of asymmetric membrane electrodes demonstrate significantly enhanced stability as compared to pure Si powders. The single-layer asymmetric membrane has the largest capacity degradation due to the loss of pulverized Si powders from the membrane surface, only 40% of whose capacity can be retained in 100 cycles. But this performance is still much better than pure micron-size silicon electrode. After being coated with nanoporous carbonaceous layers on both sides of a single-layer asymmetric membrane to make a triple-layer asymmetric membrane (sandwich structure), the capacity retention is notably increased to 88% in 100 cycles at 610 mAh g"−"1 and 0.5C. The enhanced stability is attributed to the extra nanoporous coatings that can prevent the fractured Si powders from being leached out and allow facile lithium ion diffusions. Such a novel, efficient and scalable method may provide beneficiary guidance for designing high capacity lithium ion battery anodes with large volume change issues.

  4. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  5. Manganese oxide/graphene oxide composites for high-energyaqueous asymmetric electrochemical capacitors

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-11-01

    Full Text Available A high-energy aqueous asymmetric electrochemical capacitor was developed using manganese diox-ide ( -MnO2)/graphene oxide (GO) nanocomposites. The nanostructured -MnO2was prepared frommicron-sized commercial electrolytic manganese dioxide (EMD) via...

  6. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F

    2015-03-04

    The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles.

  7. Investigation on asymmetric flow over a blunt-nose slender body at high angle of attack

    Science.gov (United States)

    Zhongyang, Qi; Yankui, Wang; Lei, Wang; Qian, Li

    2017-12-01

    The asymmetric vortices over a blunt-nose slender body are investigated experimentally and numerically at a high angle of attack (AoA, α = 50°) and a Reynolds number of Re D = 1.54 × 105 on the basis of an incoming free-stream velocity and diameter (D) of the model. A micro-perturbation in the form of a hemispherical protrusion with a radius of r = 0.012D is introduced and attached on the nose of the slender body to control the behavior of the asymmetric vortices. Given the predominant role of micro perturbation in the asymmetric vortex pattern, a square wave, which is singly periodic, is observed for side-force variation by setting the circumferential angle (θ) of the micro perturbation from 0° to 360°. The asymmetric vortex pattern and the corresponding side force are manageable and highly dependent on the location of perturbation. The flow structure over the blunt-nose slender body is clarified by building a physical model of asymmetric vortex flow structure in a regular state at a high AoA (α = 50°). This model is divided into several regions by flow structure development along the model body-axis, i.e., inception region at x/D ≤ 3.0, triple-vortex region at 3.0 ≤ x/D ≤ 6.0, four-vortex region at 6.0 ≤ x/D ≤ 8.5, and five-vortex region at 8.5 ≤ x/D ≤ 12. The model reveals a complicated multi-vortex system. The associated pressure distributions and flow characteristics are discussed in detail.

  8. The regeneration of rectal epithelium in the rat following wounding with suppositories of polyoxyethylene (23) lauryl ether.

    Science.gov (United States)

    Holyhead, E. M.; Thomas, N. W.; Wilson, C. G.

    1983-01-01

    The regeneration of the epithelial compartments of the rectal mucosa in rats has been quantified at time intervals up to one week following wounding with suppositories of the surfactant polyoxyethylene-(23)-lauryl ether. Regeneration of glandular tissue was complete within one week of the wounding, with new glands arising from residual gland bases and from surface invagination of empty crypt skeletons and underlying granulation tissue. This method of wounding appears to be particularly useful for the study of epithelial regeneration since there was a minimal connective tissue response to the insult. Images Fig. 1 Fig. 2 Fig. 3 Figs 4 and 5 Fig. 6 Fig. 7 PMID:6615712

  9. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    OpenAIRE

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-01-01

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...

  10. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene comb and poly(amidoamine

    Directory of Open Access Journals (Sweden)

    Taniguchi Ikuo

    2017-11-01

    Full Text Available Due to CO2-philic nature of polyoxyethylene (POE, a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS support by a spray-coating manner, the resulting thin film composite (TFC membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine (PAMAM was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.

  11. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)

    Science.gov (United States)

    Taniguchi, Ikuo; Wada, Norihisa; Kinugasa, Kae; Higa, Mitsuru

    2017-11-01

    Due to CO2-philic nature of polyoxyethylene (POE), a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS) support by a spray-coating manner, the resulting thin film composite (TFC) membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine) (PAMAM) was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC) and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.

  12. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-Speed and Low-Energy Flip-Flop Operation of Asymmetric Active-Multimode Interferometer Bi-Stable Laser Diodes

    DEFF Research Database (Denmark)

    Jiang, Haisong; Chaen, Yutaka; Hagio, Takuma

    2011-01-01

    High-speed (121/25 ps rise/fall time) and low-switching energy (7.1 and 3.4 fJ) alloptical flip-flop operation of single-wavelength high-mesa asymmetric active-MMI bi-stable laser diodes is demonstrated for the first time using 25 ps long switching pulses.......High-speed (121/25 ps rise/fall time) and low-switching energy (7.1 and 3.4 fJ) alloptical flip-flop operation of single-wavelength high-mesa asymmetric active-MMI bi-stable laser diodes is demonstrated for the first time using 25 ps long switching pulses....

  14. Observation of asymmetric transverse voltage in granular high-T c superconductors

    International Nuclear Information System (INIS)

    Luz, M.S. da; Carvalho, F.J.H. de; Santos, C.A.M. dos; Shigue, C.Y.; Machado, A.J.S.; Ricardo da Silva, R.

    2005-01-01

    This work reports the influence of the granularity on the transverse voltage as a function of the temperature, V XY (T), in polycrystalline samples of Bi 2 Sr 2 Ca 0.8 Pr 0.2 Cu 2 O 8+δ composition. It is observed nonzero transverse voltage at zero external magnetic field in the vicinity of the superconducting transition while far away from it, both above and below, no such voltage was detected. Measurements of V XY (T) in both directions of magnetic field allowed to calculate the symmetric and asymmetric transverse voltages in the full range of the applied magnetic field studied (zero up to 9 T). The symmetric transverse voltage as a function of the temperature presents sign reversal of the Hall resistance and positive Hall voltage at normal state such as expected for hole-doped high critical temperature superconductors. On the other hand, the asymmetric component of V XY (T) shows a peak near the superconducting transition which has been recently reported in literature. V XY (T) curves measured in a sample with double superconducting transition, which was confirmed by ac-susceptibility measurements and hysteresis loops of the magneto-resistance, present two peaks in the asymmetric component. These peaks are related to the intergranular and intragranular transitions and can be explained within the framework of Josephson and Abrikosov vortices and anti-vortices motion. By comparing the temperature dependence of the asymmetric transverse voltage and the derivative of longitudinal voltage is possible to observe a specific relation between both transport properties, which is noted to be valid not only at zero applied magnetic field but also under applied field

  15. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers

    Science.gov (United States)

    Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji

    2013-06-01

    In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a

  16. High-Stacking-Density, Superior-Roughness LDH Bridged with Vertically Aligned Graphene for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Guo, Wei; Yu, Chang; Li, Shaofeng; Yang, Juan; Liu, Zhibin; Zhao, Changtai; Huang, Huawei; Zhang, Mengdi; Han, Xiaotong; Niu, Yingying; Qiu, Jieshan

    2017-10-01

    The high-performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high-stacking-density, superior-roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH-NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well-developed open structure for fast mass transport. Moreover, the high-stacking-density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH-NF@VG can deliver a high capacitance of 2920 F g -1 at a current density of 2 A g -1 , and the asymmetric supercapacitor with the LDH-NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg -1 at a power density of 260 W kg -1 , with a high specific capacitance retention rate of 87% even after 10 000 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.

    Science.gov (United States)

    Macián, M; Seguer, J; Infante, M R; Selve, C; Vinardell, M P

    1996-01-08

    The toxic effects of new synthetic monodisperse non-ionic long-chain N alpha, N epsilon-diacyl lysine polyoxyethylene glycol amide compounds with a structural resemblance to natural lecithin phospholipids were studied by the haemolytic method and the test of the chorioallantoic membrane of the hen's egg (HET-CAM). The following compounds were tested: symmetrical N alpha,N epsilon-diacyl lysine homologues (N alpha,N epsilon-dihexanoyl, N alpha,N epsilon-dioctanoyl and N alpha,N epsilon-didecanoyl lysine) with one methyl ether polyoxyethylene glycol chain of different oxyethylene units (dioxyethylene glycol, tetraoxyethylene glycol and hexaoxyethylene glycol) as headgroup; symmetrical N alpha,N epsilon-diacyl lysine homologues with two methyl ether dioxyethylene glycol chains and the asymmetrical N alpha-butanoyl, N epsilon-dodecyl lysine with two hydrophilic methyl ether dioxyethylene glycol chains as headgroup. A commercial (polydisperse) oleoyl polyoxyethylene glycol diethanolamide with an average of eight units of ethylene oxide was used as control. All the synthesized tested compounds appeared to be less haemolytic and less irritant than the control. The synthesized products were studied with regard to their hydrophobic and hydrophilic chains in order to evaluate the influence of their structure on their haemolytic and irritative action. The results of this study show that the acyl chain distribution of these compounds greatly influence toxic effects: the asymmetrical compound N alpha-butanoyl,N epsilon-dodecyl lysine-bis[methyl ether diethylene glycol]amide was found to be the most haemolytic and irritating compound. Among the symmetrical homologues, the shortest-chain compounds N alpha,N epsilon-dihexanoyl lysine methyl ether polyoxyethylene glycol amides present the least haemolytic and irritating activity, independently of the number and length of the hydrophilic methyl ether polyoxyethylene glycol chains. Taking into account their surface activity

  18. (Pyridoxylated hemoglobin)-(polyoxyethylene) conjugate solution as blood substitute for normothermic whole body rinse-out.

    Science.gov (United States)

    Agishi, T; Funakoshi, Y; Honda, H; Yamagata, K; Kobayashi, M; Takahashi, M

    1988-01-01

    In order to investigate a new possibility for artificial blood with oxygen-carrying capability to be applied to other than mere supplementation, normothermic whole body rinse-out in which artificial blood deriving from perfluorochemical emulsion, Fluosol-DA 20% (Green Cross Co., Ltd., Osaka, Japan) or stabilized hemoglobin solution, (pyridoxylated hemoglobin)-(polyoxyethylene) conjugate solution (Ajinomoto Co., Ltd., Tokyo, Japan) were used as rinsing fluid for a blood purification experiment. Replacement either with approximately 150 ml/kg of Fluosol-DA or stabilized hemoglobin solution showed effective removal of digoxin at a reduction rate of 96.3% or 92.2%, respectively. However, when Fluosol-DA was used, a certain amount of perfluorochemical should be retrieved by centrifugation to avoid a possible toxic effect on the reticulo-endothelial system. Even though 3 out of 6, and 3 out of 8 dogs, respectively, survived for a long period after the procedure, the experimental dogs were very susceptible to infection.

  19. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Chen, Wei; Xia, Chuan; Alshareef, Husam N

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50,000 cycles.

  20. One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors

    KAUST Repository

    Chen, Wei

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50 000 cycles.

  1. One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors

    KAUST Repository

    Chen, Wei; Xia, Chuan; Alshareef, Husam N.

    2014-01-01

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50 000 cycles.

  2. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  3. Associative, thermodynamic and thermo-kinetics behavior of di- and triblock copolymers of oxyethylene and oxybutylene in aqueous media

    International Nuclear Information System (INIS)

    Khan, Abbas; Siddiq, Mohammad

    2014-01-01

    Highlights: • Associative, thermodynamic and thermo-kinetics behavior was investigated. • Micellization of these copolymer is spontaneous, endothermic and entropy driven. • Micelles are spherical in shape and their nature depends on temperature. • Fusion/fission mechanism dominates over unimer entry/expulsion for micellar dynamics. • Micellar parameters depend on temperature and on the delicate hydrophobic–hydrophilic balance of the blocks. - Abstract: The associative, thermodynamic and thermo-kinetics properties of a diblock E 90 B 10 and three triblock copolymers based on polyoxyethylene and polyoxybutylene of the type E m B 10 E m water have been studied by surface tensiometry, light scattering and temperature-jump stopped-flow techniques. The data from surface tension was helpful to detect the critical micelle concentration (CMC) as well as to calculate the thermodynamic parameters of micellization. Dynamic light scattering (DLS) was employed to obtain the values of hydrodynamic radii (R h ), volume (υ h ) and hydrodynamic expansion parameter (δ h ) of the micelle at different temperatures. Similarly, static light scattering (SLS) measurements made us enable to find out various micellar parameters such as; weight-average molar (M w ), association number (N w ), thermodynamic radius (R t ), thermodynamic volume (υ t ), anhydrous volume (υ a ) and thermodynamic expansion parameter (δ t ) of the micelles. Likewise, the kinetics of micellar aggregation/dynamic was also investigated by using temperature-jump stopped-flow technique in the temperature range of 20–50 °C

  4. High-performance noncontact thermal diode via asymmetric nanostructures

    Science.gov (United States)

    Shen, Jiadong; Liu, Xianglei; He, Huan; Wu, Weitao; Liu, Baoan

    2018-05-01

    Electric diodes, though laying the foundation of modern electronics and information processing industries, suffer from ineffectiveness and even failure at high temperatures. Thermal diodes are promising alternatives to relieve above limitations, but usually possess low rectification ratios, and how to obtain a high-performance thermal rectification effect is still an open question. This paper proposes an efficient contactless thermal diode based on the near-field thermal radiation of asymmetric doped silicon nanostructures. The rectification ratio computed via exact scattering theories is demonstrated to be as high as 10 at a nanoscale gap distance and period, outperforming the counterpart flat-plate diode by more than one order of magnitude. This extraordinary performance mainly lies in the higher forward and lower reverse radiative heat flux within the low frequency band compared with the counterpart flat-plate diode, which is caused by a lower loss and smaller cut-off wavevector of nanostructures for the forward and reversed scheme, respectively. This work opens new routes to realize high performance thermal diodes, and may have wide applications in efficient thermal computing, thermal information processing, and thermal management.

  5. Fused-Ring Acceptors with Asymmetric Side Chains for High-Performance Thick-Film Organic Solar Cells.

    Science.gov (United States)

    Feng, Shiyu; Zhang, Cai'e; Liu, Yahui; Bi, Zhaozhao; Zhang, Zhe; Xu, Xinjun; Ma, Wei; Bo, Zhishan

    2017-11-01

    A kind of new fused-ring electron acceptor, IDT-OB, bearing asymmetric side chains, is synthesized for high-efficiency thick-film organic solar cells. The introduction of asymmetric side chains can increase the solubility of acceptor molecules, enable the acceptor molecules to pack closely in a dislocated way, and form favorable phase separation when blended with PBDB-T. As expected, PBDB-T:IDT-OB-based devices exhibit high and balanced hole and electron mobility and give a high power conversion efficiency (PCE) of 10.12%. More importantly, the IDT-OB-based devices are not very sensitive to the film thickness, a PCE of 9.17% can still be obtained even the thickness of active layer is up to 210 nm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Beam dynamics issues of high-luminosity asymmetric collider rings

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-01-01

    Machines for use in high-energy physics are advancing along two frontiers. First, there is the frontier of energy, currently being pressed by the Fermilab collider (p bar p), and SLC and LEP (e + e - ) and in the near future by HERA (ep), the LHC, and the SSC (pp). Second, there is the frontier of intensity, currently being pressed by a variety of low-energy machines and, at higher energies, by various linacs such as those at KEK. Fermilab, GSI, and LAMPF (p) and CEBAF (e - ). In the future there should be, along this frontier, various ''factories'' such as those for Kaons at TRIUMF, and those proposed for var-phi mesons, τ-charm particles, and B mesons. It is with the intensity frontier that these proceedings are concerned. The elementary particle motivation to study the nonconservation of PC in the B-stringB system (which topic is not covered in these Proceedings, but is treated extensively in the literature) has motivated the study of very high intensity asymmetric collider rings. It was for this purpose that a Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric Collider Rings was held, in Berkeley, during February 12--16, 1990. A general introduction to the subject has been given in an article which is reprinted here as an Appendix. The nonexpert may wish to start there. The volume consists of four parts. The first part consists of Summaries; first an overall summary of the Workshop and then, second, more detailed summaries from each of the working groups. The second part consists of the Invited Talks at the workshop. The third part contains various Contributed Papers, most of which represent work that came out of the workshop. Finally, there are, in the fourth part, brief Summaries of the Various Proposed B-Factory Projects in the world

  7. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.

    Science.gov (United States)

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-10-18

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  8. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    Directory of Open Access Journals (Sweden)

    Xiangao Zhang

    2016-10-01

    Full Text Available In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  9. Asymmetric supercapacitors based on graphene/MnO{sub 2} and activated carbon nanofiber electrodes with high power and energy density

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhuangjun; Yan, Jun; Wei, Tong; Li, Tianyou [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190 (China); Ning, Guoqing [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction, Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2011-06-21

    Asymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO{sub 2} composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na{sub 2}SO{sub 4} electrolyte. Due to the high capacitances and excellent rate performances of graphene/MnO{sub 2} and ACN, as well as the synergistic effects of the two electrodes, such asymmetric cell exhibits superior electrochemical performances. An optimized asymmetric supercapacitor can be cycled reversibly in the voltage range of 0-1.8 V, and exhibits maximum energy density of 51.1 Wh kg{sup -1}, which is much higher than that of MnO{sub 2}//DWNT cell (29.1 Wh kg{sup -1}). Additionally, graphene/MnO{sub 2}//ACN asymmetric supercapacitor exhibits excellent cycling durability, with 97% specific capacitance retained even after 1000 cycles. These encouraging results show great potential in developing energy storage devices with high energy and power densities for practical applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun

    2015-12-01

    In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.

  11. Microemulsion Using Polyoxyethylene Sorbitan Trioleate and its Usage for Skin Delivery of Resveratrol to Protect Skin against UV-Induced Damage.

    Science.gov (United States)

    Yutani, Reiko; Teraoka, Reiko; Kitagawa, Shuji

    2015-01-01

    We examined the phase behavior of various polyoxyethylene sorbitan fatty acid ester (polysorbates)/ethanol/isopropyl myristate (IPM)/150 mM NaCl solution (NaClaq) systems in order to prepare a microemulsion containing a low ratio of ethanol, which is more suitable for in vivo application. Using polyoxyethylene sorbitan trioleate (Tween 85), which has a large lipophilic moiety, as a surfactant component, single-phase domain of the phase diagram was the largest of all the polysorbates examined, and in particular a large oil-rich single-phase domain was obtained. When the ratio of Tween 85 to ethanol was changed from 1 : 1 to 3 : 1, the oil-rich single-phase domain further expanded, which led to a reduced ethanol concentration in the preparation. Thus, we determined the composition of the microemulsion to be Tween 85 : ethanol : IPM : NaClaq=30 : 10 : 53 : 7, and used it for skin delivery of resveratrol. Microemulsion gel was also prepared by adding 6.5% Aerosil) 200 into the microemulsion for ease of topical application. When applied with each vehicle, delivery of resveratrol into guinea pig skin in vitro was significantly enhanced compared with that by IPM, and resveratrol incorporated into the skin by microemulsion gel decreased lipid peroxidation to 29.5% compared with that of the control. Pretreatment of guinea pig dorsal skin with the microemulsion gel containing resveratrol almost completely prevented UV-B-induced erythema formation in vivo. These findings demonstrate that the microemulsion using Tween 85 containing a minimal concentration of ethanol enhanced the skin delivery of resveratrol and the incorporated resveratrol exhibited a protective effect against UV-induced oxidative damage.

  12. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    Science.gov (United States)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  13. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, C. I.; Feldman, U. [Artep Inc., 2922 Excelsior Spring Circle, Ellicott City, Maryland 21042 (United States); Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Curry, J. J.; Hudson, L. T.; Henins, A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  14. Polyoxyethylene/styrene - a model system for studying reaction-induced phase separation (RIPS)

    International Nuclear Information System (INIS)

    Sutton, D.; Stanford, J.L.; Ryan, A.J.

    2003-01-01

    Full text: Reaction-induced, phase-separation has been studied in polymer blends. A model crystalline-amorphous system consisted of semi-crystalline polyoxyethylene (POE) dissolved in the monomer styrene, which was employed as a reactive solvent to ease processing. When the styrene was polymerised to polystyrene (PS) in the mould, phase-separation and phase-inversion are induced, and a polymer blend was formed. POE was selected with a molar mass, Mn = 8578 g mol -1 and a polydispersity of 1.19 as determined using GPC. The polymerisation of styrene was initiated using 1 wt-% benzoin methyl ether (BME) and 0.2 wt-% 2,2'-azobisisobutyronitrile (AIBN) under ultra-violet (UV) light. The polymerisation kinetics were determined by monitoring the reduction in the intensity of the C=C stretching vibration band at 1631 cm -1 in the Raman spectrum of styrene. The onset times for the liquid-solid (L-S) phase-separation and crystallisation of POE from styrene/PS were observed using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Onset times for L-S phase-separation determined from the SAXS data were combined with the styrene polymerisation kinetics to plot the L-S phase-separation data onto a ternary phase diagram for the reactive system POE/styrene/PS at 45 and 50 deg C

  15. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    Directory of Open Access Journals (Sweden)

    M. Malík

    2014-01-01

    Full Text Available This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect. A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  16. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng; Xia, Chuan; Emwas, Abdul-Hamid M.; Anjum, Dalaver H.; Miao, Xiaohe; Alshareef, Husam N.

    2018-01-01

    , the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention

  17. Designing asymmetric multiferroics with strong magnetoelectric coupling

    Science.gov (United States)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  18. Associative, thermodynamic and thermo-kinetics behavior of di- and triblock copolymers of oxyethylene and oxybutylene in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abbas [Department of Chemistry, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Siddiq, Mohammad, E-mail: m_sidiq12@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan)

    2014-11-10

    Highlights: • Associative, thermodynamic and thermo-kinetics behavior was investigated. • Micellization of these copolymer is spontaneous, endothermic and entropy driven. • Micelles are spherical in shape and their nature depends on temperature. • Fusion/fission mechanism dominates over unimer entry/expulsion for micellar dynamics. • Micellar parameters depend on temperature and on the delicate hydrophobic–hydrophilic balance of the blocks. - Abstract: The associative, thermodynamic and thermo-kinetics properties of a diblock E{sub 90}B{sub 10} and three triblock copolymers based on polyoxyethylene and polyoxybutylene of the type E{sub m}B{sub 10}E{sub m} water have been studied by surface tensiometry, light scattering and temperature-jump stopped-flow techniques. The data from surface tension was helpful to detect the critical micelle concentration (CMC) as well as to calculate the thermodynamic parameters of micellization. Dynamic light scattering (DLS) was employed to obtain the values of hydrodynamic radii (R{sub h}), volume (υ{sub h}) and hydrodynamic expansion parameter (δ{sub h}) of the micelle at different temperatures. Similarly, static light scattering (SLS) measurements made us enable to find out various micellar parameters such as; weight-average molar (M{sub w}), association number (N{sub w}), thermodynamic radius (R{sub t}), thermodynamic volume (υ{sub t}), anhydrous volume (υ{sub a}) and thermodynamic expansion parameter (δ{sub t}) of the micelles. Likewise, the kinetics of micellar aggregation/dynamic was also investigated by using temperature-jump stopped-flow technique in the temperature range of 20–50 °C.

  19. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2018-04-12

    We report a phosphine (PH3) plasma activation strategy for significantly boosting the electrochemical performance of supercapacitor electrodes. Using Fe2O3 as a demonstration, we show that the plasma activation simultaneously improves the conductivity, creates atomic-scale vacancies (defects), as well as increases active surface area, and thus leading to a greatly enhanced performance with a high areal capacitance of 340 mF cm-2 at 1 mA cm-2, compared to 66 mF cm-2 of pristine Fe2O3. Moreover, the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention after 9000 cycles at 10 mA cm-2). Our work provides a simple yet effective strategy to greatly enhance the electrochemical performance of Fe2O3 anodes and to further promote their application in asymmetric supercapacitors.

  20. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Science.gov (United States)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  1. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-01-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO 2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO 2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO 2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO 2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO 2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  2. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations.

    Science.gov (United States)

    Amokrane, S; Ayadim, A; Malherbe, J G

    2005-11-01

    A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.

  3. A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process

    International Nuclear Information System (INIS)

    Lin, Ta-Wei; Liao, Yunn-Shiuan; Chen, Chi-Feng; Yang, Jauh-Jung

    2008-01-01

    A dual-directional light-control film with a high-sag and high-asymmetric-shape long gapless hexagonal microlens array fabricated by an ultra-violent (UV) imprinting process is presented. Such a lens array is designed by ray-tracing simulation and fabricated by a micro-replication process including gray-scale lithography, electroplating process and UV curing. The shape of the designed lens array is similar to that of a near half-cylindrical lens array with a periodical ripple. The measurement results of a prototype show that the incident lights using a collimated LED with the FWHM of dispersion angle, 12°, are diversified differently in short and long axes. The numerical and experimental results show that the FWHMs of the view angle for angular brightness in long and short axis directions through the long hexagonal lens are about 34.3° and 18.1° and 31° and 13°, respectively. Compared with the simulation result, the errors in long and short axes are about 5% and 16%, respectively. Obviously, the asymmetric gapless microlens array can realize the aim of the controlled asymmetric angular brightness. Such a light-control film can be used as a power saving screen compared with convention diffusing film for the application of a rear projection display

  4. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis....... In this paper, we study asymmetric information about productivity within a principal-agent framework and a tax on fishing effort is considered. It is shown that a second best optimum can be achieved if the effort tax is designed such that low-productivity agents rent is exhausted, while high-productivity agents...... receive an information rent. The information rent is equivalent to the total incentive cost. The incentive costs arise as we want to reveal the agent's type....

  5. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  6. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  7. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  8. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  9. Systematic Study of Highly Asymmetric Systems Using π0, h± and ϕ Production at PHENIX

    Science.gov (United States)

    Novitzky, N.; Phenix Collaboration

    2017-11-01

    The observation of long range correlations in highly asymmetric systems, as in p+Pband d+Aucollisions, suggests a creation of a medium with collective behavior. Furthermore, hints of gluon saturation effects have been observed at forward rapidities in d+Aucollisions at RHIC. Single particle production has proven to be a valuable tool to probe the quark-gluon plasma in heavy-ion collisions as it is sensitive to energy loss, modifications of the nuclear wave function, and the dynamics of the projectile wave function. In order to systematically study these highly asymmetric collisions, RHIC provided beams for p+Al, p+Au, d+Auand 3He+Aucollisions. We present the new measurements of π0 at mid-rapidity (| η | charged hadron and ϕ production in forward (1.2 < η < 2.4) and backward (- 2.2 < η < - 1.2) rapidities in p+Al, p+Auand 3He+Aucollisions at √{sNN} = 200 GeV.

  10. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Yang, Chunzhen; Zhou, Ming; Xu, Qian

    2013-12-07

    MnO2/carbon composites with ultrathin MnO2 nanofibers (diameter of 5-10 nm) uniformly deposited on three dimensional ordered macroporous (3DOM) carbon frameworks were fabricated via a self-limiting redox process. The MnO2 nanofibers provide a large surface area for charge storage, whereas the 3DOM carbon serves as a desirable supporting material providing rapid ion and electron transport through the composite electrodes. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) were used to characterize the capacitive performance of these composites. Optimization of the composition results in a composite with 57 wt% MnO2 content, which gives both a high specific capacitance (234 F g(-1) at a discharge current of 0.1 A g(-1)) and good rate capability (52% retention of the capacitance at 5 A g(-1)). An asymmetric supercapacitor was fabricated by assembling the optimized MnO2/carbon composite as the positive electrode and 3DOM carbon as the negative electrode. The asymmetric supercapacitor exhibits superior electrochemical performances, which can be reversibly charged and discharged at a maximum cell voltage of 2.0 V in 1.0 M Na2SO4 aqueous electrolyte, delivering both high energy density (30.2 W h kg(-1)) and power density (14.5 kW kg(-1)). Additionally, the asymmetric supercapacitor exhibits an excellent cycle life, with 95% capacitance retained after 1000 cycles.

  11. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    Science.gov (United States)

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  13. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Zehua Liu; Xiaocong Tian; Xu Xu; Liang He; Mengyu Yan; Chunhua Han; Yan Li; Wei Yang; Liqiang Mai

    2017-01-01

    Planar micro-supercapacitors show great potential as the energy storage unit in miniaturized electronic devices.Asymmetric structures have been widely investigated in micro-supercapacitors,and carbon-based materials are commonly applied in the electrodes.To integrate different metal oxides in both electrodes in micro-supercapacitors,the critical challenge is the pairing of different faradic metal oxides.Herein,we propose a strategy of matching the voltage and capacitance of two faradic materials that are fully integrated into one high-performance asymmetric micro-supercapadtor by a fadle and controllable fabrication process.The fabricated micro-supercapacitors employ MnO2 as the positive active material and Fe2O3 as the negative active material,respectively.The planar asymmetric micro-supercapacitors possess a high capacitance of 60 F·cm-3,a high energy density of 12 mW·h·cm-3,and a broad operation voltage range up to 1.2 V.

  14. Asymmetric dominance and asymmetric mate choice oppose premating isolation after allopatric divergence.

    Science.gov (United States)

    Sefc, Kristina M; Hermann, Caroline M; Steinwender, Bernd; Brindl, Hanna; Zimmermann, Holger; Mattersdorfer, Karin; Postl, Lisbeth; Makasa, Lawrence; Sturmbauer, Christian; Koblmüller, Stephan

    2015-04-01

    Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male-male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male-male contests revealed dominance of red males over bluish and yellow-blotch males. Reproductive isolation in the presence of male-male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition-free, two-way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow-blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male-male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition-driven spatial segregation.

  15. Monolayer Nickel Cobalt Hydroxyl Carbonate for High Performance All-Solid-State Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhao, Yufeng; Ma, Hongnan; Huang, Shifei; Zhang, Xuejiao; Xia, Meirong; Tang, Yongfu; Ma, Zi-Feng

    2016-09-07

    The emergence of atomically thick nanolayer materials, which feature a short ion diffusion channel and provide more exposed atoms in the electrochemical reactions, offers a promising occasion to optimize the performance of supercapacitors on the atomic level. In this work, a novel monolayer Ni-Co hydroxyl carbonate with an average thickness of 1.07 nm is synthesized via an ordinary one-pot hydrothermal route for the first time. This unique monolayer structure can efficiently rise up the exposed electroactive sites and facilitate the surface dependent electrochemical reaction processes, and thus results in outstanding specific capacitance of 2266 F g(-1). Based on this material, an all-solid-state asymmetric supercapacitor is developed adopting alkaline PVA (poly(vinyl alcohol)) gel (PVA/KOH) as electrolyte, which performs remarkable cycling stability (no capacitance fade after 19 000 cycles) together with promising energy density of 50 Wh kg(-1) (202 μWh cm(-2)) and high power density of 8.69 kW kg(-1) (35.1 mW cm(-2)). This as-assembled all-solid-state asymmetric supercapacitor (AASC) holds great potential in the field of portable energy storage devices.

  16. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu

    2018-04-16

    Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Advanced asymmetric supercapacitors based on Ni(OH){sub 2}/graphene and porous graphene electrodes with high energy density

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Fan, Zhuangjun; Sun, Wei; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ning, Guoqing [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Qiang; Zhang, Rufan; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction, Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190 (China)

    2012-06-20

    Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH){sub 2}/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g{sup -1} and high energy density of 77.8 Wh kg{sup -1}. Furthermore, the Ni(OH){sub 2}/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  19. Direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  20. High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5 MnO2 Nanosheet Assembled Nanowall Arrays.

    Science.gov (United States)

    Jabeen, Nawishta; Hussain, Ahmad; Xia, Qiuying; Sun, Shuo; Zhu, Junwu; Xia, Hui

    2017-08-01

    The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na 0.5 MnO 2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na 0.5 MnO 2 nanowall arrays can be extended to 0-1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g -1 . The extended potential window for the Na 0.5 MnO 2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon-coated Fe 3 O 4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of -1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na 0.5 MnO 2 nanowall arrays as the cathode and carbon-coated Fe 3 O 4 nanorod arrays as the anode. In particular, the 2.6 V Na 0.5 MnO 2 //Fe 3 O 4 @C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg -1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO 2 -based supercapacitors. This work provides new opportunities for developing high-voltage aqueous asymmetric supercapacitors with further increased energy density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  2. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    Science.gov (United States)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  3. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Zhu, Duming; Li, Zihao; Zhan, Ningxin; Zheng, Jieyi; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-10-01

    Effect of the molecular structure of lignin-based polyoxyethylene ether (EHL-PEG) on enzymatic hydrolysis of Avicel and corn stover was investigated. With the increase of PEG contents and molecular weight of EHL-PEG, glucose yield of corn stover increased. EHL-PEG enhanced enzymatic hydrolysis of corn stover significantly at buffer pH 4.8-5.5. Glucose yield of corn stover at 20% solid content increased from 32.8% to 63.8% by adding EHL-PEG, while that with PEG4600 was 54.2%. Effect of EHL-PEG on enzymatic hydrolysis kinetics of cellulose film was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). An enhancing mechanism of EHL-PEG on enzymatic hydrolysis kinetics of cellulose was proposed. Cellulase aggregates dispersed by EHL-PEG excavated extensive cavities into the surface of cellulose film, making the film become more loose and exposed. After the maximum enzymatic hydrolysis rate, the film was mainly peeled off layer by layer until equilibrium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    Science.gov (United States)

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-01-01

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473

  5. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    Directory of Open Access Journals (Sweden)

    Min Huang

    2014-10-01

    Full Text Available While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it’s critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB pages which are more reliable than least significant bit (LSB pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.

  6. Evaluation of a pyridoxylated hemoglobin polyoxyethylene conjugate solution as a perfusate for small intestine preservation.

    Science.gov (United States)

    Liu, H; Agishi, T; Kawai, T; Hayashi, T; Fujita, S; Fuchinoue, S; Takahashi, K; Teraoka, S; Ota, K

    1992-01-01

    A new type of artificial blood, pyridoxylated hemoglobin-polyoxyethylene conjugate (PHP) solution, (developed by PHP research group of the department of health and welfare of Japan, and produced by Ajinomoto Co., Inc. Tokyo) as an oxygen-carrying component, has been recently devised using hemoglobin obtained from hemolyzed human erythrocytes. Recently, the studies using this solution as a preservation solution were performed in some instances. To examine the mechanism of improved viability using this solution as a preservation solution, we developed a model of orthotopic small intestine transplantation (OIT) in the rat. As a baseline study, we compared parameters of viability of the grafts preserved in Collins and UW solution to those preserved in PHP solution including a survival rate, a serum level total protein and albumin, and a change in body weight after transplantation. In our study, the simple hypothermia storage together with intestinal perfusion preservation with PHP solution was performed. Animals were divided into 6, 12, and 24 hr preservation groups. All of the rats survived after 6 hr preservation following transplantation. However, in 12 hr storage, five of six rats in PHP solution preservation survived and recovery in body weight after grafting was better than those with Collins and UW solution. We conclude that the PHP solution is, therefore, considered to possibly be a more suitable perfusate for small intestine preservation than Collins and UW solution.

  7. Porous NiCo_2S_4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications

    International Nuclear Information System (INIS)

    Chai, Hui; Dong, Hong; Wang, Yucheng; Xu, Jiayu; Jia, Dianzeng

    2017-01-01

    Highlights: • The NiCo_2S_4-HL nanomaterial is achieved via two-step hydrothermal approach. • The unique structures are assembled self-assembly by nanosheets. • The obtained electrode exhibits high capacitance and excellent retention. • An asymmetric supercapacitor also displays high energy density and outstanding cycling stability. • The high-performance of the device is possibly due to the introduction of HL and formation of composed nanosheets. - Abstract: The porous nanostructures have drawn considerable attention because of their abundant pore volume and unique properties that provide outstanding performance in catalysis and energy storage applications. This study proposes the growth mechanism of porous NiCo_2S_4 composited with halloysite (HL) via a self-assembly method using halloysite as a template and component. Electrochemical tests showed that the NiCo_2S_4-HL exhibited an ultrahigh specific capacitance (Csp) (589C g"−"1 at 1A g"−"1) and good cycle stability (Csp retention of 86% after 1000 cycles). The desirable capacitive performance of the NiCo_2S_4-HL can be attributed to the large specific surface area and short diffusion path for electrons and ions in the hierarchical porous structure. The superior electrochemical performances with the energy density of 35.48 W h kg"−"1 at a power density of 199.9 W kg"−"1 were achieved in an assembled aqueous asymmetric supercapacitor (ASC) device using NiCo_2S_4-HL as a positive electrode and N-doped graphene (NG) as a negative electrode. Moreover, the NiCo_2S_4-HL//NG asymmetric supercapacitor achieved outstanding cycle stability (also retained 83.2% after 1700 cycles). The high-performance of the ASC device will undoubtedly make the porous NiCo_2S_4-HL as potential electrode materials attractive in energy storage systems.

  8. Holding-time-aware asymmetric spectrum allocation in virtual optical networks

    Science.gov (United States)

    Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.

  9. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    Science.gov (United States)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high

  10. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  11. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  12. High-speed Dynamic Gait Generation Based on Asymmetrization of Impact Posture Using Telescopic Legs

    OpenAIRE

    浅野, 文彦

    2011-01-01

    This paper proposes a novel method for generating a dynamic gait based on anterior-posterior asymmetric impact posture tilting the robo's center of mass forward. The primary purpose of this method is to asymmetrize the impact posture by actuating the robot's telescopic-legs to make overcoming the potential barrier at mid-stance easy, and the mechanical energy is accordingly restored. First, we introduce a planar rimless wheel model with telescopic legs, and investigate the validity of the sta...

  13. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-06-01

    Full Text Available Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

  14. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian

    2010-06-14

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  15. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian; McDougal, Nolan; Virgil, Scott

    2010-01-01

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  16. Simulation of Phenix EOL Asymmetric Test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwi Seok; Lee, Kwi Lim; Choi, Chi Woong; Kang, Seok Hun; Chang, Won Pyo; Jeong, Hae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The asymmetric test of End-Of-Life (EOL) tests on the Phenix plant was used for the evaluation of the MARS-LMR in the Generation IV frame as a part of the code validation. The purpose of the test is to evaluate the ability of the system code to describe asymmetric situations and to identify important phenomena during asymmetrical transient such as a three dimensional effect, buoyancy influence, and thermal stratification in the hot and cold pools. 3-dimensional sodium coolant mixing in the pools has different characteristics from the one dimensional full instantaneous mixing. The velocities and temperatures at the core outlet level differ at each sub-assembly and the temperature in the center of the hot pool may be high because the driver fuels are located at the center region. The temperatures in the hot pool are not the same in the radial and axial locations due to the buoyancy effect. The temperatures in the cold pool also differ along with the elevations and azimuthal directions due to the outlet location of IHX and the thermal stratification

  17. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  18. Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature

    Science.gov (United States)

    2011-11-01

    ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose

  19. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  20. High-Throughput Assay for Enantiomeric Excess Determination in 1,2- and 1,3-Diols and Direct Asymmetric Reaction Screening.

    Science.gov (United States)

    Shcherbakova, Elena G; Brega, Valentina; Lynch, Vincent M; James, Tony D; Anzenbacher, Pavel

    2017-07-26

    A simple and efficient method for determination of the yield, enantiomeric/diasteriomeric excess (ee/de), and absolute configuration of crude chiral diols without the need of work-up and product isolation in a high throughput setting is described. This approach utilizes a self-assembled iminoboronate ester formed as a product by dynamic covalent self-assembly of a chiral diol with an enantiopure fluorescent amine such as tryptophan methyl ester or tryptophanol and 2-formylphenylboronic acid. The resulting diastereomeric boronates display different photophysical properties and allow for fluorescence-based ee determination of molecules containing a 1,2- or 1,3-diol moiety. This method has been utilized for the screening of ee in a number of chiral diols including atorvastatin, a statin used for the treatment of hypercholesterolemia. Noyori asymmetric hydrogenation of benzil was performed in a highly parallel fashion with errors products from the parallel asymmetric synthesis in real time and in a high-throughput screening (HTS) fashion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  2. An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan

    2018-04-01

    In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

  3. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  4. Two-Dimensional, Porous Nickel-Cobalt Sulfide for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Li, Xiaoming; Li, Qiguang; Wu, Ye; Rui, Muchen; Zeng, Haibo

    2015-09-02

    High specific surface area, high electrical conductivity, and abundant channels have been recognized to favor pseudocapacitors, but their realization at the same time is still a great challenge. Here, we report on nickel-cobalt sulfide nanosheets (NSs) with both ultrathin thickness and nanoscale pores for supercapacitors. The porous Ni-Co sulfide NSs were facilely synthesized through micelle-confined growth and subsequent sulfuration. The NSs are as thin as several nanometers and have a large number of pores with a mean size of ∼7 nm, resulting in ultrahigh atom ratio at surface with unique chemical and electronic structure. Therefore, fast diffusion of ions, facile transportation of electrons and high activity make great synergistic contributions to the surface-dependent reversible redox reactions. In the resulted supercapacitors, a specific capacitance of 1304 F g(-1) is achieved at a current density of 2 A g(-1) with excellent rate capability that 85.6% of the original capacitance is remained at 20 A g(-1). The effects of crystallinity and self-doping are optimized so that 93.5% of the original capacitance is obtained after 6000 cycles at a high current density of 8 A g(-1). Finally, asymmetric supercapacitors with a high energy density of 41.4 Wh/kg are achieved at a power density of 414 W/kg.

  5. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Guo, Chun Xian; Chitre, Amey Anil; Lu, Xianmao

    2014-03-14

    A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices.

  6. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors

    KAUST Repository

    Jiang, Qiu

    2018-01-23

    2D transition metal carbides and nitrides, known as MXenes, are an emerging class of 2D materials with a wide spectrum of potential applications, in particular in electrochemical energy storage. The hydrophilicity of MXenes combined with their metallic conductivity and surface redox reactions is the key for high-rate pseudocapacitive energy storage in MXene electrodes. However, symmetric MXene supercapacitors have a limited voltage window of around 0.6 V due to possible oxidation at high anodic potentials. In this study, the fact that titanium carbide MXene (Ti3C2Tx) can operate at negative potentials in acidic electrolyte is exploited, to design an all-pseudocapacitive asymmetric device by combining it with a ruthenium oxide (RuO2) positive electrode. This asymmetric device operates at a voltage window of 1.5 V, which is about two times wider than the operating voltage window of symmetric MXene supercapacitors, and is the widest voltage window reported to date for MXene-based supercapacitors. The complementary working potential windows of MXene and RuO2, along with proton-induced pseudocapacitance, significantly enhance the device performance. As a result, the asymmetric devices can deliver an energy density of 37 µW h cm−2 at a power density of 40 mW cm−2, with 86% capacitance retention after 20 000 charge–discharge cycles. These results show that pseudocapacitive negative MXene electrodes can potentially replace carbon-based materials in asymmetric electrochemical capacitors, leading to an increased energy density.

  7. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.

  8. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance.

    Science.gov (United States)

    Coon, J S; Knudson, W; Clodfelter, K; Lu, B; Weinstein, R S

    1991-02-01

    A recently developed non-ionic surfactant called Solutol HS 15 (poly-oxyethylene esters of 12-hydroxystearic acid), with low toxicity in vivo, was shown to reverse completely the multidrug resistance of KB 8-5 and KB 8-5-11 human epidermoid carcinoma cells in vitro but did not potentiate drug toxicity in drug-sensitive KB 3-1 cells. At a concentration of 10% of its own IC50 (mean concentration of drug that causes 50% inhibition of cell growth compared to controls), Solutol HS 15 produced a 35-, 28-, and 42-fold reduction in the resistance of KB 8-5-11 cells to colchicine, vinblastine, and doxorubicin, respectively. Solutol HS 15 was relatively much more potent than the prototypic reversing agent, verapamil, for reversing colchicine resistance, compared to the ability of each agent to reverse colchicine resistance, compared to the ability of each agent to reverse vinblastine resistance. Like verapamil, Solutol HS 15 promoted a 50-fold accumulation of rhodamine 123 in KB 8-5-11 cells, as measured by flow cytometry. Also, Solutol HS 15 and verapamil reduced the efflux of rhodamine 123 from KB 8-5-11 cells previously loaded with rhodamine 123 to a similar low rate. Solutol HS 15 did not affect the transport of alanine or glucose into KB 8-5-11 cells, indicating that its effect upon membrane active transport is not entirely nonspecific. Considering their different structure and different relative potency for reversing colchicine resistance, Solutol HS 15 and verapamil probably reverse multidrug resistance by different mechanisms. Solutol HS 15 merits consideration as a potential therapeutic agent because of its effectiveness for reversing multidrug resistance in vitro and its low toxicity in vivo.

  10. An intrinsically asymmetric radio galaxy: 0500+630?

    Science.gov (United States)

    Saikia, D. J.; Thomasson, P.; Jackson, N.; Salter, C. J.; Junor, W.

    1996-10-01

    As part of a search for high-luminosity radio galaxies with one-sided structures, the radio galaxy 0500+630 has been imaged with both the VLA and MERLIN and its optical spectrum determined using the Isaac Newton Telescope on La Palma. The galaxy is found to have a redshift of 0.290+/-0.004. The radio observations show the source to be highly asymmetric, with an overall structure which cannot be understood easily by ascribing it either to orientation and relativistic beaming effects or to an asymmetric distribution of gas in the central region. A comparison of this source with objects of similar luminosity suggests that it is one of the best examples yet of a source with possibly an intrinsic asymmetry in either the collimation of its jets or the supply of energy from the central engine to opposite sides.

  11. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Jambhrunkar, Manasi; Yang, Yannan; Liu, Yang; Lu, Yao; Yu, Chengzhong

    2018-02-20

    Asymmetric mesoporous silica nanoparticles with a head-tail structure are potent immunoadjuvants for delivering a peptide antigen, generating a higher antibody immune response in mice compared to their symmetric counterparts.

  12. Wetting behavior of mixtures of water and nonionic polyoxyethylene alcohol.

    Science.gov (United States)

    Wu, Chih-Kang; Chen, Li-Jen

    2005-07-19

    Five binary water + C4Ej mixtures, water + n-C4E0, water + 2-C4E0, water + iso-C4E0, water + n-C4E1, and water + iso-C4E1, were chosen to perform the surface/interfacial tension measurements over the experimental temperature range from 10 to 85 degrees C at the normal pressure by using a homemade pendent drop/bubble tensiometer. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH(2i+1)(OCH2CH2)jOH. The wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase is systematically examined according to the wetting coefficient resulting from the experimental data of surface/interfacial tensions measurements. For those systems with a lower critical solution temperature, for example, water + n-C6E2, water + n-C4E1, and water + iso-C4E1, a wetting transition from partial wetting to nonwetting is always observed when the system is brought to close to its lower critical solution temperature. On the other hand, to start with a partial wetting CiEj-rich phase, a wetting transition from partial wetting to complete wetting is always observed when the system is driven to approach its upper critical solution temperature. The effect of hydrophobicity of CiEj on the wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase was carefully investigated by using five sets of mixtures: (1) water + n-C4E0, water + n-C5E0, and water + n-C6E0; (2) water + 2-C4E0 and water + 2-C5E0; (3) water + 2-C4E0 and water + n-C4E0; (4) water + n-C4E1, water + n-C5E1, and water + n-C6E1; (5) water + n-C4E0 and water + n-C4E1. The CiEj-rich phase would tend to drive away from complete wetting (or nonwetting) to partial wetting with an increase in the hydrophobicity of CiEj in the binary water + CiEj system. All the wetting behavior observed in the water + CiEj mixtures is consistent with the prediction of the critical point wetting theory of Cahn.

  13. Asymmetric neighborhood functions accelerate ordering process of self-organizing maps

    International Nuclear Information System (INIS)

    Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji; Aoyagi, Toshio

    2011-01-01

    A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.

  14. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  15. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  16. Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Chen, Chao; Yan, Dan; Luo, Xin; Gao, Wenjia; Huang, Guanjie; Han, Ziwu; Zeng, Yan; Zhu, Zhihong

    2018-02-07

    In this work, hierarchical core-shell NiMoO 4 @Ni-Co-S nanorods were first successfully grown on nickel foam by a facile two-step method to fabricate a bind-free electrode. The well-aligned electrode wrapped by Ni-Co-S nanosheets displays excellent nanostructural properties and outstanding electrochemical performance, owing to the synergistic effects of both nickel molybdenum oxides and nickel cobalt sulfides. The prepared core-shell nanorods in a three-electrode cell yielded a high specific capacitance of 2.27 F cm -2 (1892 F g -1 ) at a current density of 5 mA cm -2 and retained 91.7% of the specific capacitance even after 6000 cycles. Their electrochemical performance was further investigated for their use as positive electrode for asymmetric supercapacitors. Notably, the energy density of the asymmetric supercapacitor device reached 2.45 mWh cm -3 at a power density of 0.131 W cm -3 , and still retained a remarkable 80.3% of the specific capacitance after 3500 cycles. There is great potential for the electrode composed of the core-shell NiMoO 4 @Ni-Co-S nanorods for use in an all-solid-state asymmetric supercapacitor device.

  17. The physics program of a high-luminosity asymmetric B Factory at SLAC

    International Nuclear Information System (INIS)

    1989-10-01

    A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is explained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these consistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies of other aspects of the physics of b quarks, as well as high-precision measurements in τ and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 x 10 33 cm -2 sec -1 , the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample

  18. Cinchona alkaloids in asymmetric organocatalysis

    NARCIS (Netherlands)

    Marcelli, T.; Hiemstra, H.

    2010-01-01

    This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable

  19. Axisymmetric stability of vertically asymmetric tokamaks at large beta poloidal

    International Nuclear Information System (INIS)

    Yamazaki, K.; Fishman, H.; Okabayashi, M.; Todd, A.M.M.

    1981-09-01

    The stability of high-β vertically asymmetric tokamak equilibria to rigid displacements is investigated analytically. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high β tokamak expansion leads to further destabilization. Qualitative agreement between these analytic results and numerical stability calculations using the PEST code is demonstrated

  20. DNA-based asymmetric organometallic catalysis in water

    NARCIS (Netherlands)

    Oelerich, Jens; Roelfes, Gerard

    2013-01-01

    Here, the first examples of DNA-based organometallic catalysis in water that give rise to high enantioselectivities are described. Copper complexes of strongly intercalating ligands were found to enable the asymmetric intramolecular cyclopropanation of alpha-diazo-beta-keto sulfones in water. Up to

  1. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  2. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  3. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors.

    Science.gov (United States)

    Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang

    2014-05-21

    Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  5. Nose micro-blowing for asymmetric vortices control on blunt-nose slender body at high angle of attack

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available The asymmetric vortices over blunt-nose slender body at high angles of attack result in random side force. In this paper, a nose micro-blowing technology is used to control the asymmetric flow. Pressure measurement and particle image velocimetry (PIV experiments are conducted in a low-speed wind tunnel to research effects of jet flow rate on asymmetric vortices over blunt-nose slender body. The angle of attack of the model is fixed at 50° and the Reynolds number for the experiments is 1.6×10 5 based on diameter of aftbody. A blow hole (5 mm in diameter on the nose is processed at circumferential angle θb= 90° and meridian angle γb= 20° with jet momentum ratio Cμ ranging from 5.30×10-7 to 1.19×10−4. Tests are made under two kinds of perturbations. One is called single perturbation with only blow hole and the other is called combined perturbation consists of blow hole and additional granules set on nose. The results show that whether the model has the single perturbation or the combined one, the sectional side force of x/D = 3 varies in the same direction with the increasement of Cμ and remains stable when Cμ is greater than 3.29×10−6. But the stable force values are different according to various perturbations. The fact proves that the size and direction of the side force of blunt-nose slender body can be controlled by the nose micro-blowing.

  6. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities.

    Science.gov (United States)

    Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei

    2017-10-19

    An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.

  7. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.

    Science.gov (United States)

    Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang

    2013-03-01

    This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

  8. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  9. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    OpenAIRE

    Pan, Zhenzhong; Cui, Bo; Zeng, Zhanghua; Feng, Lei; Liu, Guoqiang; Cui, Haixin; Pan, Hongyu

    2015-01-01

    The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt) and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate) screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with ...

  10. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  11. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  12. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    International Nuclear Information System (INIS)

    Akujor, C.E.

    1989-01-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs

  13. Vacuum system of the high energy ring of an asymmetric B-factory based on PEP

    International Nuclear Information System (INIS)

    Barletta, W.A.; Calderon, M.O.; Wong, R.; Jenkins, T.M.

    1991-01-01

    The multi-ampere currents required for high luminosity operation of an asymmetric B factory leads to extremely stressing requirements on a vacuum system suitable for maintaining long beam-gas lifetimes and acceptable background levels in the detector. We present the design for a Cu alloy vacuum chamber and its associated pumping system for the 9 GeV electron storage ring of the proposed B factory based on PEP. The excellent thermal and photo-desorption properties of Cu allows handling the high proton flux in a conventional, single chamber design with distributed ion pumps. The x-ray opacity of the Cu is sufficiently high that no additional lead shielding is necessary to protect the dipoles from the intense synchrotron radiation generated by the beam. The design allows chamber commissioning in <500 hr of operation. 5 refs., 3 figs., 2 tabs

  14. An asymmetric B factory based on PEP

    International Nuclear Information System (INIS)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e + e - collider capable of achieving a luminosity of L = 3 x 10 33 cm -2 s -1 . The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings

  15. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  16. Reversal modes in asymmetric Ni nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.

  17. Design of activated carbon/activated carbon asymmetric capacitors

    Science.gov (United States)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  18. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  19. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage

    Directory of Open Access Journals (Sweden)

    Shi Wei

    2015-08-01

    Full Text Available An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage. The tests were carried out in a wind tunnel at Reynolds number of 1.87 × 105 under the conditions of high angles of attack and zero angle of sideslip. The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20°. The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35°. Asymmetric vortices flow is sensitive to tip perturbation and is non-deterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance. Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern. Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position. Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.

  20. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  1. Quantifying social asymmetric structures.

    Science.gov (United States)

    Solanas, Antonio; Salafranca, Lluís; Riba, Carles; Sierra, Vicenta; Leiva, David

    2006-08-01

    Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations, nor do they deal with dependency. This article describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method consists mainly of decomposing asymmetric data into their symmetric and skew-symmetric parts. A quantification of skew symmetry for a social system can be obtained by dividing the norm of the skew-symmetric matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. With regard to agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.

  2. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  3. Cilia are required for asymmetric nodal induction in the sea urchin embryo.

    Science.gov (United States)

    Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp

    2016-08-23

    Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.

  4. High-performance cobalt carbonate hydroxide nano-dot/NiCo(CO3)(OH)2 electrode for asymmetric supercapacitors

    Science.gov (United States)

    Lee, Damin; Xia, Qi Xun; Yun, Je Moon; Kim, Kwang Ho

    2018-03-01

    Binder-free mesoporous NiCo(CO3)(OH)2 nanowire arrays were grown using a facile hydrothermal technique. The Co2(CO3)(OH)2 in NiCo(CO3)(OH)2 nanowire arrays was well-decorated as nano-dot scale (a few nanometer). In addition, increasing cobalt content in nickel compound matrix, NiCo(CO3)(OH)2 nanowire arrays were separately uniformly grown without agglomeration on Ni foam, providing a high specific surface area to help electrolyte access and ion transfer. The enticing composition and morphology of the NiCo(CO3)(OH)2 nanowire exhibit a superior specific capacity of 1288.2 mAh g-1 at a current density of 3 A g-1 and excellent cycling stability with the capacity retention of 80.7% after 10,000 cycles. Furthermore, an asymmetric supercapacitor composed of the NiCo(CO3)(OH)2 composite as a positive electrode and the graphene as a negative electrode presented a high energy density of 35.5 W h kg-1 at a power density of 2555.6 W kg-1 and satisfactory cycling stability with 71.3% capacity retention after 10,000 cycles. The great combination of the active nano-dot Co2(CO3)(OH)2 and the individually grown NiCo(CO3)(OH)2 nanowires made it a promising electrode material for asymmetric supercapacitors. A well-developed nanoarchitecture of the nano-dot Co2(CO3)(OH)2 decorated NiCo(CO3)(OH)2 composite could pave the way for an excellent electrode design for high-performance supercapacitors.

  5. Porous NiCo{sub 2}S{sub 4}-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Hui, E-mail: huichmails@163.com; Dong, Hong; Wang, Yucheng; Xu, Jiayu; Jia, Dianzeng

    2017-04-15

    Highlights: • The NiCo{sub 2}S{sub 4}-HL nanomaterial is achieved via two-step hydrothermal approach. • The unique structures are assembled self-assembly by nanosheets. • The obtained electrode exhibits high capacitance and excellent retention. • An asymmetric supercapacitor also displays high energy density and outstanding cycling stability. • The high-performance of the device is possibly due to the introduction of HL and formation of composed nanosheets. - Abstract: The porous nanostructures have drawn considerable attention because of their abundant pore volume and unique properties that provide outstanding performance in catalysis and energy storage applications. This study proposes the growth mechanism of porous NiCo{sub 2}S{sub 4} composited with halloysite (HL) via a self-assembly method using halloysite as a template and component. Electrochemical tests showed that the NiCo{sub 2}S{sub 4}-HL exhibited an ultrahigh specific capacitance (Csp) (589C g{sup −1} at 1A g{sup −1}) and good cycle stability (Csp retention of 86% after 1000 cycles). The desirable capacitive performance of the NiCo{sub 2}S{sub 4}-HL can be attributed to the large specific surface area and short diffusion path for electrons and ions in the hierarchical porous structure. The superior electrochemical performances with the energy density of 35.48 W h kg{sup −1} at a power density of 199.9 W kg{sup −1} were achieved in an assembled aqueous asymmetric supercapacitor (ASC) device using NiCo{sub 2}S{sub 4}-HL as a positive electrode and N-doped graphene (NG) as a negative electrode. Moreover, the NiCo{sub 2}S{sub 4}-HL//NG asymmetric supercapacitor achieved outstanding cycle stability (also retained 83.2% after 1700 cycles). The high-performance of the ASC device will undoubtedly make the porous NiCo{sub 2}S{sub 4}-HL as potential electrode materials attractive in energy storage systems.

  6. Axisymmetric stability of vertically asymmetric Tokamaks at large beta poloidal

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Fishman, H.; Okabayashi, M. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1983-11-01

    The rigid-mode stability of high-..beta.. vertically asymmetric Tokamak equilibria with quasi-uniform current profile is investigated analytically using toroidicity-shaping double expansion method. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high-..beta.. Tokamak expansion leads to further destabilization. These analytic insights are qualitatively confirmed by numerical stability calculations using the PEST code with parabolic safety-factor profile.

  7. Chaos of several typical asymmetric systems

    International Nuclear Information System (INIS)

    Feng Jingjing; Zhang Qichang; Wang Wei

    2012-01-01

    The threshold for the onset of chaos in asymmetric nonlinear dynamic systems can be determined using an extended Padé method. In this paper, a double-well asymmetric potential system with damping under external periodic excitation is investigated, as well as an asymmetric triple-well potential system under external and parametric excitation. The integrals of Melnikov functions are established to demonstrate that the motion is chaotic. Threshold values are acquired when homoclinic and heteroclinic bifurcations occur. The results of analytical and numerical integration are compared to verify the effectiveness and feasibility of the analytical method.

  8. Asymmetric electroresistance of cluster glass state in manganites

    KAUST Repository

    Lourembam, James; Ding, Junfeng; Bera, Ashok; Lin, Weinan; Wu, Tao

    2014-01-01

    cluster glass magnetic state emerges at low temperatures with a spin freezing temperature of about 99 K, which is accompanied by the reentrant insulating state with high resistance below 30 K. In the EDLT, we observe bipolar and asymmetric modulation

  9. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  10. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene-polypropylene block copolymer for maximized disintegration and dissolution.

    Science.gov (United States)

    Balata, Gehan F; Zidan, Ahmad S; Abourehab, Mohamad As; Essa, Ebtessam A

    2016-01-01

    The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene-polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 3 2 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT's porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin.

  11. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics

    Science.gov (United States)

    Su, Fenghua; Miao, Menghe

    2014-04-01

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg-1 at a lower power density of 483.7 W kg-1, and 28.02 Wh kg-1 at a higher power density of 19 250 W kg-1. The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.

  12. D mesons in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mishra, Amruta; Mazumdar, Arindam

    2009-01-01

    We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures

  13. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  14. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  15. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Harilal, Midhun; Vidyadharan, Baiju; Misnon, Izan Izwan; Anilkumar, Gopinathan M; Lowe, Adrian; Ismail, Jamil; Yusoff, Mashitah M; Jose, Rajan

    2017-03-29

    A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co 3 O 4 ), is developed by electrospinning technique. The CuO-Co 3 O 4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co 3 O 4 , and CuO-Co 3 O 4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg -1 at a power density of 14 kW kg -1 is achieved in CuO-Co 3 O 4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.

  16. High prevalence of dysfunctional, asymmetrical, and painful movement in elite junior Australian Football players assessed using the Functional Movement Screen.

    Science.gov (United States)

    Fuller, Joel T; Chalmers, Samuel; Debenedictis, Thomas A; Townsley, Samuel; Lynagh, Matthew; Gleeson, Cara; Zacharia, Andrew; Thomson, Stuart; Magarey, Mary

    2017-02-01

    The purpose of this study was to describe the prevalence of dysfunctional, asymmetrical, and painful movement in junior Australian Football players using the Functional Movement Screen (FMS). Cross-sectional study. Elite junior male Australian Football players (n=301) aged 15-18 years completed pre-season FMS testing. The FMS consists of 7 sub-tests: deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, trunk stability push-up (TSPU) and rotary stability. The shoulder mobility, TSPU, and rotary stability tests were combined with an accompanying clearing test to assess pain. Each sub-test was scored on an ordinal scale from 0 to 3 and summed to give a composite score out of 21. Composite scores ≤14 were operationally defined as indicating dysfunctional movement. Players scoring differently on left and right sides were considered asymmetrical. Players reported whether they missed any games due to injury in the preceding 22 game season. Sixty percent of players (n=182) had composite scores ≤14, 65% of players (n=196) had at least one asymmetrical sub-test, and 38% of players (n=113) had at least one painful sub-test. Forty-two percent of players (n=126) missed at least one game in the previous season due to injury. Previous injury did not influence composite score (p=0.951) or asymmetry (p=0.629). Players reporting an injury during the previous season were more likely to experience pain during FMS testing (odds ratio 1.97, 95% confidence interval 1.23-3.18; p=0.005). Junior Australian Football players demonstrate a high prevalence of dysfunctional, asymmetrical, and painful movement during FMS testing. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. A General Asymmetric Synthesis of (R-Matsutakeol and Flavored Analogs

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-02-01

    Full Text Available An efficient and practical synthetic route toward chiral matsutakeol and analogs was developed by asymmetric addition of terminal alkyne to aldehydes. (R-matsutakeol and other flavored substances were feasibly synthesized from various alkylaldehydes in high yield (up to 49.5%, in three steps and excellent enantiomeric excess (up to >99%. The protocols may serve as an alternative asymmetric synthetic method for active small-molecule library of natural fatty acid metabolites and analogs. These chiral allyl alcohols are prepared for food analysis and screening insect attractants.

  18. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  19. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  20. Microporous Ni₁₁(HPO₃)₈(OH)₆ nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors.

    Science.gov (United States)

    Gao, Yanping; Zhao, Junhong; Run, Zhen; Zhang, Guangqin; Pang, Huan

    2014-12-07

    Microporous nickel phosphite [Ni11(HPO3)8(OH)6] nanocrystals were prepared using a hydrothermal method, and were successfully applied as a positive electrode in a flexible all solid-state asymmetric supercapacitor. Because of the specific micro/nanostructure, the flexible solid-state asymmetric supercapacitor can achieve a maximum energy density of 0.45 mW h cm(-3), which is higher than most reported supercapacitors. More importantly, the device performance remains efficient for 10,000 cycles.

  1. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information.

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  2. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  3. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  4. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.

    Science.gov (United States)

    Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad

    2018-04-24

    Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.

  5. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    Science.gov (United States)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  6. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultraviolet regime

  7. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  8. R & D STRATEGIC INVESTMENT IN AN ASYMMETRICAL CASE

    Institute of Scientific and Technical Information of China (English)

    Minggao XUE; Pu GONG

    2006-01-01

    This article analyzes R & D investment decisions in an asymmetrical case. The investment decisions share three important characteristics. First, the investment is completely irreversible. Second,there are two kinds of uncertainties over the future returns from the investment and over technology in R & D process, respectively. Third, there is strategic competition in the asymmetrical case. This article presents the optimal investment threshold values and the optimal investment rule of high-efficient firm (leader), and shows that the investment threshold values are reduced by competition of two firms.Finally, the mixed investment strategies for two firms, the probability that each firm separately exercises the option to invest, and the probability that two firms simultaneously exercise the option are given in the paper.

  9. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  10. Kinematics and Dynamics of an Asymmetrical Parallel Robotic Wrist

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2014-01-01

    This paper introduces an asymmetrical parallel robotic wrist, which can generate a decoupled unlimited-torsion motion and achieve high positioning accuracy. The kinematics, dexterity, and singularities of the manipulator are investigated to visualize the performance contours of the manipulator...

  11. Voltage-Sharing Converter to Supply Single-Phase Asymmetrical Four-Level Diode-Clamped Inverter With High Power Factor Loads

    DEFF Research Database (Denmark)

    Boora, Arash A.; Nami, Alireza; Zare, Firuz

    2010-01-01

    The output voltage quality of some of the single-phase multilevel inverters can be improved when their dc-link voltages are regulated asymmetrically. Symmetrical and asymmetrical multilevel diode-clamped inverters have the problem of dc-link capacitor voltage balancing, especially when power factor...... that the proposed combination of introduced multioutput dc–dc converter and single-phase ADCI is a good candidate for power conversion in residential photovoltaic (PV) utilization....

  12. Asymmetric carbon nanotube–MnO2 two-ply yarn supercapacitors for wearable electronics

    International Nuclear Information System (INIS)

    Su, Fenghua; Miao, Menghe

    2014-01-01

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO 2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO 2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO 2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg −1 at a lower power density of 483.7 W kg −1 , and 28.02 Wh kg −1 at a higher power density of 19 250 W kg −1 . The asymmetric supercapacitor can sustain cyclic charge–discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort. (paper)

  13. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions

    Science.gov (United States)

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-03-01

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology.

  14. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  15. Simvastatin and asymmetric dimethylarginine-homocysteine metabolic pathways in patients with newly detected severe hypercholesterolemia.

    Science.gov (United States)

    Vladimirova-Kitova, Ludmila G; Deneva, Tania I

    2010-01-01

    The idea that statin therapy decreases asymmetric dimethylarginine through lowering low-density lipoprotein cholesterol levels seems logic. However, controversy exists in the literature concerning this issue. This study compares the effect of moderate (40 mg) to high (80 mg) simvastatin doses on asymmetric dimethylarginine levels in patients with newly detected severe hypercholesterolemia (after targeted LDL levels of or = 7.5 mmol/L and low-density lipoprotein cholesterol > or = 4.9 mmol/L). Asymmetric dimethylarginine levels were determined by enzyme-linked immunosorbent assay, total homocystein by the high performance liquid chromatography method. A statistically significant decrease exists in total cholesterol, triglycerides, low-density lipoprotein cholesterol and apolipoprotein-B levels as well as apolipoprotein-B/apolipoprotein-A1 index following one month of 40 mg simvastatin therapy (P homocystein levels were also decreased but the difference was not significant (p = 0.571; p = 0.569). A dose-dependent effect was established comparing the influence of moderate (40 mg) to high (80 mg) simvastatin doses on the tested atherogenic biomarkers (lipid profile, apolipoprotein-A1, apolipoprotein-B). Asymmetric dimethylarginine and total homocystein levels showed a statistically significant decrease with 80 mg simvastatin (p homocysteine in contrast to high dose (80 mg) after targeted LDL of < or = 2.6 mmol/L levels are reached in patients with newly detected severe hypercholesterolemia.

  16. Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials

    OpenAIRE

    Wang, Hailiang; Liang, Yongye; Mirfakhrai, Tissaphern; Chen, Zhuo; Casalongue, Hernan Sanchez; Dai, Hongjie

    2011-01-01

    Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but have suffered from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high ener...

  17. Nickel cobaltite nanosheets strongly anchored on boron and nitrogen co-doped graphene for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Jiao, Xinyan; Xia, Xifeng; Liu, Peng; Lei, Wu; Ouyang, Yu; Hao, Qingli

    2017-08-01

    Strongly coupled boron and nitrogen co-doped graphene (BN-G) hybrids with nickel cobaltite (NiCo2O4) nanosheets (NCO/BN-G) were fabricated by a facile soft-chemical method for asymmetric supercapacitors with high-performance. The strong interaction between BN-G and NiCo2O4 nanosheets are explored by various techniques. The effect of heteroatom doping on electrochemical properties of the hybrids is systematically investigated. The strong synergistic effect between NiCo2O4 and BN-G leads to a specific capacitance of 106.5 mA h g-1 at the current density of 0.5 A g-1 and capacitance retention of 96.8% after 10 000 cycles at 5 A g-1, much better than those of the pure NiCo2O4 and its hybrid with N-doped graphene. Moreover, an asymmetric supercapacitor device, assembled with NCO/BN-G and activated carbon (NCO/BN-G//AC), exhibits a maximum energy density of 45.6 Wh kg-1 and an excellent cycling stability. The improved electrochemical performance of the NCO/BN-G hybrid is attributed to the good conductivity of BN-G and the synergistic effect between NiCo2O4 nanosheets and BN-G combined together through a plane-to-plane contact mode.

  18. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  19. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  20. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    Science.gov (United States)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  1. Continuous control of asymmetric forebody vortices in a bi-stable state

    Science.gov (United States)

    Wang, Qi-te; Cheng, Ke-ming; Gu, Yun-song; Li, Zhuo-qi

    2018-02-01

    Aiming at the problem of continuous control of asymmetric forebody vortices at a high angle of attack in a bi-stable regime, a dual synthetic jet actuator embedded in an ogive forebody was designed. Alternating unsteady disturbance with varying degree asymmetrical flow fields near the nozzles is generated by adjusting the duty cycle of the drive signal of the actuator, specifically embodying the asymmetric time-averaged pattern of jet velocity, vorticity, and turbulent kinetic energy. Experimental results show that within the range of relatively high angles of attack, including the angle-of-attack region in a bi-stable state, the lateral force of the ogive forebody is continuously controlled by adjusting the duty cycle of the drive signal; the position of the forebody vortices in space, the vorticity magnitude, the total pressure coefficient near the vortex core, and the vortex breakdown location are continuously changed with the duty cycle increased observed from the time-averaged flow field. Instantaneous flow field results indicate that although the forebody vortices are in an unsteady oscillation state, a continuous change in the forebody vortices' oscillation balance position as the duty cycle increases leads to a continuous change in the model's surface pressure distribution and time-averaged lateral force. Different from the traditional control principle, in this study, other different degree asymmetrical states of the forebody vortices except the bi-stable state are obtained using the dual synthetic jet control technology.

  2. Vortex Dynamics of Asymmetric Heave Plates

    Science.gov (United States)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  3. Subcopula-based measure of asymmetric association for contingency tables.

    Science.gov (United States)

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  5. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    Science.gov (United States)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  6. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  7. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  8. Clinical characteristics in patients with asymmetric idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Callahan, Sean J; Xia, Meng; Murray, Susan; Flaherty, Kevin R

    2016-10-01

    A group of patients with idiopathic pulmonary fibrosis (IPF) presents with disease affecting one lung markedly more than the other. At this time, it is unclear how this population differs from those who present with more symmetric disease. We sought to explain the characteristics of the asymmetric group and how their disease progresses. In this retrospective case-control study we accessed an interstitial lung disease (ILD) database and identified 14 asymmetric IPF cases via high-resolution computed tomography (HRCT) scoring of each lung lobe's disease severity. We identified 28 symmetric IPF controls from the same database using the same methods, and compared the clinical features of each group. Patients with asymmetric disease exhibited similar demographics as those in the general IPF population; they were predominantly male (64%), elderly (69 years old), and used tobacco (57%). We found a trend toward significantly increased all-cause mortality in the case population two years following diagnosis (p = 0.089). Pulmonary function tests were significantly lower in the case group at the time of diagnosis, then both groups experienced gradual decline. We found no statistically significant differences in number of IPF exacerbations (cases 43%, controls 39%, p = 0.824) and gastro-esophageal reflux (both groups 50%). Patients with asymmetric IPF resemble patients in the general IPF population but may have a lower overall survival rate. Further systemic factors may be studied to identify reasons for disease asymmetry and clinical decline in this population. Published by Elsevier Ltd.

  9. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor

    Science.gov (United States)

    Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue

    2017-12-01

    In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.

  10. Method development of damage detection in asymmetric buildings

    Science.gov (United States)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  11. Asymmetric effects in customer satisfaction

    DEFF Research Database (Denmark)

    Füller, Johann; Matzler, Kurt; Faullant, Rita

    2006-01-01

    The results of this study on customer satisfaction in snowboard areas show that the relationship between an attribute and overall satisfaction can indeed be asymmetric. A 30-item self-administered survey was completed by snowboarders (n=2526) in 51 areas in Austria, Germany, Switzerland and Italy....... Results show that waiting time is a dissatisfier; it has a significant impact on overall customer satisfaction in the low satisfaction condition and becomes insignificant in the high satisfaction situation. Restaurants and bars are hybrids, i.e. importance does not depend on performance. Slopes, fun...

  12. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  13. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  14. Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage

    Science.gov (United States)

    Wu, Haoran; Lian, Keryn

    2018-02-01

    A novel asymmetrical-bipolar electrochemical capacitor system leveraging the contributions of a Zn-CNT asymmetrical electrode and a KOH-H2SO4 dual-pH electrolyte was developed. The positive and negative electrodes operated in electrolytes with different pH, exploiting the maximum potential of both electrodes, which led to a cell voltage of 2.4 V. The potential tracking of both electrodes revealed that the Zn negative electrode could maintain a potential at -1.2 V, while the CNT positive electrode can be charged to +1.2 V without significant irreversible reactions. A bipolar ion exchange membrane has effectively separated the acid and alkaline from neutralization, which resulted in stable performance of the device with capacitance retention of 94% and coulombic efficiency of 99% over 10,000 cycles. This asymmetrical-bipolar design overcomes the thermodynamic limit of water decomposition, opening a new avenue towards high energy and high power density aqueous-based ECs.

  15. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  16. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  17. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric

    2017-11-27

    Current microfabrication of micro-supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene-based micro-supercapacitor that is flexible, binder-free, and current-collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced graphene oxide (rGO), which are both 2D layered materials that contribute to the fast ion diffusion in the interdigitated electrode architecture. This MXene-based asymmetric micro-supercapacitor operates at a 1 V voltage window, while retaining 97% of the initial capacitance after ten thousand cycles, and exhibits an energy density of 8.6 mW h cm−3 at a power density of 0.2 W cm−3. Further, these micro-supercapacitors show a high level of flexibility during mechanical bending. Utilizing the ability of Ti3C2Tx-MXene electrodes to operate at negative potentials in aqueous electrolytes, it is shown that using Ti3C2Tx as a negative electrode and rGO as a positive one in asymmetric architectures is a promising strategy for increasing both energy and power densities of micro-supercapacitors.

  18. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  19. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.

    Science.gov (United States)

    Mukherjee, Subhas; Brat, Daniel J

    2017-01-01

    Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.

  20. Survey of beta-particle interaction experiments with asymmetric matter

    Science.gov (United States)

    Van Horn, J. David; Wu, Fei

    2018-05-01

    Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.

  1. Ultra-high optical responsivity of semiconducting asymmetric nano-channel diodes for photon detection

    Science.gov (United States)

    Akbas, Y.; Plecenik, T.; Durina, P.; Plecenik, A.; Jukna, A.; Wicks, G.; Sobolewski, Roman

    2017-05-01

    The asymmetric nano-channel diode (ANCD) is the 2-dimensional electron gas (2DEG) semiconductor nanodevice that, unlike a conventional diode, relies on the device nanostructure and field-controlled transport in a ballistic nanometerwidth channel instead of barriers to develop its asymmetric, diode-like current-voltage (I-V) characteristics. We focus on ANCD optoelectronic properties, and demonstrate that the devices can act as very sensitive, single-photon-level, visiblelight photodetectors. Our test structures consist of 2-μm-long and 230-nm-wide channels and were fabricated using electron-beam lithography on a GaAs/AlGaAs heterostructure with a 2DEG layer, followed by reactive ion etching. The I-V curves were collected by measuring the transport current under the voltage-source biasing condition, both in the dark and under light illumination. The experiments were conducted inside a cryostat, in a temperature range from 300 K to 78 K. As an optical excitation, we used a 800-nm-wavelength, generated by a commercial Ti:sapphire laser operated either at a quasi-continuous-wave mode or as a source of 100-fs-wide pulses. The impact of the light illumination was very clear, and at low temperatures we observed a significant photocurrent Iph 0.25 μA at temperature 78 K for the incident optical power as low as 1 nW, with a limited dark-current background. The magnitude of the device optical responsivity increased linearly with the decrease of the optical power, reaching for 1-nW optical excitation the value as high as 400 A/W at room temperature and >800 A/W at 78K. The physics of the photoresponse gain mechanism in the ANCD arises from a vast disparity between the sub-picosecond transit time of photo-excited electrons travelling in the 2DEG nanochannel and the up to microsecond lifetime of photo-excited holes pushed towards the device substrate.

  2. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  3. Highly selective sulfur ylide mediated asymmetric epoxidations and aziridinations using an inexpensive chiral sulfide and applications to the synthesis of quinine and quinidine (abstract)

    International Nuclear Information System (INIS)

    Arshad, M.; Illa, O.; Mcgarrigle, E.M.

    2011-01-01

    Asymmetric sulfur ylide mediated epoxidation, which is considered a complimentary method to asymmetric epoxidation of alkene has been utilized as a key step in the asymmetric total synthesis of complex cinchona alkaloids quinine and quinidine. Isothiocineole 1, which was readily available in one step from very inexpensive starting materials, is employed as a chiral sulfide to prepare the desired sulfonium salt 2. The semi-stabilised ylide derived from this salt on epoxidation with meroquinene aldehyde 3, afforded the required epoxide 4 in 81% yield and 89:11 diastereoselectivity (trans/cis). The epoxide was converted to the target quinine 5 in 73% yield over four steps in one pot. Similarly, the opposite enantiomer of isothiocineole was used to synthesise the corresponding sulfonium salt, which on reaction with meroquinene aldehyde gave epoxide in 73% yield and 84:16 diastereoselectivity (trans/cis). This epoxide was transformed to the target quinidine in 78% yield over four steps in one pot. The epoxidation reactions proceeded under reagent control with high trans selectivity. The effect of sulfide and ylide substituents on the stereochemical outcome of the epoxidation reaction is also prescribed. (author)

  4. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  5. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    Science.gov (United States)

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  6. Long-Term Intermittent Exposure to High Altitude Elevates Asymmetric Dimethylarginine in First Exposed Young Adults.

    Science.gov (United States)

    Lüneburg, Nicole; Siques, Patricia; Brito, Julio; De La Cruz, Juan José; León-Velarde, Fabiola; Hannemann, Juliane; Ibanez, Cristian; Böger, Rainer H

    2017-09-01

    Lüneburg, Nicole, Patricia Siques, Julio Brito, Juan José De La Cruz, Fabiola León-Velarde, Juliane Hannemann, Cristian Ibanez, and Rainer Böger. Long-term intermittent exposure to high altitude elevates asymmetric dimethylarginine in first exposed young adults. High Alt Med Biol. 18:226-233, 2017.-Hypoxia-induced dysregulation of pulmonary and cerebral circulation may be related to an impaired nitric oxide (NO) pathway. We investigated the effect of chronic intermittent hypobaric hypoxia (CIH) on metabolites of the NO pathway. We measured asymmetric and symmetric dimethylarginine (ADMA and SDMA) and monomethyl-L-arginine (L-NMMA) and assessed their associations with acclimatization in male draftees (n = 72) undergoing CIH shifts at altitude (3550 m) during 3 months. Sixteen Andean natives living at altitude (3675 m) (chronic hypobaric hypoxia [CH]) were included for comparison. In CIH, ADMA and L-NMMA plasma concentrations increased from 1.14 ± 0.04 to 1.95 ± 0.09 μmol/L (mean ± SE) and from 0.22 ± 0.07 to 0.39 ± 0.03 μmol/L, respectively, (p < 0.001 for both) after 3 months, whereas SDMA did not change. The concentrations of ADMA and L-NMMA were higher in CH (3.48 ± 0.07, 0.53 ± 0.08 μmol/L; p < 0.001) as compared with CIH. In both CIH and CH, ADMA correlated with hematocrit (r 2  = 0.07, p < 0.05; r 2  = 0.26; p < 0.01). In CIH, an association of ADMA levels with poor acclimatization status was observed. We conclude that the endogenous NO synthase inhibitors, ADMA and L-NMMA, are elevated in hypoxia. This may contribute to impaired NO production at altitude and may also be predictive of altitude-associated health impairment.

  7. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhai, Teng; Wang, Fuxin; Yu, Minghao; Xie, Shilei; Liang, Chaolun; Li, Cheng; Xiao, Fangming; Tang, Renheng; Wu, Qixiu; Lu, Xihong; Tong, Yexiang

    2013-07-01

    In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density. Electronic

  8. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.

    Science.gov (United States)

    Dai, Chao-Shuan; Chien, Pei-Yi; Lin, Jeng-Yu; Chou, Shu-Wei; Wu, Wen-Kai; Li, Ping-Hsuan; Wu, Kuan-Yi; Lin, Tsung-Wu

    2013-11-27

    The Ni3S2 nanoparticles with the diameters ranging from 10 to 80 nm are grown on the backbone of conductive multiwalled carbon nanotubes (MWCNTs) using a glucose-assisted hydrothermal method. It is found that the Ni3S2 nanoparticles deposited on MWCNTs disassemble into smaller components after the composite electrode is activated by the consecutive cyclic voltammetry scan in a 2 M KOH solution. Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. Because the synergistic effect of the Ni3S2 nanoparticles and MWCNTs on the capacitive performance of the composite electrode is pronounced, the composite electrode shows a high specific capacitance of 800 F/g and great cycling stability at a current density of 3.2 A/g. To examine the capacitive performance of the composite electrode in a full-cell configuration, an asymmetric supercapacitor device was fabricated by using the composite of Ni3S2 and MWCNTs as the cathode and activated carbon as the anode. The fabricated device can be operated reversibly between 0 and 1.6 V, and obtain a high specific capacitance of 55.8 F/g at 1 A/g, which delivers a maximum energy density of 19.8 Wh/kg at a power density of 798 W/kg. Furthermore, the asymmetric supercapacitor shows great stability based on the fact that the device retains 90% of its initial capacitance after a consecutive 5000 cycles of galvanostatic charge-discharge performed at a current density of 4 A/g.

  9. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  10. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  11. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes

    International Nuclear Information System (INIS)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-01-01

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (C d ). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545–57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy–Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric C d , with the higher peak in C d occurring at positive polarization for the smaller anionic size. At high potential, C d decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher C d , which exceeds that of Gouy–Chapman theory. (paper)

  12. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  13. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  14. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  15. Market research and complementary advertising under asymmetric information

    OpenAIRE

    Tsuchihashi, Toshihiro

    2008-01-01

    We consider whether market research can always increase a seller's sales under bilateral asymmetric information. If a monopoly seller provides a high quality object, market research cannot increase sales even when the cost is sufficiently low. A low quality seller, on the other hand, can likely benefit from market research. However, this research has shown that market research alone does not improve sales and that advertising complements market research. Thus the high quality seller can incre...

  16. Examining Asymmetrical Relationships of Organizational Learning Antecedents: A Theoretical Model

    Directory of Open Access Journals (Sweden)

    Ery Tri Djatmika

    2016-02-01

    Full Text Available Global era is characterized by highly competitive advantage market demand. Responding to the challenge of rapid environmental changes, organizational learning is becoming a strategic way and solution to empower people themselves within the organization in order to create a novelty as valuable positioning source. For research purposes, determining the influential antecedents that affect organizational learning is vital to understand research-based solutions given for practical implications. Accordingly, identification of variables examined by asymmetrical relationships is critical to establish. Possible antecedent variables come from organizational and personal point of views. It is also possible to include a moderating one. A proposed theoretical model of asymmetrical effects of organizational learning and its antecedents is discussed in this article.

  17. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  18. Influence of polyoxyethylene phytosterol addition in ionic liquid-based electrolyte on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sato, Kei; Sakurai, Sho; Kobayashi, Koichi

    2016-01-01

    Highlights: • The ionic liquid solution of less solvophilic BPS exhibits a better surface active property and a weaker dye-desorption effect. • Photovoltaic performances of the N719- and NKX2677-sensitized DSSCs can be improved by the BPS addition to the IL-based electrolyte. • BPS added to the electrolyte plays a key role in reducing charge-transfer resistance and increasing electron lifetime in the TiO 2 electrode. - Abstract: In this work, we studied influence of polyoxyethylene phytosterol (BPS) addition in ionic liquid (IL)-based electrolyte on photovoltaic performance of dye-sensitized solar cells (DSSCs) using 1-methyl-3-propylimidazolium iodide as an IL. Surface tension, photocurrent density-voltage characteristics and electrochemical impedance spectra were measured to clarify the role of BPS in the DSSCs using three different dyes. The results showed that the IL solution of less solvophilic BPS-EO5 exhibited a better surface active property and a weaker dye-desorption effect than BPS-EO30 and BPS-PO7/EO30. Short-circuit current densities of the N719- and NKX2677-sensitized cells were found to be noticeably increased by the addition of either BPS-EO5 or BPS-EO30 to the IL-based electrolyte in the concentration range of 0.001–0.01 mol dm −3 . Enhanced photovoltaic conversion efficiencies were obtained for these DSSCs, which most likely resulted from the effects of BPS on reducing charge-transfer resistance at the TiO 2 /dye/electrolyte interface and on increasing electron lifetime within the TiO 2 photoanode.

  19. The Asymmetric Effects of Investor Sentiment

    DEFF Research Database (Denmark)

    Lutz, Chandler

    2016-01-01

    We use the returns on lottery-like stocks and a dynamic factor model to construct a novel index of investor sentiment. This new measure is highly correlated with other behavioral indicators, but more closely tracks speculative episodes. Our main new finding is that the effects of sentiment...... are asymmetric: During peak-to-trough periods of investor sentiment (sentiment contractions), high sentiment predicts low future returns for the cross section of speculative stocks and for the market overall, whereas the relationship between sentiment and future returns is positive but relatively weak during...... trough-to-peak episodes (sentiment expansions). Overall, these results match theories and anecdotal accounts of investor sentiment....

  20. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  1. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  2. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  3. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  4. Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis

    Science.gov (United States)

    King, Jorge H. Torres; Wang, Hong; Yezierski, Ellen J.

    2018-01-01

    Despite the importance of asymmetric catalysis in both the pharmaceutical and commodity chemicals industries, asymmetric catalysis is under-represented in undergraduate chemistry laboratory curricula. A novel guided-inquiry experiment based on the asymmetric aldol addition was developed. Students conduct lab work to compare the effectiveness of…

  5. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  6. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  7. Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis

    KAUST Repository

    Ajitha, Manjaly John

    2016-08-17

    Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility in the preorganization of molecular entities required to achieve high enantioselectivity. Herein, we review some recent important organocatalytic asymmetric reactions where a NCHB serves as a critical factor in determining the stereoselectivity.

  8. Recent Progress in Asymmetric Catalysis and Chromatographic Separation by Chiral Metal–Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Suchandra Bhattacharjee

    2018-03-01

    Full Text Available Metal–organic frameworks (MOFs, as a new class of porous solid materials, have emerged and their study has established itself very quickly into a productive research field. This short review recaps the recent advancement of chiral MOFs. Here, we present simple, well-ordered instances to classify the mode of synthesis of chiral MOFs, and later demonstrate the potential applications of chiral MOFs in heterogeneous asymmetric catalysis and enantioselective separation. The asymmetric catalysis sections are subdivided based on the types of reactions that have been successfully carried out recently by chiral MOFs. In the part on enantioselective separation, we present the potentiality of chiral MOFs as a stationary phase for high-performance liquid chromatography (HPLC and high-resolution gas chromatography (GC by considering fruitful examples from current research work. We anticipate that this review will provide interest to researchers to design new homochiral MOFs with even greater complexity and effort to execute their potential functions in several fields, such as asymmetric catalysis, enantiomer separation, and chiral recognition.

  9. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  10. Asymmetric biosynthesis of (1S, 2S)-ephedrine by Morganella ...

    African Journals Online (AJOL)

    Morganella morganii CMCC(B)49208 was found to asymmetrically reduce the prochiral carbonyl compound 1-phenyl-1-oxo-2-methylaminopropane (MAK) to optically pure (1S, 2S)-ephedrine which was measured with thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) technologies.

  11. High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes

    Science.gov (United States)

    Li, Shuoshuo; Cheng, Pengpeng; Luo, Jiaxian; Zhou, Dan; Xu, Weiming; Li, Jingwei; Li, Ruchun; Yuan, Dingsheng

    2017-07-01

    A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g-1 at a current density of 1 A g-1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g-1 at a current density of 2 A g-1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm-2 at 2 mA cm-2 and a high energy density of 0.71 mWh cm-2 at a power density of 17.05 mW cm-2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge-discharge cycles).

  12. Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, R.P. [Erasmus University Rotterdam, Rotterdam (Netherlands)

    2009-11-15

    This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.

  13. Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers

    International Nuclear Information System (INIS)

    Faber, R.P.

    2009-11-01

    This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.

  14. Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Aksenov, Alexander A; Kapron, James T

    2010-05-30

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.

  15. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  16. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  17. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeje; Kim, Jongrak; Shin, Dongsul [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); Kim, Hosung; Lee, Kyungjun [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jonghyun; Yoo, Dongwook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea)

    2010-08-15

    A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter. (author)

  18. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  19. Design optimization of highly asymmetrical layouts by 2D contour metrology

    Science.gov (United States)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2018-03-01

    As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.

  20. A new convenient asymmetric approach to herbarumin Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li

    2007-01-01

    The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.

  1. Fourier synthesis of asymmetrical optical potentials for atoms

    International Nuclear Information System (INIS)

    Ritt, G.

    2007-01-01

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  2. PEP-II: An asymmetric B factory

    International Nuclear Information System (INIS)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e + e - collider capable of achieving a luminosity of L = 3 x 10 33 cm -2 s -1 . All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings

  3. Shuttlecock-Shaped Molecular Rectifier: Asymmetric Electron Transport Coupled with Controlled Molecular Motion.

    Science.gov (United States)

    Ryu, Taekhee; Lansac, Yves; Jang, Yun Hee

    2017-07-12

    A fullerene derivative with five hydroxyphenyl groups attached around a pentagon, (4-HOC 6 H 4 ) 5 HC 60 (1), has shown an asymmetric current-voltage (I-V) curve in a conducting atomic force microscopy experiment on gold. Such molecular rectification has been ascribed to the asymmetric distribution of frontier molecular orbitals over its shuttlecock-shaped structure. Our nonequilibrium Green's function (NEGF) calculations based on density functional theory (DFT) indeed exhibit an asymmetric I-V curve for 1 standing up between two Au(111) electrodes, but the resulting rectification ratio (RR ∼ 3) is insufficient to explain the wide range of RR observed in experiments performed under a high bias voltage. Therefore, we formulate a hypothesis that high RR (>10) may come from molecular orientation switching induced by a strong electric field applied between two electrodes. Indeed, molecular dynamics simulations of a self-assembled monolayer of 1 on Au(111) show that the orientation of 1 can be switched between standing-up and lying-on-the-side configurations in a manner to align its molecular dipole moment with the direction of the applied electric field. The DFT-NEGF calculations taking into account such field-induced reorientation between up and side configurations indeed yield RR of ∼13, which agrees well with the experimental value obtained under a high bias voltage.

  4. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coping with Asymmetric Channel Losses in CSMA/CA

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2013-01-01

    Inspired by the discrepancy between past theoretical analysis and real measurements for high-load scenarios for intersession network coding, we pinpoint and analyze the source of this discrepancy in wireless networks implementing a CSMA/CA medium access scheme. Our analysis shows that CSMA/CA is ......) confirm the sensitivity of the CSMA/CA scheme in real implementations, and (ii) shows that our adaptive protocol provides a simple, yet potent mechanism to cope with asymmetric channel losses and ultimately to enhance end-to-end throughput in high-load scenarios....

  6. Porous NiCo2S4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications

    Science.gov (United States)

    Chai, Hui; Dong, Hong; Wang, Yucheng; Xu, Jiayu; Jia, Dianzeng

    2017-04-01

    The porous nanostructures have drawn considerable attention because of their abundant pore volume and unique properties that provide outstanding performance in catalysis and energy storage applications. This study proposes the growth mechanism of porous NiCo2S4 composited with halloysite (HL) via a self-assembly method using halloysite as a template and component. Electrochemical tests showed that the NiCo2S4-HL exhibited an ultrahigh specific capacitance (Csp) (589C g-1 at 1A g-1) and good cycle stability (Csp retention of 86% after 1000 cycles). The desirable capacitive performance of the NiCo2S4-HL can be attributed to the large specific surface area and short diffusion path for electrons and ions in the hierarchical porous structure. The superior electrochemical performances with the energy density of 35.48 W h kg-1 at a power density of 199.9 W kg-1 were achieved in an assembled aqueous asymmetric supercapacitor (ASC) device using NiCo2S4-HL as a positive electrode and N-doped graphene (NG) as a negative electrode. Moreover, the NiCo2S4-HL//NG asymmetric supercapacitor achieved outstanding cycle stability (also retained 83.2% after 1700 cycles). The high-performance of the ASC device will undoubtedly make the porous NiCo2S4-HL as potential electrode materials attractive in energy storage systems.

  7. Optical-fiber strain sensors with asymmetric etched structures.

    Science.gov (United States)

    Vaziri, M; Chen, C L

    1993-11-01

    Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

  8. Study of 235U very asymmetric thermal fission

    International Nuclear Information System (INIS)

    Sida, J.L.

    1989-12-01

    The fission fragment separator Lohengrin of the Institut Laue-Langevin in Grenoble was used to determine the yields of the very asymmetric light fission products (A=84-69) as a function of A, Z, and the kinetic energy E. The proton pairing effect causes fine structures in the mass distribution, in the mean nuclear charge anti Z and its variance σ z , and in the mean kinetic energies of the elements. The neutron pairing effect in the production yields is found for the first time of the same order of magnitude than the proton pairing effect. In the mass region investigated both are the largest observed in fission of 235 U. A decrease in the mean kinetic energy for the isotopes of Ni and Cu was observed. It points to a large deformation at scission. Our results support the view that very asymmetric low-energy fission is a weakly dissipative process. The highly deformed transient system breaks by a slow necking-in process [fr

  9. All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes.

    Science.gov (United States)

    Yang, Jie; Li, Guizhu; Pan, Zhenghui; Liu, Meinan; Hou, Yuan; Xu, Yijun; Deng, Hong; Sheng, Leimei; Zhao, Xinluo; Qiu, Yongcai; Zhang, Yuegang

    2015-10-14

    Three-dimensional (3D) nanostructures enable high-energy storage devices. Here we report a 3D manganese oxide nanospike (NSP) array electrode fabricated by anodization and subsequent electrodeposition. All-solid-state asymmetric supercapacitors were assembled with the 3D Al@Ni@MnOx NSP as the positive electrode, chemically converted graphene (CCG) as the negative electrode, and Na2SO4/poly(vinyl alcohol) (PVA) as the polymer gel electrolyte. Taking advantage of the different potential windows of Al@Ni@MnOx NSP and CCG electrodes, the asymmetric supercapacitor showed an ideal capacitive behavior with a cell voltage up to 1.8 V, capable of lighting up a red LED indicator (nominal voltage of 1.8 V). The device could deliver an energy density of 23.02 W h kg(-1) at a current density of 1 A g(-1). It could also preserve 96.3% of its initial capacitance at a current density of 2 A g(-1) after 10000 charging/discharging cycles. The remarkable performance is attributed to the unique 3D NSP array structure that could play an important role in increasing the effective electrode surface area, facilitating electrolyte permeation, and shortening the electron pathway in the active materials.

  10. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  11. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp(3) Central Chirality for Catalytic Asymmetric Transformations.

    Science.gov (United States)

    Xu, Zheng; Xu, Li-Wen

    2015-10-01

    Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Radhamani, A V; Shareef, K M; Rao, M S Ramachandra

    2016-11-09

    Asymmetric supercapacitors (ASCs) with aqueous electrolyte medium have recently become the focus of increasing research. For high performance ASCs, selection of cathode materials play a crucial role, and core-shell nanostructures are found to be a good choice. We successfully synthesized, ZnO@MnO 2 core-shell nanofibers (NFs) by modification of high-aspect-ratio-electrospun ZnO NFs hydrothermally with MnO 2 nanoflakes. High conductivity of the ZnO NFs and the exceptionally high pseudocapacitive nature of MnO 2 nanoflakes coating delivered a specific capacitance of 907 Fg -1 at 0.6 Ag -1 for the core-shell NFs. A simple and cost-effective ASC construction was demonstrated with ZnO@MnO 2 NFs as a battery-type cathode material and a commercial-quality activated carbon as a capacitor-type anode material. The fabricated device functioned very well in a voltage window of 0-2.0 V, and a red-LED was illuminated using a single-celled fabricated ASC device. It was found to deliver a maximum energy density of 17 Whkg -1 and a power density of 6.5 kWkg -1 with capacitance retention of 94% and Coulombic efficiency of 100%. The novel architecture of the ZnO@MnO 2 core-shell nanofibrous material implies the importance of using simple design of fiber-based electrode material by mere changes of core and shell counterparts.

  13. The limits of the electron optical parameters of asymmetric double pipecol magnetic objective lenses

    International Nuclear Information System (INIS)

    Al-khashab, A. M.; Abas, K. A.

    1997-01-01

    The asymmetrical magnetic electron lens is of great importance for the electron microscopes intended for high resolution. Such lenses are determined not only by its geometric structure and shape parameters but also by the gap width to bore diameter (S/D) of its pole pieces. a systematic investigation has been carried out for asymmetric objective lenses having different bore diameters. The results indicate that the op per h ore diameter of pole piece lens has considerable effects on the electron optical properties. The Comparison between the two sets of the family of asymmetric lenses provides good performance, and suggests that the ratio of the lens gap width to the bore diameters of its pole pieces (S/ D 1 /D 2 =3) are favourable. (authors). 9 refs., 9 figs

  14. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  15. Decrease in back strength in asymmetric trunk postures

    NARCIS (Netherlands)

    Vink, P.; Daanen, H. A M; Meijst, W. J.; Ligteringen, J.

    1992-01-01

    The extension force against resistance was recorded in 23 postures for 12 subjects to find explanations for the decrease in back strength in asymmetric postures. A reduction in muscle force in asymmetric postures was found up to 40%, but was strongly dependent on the plane in which asymmetry

  16. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures.

    Science.gov (United States)

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun

    2016-10-01

    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-04-01

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  18. A study of the masticatory muscles morphology and function on asymmetric prognathism

    International Nuclear Information System (INIS)

    Kondoh, Hirotoshi

    1991-01-01

    Each case was measured to analyze the cross sectional area of muscle and mandibular malposition amount using Computed Tomography (CT) photos and P-A cephalogram. At the same time, the relation of morphology and function between the cross sectional area of muscle and mandibular malposition amount was analyzed to examine the function of masseter using electromyography. To determine the relation between morphology and function of masseter in asymmetric prognathism, 23 cases were chosen for the study from among 11 male and 12 female patients who were diagnosed as asymmetric prognathism. In asymmetric prognathism, both morphology and function in the mandibular malposition side were recognized to be larger than that in the cross sectional area of muscle side, on the examination of the cross sectional area of muscle and the activity of masseter. A highly significant and positive correlation was recognized in the left and right difference between the masseteric and medial pterygoid section areas and the CT mandibular malposition amount which were examined by the CT photos. In the left and right difference between the masseteric and medial pterygoid section areas and in the left and right difference of the activity of masseter, there was also a highly positive and significant correlation. (author) 58 refs

  19. Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph

    International Nuclear Information System (INIS)

    Holinger, L.D.; Torium, D.M.; Anandappa, E.C.

    1988-01-01

    The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)

  20. Lower Bounds in the Asymmetric External Memory Model

    DEFF Research Database (Denmark)

    Jacob, Riko; Sitchinava, Nodari

    2017-01-01

    Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory...... of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves...

  1. Organocatalytic asymmetric michael addition of aldehydes to beta-nitroacroleine dimethyl acetal.

    Science.gov (United States)

    Reyes, Efraim; Vicario, Jose L; Badía, Dolores; Carrillo, Luisa

    2006-12-21

    [Structure: see text] The organocatalytic asymmetric Michael addition of aldehydes to beta-nitroacroleine dimethyl acetal has been studied in detail. The reaction took place with excellent yields and high stereoselectivities when a chiral beta-amino alcohol such as L-prolinol was employed as the catalyst, leaving a formation of highly functionalized enantioenriched compounds containing two differentiated formyl groups together with a nitro moiety.

  2. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  3. Asymmetric conditional volatility in international stock markets

    Science.gov (United States)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  4. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.

    Science.gov (United States)

    Fu, Wenbin; Han, Weihua; Zha, Heming; Mei, Junfeng; Li, Yunxia; Zhang, Zemin; Xie, Erqing

    2016-09-21

    Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications.

  5. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  6. Two-channel totally asymmetric simple exclusion processes

    International Nuclear Information System (INIS)

    Pronina, Ekaterina; Kolomeisky, Anatoly B

    2004-01-01

    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. Extensive computer Monte Carlo simulations fully support the theoretical predictions

  7. Appropriate quantization of asymmetric games with continuous strategies

    International Nuclear Information System (INIS)

    Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng

    2005-01-01

    We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs

  8. Asymmetric forecasting and commitment policy in a robust control problem

    OpenAIRE

    Taro Ikeda

    2013-01-01

    This paper provides a piece of results regarding asymmetric forecasting and commitment monetary policy with a robust control algorithm. Previous studies provide no clarification of the connection between asymmetric preference and robust commitment policy. Three results emerge from general equilibrium modeling with asymmetric preference: (i) the condition for system stability implies an average inflation bias with respect to asymmetry (ii) the effect of asymmetry can be mitigated if policy mak...

  9. Multicenter, randomized, placebo-controlled study of the nitric oxide scavenger pyridoxalated hemoglobin polyoxyethylene in distributive shock.

    Science.gov (United States)

    Kinasewitz, Gary T; Privalle, Christopher T; Imm, Amy; Steingrub, Jay S; Malcynski, John T; Balk, Robert A; DeAngelo, Joseph

    2008-07-01

    To assess the safety and efficacy of the hemoglobin-based nitric oxide scavenger, pyridoxalated hemoglobin polyoxyethylene (PHP), in patients with distributive shock. Phase II multicenter, randomized (1:1), placebo-controlled study. Fifteen intensive care units in North America. Sixty-two patients with distributive shock, > or = 2 systemic inflammatory response syndrome criteria, and persistent catecholamine dependence despite adequate fluid resuscitation (pulmonary capillary wedge pressure > or = 12). Patients were randomized to PHP at 0.25 mL/kg/hr (20 mg/kg/hr), or an equal volume of placebo, infused for up to 100 hrs, in addition to conventional vasopressor therapy. Because treatment could not be blinded, vasopressors and ventilatory support were weaned by protocol. Sixty-two patients were randomized to PHP (n = 33) or placebo (n = 29). Age, sex, etiology of shock (sepsis in 94%), and Acute Physiology and Chronic Health Evaluation II scores (33.1 +/- 8.3 vs. 30 +/- 7) were similar in PHP and placebo patients, respectively. Baseline plasma nitrite and nitrate levels were markedly elevated in both groups. PHP infusion increased systemic blood pressure within minutes. Overall 28-day mortality was similar (58% PHP vs. 59% placebo), but PHP survivors were weaned off vasopressors faster (13.7 +/- 8.2 vs. 26.3 +/- 21.4 hrs; p = .07) and spent less time on mechanical ventilation (10.4 +/- 10.2 vs. 17.4 +/- 9.9 days; p = .21). The risk ratio (PHP/placebo) for mortality was .79 (95% confidence interval, .39-1.59) when adjusted for age, sex, Acute Physiology and Chronic Health Evaluation II score, and etiology of sepsis. No excess medical interventions were noted with PHP use. PHP survivors left the intensive care unit earlier (13.6 +/- 8.6 vs. 17.9 +/- 8.2 days; p = .21) and more were discharged by day 28 (57.1 vs. 41.7%). PHP is a hemodynamically active nitric oxide scavenger. The role of PHP in distributive shock remains to be determined.

  10. Impact of Secondary Interactions in Asymmetric Catalysis

    OpenAIRE

    Frölander, Anders

    2007-01-01

    This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained emplo...

  11. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  12. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Flatfish: an asymmetric perspective on metamorphosis.

    Science.gov (United States)

    Schreiber, Alexander M

    2013-01-01

    The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents

    NARCIS (Netherlands)

    Bos, Pieter H.; Rudolph, Alena; Pérez, Manuel; Fañanás-Mastral, Martín; Harutyunyan, Syuzanna R.; Feringa, Bernard

    2012-01-01

    A highly efficient method is reported for the asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Using a copper/chiral phosphoramidite complex together with a Lewis acid (BF3·OEt2), full selectivity for the anti isomer and excellent enantioselectivities were obtained for the

  15. Asymmetric Diels-Alder reactions with 5-menthyloxy-2(5H)-furanones

    NARCIS (Netherlands)

    Jong, Johannes Cornelis de

    2006-01-01

    At the beginning of the reseach described in this thesis the catalytic asymmetric Diels-Alder reaction had scarcely been investigated. No good catalytic processes with high enantiomeric excess were known at that time. At the same time the Diels-Alder reactions with chiral dienophiles needed further

  16. Facile Synthesis of A 3D Flower-Like Mesoporous Ni@C Composite Material for High-Energy Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing

    2018-04-16

    A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2  g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    2012-01-01

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical differentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  18. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical dierentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  19. Particle identification at an asymmetric B Factory

    International Nuclear Information System (INIS)

    Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N.; Va'vra, J.; Ypsilantis, T.

    1991-09-01

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B 0 decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R ampersand D conclude the chapter. 56 refs., 64 figs., 13 tabs

  20. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics

    International Nuclear Information System (INIS)

    Li Yang; Wang Dong; Wang Lei; Li Zhengqiang; Cui Qing; Zhang Haiquan; Yang Huai

    2012-01-01

    A series of novel substituted pyrene derivatives with asymmetrical groups have been successfully synthesized in excellent yield. Structures of the asymmetrical compound were fully characterized by 1 H-NMR, IR spectroscopy and mass spectrometry. By introducing ethynyl functions to pyrene, we obtained highly efficient blue and green light emitting materials. It has been demonstrated that the emission characteristics of pyrene derivatives have been bathochromatically tuned in the visible region by extending the π-conjugation. The photophysical properties of these compounds were carefully examined in different organic solvents and different concentrations. The electrochemical properties and geometrical electronic structures of the new pyrene derivatives have been investigated by cyclic voltammograms and density functional theory (DFT) calculations. - Highlights: ► It is the first research about asymmetrial pyrene derivatives as highly efficient light emitting materials. ► The solvatochromism and concentration effect of the new compounds have been discussed. ► Furthermore, the electrochemical properties and geometrical electronic structures were also investigated in this paper.

  1. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes

    International Nuclear Information System (INIS)

    Fan, Le-Qing; Liu, Gui-Jing; Wu, Ji-Huai; Liu, Lu; Lin, Jian-Ming; Wei, Yue-Lin

    2014-01-01

    Graphene oxide/polypyrrole (GO/PPy) composite is synthesized by in situ oxidation polymerization of pyrrole (Py) in the presence of GO and used for supercapacitor electrode. The scanning electron microscope (SEM) observes that PPy nanoparticles are uniformly grown on the surfaces of GO sheets, leading to increase both the specific surface area and the electrical conductivity of material. GO/PPy composite exhibits better electrochemical performances than the pure individual components. When the mass ratio of GO to Py is 10:100, the GO/PPy composite electrode shows the highest capacitance of 332.6 F g −1 , and presents high rate capability. An asymmetric supercapacitor is fabricated by using the optimized GO/PPy composite as positive electrode and activated carbon (AC) as negative electrode. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.6 V, and exhibits the maximum energy density of 21.4 Wh kg −1 at a power density of 453.9 W kg −1 . Furthermore, the GO/PPy//AC asymmetric supercapacitor displays good rate capability and excellent cyclic durability

  2. Rational construction of a 3D hierarchical NiCo2O4/PANI/MF composite foam as a high-performance electrode for asymmetric supercapacitors.

    Science.gov (United States)

    Cui, Fen; Huang, Yunpeng; Xu, Le; Zhao, Yan; Lian, Jiabiao; Bao, Jian; Li, Huaming

    2018-04-19

    A 3D hierarchical NiCo2O4/PANI/MF composite foam with a macroporous 3D skeleton, a conductive PANI coating and highly electrochemically active NiCo2O4 nanosheets is synthesized as a lightweight and low-cost electrode material. Due to the collaborative contribution of all the components, the prepared composite foam exhibits excellent capacitive performances when incorporated into an asymmetric supercapacitor.

  3. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    Science.gov (United States)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  4. Effect of asymmetrical double-pockets and gate-drain underlap on Schottky barrier tunneling FET: Ambipolar conduction vs. high frequency performance

    Science.gov (United States)

    Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.

    2016-08-01

    In this paper, a proposed structure based on asymmetrical double pockets SB-TFET with gate-drain underlap is presented. 2D extensive modeling and simulation, using Silvaco TCAD, were carried out to study the effect of both underlap length and pockets' doping on the transistor performance. It was found that the underlap from the drain side suppresses the ambipolar conduction and doesn't enhance the high-frequency characteristics. The enhancement of the high-frequency characteristics could be realized by increasing the doping of the drain pocket over the doping of the source pocket. An optimum choice was found which gives the conditions of minimum ambipolar conduction, maximum ON current and maximum cut-off frequency. These enhancements render the device more competitive as a nanometer transistor.

  5. Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements.

    Science.gov (United States)

    Shi, Yantao; Zhu, Chao; Wang, Lin; Li, Wei; Fung, Kwok Kwong; Wang, Ning

    2013-01-02

    Through a rapid and template-free precipitation approach, we synthesized an asymmetric panel-like ZnO hierarchical architecture (PHA) for photoanodes of dye-sensitized solar cells (DSCs). The two sides of the PHA are constructed differently using densely interconnected, mono-crystalline and ultrathin ZnO nanosheets. By mixing these PHAs with ZnO nanoparticles (NPs), we developed an effective and feasible strategy to improve the electrical transport and photovoltaic performance of the composite photoanodes of DSCs. The highly crystallized and interconnected ZnO nanosheets largely minimized the total grain boundaries within the composite photoanodes and thus served as direct pathways for the transport and effective collection of free electrons. Through low-temperature (200 °C) annealing, these novel composite photoanodes achieved high conversion efficiencies of up to 5.59% for ZnO-based quasi-solid DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    Science.gov (United States)

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  7. Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles

    Science.gov (United States)

    Silveira, M.; Pontes, B. R.; Balthazar, J. M.

    2014-03-01

    In this study the behaviour of two different types of shock absorbers, symmetrical (linear) and asymmetrical (nonlinear) is compared for use on passenger vehicles. The analyses use different standard road inputs and include variation of the severity parameter, the asymmetry ratio and the velocity of the vehicle. Performance indices and acceleration values are used to assess the efficacy of the asymmetrical systems. The comparisons show that the asymmetrical system, with nonlinear characteristics, tends to have a smoother and more progressive performance, both for vertical and angular movements. The half-car front asymmetrical system was introduced, and the simulation results show that the use of the asymmetrical system only at the front of the vehicle can further diminish the angular oscillations. As lower levels of acceleration are essential for improved ride comfort, the use of asymmetrical systems for vibrations and impact absorption can be a more advantageous choice for passenger vehicles.

  8. Performance of JPEG Image Transmission Using Proposed Asymmetric Turbo Code

    Directory of Open Access Journals (Sweden)

    Siddiqi Mohammad Umar

    2007-01-01

    Full Text Available This paper gives the results of a simulation study on the performance of JPEG image transmission over AWGN and Rayleigh fading channels using typical and proposed asymmetric turbo codes for error control coding. The baseline JPEG algorithm is used to compress a QCIF ( "Suzie" image. The recursive systematic convolutional (RSC encoder with generator polynomials , that is, (13/11 in decimal, and 3G interleaver are used for the typical WCDMA and CDMA2000 turbo codes. The proposed asymmetric turbo code uses generator polynomials , that is, (13/11; 13/9 in decimal, and a code-matched interleaver. The effect of interleaver in the proposed asymmetric turbo code is studied using weight distribution and simulation. The simulation results and performance bound for proposed asymmetric turbo code for the frame length , code rate with Log-MAP decoder over AWGN channel are compared with the typical system. From the simulation results, it is observed that the image transmission using proposed asymmetric turbo code performs better than that with the typical system.

  9. Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-01-01

    Full Text Available Capacitive deionization (CDI method has drawn much attention for its low energy consumption, low pollution, and convenient manipulation. Activated carbon fibers (ACFs possess high adsorption ability and can be used as CDI electrode material. Herein, two kinds of PAN-based ACFs with different specific surface area (SSA were used for the CDI electrodes. The CDI performance was investigated; especially asymmetric electrodes’ effect was evaluated. The results demonstrated that PAN-based ACFs showed a high electrosorption rate (complete electrosorption in less than half an hour and moderate electrosorption capacity (up to 0.2 mmol/g. CDI experiments with asymmetric electrodes displayed a variation in electrosorption capacity between forward voltage and reverse voltage. It can be attributed to the electrical double layer (EDL overlap effect and inner pore potential; thus the ions with smaller hydrated ionic radius can be adsorbed more easily.

  10. Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-08-27

    In this article, we report the synthesis of electrode materials based on two-dimensional (2D) heterostructures of V2O5 nanosheets (V2O5 NS) and reduced graphene oxide (rGO) electrodes for asymmetric supercapacitor applications. Specifically, the 2D V2O5 and rGO/V2O5 nanosheet electrodes showed a specific capacitance of 253 F g-1 and 635 F g-1, respectively at a current density of 1 A g-1. The capacitance of the heterostructures is almost 2.5 times higher than the 2D V2O5 nanosheets alone. The corresponding energy density of 39 Wh kg-1 and 79.5 Wh kg-1 were achieved for the two electrodes at a power density of 900 W kg-1 in an asymmetric supercapacitor configuration. The energy and power density using the nanosheet heterostructure are, to our knowledge, higher than any of those that were previously reported for asymmetric supercapacitors using V2O5 electrodes. This journal is

  11. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    Science.gov (United States)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  12. Asymmetric Modeling of the Industrial Heavy Water Plant (PIAP)

    International Nuclear Information System (INIS)

    Teruel, Federico; Aprea, J; Guido Lavalle, German

    2000-01-01

    Software of asymmetric stationary simulation for the Industrial Heavy Water Plant (PIAP) was developed, based on an existing symmetric simulator (Brigitte 2.0).This software allows to turn off some of the isotopic enrichment twin units present in the plant and to simulate them asymmetrically, in other words, with different selection of parameters between twins.Other incorporations were done, such as passing flows between units and entering flows in strategic points of the plant.The iterative system in which the symmetric simulator is based was insufficient to develop the asymmetric simulator, so the system was modeled according to an implicit scheme for the units that form the simulator.This type of resolution resulted in a simulator that supports a big range of boundary conditions and internal parameters.Moreover, the time of calculus is short (∼3 minutes), making it actually useful.The asymmetric simulator is at the PIAP now, for its study and validation. It shows expected tendencies and results according to the symmetric simulator already validated

  13. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Directory of Open Access Journals (Sweden)

    Delin Tang

    Full Text Available Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  14. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Science.gov (United States)

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  15. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  16. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  17. Asymmetric Effects on Escape Rates of Bistable System

    International Nuclear Information System (INIS)

    Wang Canjun; Mei Dongcheng; Dai Zucheng

    2011-01-01

    The asymmetric effects on the escape rates from the stable states x ± in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x ± of bistable. However, the asymmetric parameter r enhances the particle escape from stable state x + , and holds back the particle escape from stable state x - . (general)

  18. Diagnostic implications of asymmetrical mammographic patterns

    International Nuclear Information System (INIS)

    Asenjo, M.; Ania, B.J.

    1997-01-01

    To analyze the effect of asymmetrical mammographic patterns of the diagnosis of breast cancer. In a series of 6, 476 patients referred to a Breast Imaging Diagnosis Unit, we excluded males, women with previous breast surgery, and cases in which mammography was not performed, which left 5,203 women included. Each breast was classified according to one of four patterns of mammographic parenchymal density. Asymmetry was considered to exist when a patient's breasts had different patterns. Breast cancer was confirmed histologically in 282 (5.4%) women. The mammographic pattern was asymmetrical in 8% of the women with cancer and in 2% of the women without cancer (p<0.001). Fine-needle aspiration biopsy was performed in 78% and 96% (p=0.04), respectively, of the women with and without mammographic asymmetry who had neoplasms, and in 33% and 22% (p=0.02), respectively, of the women with and without mammographic asymmetry who did not have neoplasms. Asymmetrical mammographic pattern was four times more frequent in the women with breast cancer. This asymmetry decreased the frequency of needle biopsy in women with cancer, but increased the frequency of needle biopsy in women without cancer. (Author) 11 refs

  19. Hadron scattering in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Chen Ying; Meng Guozhan; Feng Xu; Gong Ming; He Song; Li Gang; Liu Chuan; Liu Yubin; Ma Jianping; Meng Xiangfei; Shen Yan; Zhang Jianbo

    2007-01-01

    We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional Luescher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume

  20. The influence of variability on the optimal shape of an airway tree branching asymmetrically

    International Nuclear Information System (INIS)

    Mauroy, Benjamin; Bokov, Plamen

    2010-01-01

    The asymmetry of the bronchial tree has been reported on numerous occasions, and bronchi in the lung bifurcate most of the time into a major and a minor daughter. Asymmetry is most probably bound to play a role on the hydrodynamic resistance and volume occupation of the bronchial tree. Thus, in this work, we search for an optimal asymmetric airway tree crossed by Poiseuille flow that would be a good candidate to model the distal conductive part of the lung. The geometry is controlled by major and minor diameter reduction factors that depend on the generation. We show that the optimal asymmetric tree has diameter reduction factors that are adimensional from the second level of bifurcation and that they are highly dependent on the asymmetric ratio that defines the relative sizes of the major and minor branches in a bifurcation. This optimization also gives access to a cost function whose particularity is to be asymmetric around its minimum. Thus, the cliff-edge hypothesis predicts that if the system suffers variability, then the best tree is shifted from the optimal. We apply a recent theoretical model of cliff-edge in order to measure the role of variability on the determination of the best asymmetric tree. Then, we compare our results with lung data of the literature. In particular, we are able to quantify the variability needed to fit the data and to give hypothesis that could explain, at least partially, the shift found between the optimal tree and the measures in the case of asymmetric bronchial trees. Finally, our model predicts that, even if the population is adapted at best, there always exist individuals whose bronchial trees are associated with larger costs comparatively to the average and who ought to be more sensitive to geometrical remodeling

  1. Physics and design issues of asymmetric storage ring colliders as B-factories

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-08-01

    This paper concentrates on generic R ampersand D and design issues of asymmetric colliders via a specific example, namely a 9 GeV x 3 GeV collider based on PEP at SLAC. An asymmetric e + -e - collider at the Y(4s) and with sufficiently high luminosity (10 33 -10 34 cm -2 s -1 ) offers the possibility of studying mixing, rare decays, and CP violation in the B bar B meson system, as well as ''beautiful'' tau-charm physics, and has certain qualitative advantages from detection and machine design points of view. These include: the energy constraint; clean environment (∼25% B + B - , B 0 bar B 0 ); large cross section (1 nb); vertex reconstruction (from the time development of space-time separated B and bar B decays due to moving center-of-mass); reduced backgrounds; greatest sensitivity to CP violation in B → CP eigenstate; the possibility of using higher collision frequencies, up to 100 MHz, in a head-on colliding mode using magnetic separation. It is estimated that for B → ΨK s , an asymmetric collider has an advantage equivalent to a factor of five in luminosity relative to a symmetric one. There are, however, questions with regard to the physics of the asymmetric beam-beam coulomb interaction that may limit the intrinsic luminosity and the possibility of realizing the small beam pipes necessary to determine the vertices. 16 refs., 2 figs

  2. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Kelsom Corey

    2012-11-01

    Full Text Available Abstract Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC. There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.

  3. Construction of an Asymmetric Quaternary Carbon Center via Allylation of Hydrazones

    International Nuclear Information System (INIS)

    Kim, Jin Bum; Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    Asymmetric indium-mediated allylation of imine derivatives bearing a chiral auxiliary is a reliable strategy for the synthesis of chiral homoallylic amines. Various techniques for indium-mediated stereoselective allylation of imines bearing a chiral auxiliary have been reported. In 1997 Loh and co-workers reported indium-mediated allylation with imines derived from L-valine methyl ester. Since then, many forms of indium-mediated allylation bearing a chiral auxiliary have been reported, including imines derived from (S)-valinol, (R)-phenylglycinol, uracil, (R)-phenylglycinol methyl ester, N-tert-butanesufinamide, and (1R,2S)-1-amino-2-indanol. However, the synthesis of chiral auxiliaries often involves a laborious multi-step synthesis with expensive reagents. Therefore, the development of readily accessible chiral auxiliaries for asymmetric indium-mediated all-ylation is in high demand

  4. Using Agent Based Distillation to Explore Issues Related to Asymmetric Warfare

    Science.gov (United States)

    2009-10-01

    official definition of asymmetric warfare , considering that its use was redundant to irregular warfare [30]. 2 Such as the Lanchester Equations...RTP-MP-MSG-069 23 - 1 Using Agent Based Distillation to Explore Issues Related to Asymmetric Warfare Martin Adelantado, Jean-Michel Mathé...shows that both conventional and asymmetric warfare are characterised by nonlinear behaviours and that engagement is a Complex Adaptive System (CAS

  5. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  6. Investigating the degradation behavior under hot carrier stress for InGaZnO TFTs with symmetric and asymmetric structures

    International Nuclear Information System (INIS)

    Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Chen, Te-Chih; Hsieh, Tien-Yu; Chen, Yu-Te; Tsai, Wu-Wei; Chiang, Wen-Jen; Yan, Jing-Yi

    2013-01-01

    This letter studies the hot-carrier effect in indium–gallium–zinc oxide (IGZO) thin film transistors with symmetric and asymmetric source/drain structures. The different degradation behaviors after hot-carrier stress in symmetric and asymmetric source/drain devices indicate that different mechanisms dominate the degradation. Since the C–V measurement is highly sensitive to trap states compared to the I–V characterization, C–V curves are utilized to analyze the hot-carrier stress-induced trap state generation. Furthermore, the asymmetric C–V measurements C GD (gate-to-drain capacitance) and C GS (gate-to-source capacitance) are used to analyze the trap state in channel location. The asymmetric source/drain structure under hot-carrier stress induces an asymmetric electrical field and causes different degradation behaviors. In this work, the on-current and subthreshold swing (S.S.) degrade under low electrical field, whereas an apparent V t shift occurs under large electrical field. The different degradation behaviors indicate that trap states are generated under a low electrical field and the channel-hot-electron (CHE) effect occurs under a large electrical field. - Highlights: ► Asymmetric structure thin film transistors improve kick-back effect. ► Asymmetric structures under hot-carrier stress induce different degradation. ► Hot-carrier stress leads to capacitance–voltage curve distortion. ► Extra trap states are generated during hot-carrier stress

  7. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    International Nuclear Information System (INIS)

    Bang, Do; Awano, Hiroyuki

    2015-01-01

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching

  8. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Do, E-mail: bang@spin.mp.es.osaka-u.ac.jp [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan); Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Awano, Hiroyuki [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan)

    2015-05-07

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching.

  9. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2012-08-01

    Full Text Available The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee and in high yields (up to 97%.

  10. 1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors

    Science.gov (United States)

    Zhao, Junhong; Zheng, Mingbo; Run, Zhen; Xia, Jing; Sun, Mengjun; Pang, Huan

    2015-07-01

    1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes are synthesized for the first time by a hydrothermal method. We present a self-reacting template method to synthesize 1D Co2.18Ni0.82Si2O5(OH)4 architectures using Ni(SO4)0.3(OH)1.4 nanobelts. A high-performance flexible asymmetric solid-state supercapacitor can be successfully fabricated based on the 1D Co2.18Ni0.82Si2O5(OH)4 architectures and graphene nanosheets. Interestingly, the as-assembled 1D Co2.18Ni0.82Si2O5(OH)4 architectures//Graphene nanosheets asymmetric solid-state supercapacitor can achieve a maximum energy density of 0.496 mWh cm-3, which is higher than most of reported solid state supercapacitors. Additionally, the device shows high cycle stability for 10,000 cycles. These features make the 1D Co2.18Ni0.82Si2O5(OH)4 architectures as one of the most promising candidates for high-performance energy storage devices.

  11. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties

    OpenAIRE

    Petrov, P. (Petar); Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S. (Spiro); Irache, J.M. (Juan Manuel); Müller, A.H.E. (Axel H.E.)

    2013-01-01

    The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...

  12. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision.

    Science.gov (United States)

    Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas; Visseq, Vincent; Erleben, Kenny

    2017-02-01

    Analysis of voice pathologies may require vocal fold models that include relevant features such as vocal fold asymmetric collision. The present study numerically addresses the problem of frictionless asymmetric collision in a self-sustained three-dimensional continuum model of the vocal folds. Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold dynamics is examined by different variational methods for inequality constrained minimization problems, namely, the Lagrange multiplier method and the penalty method. In contrast to the penalty solution, which is related to classical spring-like contact forces, numerical examples show that the parameter-independent Lagrange multiplier solution is more robust and accurate in the estimation of dynamical and mechanical features at vocal fold contact. Furthermore, special attention is paid to the temporal integration schemes in relation to the contact problem, the results suggesting an advantage of highly diffusive schemes. Finally, vocal fold contact enforcement is shown to affect asymmetric oscillations. The present model may be adapted to existing vocal fold models, which may contribute to a better understanding of the effect of the nonlinear contact phenomenon on phonation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol.

    Science.gov (United States)

    Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott

    2017-08-01

    The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study on the output factors of asymmetrical rectangular electron beam field

    International Nuclear Information System (INIS)

    Chen Yinghai; Yang Yueqin; Ma Yuhong; Zheng Jin; Zou Lijuan

    2009-01-01

    Objective: To evaluate the variant regularity of the output factors of asymmetrical rectangular electron beam field. Methods: The output factors of three special fields with different applicators and energies were measured by ionization chamber method at different off-axis distances. Then deviations of the output factors between asymmetrical and symmetric rectangular fields were calculated. Results: The changes of output factor with different off-axis distances in asymmetrical rectangular fields were basically consistent with those in standard square fields with the same applicator. It revealed that the output factor of asymmetrical rectangular field was related with the off-axis ratio of standard square field. Applicator and field size did not show obvious influence on the output factor. Conclusions: The output factor changes of asymmetrical rectangular field are mainly correlated with the off-axis ratio of standard square field. The correction of the output factor is determined by the off-axis ratio changes in standard square field. (authors)

  15. Asymmetric Formal Aza-Diels-Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines.

    Science.gov (United States)

    Zhang, Sheng; Cha, Lide; Li, Lijun; Hu, Yanbin; Li, Yanan; Zha, Zhenggen; Wang, Zhiyong

    2016-04-15

    A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

  16. Lift production through asymmetric flapping

    Science.gov (United States)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  17. Success Factors of Asymmetric Connections - Example of Large Slovenian Enterprises

    Directory of Open Access Journals (Sweden)

    Viktor Vračar

    2014-11-01

    Full Text Available More and more companies realize the fact that networking or partner collaborations, which are based on partner relations between companies, are essential for their long-term existence. In today’s global competitive environment each company is included at least in some different connections. Very common connections occur between large and smaller enterprises, where the so called asymmetric connections occur, which may be understood as the ability of one organisation to establish power, influence and control over the other organisation and its resources. According to numerous statements, the connections between enterprises are very frequently uneffectivenessful, with opinions on the optimal nature of asymmetric connections being quite common as well, whereby it is, as a rule, a synergic complementing of missing content for both partners. To verify the thesis, that companies achieve more competitiveness and effectiveness through connections, whereby the so called asymmetric connections are common, a structural model of the evolution of asymmetric connection has been developed, which connects the theoretically identified factors and all dependent concepts of competitiveness, efficiency and effectiveness. The empirical research also attempts to further expose the factors of asymmetric connections, which affect efficiency and effectiveness of the connected enterprises.

  18. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  19. Symmetrization of the beam-beam interaction in an asymmetric collider

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1990-07-01

    This paper studies the idea of symmetrizing both the lattice and the beams of an asymmetric collider, and discusses why this regime should be within the parametric reach of the design in order to credibly ensure its performance. Also examined is the effectiveness of a simple compensation method using the emittance as a free parameter and that it does not work in all cases. At present, when there are no existing asymmetric colliders, it seems prudent to design an asymmetric collider so as to be similar to a symmetric one (without relying on a particular theory of the asymmetric beam-beam interaction that has not passed tests of fidelity). Nevertheless, one must allow for the maximum possible flexibility and freedom in adjusting those parameters that affect luminosity. Such a parameter flexibility will be essential in tuning the collider to the highest luminosity

  20. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...... the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.......A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed...... by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution...

  1. A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division

    Science.gov (United States)

    Cruz-Ramírez, Alfredo; Díaz-Triviño, Sara; Blilou, Ikram; Grieneisen, Verônica A.; Sozzani, Rosangela; Zamioudis, Christos; Miskolczi, Pál; Nieuwland, Jeroen; Benjamins, René; Dhonukshe, Pankaj; Caballero-Pérez, Juan; Horvath, Beatrix; Long, Yuchen; Mähönen, Ari Pekka; Zhang, Hongtao; Xu, Jian; Murray, James A.H.; Benfey, Philip N.; Bako, Laszlo; Marée, Athanasius F.M.; Scheres, Ben

    2012-01-01

    SUMMARY In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a “flip flop” that constrains asymmetric cell division to the stem cell region. PMID:22921914

  2. Force on an Asymmetric Capacitor

    National Research Council Canada - National Science Library

    Bahder, Thomas

    2003-01-01

    .... At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes...

  3. The evolution of texture in aluminum alloy sheet during asymmetric rolling

    International Nuclear Information System (INIS)

    Kim, K-H.; Lee, D.N.

    2000-01-01

    Asymmetric rolling, in which the upper and lower roll radii are different, imposes shear deformation on sheets through the thickness, which in turn gives rise to shear deformation textures in the sheets through the thickness. A component of ND// in the shear deformation textures can improve the plastic strain ratios of aluminum sheets. In order to understand the evolution of ND// , the strain histories and distributions in the sheets during the asymmetric rolling are calculated by the finite element method. The strain history and distribution are used to calculate crystallographic orientations and stable orientations based on the Taylor-Bishop-Hill theory and the Renouward-Wintenberger theory. The shear deformation texture can vary with the ratio of shear to normal strain increments. As the ratio increases from zero to infinity, the texture moves from the plane strain compression texture (β fiber) to the ideal shear deformation texture consisting of {001} , {111} , and {111} . The ratio increases with rolling reduction per pass in asymmetric rolling. However, it is practically difficult to the rolling reduction per pass high enough to obtain the ideal shear deformation texture. Imposing the positive and negative shear deformations on the sheet by reversing the shearing direction can give rise to the ideal shear deformation texture. This has been discussed. (author)

  4. High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

    Science.gov (United States)

    Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge

    2016-09-14

    In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.

  5. Asymmetric Organocatalysis and Photoredox Catalysis for the α-Functionalization of Tetrahydroisoquinolines

    KAUST Repository

    Hou, Hong

    2018-03-14

    The asymmetric α‐alkylation of tetrahydroisoquinolines with cyclic ketones has been accomplished in the presence of a combined catalytic system consisting of a visible‐light photoredox catalyst and a chiral primary amine organocatalyst. The desired products were obtained in good yields, high enantioselectivity, and good to excellent diastereoselectivity. (PC: photoredox cycle, EN: enamine cycle).

  6. Asymmetric Organocatalysis and Photoredox Catalysis for the α-Functionalization of Tetrahydroisoquinolines

    KAUST Repository

    Hou, Hong; Zhu, Shaoqun; Atodiresei, Iuliana; Rueping, Magnus

    2018-01-01

    The asymmetric α‐alkylation of tetrahydroisoquinolines with cyclic ketones has been accomplished in the presence of a combined catalytic system consisting of a visible‐light photoredox catalyst and a chiral primary amine organocatalyst. The desired products were obtained in good yields, high enantioselectivity, and good to excellent diastereoselectivity. (PC: photoredox cycle, EN: enamine cycle).

  7. Asymmetric synthesis of cyclo-archaeol and ß-glucosyl cyclo-archaeol

    NARCIS (Netherlands)

    Ferrer, C.; Fodran, P.; Barroso, S.; Gibson, R.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.; Minnaard, A.J.

    2013-01-01

    An efficient asymmetric synthesis of cyclo-archaeol and beta-glucosyl cyclo-archaeol is presented employing catalytic asymmetric conjugate addition and catalytic epoxide ring opening as the key steps. Their occurrence in deep sea hydrothermal vents has been confirmed by chromatographic comparison

  8. Asymmetric Damage Segregation Constitutes an Emergent Population-Level Stress Response

    DEFF Research Database (Denmark)

    Vedel, Søren; Nunns, Harry; Košmrlj, Andrej

    2016-01-01

    Asymmetric damage segregation (ADS) is a mechanism for increasing population fitness through non-random, asymmetric partitioning of damaged macromolecules at cell division. ADS has been reported across multiple organisms, though the measured effects on fitness of individuals are often small. Here...

  9. Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers

    Directory of Open Access Journals (Sweden)

    Arjunan Govindarajan

    2017-06-01

    Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.

  10. Supply Disruptions, Asymmetric Information, and a Backup Production Option

    OpenAIRE

    Zhibin (Ben) Yang; Göker Ayd{\\i}n; Volodymyr Babich; Damian R. Beil

    2009-01-01

    We study a manufacturer that faces a supplier privileged with private information about supply disruptions. We investigate how risk-management strategies of the manufacturer change and examine whether risk-management tools are more or less valuable in the presence of such asymmetric information. We model a supply chain with one manufacturer and one supplier, in which the supplier's reliability is either high or low and is the supplier's private information. On disruption, the supplier chooses...

  11. Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Jing; Feng, Huijie; Yang, Jiaqin; Qin, Qing; Fan, Hongmin; Wei, Caiying; Zheng, Wenjun

    2015-10-07

    It is meaningful to exploit copper sulfide materials with desired structure as well as potential application due to their cheapness and low toxicity. A low-temperature and facile solvothermal method for preparing three-dimensional (3D) hierarchical covellite (CuS) microspheres from an ionic liquid precursor [Bmim]2Cu2Cl6 (Bmim = 1-butyl-3-methylimidazolium) is reported. The formation of CuS nanostructures was achieved by decomposition of intermediate complex Cu(Tu)3Cl (thiourea = Tu), which produced CuS microspheres with diameters of 2.5-4 μm assembled by nanosheets with thicknesses of 10-15 nm. The ionic liquid, as an "all-in-one" medium, played a key role for the fabrication and self-assembly of CuS nanosheets. The alkylimidazolium rings ([Bmim](+)) were found to adsorb onto the (001) facets of CuS crystals, which inhibited the crystal growth along the [001] direction, while the alkyl chain had influence on the assembly of CuS nanosheets. The CuS microspheres showed enhanced electrochemical performance and high stability for the application in supercapacitors due to intriguing structural design and large specific surface area. When this well-defined CuS electrode was assembled into an asymmetric supercapacitor (ASC) with an activated carbon (AC) electrode, the CuS//AC-ASC demonstrated good cycle performance (∼88% capacitance after 4000 cycles) and high energy density (15.06 W h kg(-1) at a power density of 392.9 W kg(-1)). This work provides new insights into the use of copper sulfide electrode materials for asymmetric supercapacitors and other electrochemical devices.

  12. Performance of an AGATA asymmetric detector

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: ajboston@liv.ac.uk; Dimmock, M.R.; Unsworth, C.; Boston, H.C.; Cooper, R.J.; Grint, A.N.; Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Jones, M.; Nolan, P.J.; Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2009-06-01

    High-resolution gamma-ray detectors based on high-purity germanium crystals (HPGe) are one of the key workhorses of experimental nuclear science. The technical development of such detector technology has been dramatic in recent years. Large volume, high-granularity, electrically segmented HPGe detectors have been realised and a methodology to improve position sensitivity using pulse-shape analysis coupled with the novel technique of gamma-ray tracking has been developed. Collaborations have been established in Europe (Advanced GAmma Tracking Array (AGATA)) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383] and the USA (GRETA/GRETINA) [C.W. Beausang, Nucl. Instr. and Meth. B 204 (2003)] to build gamma-ray tracking spectrometers. This paper discusses the performance of the first AGATA asymmetric detector that has been tested at the University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well-defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  13. Effects of asymmetrical stance and movement on body rotation in pushing.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2015-01-21

    Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Project financing versus corporate financing under asymmetric information

    OpenAIRE

    Anton Miglo

    2008-01-01

    In recent years financing through the creation of an independent project company or financing by non-recourse debt has become an important part of corporate decisions. Shah and Thakor (JET, 1987) argue that project financing can be optimal when asymmetric information exists between firm's insiders and market participants. In contrast to that paper, we provide an asymmetric information argument for project financing without relying on corporate taxes, costly information production or an assump...

  15. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  16. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    Science.gov (United States)

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited AN EVOLVING

  17. Laser-Printed In-Plane Micro-Supercapacitors: From Symmetric to Asymmetric Structure.

    Science.gov (United States)

    Huang, Gui-Wen; Li, Na; Du, Yi; Feng, Qing-Ping; Xiao, Hong-Mei; Wu, Xing-Hua; Fu, Shao-Yun

    2018-01-10

    Here, we propose and demonstrate a complete solution for efficiently fabricating in-plane micro-supercapacitors (MSCs) from a symmetric to asymmetric structure. By using an original laser printing process, symmetric MSC with reduced graphene oxide (rGO)/silver nanowire (Ag-NW) hybrid electrodes was facilely fabricated and a high areal capacitance of 5.5 mF cm -2 was achieved, which reaches the best reports on graphene-based MSCs. More importantly, a "print-and-fold" method has been creatively proposed that enabled the rapid manufacturing of asymmetric in-plane MSCs beyond the traditional cumbersome technologies. α-Ni(OH) 2 particles with high tapping density were successfully synthesized and employed as the pseudocapacitive material. Consequently, an improved supply voltage of 1.5 V was obtained and an areal capacitance as high as 8.6 mF cm -2 has been realized. Moreover, a demonstration of a miniaturized MSC pack was performed by multiply-folding the serial Ag-NW-connected MSC units. As a result, a compact MSC pack with a high supply voltage of 3 V was obtained, which can be utilized to power a light-emitting diode light. These presented technologies may pave the way for the efficiently producing high performance in-plane MSCs, meanwhile offering a solution for the achievement of practical power supply packs integrated in limited spaces.

  18. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    International Nuclear Information System (INIS)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da

    2013-01-01

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats

  19. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da [Unidade de Aterosclerose, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-05-10

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.

  20. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  1. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  2. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    Science.gov (United States)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  3. Asymmetric mass models of disk galaxies. I. Messier 99

    Science.gov (United States)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  4. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  5. Asymmetric threat data mining and knowledge discovery

    Science.gov (United States)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  6. Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones.

    Science.gov (United States)

    He, Qijie; So, Chau Ming; Bian, Zhaoxiang; Hayashi, Tamio; Wang, Jun

    2015-03-01

    Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chiral 1,3,2-oxazaborolidines in asymmetric synthesis: recent advances

    International Nuclear Information System (INIS)

    Glushkov, Vladimir A; Tolstikov, Alexander G

    2004-01-01

    The use of chiral 1,3,2-oxazaborolidines in asymmetric organic synthesis, particularly, in enantioselective reduction of ketones, imines and oxime ethers, asymmetric Diels-Alder reactions, aldol condensation and atroposelective reduction of lactones is reviewed. Reactions of immobilised 1,3,2-oxazaborolidines are also considered.

  8. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  9. Polyoxyethylene hydrogenated castor oil modulates benzalkonium chloride toxicity: comparison of acute corneal barrier dysfunction induced by travoprost Z and travoprost.

    Science.gov (United States)

    Uematsu, Masafumi; Kumagami, Takeshi; Shimoda, Kenichiro; Kusano, Mao; Teshima, Mugen; To, Hideto; Kitahara, Takashi; Kitaoka, Takashi; Sasaki, Hitoshi

    2011-10-01

    To determine the element that modulates benzalkonium chloride (BAC) toxicity by using a new electrophysiological method to evaluate acute corneal barrier dysfunction induced by travoprost Z with sofZia (Travatan Z(®)), travoprost with 0.015% BAC (Travatan(®)), and its additives. Corneal transepithelial electrical resistance (TER) was measured in live white Japanese rabbits by 2 Ag/AgCl electrodes placed in the anterior aqueous chamber and on the cornea. We evaluated corneal TER changes after a 60-s exposure to travoprost Z, travoprost, and 0.015% BAC. Similarly, TER changes were evaluated after corneas were exposed for 60 s to the travoprost additives ethylenediaminetetraacetic acid disodium salt, boric acid, mannitol, trometamol, and polyoxyethylene hydrogenated castor oil 40 (HCO-40) with or without BAC. Corneal damage was examined after exposure to BAC with or without travoprost additives using scanning electron microscopy (SEM) and a cytotoxicity assay. Although no decreases of TER were noted after exposure to travoprost Z with sofZia and travoprost with 0.015% BAC, a significant decrease of corneal TER was observed after 0.015% BAC exposure. With the exception of BAC, no corneal TER decreases were observed for any travoprost additives. After corneal exposure to travoprost additives with BAC, HCO-40 was able to prevent the BAC-induced TER decrease. SEM observations and the cytotoxicity assay confirmed that there was a remarkable improvement of BAC-induced corneal epithelial toxicity after addition of HCO-40 to the BAC. Travoprost Z with sofZia and travoprost with BAC do not induce acute corneal barrier dysfunction. HCO-40 provides protection against BAC-induced corneal toxicity.

  10. Asymmetric Price Transmission in Indonesia's Wheat Flour Market

    OpenAIRE

    Varela, Gonzalo J.; Taniguchi, Kiyoshi

    2014-01-01

    Data indicate that its domestic price in Indonesia has been increasing regardless of movements in the international price of wheat. A test for asymmetric price transmission from international wheat to domestic wheat flour markets is conducted using an error correction model and find the presence of asymmetric price transmission. The upward adjustment in the domestic price of wheat flour is much faster than its adjustment downward when it deviates from long-run equilibrium. Our results are rob...

  11. Asymmetric split-gate ambipolar transistor and its circuit application to complementary inverter

    NARCIS (Netherlands)

    Yoo, H.; Smits, E.C.P.; van Breemen, A.J.J.M.; van der Steen, J.L.; Torricelli, F.; Ghittorelli, M.; Lee, J.; Gelinck, G.; Kim, J.-J.

    2016-01-01

    Using a concept of asymmetric side gate and main gate, it is shown that it is possible to realize unipolar transport (both p-type and n-type) in a thin-film transistor with a high-performance ambipolar polymer semiconductor. In a complementary inverter, this results in higher noise margin and DC

  12. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  13. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-04-21

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.

  14. From design to manufacturing of asymmetric teeth gears using computer application

    Science.gov (United States)

    Suciu, F.; Dascalescu, A.; Ungureanu, M.

    2017-05-01

    The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.

  15. Totally Asymmetric Limit for Models of Heat Conduction

    Science.gov (United States)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  16. Best Speed Fit EDF Scheduling for Performance Asymmetric Multiprocessors

    Directory of Open Access Journals (Sweden)

    Peng Wu

    2017-01-01

    Full Text Available In order to improve the performance of a real-time system, asymmetric multiprocessors have been proposed. The benefits of improved system performance and reduced power consumption from such architectures cannot be fully exploited unless suitable task scheduling and task allocation approaches are implemented at the operating system level. Unfortunately, most of the previous research on scheduling algorithms for performance asymmetric multiprocessors is focused on task priority assignment. They simply assign the highest priority task to the fastest processor. In this paper, we propose BSF-EDF (best speed fit for earliest deadline first for performance asymmetric multiprocessor scheduling. This approach chooses a suitable processor rather than the fastest one, when allocating tasks. With this proposed BSF-EDF scheduling, we also derive an effective schedulability test.

  17. Gravity-induced asymmetric distribution of a plant growth hormone

    Science.gov (United States)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  18. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  19. Asymmetric acoustic transmission in multiple frequency bands

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  20. Asymmetric acoustic transmission in multiple frequency bands

    International Nuclear Information System (INIS)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-01-01

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices

  1. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  2. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2017-06-01

    Full Text Available This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  3. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    Science.gov (United States)

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  4. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  5. Order, viscoelastic, and dielectric properties of symmetric and asymmetric alkyl[1]benzothieno[3,2-b][1]benzothiophenes.

    Science.gov (United States)

    Grigoriadis, Christos; Niebel, Claude; Ruzié, Christian; Geerts, Yves H; Floudas, George

    2014-02-06

    The morphology, the viscoelastic, the dielectric properties and the dynamics of phase transformation are studied in symmetrically and asymmetrically substituted alkyl[1]benzothieno[3,2-b][1]benzothiophenes (C8-BTBT) by X-ray scattering, rheology, and dielectric spectroscopy. The interlayer spacing reflects the molecular and supramolecular ordering, respectively, in the symmetrically and asymmetrically substituted BTBTs. In the asymmetric BTBT, the core layer is double in size with a broader network of intermolecular interactions though the increased S-S contacts that is prerequisite for the development of high performance OFET devices. Two crystal states with elastic and viscoelastic responses were identified in the symmetric compound. In contrast, the SmA phase in the asymmetric compound is a viscoelastic solid. A path-dependent dielectric environment with a switchable dielectric permittivity was found in both compounds by cooling below 0 °C with possible implications to charge transport. The kinetics of phase transformation to the crystalline and SmA phases revealed a nucleation and growth mechanism with rates dominated by the low activation barriers.

  6. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  7. [Combined orthodontic-orthoganthic surgery to treat asymmetric mandibular excess malocclusions].

    Science.gov (United States)

    Li, Xiao-Bing; Chen, Song; Chen, Yang-Xi; Li, Jun

    2005-06-01

    To discuss the skeletal and dentoalveolar characteristics of asymmetric mandibular excess malocclusions and to discuss the procedures of combined orthodontic-orthonganthic surgery treatments of asymmetric mandibular excess malocclusions. 25 cases treated by combined orthodontic-orthognathic surgery treatments were reviewed to find out the specialties of this kind of therapy. The asymmetric of mandible presents anterior and posterior teeth tipped both sagitally and horizontally, as well as upper and lower jaws incompatibility. The pre-surgical orthodontic treatments included decomposition of anterior and posterior teeth, leveling and aligning the teeth etc. The post-surgical orthodontic treatments were to detail the occlusions. The patients all got functional and aesthetic good results after the combined orthodontic-orthognathic surgery treatments. The asymmetric mandibular excess affects the harmony of the face badly, and the correction of it must be carried out by the combined orthodontic-orthognathic surgery treatments. The pre- and post-surgical orthodontic treatments are the key stages to make the skeletal corrections stable.

  8. Asymmetric Procyclicality of Chinese Banking and the Countercyclical Buffer of Basel III

    Directory of Open Access Journals (Sweden)

    Yufeng Li

    2015-01-01

    Full Text Available Since the global financial crisis of 2007-2008, the importance of the procyclicality in the banking sector has been highlighted. One of the Basel III objectives is to promote countercyclical buffers and reduce procyclicality. We apply time-varying copula combined with GARCH model to test the existence of asymmetric procyclicality of Chinese banking. The results show that the procyclicality of Chinese banking is asymmetric, where the dependence between loan and economy growth is more correlated during the decline stage than the rise stage of economy. Based on this asymmetry, we suggest that the authority can use high frequent index for signalling the start point of releasing countercyclical buffer and accelerate the releasing pace to avoid the supply of credit being constrained by regulatory capital requirements in downturns.

  9. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan; Alhebshi, Nuha; Anjum, Dalaver H.; Alshareef, Husam N.

    2014-01-01

    Porous cobalt sulfide (Co9S8) nanostructures with tunable morphology, but identical crystal phase and composition, have been directly nucleated over carbon fiber and evaluated as electrodes for asymmetric hybrid supercapacitors. As the morphology is changed from two-dimensional (2D) nanoflakes to 3D octahedra, dramatic changes in supercapacitor performance are observed. In three-electrode configuration, the binder-free Co9S82D nanoflake electrodes show a high specific capacitance of 1056 F g-1at 5 mV s-1vs. 88 F g-1for the 3D electrodes. As sulfides are known to have low operating potential, for the first time, asymmetric hybrid supercapacitors are constructed from Co9S8nanostructures and activated carbon (AC), providing an operation potential from 0 to 1.6 V. At a constant current density of 1 A g-1, the 2D Co9S8, nanoflake//AC asymmetric hybrid supercapacitor exhibits a gravimetric cell capacitance of 82.9 F g-1, which is much higher than that of an AC//AC symmetric capacitor (44.8 F g-1). Moreover, the asymmetric hybrid supercapacitor shows an excellent energy density of 31.4 W h kg-1at a power density of 200 W Kg-1and an excellent cycling stability with a capacitance retention of ∼90% after 5000 cycles. This journal is

  10. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  11. Asymmetric information and list-price reductions in the housing market

    NARCIS (Netherlands)

    de Wit, E.; van der Klaauw, B.

    2013-01-01

    In housing markets with asymmetric information list prices may signal unobserved properties of the house or the seller. Asymmetric information is the starting point for many models for the housing market. In this paper, we estimate the causal effect of list-price reductions on the time houses remain

  12. Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars

    This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price options. The models can be estimated straightforwardly by maximum likelihood, have high statistical fit when used on S&P 500 index return data, and allow for substantial negative skewness and time...... varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large set of index options between 1996 and 2009, substantial improvements are found compared to several benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities...

  13. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  14. Magnetically Modified Asymmetric Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  15. One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-03-01

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs.Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the

  16. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  17. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  18. Six transformer based asymmetrical embedded Z-source inverters

    DEFF Research Database (Denmark)

    Wei, Mo; Poh Chiang, Loh; Chi, Jin

    2013-01-01

    Embedded/Asymmetrical embedded Z-source inverters were proposed to maintain smooth input current/voltage across the dc source and within the impedance network, remain the shoot-through feature used to boost up the dc-link voltage without adding bulky filter at input side. This paper introduces a ...... a class of transformer based asymmetrical embedded Z-source inverters which keep the smooth input current and voltage while achieving enhanced voltage boost capability. The presented inverters are verified by laboratory prototypes experimentally....

  19. Asymmetric electron cyclotron emission from superthermal electrons in the TFR Tokamak

    International Nuclear Information System (INIS)

    1981-03-01

    Measurements of electron cyclotron radiation near the fundamental frequency on the high and low magnetic field side of the TFR Tokamak are reported. In the presence of a superthermal electron component the measured intensities are asymmetric. A theoretical explanation based on the combined effects of the electron relativistic mass variation and the 1/R variation of the tokamak magnetic field is discussed

  20. Synchronised and complementary coordination mechanisms in an asymmetric joint aiming task

    DEFF Research Database (Denmark)

    Skewes, Joshua Charles; Skewes, Lea; Michael, John

    2015-01-01

    Many forms of social interaction require that behaviour be coordinated in the here and now. Much research has been conducted on how people coordinate their actions in real time to achieve a joint goal, showing that people use both synchronised (i.e. symmetric) and complementary (i.e. asymmetric) ...... in this asymmetric task, as people synchronise better with an irregular, but adaptive partner, than with a completely predictable, but non-responsive metronome. These results show that given asymmetric task constraints, adaptability, rather than predictability facilitates coordination....

  1. Capability of DFIG WTS to ride through recurring asymmetrical grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Chen, Min

    2014-01-01

    The Wind Turbine Systems (WTS) are required to ride through recurring grid faults in some countries. In this paper, the capability of Doubly Fed Induction Generator (DFIG) WTS to ride through recurring asymmetrical grid faults is evaluated and compared with the ride through capability under single...... asymmetrical grid fault. A mathematical model of the DFIG under recurring asymmetrical grid faults is represented. The analysis are verified by simulations on a 1.5MW DFIG model and by experiments on a reduced-scale DFIG test system....

  2. Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide

    International Nuclear Information System (INIS)

    Wang, Yue-Sheng; Tsai, Dah-Shyang; Chung, Wen-Hung; Syu, Yong-Sin; Huang, Ying-Sheng

    2012-01-01

    Highlights: ► Mo-doping (15 mol%) enhances capacitance and diminishes oxide resistance. ► Influences of Mo-doped MnO 2 are analyzed at the level of capacitor power and energy. ► Polarization loss of the asymmetric capacitor is more than that of the symmetric one. ► Pseudocapacitance benefit on energy is evaluated with power and current densities. - Abstract: Ultracapacitors of asymmetric configuration have been prepared with activated carbon (AC) and undoped or Mo-doped manganese oxide (MnO 2 ) in 1.0 M Na 2 SO 4 electrolyte. Phase analysis shows the AC powder, 1–15 μm in size, contains both disordered and graphitic structures, and the undoped and Mo-doped oxide powder, 0.05–0.20 μm in particle size, mainly involves amorphous MnO 2 and MoO 2 . CV results indicate the single electrode of AC plus 10 wt% Mo-doped MnO 2 (A9O M 1) is superior to the electrode with undoped MnO 2 or high content of doped MnO 2 , exhibiting features of double layer capacitance at high scan rate and pseudocapacitance characteristics at low scan rate. When assembled with a negative electrode of AC, the capacitor of positive A9O M 1 electrode demonstrates the least power loss among three asymmetric capacitors. This asymmetric capacitor also shows a higher capacitance than the symmetric AC capacitor when the current density is less than 8.0 A g −1 in 1.8 V potential window. But a higher electrode resistance of A9O M 1, in contrast with AC, compromises its capacitance plus. When the energy density of A9O M 1 asymmetric capacitor is compared with that of symmetric AC capacitor at the same power level, the capacitance benefit on energy density is restricted to current density ≤ 3.0 A g −1 .

  3. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  4. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetrical Flow Control-Part II: Nonaxisymmetrical Self-Recirculation Casing Treatment.

    Science.gov (United States)

    Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki

    2013-03-01

    This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.

  5. Asymmetric syntheses of 3,4-disubstituted tetrahydroquinoline derivatives using (+)- sparteine-mediated electrophilic substitution

    International Nuclear Information System (INIS)

    Choi, Yun Soo; Kang, Kyoung Hee; Park, Yong Sun

    2015-01-01

    Tetrahydroquinolines bearing substituents are frequently found as a substructure in a number of alkaloids and natural products. Since their individual stereoisomers displays different biological activities, it is desirable to develop a highly stereoselective synthetic method for tetrahydroquinolines. While some progress has recently been made toward the development of asymmetric synthetic methods for tetrahydroquinolines, it is still a challenging topic in organic synthesis. In order to investigate the source of diastereoselection attained in the substitution reaction with a racemic epoxide, we examined the substitution of 2 with an excess amount of racemic p-chlorophenyl-substituted oxirane. We have developed a novel method for the asymmetric synthesis of trans-3,4-diaryl-substituted tetrahy- droquinolines from ortho-substituted N-pivaloyl anilines. The enantioselective process includes (+)-sparteine-mediated stereoselective lithiati on, kinetic resolution of epoxides in substitution, and stereospecific Mitsu nobu cyclization as the key reactions. The simple protocol can provide highly functionalized tetrahydroqu inoline rings and would allow their further functionalization to access more complex target molecules

  6. Asymmetric syntheses of 3,4-disubstituted tetrahydroquinoline derivatives using (+)- sparteine-mediated electrophilic substitution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Soo; Kang, Kyoung Hee; Park, Yong Sun [Dept. of Chemistry, Konkuk University, Seoul (Korea, Republic of)

    2015-05-15

    Tetrahydroquinolines bearing substituents are frequently found as a substructure in a number of alkaloids and natural products. Since their individual stereoisomers displays different biological activities, it is desirable to develop a highly stereoselective synthetic method for tetrahydroquinolines. While some progress has recently been made toward the development of asymmetric synthetic methods for tetrahydroquinolines, it is still a challenging topic in organic synthesis. In order to investigate the source of diastereoselection attained in the substitution reaction with a racemic epoxide, we examined the substitution of 2 with an excess amount of racemic p-chlorophenyl-substituted oxirane. We have developed a novel method for the asymmetric synthesis of trans-3,4-diaryl-substituted tetrahy- droquinolines from ortho-substituted N-pivaloyl anilines. The enantioselective process includes (+)-sparteine-mediated stereoselective lithiati on, kinetic resolution of epoxides in substitution, and stereospecific Mitsu nobu cyclization as the key reactions. The simple protocol can provide highly functionalized tetrahydroqu inoline rings and would allow their further functionalization to access more complex target molecules.

  7. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  8. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    International Nuclear Information System (INIS)

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.

    2017-01-01

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K,i.e.above the melting transition temperature of the two lipids.

  9. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    Science.gov (United States)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  10. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Vrijman, V.; El-Saady, R.; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2014-01-01

    PURPOSE: To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). METHODS: This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric

  11. Defect-induced transitions in synchronous asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Liu Mingzhe; Wang Ruili; Jiang Rui; Hu Maobin; Gao Yang

    2009-01-01

    The effects of a single local defect in synchronous asymmetric exclusion processes are investigated via theoretical analysis and Monte Carlo simulations. Our theoretical analysis shows that there are four possible stationary phases, i.e., the (low density, low density), (low density, high density), (high density, low density) and (high density, high density) in the system. In the (high density, low density) phase, the system can reach a maximal current which is determined by the local defect, but independent of boundary conditions. A phenomenological domain wall approach is developed to predict dynamic behavior at phase boundaries. The effects of defective hopping probability p on density profiles and currents are investigated. Our investigation shows that the value of p determines phase transitions when entrance rate α and exit rate β are fixed. Density profiles and currents obtained from theoretical calculations are in agreement with Monte Carlo simulations

  12. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  13. Field factors for asymmetric collimators

    International Nuclear Information System (INIS)

    Turner, J.R.; Butler, A.P.H.

    1996-01-01

    In recent years manufacturers have been supplying linear accelerators with either a single pair or a dual pair of collimators. The use of a model to relate off-axis field factors to on-axis field factors obviates the need for repeat measurements whenever the asymmetric collimators are employed. We have investigated the variation of collimator scatter Sc, with distance of the central ray x from the central axis for a variety of non square field sizes. Collimator scatter was measured by in-air measurements with a build-up cap. The Primaty-Off-Centre-Ratio (POCR) was measured in-air by scanning orthogonally across the beam with an ionization chamber. The result of the investigation is the useful prediction of off-axis field factors for a range of rectangular asymmetric fields using the simple product of the on-axis field factor and the POCR in air. The effect of asymmetry on the quality of the beam and hence the percent depth dose will be discussed. (author)

  14. Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications.

    Science.gov (United States)

    Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven

    2010-08-30

    We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.

  15. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  16. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    International Nuclear Information System (INIS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin

    2016-01-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)

  17. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    Science.gov (United States)

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  18. A Hybrid Cascade Converter Topology With Series-Connected Symmetrical and Asymmetrical Diode-Clamped H-Bridge Cells

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Ghosh, Arindam

    2011-01-01

    to approach a very low total harmonic distortion of voltage and current, which leads to the possible elimination of the output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which 19 levels can be synthesized in output......A novel H-bridge multilevel pulsewidth modulation converter topology based on a series connection of a high-voltage diode-clamped inverter and a low-voltage conventional inverter is proposed in this paper. A dc link voltage arrangement for the new hybrid and asymmetric solution is presented to have...... voltage with the same number of components. To balance the dc link capacitor voltages for the maximum output voltage resolution as well as synthesize asymmetrical dc link combination, a new multi-output boost converter is utilized at the dc link voltage of a seven-level H-bridge diode-clamped inverter...

  19. The effects of asymmetric directional microphone fittings on acceptance of background noise.

    Science.gov (United States)

    Kim, Jong S; Bryan, Melinda Freyaldenhoven

    2011-05-01

    The effects of asymmetric directional microphone fittings (i.e., an omnidirectional microphone on one ear and a directional microphone on the other) on speech understanding in noise and acceptance of background noise were investigated in 15 full-time hearing aid users. Subjects were fitted binaurally with four directional microphone conditions (i.e., binaural omnidirectional, right asymmetric directional, left asymmetric directional and binaural directional microphones) using Siemens Intuis Directional behind-the-ear hearing aids. Speech understanding in noise was assessed using the Hearing in Noise Test, and acceptance of background noise was assessed using the Acceptable Noise Level procedure. Speech was presented from 0° while noise was presented from 180° azimuth. The results revealed that speech understanding in noise improved when using asymmetric directional microphones compared to binaural omnidirectional microphone fittings and was not significantly hindered compared to binaural directional microphone fittings. The results also revealed that listeners accepted more background noise when fitted with asymmetric directional microphones as compared to binaural omnidirectional microphones. Lastly, the results revealed that the acceptance of noise was further increased for the binaural directional microphones when compared to the asymmetric directional microphones, maximizing listeners' willingness to accept background noise in the presence of noise. Clinical implications will be discussed.

  20. An asymmetric Β-factory based on PEP

    International Nuclear Information System (INIS)

    Oddone, P.

    1989-01-01

    This paper reviews the motivation for building asymmetric B-factories based on storage rings and describes the current LBL/SLAC study to develop such a factory by modifying the PEP storage ring and adding a new low energy (2.5-3 GeV) storage ring. Collisions between the beam of the modified high energy PEP ring and the low energy ring lead to a luminosity of 2 x 10 33 cm- 2 sec - 1 at E cm = Y(4s) with currents of 0.8A in each beam. Further increases in current can lead to luminosities close to 10 34 cm - 2 sec - 1

  1. Beam-beam issues in asymmetric colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e + - e - colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II)

  2. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    van der Linden, Jan Willem; Vrijman, Violette; Al-Saady, Rana; El-Saady, Rana; van der Meulen, Ivanka J.; Mourits, Maarten P.; Lapid-Gortzak, Ruth

    2014-01-01

    To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric multifocal IOL (LS-312

  3. The asymmetric rotator model applied to odd-mass iridium isotopes

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1980-04-01

    The method of inversion of the eigenvalue problem previously developed for nuclei with axial symmetry is extended to asymmetric equilibrium shapes. This new approach of the asymmetric rotator model is applied to the odd-mass iridium isotopes. A satisfactory and coherent description of the observed energy spectra is obtained, especially for the lighter isotopes

  4. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-11-08

    Printed electronics is widely gaining much attention for compact and high-performance energy-storage devices because of the advancement of flexible electronics. The development of a low-cost current collector, selection, and utilization of the proper material deposition tool and improvement of the device energy density are major challenges for the existing flexible supercapacitors. In this paper, we have reported an inkjet-printed solid-state asymmetric supercapacitor on commercial A4 paper using a low-cost desktop printer (EPSON L130). The physical properties of all inks have been carefully optimized so that the developed inks are within the printable range, i.e., Fromm number of 4 electrode, and another such structure is printed with activated carbon ink to form a negative electrode. A combination of both of these electrodes is outlaid by fabricating an asymmetric supercapacitor. The assembled asymmetric supercapacitor with poly(vinyl alcohol) (PVA)-LiCl gel electrolyte shows a stable potential window of 0-2.0 V and exhibits outstanding flexibility, good cyclic stability, high rate capability, and high energy density. The fabricated paper-substrate-based flexible asymmetric supercapacitor also displays an excellent electrochemical performances, e.g., a maximum areal capacitance of 1.586 F/cm 2 (1023 F/g) at a current density of 4 mA/cm 2 , highest energy density of 22 mWh/cm 3 at a power density of 0.099 W/cm 3 , a capacity retention of 89.6% even after 9000 charge-discharge cycles, and a low charge-transfer resistance of 2.3 Ω. So, utilization of inkjet printing for the development of paper-based flexible electronics has a strong potential for embedding into the next generation low-cost, compact, and wearable energy-storage devices and other printed electronic applications.

  5. Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals

    International Nuclear Information System (INIS)

    Hoennicke, M. G.; Cusatis, C.

    2007-01-01

    An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied

  6. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish

    Directory of Open Access Journals (Sweden)

    Joshua B. Gross

    2016-10-01

    Full Text Available Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.

  7. Specific features of waveguide recombination in laser structures with asymmetric barrier layers

    Energy Technology Data Exchange (ETDEWEB)

    Polubavkina, Yu. S., E-mail: polubavkina@mail.ru; Zubov, F. I.; Moiseev, E. I.; Kryzhanovskaya, N. V.; Maximov, M. V. [Russian Academy of Sciences, St. Petersburg National Research Academic University (Russian Federation); Semenova, E. S.; Yvind, K. [Technical University of Denmark, DTU Fotonik (Denmark); Asryan, L. V. [Virginia Polytechnic Institute and State University (United States); Zhukov, A. E. [Russian Academy of Sciences, St. Petersburg National Research Academic University (Russian Federation)

    2017-02-15

    The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm{sup 2}) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding layer. This can be attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport.

  8. Specific features of waveguide recombination in laser structures with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Polubavkina, Yu; Zubov, F. I.; Moiseev, E.

    2017-01-01

    microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding......The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm2) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical...... layer. This can be attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport....

  9. Impact of asymmetric lamp positioning on the performance of a closed-conduit UV reactor

    Directory of Open Access Journals (Sweden)

    Tipu Sultan

    2017-06-01

    Full Text Available Computational fluid dynamics (CFD analyses for the performance improvement of a closed-conduit ultraviolet (UV reactor were performed by changing the lamp positions from symmetric to asymmetric. The asymmetric lamp positioning can be useful for UV reactor design and optimization. This goal was achieved by incorporating the two performance factors, namely reduction equivalent dose (RED and system dose performance. Four cases were carried out for asymmetric lamp positioning within the UV reactor chamber and each case consisted of four UV lamps that were simulated once symmetrically and four times asymmetrically. The results of the four asymmetric cases were compared with the symmetric one. Moreover, these results were evaluated by using CFD simulations of a closed-conduit UV reactor. The fluence rate model, UVCalc3D was employed to validate the simulations results. The simulation results provide detailed information about the dose distribution, pathogen track modeling and RED. The RED value was increased by approximately 15% by using UVCalc3D fluence rate model. Additionally, the asymmetric lamp positioning of the UV lamps had more than 50% of the pathogens received a better and a higher UV dose than in the symmetric case. Consequently, the system dose performance was improved by asymmetric lamp positioning. It was concluded that the performance parameters (higher RED and system dose performance were improved by using asymmetric lamp positioning.

  10. Asymmetric adaptations to energy price changes

    International Nuclear Information System (INIS)

    Kuper, G.H.; Van Soest, D.P.

    1999-01-01

    The effectiveness of policies to reduce the use of energy depend on the elasticity of substitution between the various inputs and on the rate of technological progress. This paper presents a theoretical model emphasising energy investment characteristics of uncertainty and irreversibility that result in testable hypotheses concerning the relative values of substitution parameters and rates of technological change in periods of high and increasing energy prices and in periods of low prices. Estimation results for a panel of sectors of the Dutch economy show that the elasticity of substitution between energy and other inputs is low in periods of low energy prices, whereas it is significantly higher in the preceding period of high and increasing energy prices. Furthermore, energy-saving technological progress in periods of high and increasing energy prices is also significantly higher than if energy prices are low and falling. The regression results suggest that, due this asymmetric response of firms to changes in energy prices, taxing energy in the current period of low energy prices will not yield substantial reductions in energy use of Dutch industry. 21 refs

  11. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  12. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  13. Electron Raman scattering in asymmetrical multiple quantum wells

    International Nuclear Information System (INIS)

    Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L

    2005-01-01

    Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers

  14. Preview-based Asymmetric Load Reduction of Wind Turbines

    DEFF Research Database (Denmark)

    Madsen, Mathias; Filsø, Jakob; Soltani, Mohsen

    2012-01-01

    Controller (MPC) developed is based on a model with individual blade pitching to utilize the LIDAR measurements. The MPC must also maintain a given power reference while satisfying a set of actuator constraints. The designed controller was tested on a 5 MW wind turbine in the FAST simulator and compared......Fatigue loads on wind turbines caused by an asymmetric wind field become an increasing concern when the scale of wind turbines increases. This paper presents a model based predictive approach to reduce asymmetric loads by using Light Detection And Ranging (LIDAR) measurements. The Model Predictive...

  15. Architecture-Aware Optimization of an HEVC decoder on Asymmetric Multicore Processors

    OpenAIRE

    Rodríguez-Sánchez, Rafael; Quintana-Ortí, Enrique S.

    2016-01-01

    Low-power asymmetric multicore processors (AMPs) attract considerable attention due to their appealing performance-power ratio for energy-constrained environments. However, these processors pose a significant programming challenge due to the integration of cores with different performance capabilities, asking for an asymmetry-aware scheduling solution that carefully distributes the workload. The recent HEVC standard, which offers several high-level parallelization strategies, is an important ...

  16. Anisotropic light emission of single CdSe/CdS tetrapods due to asymmetric electron localization

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, Thomas; Mauser, Christian; Como, Enrico da; Rogach, Andrey; Feldmann, Jochen [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany); Talapin, Dmitri V. [Department of Chemistry, University of Chicago, Chicago, IL (United States)

    2008-07-01

    We have recently reported on highly luminescent CdSe/CdS tetrapod heterostructures, where wurtzite CdS arms were grown on CdSe zinc-blend nuclei. Due to the peculiar energy band alignment the holes remain trapped in the CdSe core, whereas electrons in ideal tetrapods are expected to delocalize symmetrically into the four CdS arms. However, polarization dependent photoluminescence experiments on single tetrapods show asymmetric localization effects for electrons. Whereas in optical excitation nearly no polarization anisotropy is observed, high polarization degrees are present in the emission process. Calculations based on the effective mass approximation show that the electron wavefunction confinement is very sensitive to changes in the shape of the tetrapods. Breaking the symmetry by increasing the thickness of one arm gives rise to a strongly asymmetric localization of the electron and leads to high polarization degrees in emission. The related decrease in electron-hole wavefunction overlap results in a correlation between emission intensity and polarization anisotropy in agreement with our experimental findings.

  17. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  18. Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Varun, E-mail: varun@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Jaiswal, Neeraj K. [Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur 482005 (India)

    2017-02-28

    Highlights: • Asymmetric hydrogen termination of Zigzag Germanene Nanoribbons (ZGeNR) is presented with their plausible spintronic device application. • It is revealed that asymmetric terminations are energetically more favourable compared to symmetric terminations. • The magnetic moment analysis depicts that asymmetric ZGeNR have a magnetic ground state with a preferred ferromagnetic (FM) coupling. • Presented doped asymmetric ZGeNR exhibits a half-metallic character which makes them qualify for spin-filtering device. - Abstract: First-principles investigations have been performed to explore the spin based electronic and transport properties of asymmetrically H-terminated zigzag germanene nanoribbons (2H−H ZGeNR). Investigations reveal a significant formation energy difference (ΔE{sub F} = E{sub F(2H-H)} − E{sub F(H-H)} ∼ −0.49 eV), highlighting more energetic stability for asymmetric edge termination compared to symmetric edge termination, irrespective of the ribbon width. Further, magnetic moment analysis and total energy calculations were performed to unveil that these structures have a magnetic ground state with preferred ferromagnetic (FM) coupling. The calculated E-k structures project a unique bipolar semiconducting behaviour for 2H−H ZGeNR which is contrast to H-terminated ZGeNR. Half-metallic transformation has also been revealed via suitable p-type or n-type doping for these structures. Finally, transport calculations were performed to highlight the selective contributions of spin-down (spin-up) electrons in the I–V characteristics of the doped 2H−H ZGeNR, suggesting their vitality for spintronic device applications.

  19. Propagation of an asymmetric relativistic laser pulse in plasma

    International Nuclear Information System (INIS)

    Garuchava, D.P.; Murusidze, I.G.; Suramlishvili, G.I.; Tsintsadze, N.L.; Tskhakaya, D.D.

    1997-01-01

    The interaction of a relativistically intense asymmetric laser pulse with a plasma has been studied. The asymmetric shape of the pulse implies that the rise time of the leading edge of the pulse is much greater than the fall time of the trailing edge. The numerical simulation of the propagation of such a pulse through an underdense plasma has shown that relativistic self-focusing enhances the effect of ponderomotive self-channeling. The radial ponderomotive force totally expels the electrons from the axis creating a density channel, that is, cavitation occurs. A very short fall time of the trailing edge (τ l ω p <1) causes a rapid increase in the amplitude of a laser driven longitudinal electric field to values of a few GV/cm at the back of the pulse. The numerical simulation also has shown that the channel as well as the large-amplitude longitudinal field can be sustained in the range immediately behind the pulse, thus creating favorable conditions to accelerate a trailing bunch of electrons to extremely high energies. According to our model, the accelerating electric field can reach the value 10 GV/cm. copyright 1997 The American Physical Society

  20. The Respiratory Impedance in an Asymmetric Model of the Lung Structure

    Directory of Open Access Journals (Sweden)

    Robin De Keyser

    2011-01-01

    Full Text Available This paper presents a model of the respiratory tree as a recurrent, but asymmetric, structure. The intrinsic properties posed by such a system lead to a multi-fractal structure, i.e. a non-integer order model of the total impedance. The fractional order behavior of the asymmetric tree simulated as a dynamic system is assessed by means of Bode plots, on a wide range of frequencies. The results indicate than in a specific frequency range, both the symmetric
    and asymmetric representation of the respiratory tree lead to similar values in the impedance.

  1. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  2. Bianisotropic metamaterials based on twisted asymmetric crosses

    International Nuclear Information System (INIS)

    Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F

    2014-01-01

    The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)

  3. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    Science.gov (United States)

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  4. Asymmetric Distribution of GFAP in Glioma Multipotent Cells.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Guichet

    Full Text Available Asymmetric division (AD is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP, in mitotic glioma multipotent cells isolated from glioblastoma (GBM, the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.

  5. Origin of Asymmetric Charge Partitioning in the Dissociation of Gas-Phase Protein Homodimers

    OpenAIRE

    Jurchen, John C.; Williams, Evan R.

    2003-01-01

    The origin of asymmetric charge and mass partitioning observed for gas-phase dissociation of multiply charged macromolecular complexes has been hotly debated. These experiments hold the potential to provide detailed information about the interactions between the macromolecules within the complex. Here, this unusual phenomenon of asymmetric charge partitioning is investigated for several protein homodimers. Asymmetric charge partitioning in these ions depends on a number of factors, including ...

  6. Low voltage operation of electro-absorption modulator promising for high-definition 3D imaging application using a three step asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Na, Byung Hoon; Ju, Gun Wu; Cho, Yong Chul; Lee, Yong Tak; Choi, Hee Ju; Jeon, Jin Myeong; Lee, Soo Kyung; Park, Yong Hwa; Park, Chang Young

    2015-01-01

    In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications

  7. Asymmetric cell division of stem cells in the lung and other systems

    Directory of Open Access Journals (Sweden)

    Mohamed eBerika

    2014-07-01

    Full Text Available New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric versus symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division in the lung stem cells with other tissues in different organisms.

  8. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  9. Uniform versus asymmetric shading mediates crown recession in conifers.

    Directory of Open Access Journals (Sweden)

    Amanda L Schoonmaker

    Full Text Available In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta and shade tolerant white spruce (Picea glauca. We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1, complete uniform shading of the entire tree, (2 light asymmetric shading where the lower 1/4-1/3 of the tree crown was shaded, (3 heavy asymmetric shading as in (2 except with greater light reduction and (4 control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality--mediated by an asymmetry in light exposure of the crown.

  10. Unilateral pedicle screws asymmetric tethering: an innovative method to create idiopathic deformity

    Directory of Open Access Journals (Sweden)

    Zhang Xuesong

    2007-10-01

    Full Text Available Abstract Objective To evaluate the feasibility of the method that unilateral pedicle screws asymmetric tethering in concave side in combination with convex rib resection for creating idiopathic deformity. Summary of background data Various methods are performed to create idiopathic deformity. Among these methods, posterior asmmetric tethering of the spine shows satisfying result, but some drawbacks related to the current posterior asymmetric tether were still evident. Materials and methods Unilateral pedicle screws asymmetric tethering was performed to 14 female goats (age: 5–8 week-old, weight: 6–8 kg in concave side in combination with convex rib resection. Dorsoventral and lateral plain radiographs were taken of each thoracic spine in the frontal and sagittal planes right after the surgery and later every 4 weeks. Results All animals ambulated freely after surgery. For technical reasons, 2 goats were excluded (one animal died for anesthetic during the surgery, and one animal was lost for instrumental fail due to postoperative infection. Radiography showed that 11 goats exhibited scoliosis with convex toward to the right side, and as the curve increased with time, only 1 goat showed nonprogressive. The initial scoliosis generated in the progressors after the procedures measured 29.0° on average (range 23.0°–38.5° and increased to 43.0° on average (range 36.0°–58.0° over 8 to 10 weeks. The average progression of 14.0° was measured. The curvature immediately after tethering surgery (the initial Cobb angle did have a highly significant correlation with the final curvature (p Conclusion Unilateral pedicle screws asymmetric tethering is a practical method to create experimental scoliosis, especially for those who would like to study the correction of this deformity.

  11. METHODS OF CONTROLLING THE AVERAGE DIAMETER OF THE THREAD WITH ASYMMETRICAL PROFILE

    Directory of Open Access Journals (Sweden)

    L. M. Aliomarov

    2015-01-01

    Full Text Available To handle the threaded holes in hard materials made of marine machinery, operating at high temperatures, heavy loads and in aggressive environments, the authors have developed the combined tool core drill -tap with a special cutting scheme, which has an asymmetric thread profile on the tap part. In order to control the average diameter of the thread of tap part of the combined tool was used the method three wires, which allows to make continuous measurement of the average diameter of the thread along the entire profile. Deviation from the average diameter from the sample is registered by inductive sensor and is recorded by the recorder. In the work are developed and presented control schemes of the average diameter of the threads with a symmetrical and asymmetrical profile. On the basis of these schemes are derived formulas for calculating the theoretical option to set the wires in the thread profile in the process of measuring the average diameter. Conducted complex research and the introduction of the combined instrument core drill-tap in the production of products of marine engineering, shipbuilding, ship repair power plants made of hard materials showed a high efficiency of the proposed technology for the processing of high-quality small-diameter threaded holes that meet modern requirements.

  12. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems.

    Science.gov (United States)

    Nakano, Masayoshi; Champagne, Benoît

    2013-06-28

    The static first and second hyperpolarizabilities (referred to as β and γ, respectively) of asymmetric open-shell singlet systems have been investigated using the asymmetric two-site diradical model within the valence configuration interaction level of theory in order to reveal the effect of the asymmetric electron distribution on the diradical character and subsequently on β and γ. It is found that the increase of the asymmetric electron distribution causes remarkable changes in the amplitude and the sign of β and γ, and that their variations are intensified with the increase of the diradical character. These results demonstrate that the asymmetric open-shell singlet systems with intermediate diradical characters can exhibit further enhancements of β and γ as compared to conventional asymmetric closed-shell systems and also to symmetric open-shell singlet systems with intermediate diradical characters.

  13. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  14. An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    rate enantioselectivity using N,N-dialkylnorephedrines as chiral ligands. ..... temperatures also, there was no product conversion. ... Optimization of reaction conditions for asymmetric Reformatsky reaction between benzaldehyde and α-.

  15. LG tools for asymmetric wargaming

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  16. Incompressibility of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan

    2010-01-01

    Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)

  17. Treatment outcome of bimaxillary surgery for asymmetric skeletal class II deformity.

    Science.gov (United States)

    Chen, Yun-Fang; Liao, Yu-Fang; Chen, Yin-An; Chen, Yu-Ray

    2018-05-04

    Facial asymmetry is one of the main concerns in patients with a dentofacial deformity. The aims of the study were to (1) evaluate the changes in facial asymmetry after bimaxillary surgery for asymmetric skeletal class II deformity and (2) compare preoperative and postoperative facial asymmetry of class II patients with normal controls. The facial asymmetry was assessed for 30 adults (21 women and 9 men, mean age: 29.3 years) who consecutively underwent bimaxillary surgery for asymmetric skeletal class II deformity using cone-beam computed tomography before and at least 6 months after surgery. Thirty soft tissue and two dental landmarks were identified on each three-dimensional facial image, and the asymmetry index of each landmark was calculated. Results were compared with those of 30 normal control subjects (21 women and 9 men, mean age: 26.2 years) with skeletal class I structure. Six months after surgery, the asymmetric index of the lower face and total face decreased significantly (17.8 ± 29.4 and 16.6 ± 29.5 mm, respectively, both p class II patients had residual chin asymmetry. The postoperative total face asymmetric index was positively correlated with the preoperative asymmetric index (r = 0.37, p class II deformity resulted in a significant improvement in lower face asymmetry. However, approximately 50% of the patients still had residual chin asymmetry. The total face postoperative asymmetry was moderately related to the initial severity of asymmetry. These findings could help clinicians better understand orthognathic outcomes on different facial regions for patients with asymmetric class II deformity.

  18. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhu, Jianxiao; Huang, Lei; Xiao, Yuxiu; Shen, Leo; Chen, Qi; Shi, Wangzhou

    2014-05-01

    We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at 1010 W kg-1), high power density (~7080 W kg-1 at 23.4 W h kg-1) and high cycling stability. Furthermore, after charging for ~1 min, one such 22 cm2 ASC device demonstrated to be able to drive a small windmill (0.8 V, 0.1 W) for 20 min. Two such ASCs connected in series can power up a seven-color LED (3.2 V) efficiently.We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at

  19. PEP-II: An asymmetric B factory. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  20. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    Science.gov (United States)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  1. The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    Science.gov (United States)

    Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.

    2016-01-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

  2. Asymmetric statistical features of the Chinese domestic and international gold price fluctuation

    Science.gov (United States)

    Cao, Guangxi; Zhao, Yingchao; Han, Yan

    2015-05-01

    Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.

  3. Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm

    Directory of Open Access Journals (Sweden)

    Daeho Jang

    2015-09-01

    Full Text Available The present study introduces a novel curve-fitting algorithm for surface plasmon resonance (SPR curves using a self-constructed, wedge-shaped beam type angular interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric and polynomial equations are still unsatisfactory for analyzing full SPR curves and their use is limited to determining the resonance angle. In the present study, we developed a sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve over a range of incident angles, including regions of the critical angle and resonance angle. Regardless of the bulk fluid type (i.e., water and air, the present sigmoid-asymmetric fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric and polynomial curve fitting methods did not. Because the present curve-fitting sigmoid-asymmetric equation can determine the critical angle as well as the resonance angle, the undesired effect caused by the bulk fluid refractive index was excluded by subtracting the critical angle from the resonance angle in real time. In conclusion, the proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable to various SPR measurements, while excluding the effect of bulk fluids on the sensing layer.

  4. Asymmetric monometallic nanorod nanoparticle dimer and related compositions and methods

    KAUST Repository

    Han, Yu

    2016-03-31

    The fabrication of asymmetric monometallic nanocrystals with novel properties for plasmonics, nanophotonics and nanoelectronics. Asymmetric monometallic plasmonic nanocrystals are of both fundamental synthetic challenge and practical significance. In an example, a thiol-ligand mediated growth strategy that enables the synthesis of unprecedented Au Nanorod-Au Nanoparticle (AuNR-AuNP) dimers from pre-synthesized AuNR seeds. Using high-resolution electron microscopy and tomography, crystal structure and three-dimensional morphology of the dimer, as well as the growth pathway of the AuNP on the AuNR seed, was investigated for this example. The dimer exhibits an extraordinary broadband optical extinction spectrum spanning the UV, visible, and near infrared regions (300 - 1300 nm). This unexpected property makes the AuNR-AuNP dimer example useful for many nanophotonic applications. In two experiments, the dimer example was tested as a surface- enhanced Raman scattering (SERS) substrate and a solar light harvester for photothermal conversion, in comparison with the mixture of AuNR and AuNP. In the SERS experiment, the dimer example showed an enhancement factor about 10 times higher than that of the mixture, when the excitation wavelength (660 nm) was off the two surface plasmon resonance (SPR) bands of the mixture. In the photothermal conversion experiment under simulated sunlight illumination, the dimer example exhibited an energy conversion efficiency about 1.4 times as high as that of the mixture.

  5. Cell chirality: its origin and roles in left-right asymmetric development.

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  6. Cell chirality: its origin and roles in left–right asymmetric development

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  7. Updating the asymmetric osmium-catalyzed dihydroxylation (AD) mnemonic. Q2MM modeling and new kinetic measurements

    DEFF Research Database (Denmark)

    Fristrup, Peter; Tanner, David Ackland; Norrby, Per-Ola

    2003-01-01

    The mnemonic device for predicting stereoselectivities in the Sharpless asymmetric dihydroxylation (AD) reaction has been updated based on extensive computational studies. Kinetic measurements from competition reactions validate the new proposal. The interactions responsible for the high stereose...

  8. Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes

    Science.gov (United States)

    Shibata, Akihide; Watanabe, Keiji; Sato, Takuya; Kotaki, Hiroshi; Schuele, Paul J.; Crowder, Mark A.; Zhan, Changqing; Hartzell, John W.; Nakatani, Ryoichi

    2014-03-01

    In this paper, we demonstrate the orientation-controlled alignment of asymmetric Si microrods on a glass substrate with an asymmetric pair of electrodes. The Si microrods have the shape of a paddle with a blade and a shaft part, and the pair of electrodes consists of a narrow electrode and a wide electrode. By applying AC bias to the electrodes, the Si microrods suspended in a fluid align in such a way to settle across the electrode pair, and over 80% of the aligned Si microrods have an orientation with the blade and the shaft of the paddle on the wide and the narrow electrodes, respectively. When Si microrods have a shell of dielectric film and its thickness on the top face is thicker than that on the bottom face, 97.8% of the Si microrods are aligned with the top face facing upwards. This technique is useful for orientation-controlled alignment of nano- and microsized devices that have polarity or a distinction between the top and bottom faces.

  9. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  10. Asymmetric adsorption of alanine by quartz powder from ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Shozo; Sawada, Michio; Hachiya, Kinji; Morimoto, Tetsuo (Okayama Univ. (Japan). Faculty of Science)

    1982-11-01

    The asymmetric adsorption of the racemic alanine by the optically active quartz from ethanol solution at 8/sup 0/C was studied by the /sup 14/C-tracer method and the newly developed /sup 14/C-tracer ninhydrin-colorimetry combination method. The preferential adsorption of L-alanine by levorotatory quartz (l-quartz) and D-alanine by dextrorotatory quartz (d-quartz) was confirmed. The asymmetric adsorptivity (Asub(s)) falls in the range of 1.1 - 1.3, which is comparable with the value determined at - 80/sup 0/C in the previous paper. The effects of water content in the ethanol solution and of the adsorption temperature upon the adsorption affinity of alanine to quartz were also measured. The cause for the asymmetric adsorption is discussed from the crystallographic point of view.

  11. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    Science.gov (United States)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  12. The synchronization of asymmetric-structured electric coupling neuronal system

    Science.gov (United States)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  13. Examining Theories of Distributive Justice with an Asymmetric Public Goods Game

    Science.gov (United States)

    Schmidt, Stephen J.

    2015-01-01

    In this article, the author presents an asymmetric version of the familiar public goods classroom experiment, in which some players are given more tokens to invest than others, and players collectively decide whether to divide the return to the group investment asymmetrically as well. The asymmetry between players raises normative issues about…

  14. Metal-catalyzed Asymmetric Hetero-Diels-Alder Reactions of Unactivated Dienes with Glyoxylates

    DEFF Research Database (Denmark)

    Johannsen, Mogens; Yao, Sulan; Graven, Anette

    1998-01-01

    The development of a catalytic asymmetric hetero-Diels-Alder methodology for the reaction of unactivated dienes with glyoxylates is presented. Several different asymmetric catalysts can be used, but copper-bisoxazolines and aluminium-BINOL give the highest yield, and the best chemo...

  15. Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design 

    Directory of Open Access Journals (Sweden)

    Sergio Serna

    2012-11-01

    Full Text Available A novel asymmetrical interleaved dc/dc switching converters family intended for photovoltaic and fuel cell applications is presented in this paper. The main requirements on such applications are small ripples in the generator and load, as well as high voltage conversion ratio. Therefore, interleaved structures and voltage multiplier cells have been asymmetrically combined to generate new converters, which inherently operate indiscontinuous conduction mode. The novel family is derived from boost, buck-boost and flyback-based structures. This converter family is analyzed to obtain the design equations and synthesize a design process based on the typical requirements of photovoltaic and fuel cell applications. Finally, the experimental results validate the characteristics and usefulness of the asymmetrical interleaved converter family. 

  16. Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.

    Science.gov (United States)

    Tang, Xiao; Jia, Ruyue; Zhai, Teng; Xia, Hui

    2015-12-16

    Anode materials with relatively low capacitance remain a great challenge for asymmetric supercapacitors (ASCs) to pursue high energy density. Hematite (α-Fe2O3) has attracted intensive attention as anode material for ASCs, because of its suitable reversible redox reactions in a negative potential window (from 0 V to -1 V vs Ag/AgCl), high theoretical capacitance, rich abundance, and nontoxic features. Nevertheless, the Fe2O3 electrode cannot deliver large volumetric capacitance at a high rate, because of its poor electrical conductivity (∼10(-14) S/cm), resulting in low power density and low energy density. In this work, a hierarchical heterostructure comprising Fe3O4@Fe2O3 core-shell nanorod arrays (NRAs) is presented and investigated as the negative electrode for ASCs. Consequently, the Fe3O4@Fe2O3 electrode exhibits superior supercapacitive performance, compared to the bare Fe2O3 and Fe3O4 NRAs electrodes, demonstrating large volumetric capacitance (up to 1206 F/cm(3) with a mass loading of 1.25 mg/cm(2)), as well as good rate capability and cycling stability. The hybrid electrode design is also adopted to prepare Fe3O4@MnO2 core-shell NRAs as the positive electrode for ASCs. Significantly, the as-assembled 2 V ASC device delivered a high energy density of 0.83 mWh/cm(3) at a power density of 15.6 mW/cm(3). This work constitutes the first demonstration of Fe3O4 as the conductive supports for Fe2O3 to address the concerns about its poor electronic and ionic transport.

  17. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  18. Moving mode shape function approach for spinning disk and asymmetric disc brake squeal

    Science.gov (United States)

    Kang, Jaeyoung

    2018-06-01

    The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.

  19. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.; Semple, James; Jagadamma, Lethy Krishnan; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.; deMello, John C.

    2014-01-01

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  20. A method of the asymmetric Abel's inversion in plasma diagnosis

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa

    1975-09-01

    In the case of a noncylindrical plasma, axis symmetric components are drawn from observed projected intensities of physical quantities, assuming an asymmetric form. And the radial intensity distribution is determined by Abel's inversion method. The best fitting curve is obtained analytically from measured values by the least-square estimation of nonlinear parameters. The cylindrical symmetric Abel's inversion code ( ABELIC ) and the asymmetric Abel's inversion code ( ABELILSENP 2 ) are described. (auth.)

  1. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  2. Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2.

    Science.gov (United States)

    Ting, Stephen B; Deneault, Eric; Hope, Kristin; Cellot, Sonia; Chagraoui, Jalila; Mayotte, Nadine; Dorn, Jonas F; Laverdure, Jean-Philippe; Harvey, Michael; Hawkins, Edwin D; Russell, Sarah M; Maddox, Paul S; Iscove, Norman N; Sauvageau, Guy

    2012-03-15

    The stem cell-intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.

  3. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-01-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  4. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Science.gov (United States)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  5. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  6. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  7. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy.

    Science.gov (United States)

    Zhao, Man; Gao, Liang; Zhang, Li; Bai, Yanbin; Chen, Liang; Yu, Meilan; Cheng, Feng; Sun, Jie; Wang, Zhao; Ying, Xiangxian

    2017-11-01

    To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL]. The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%. Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.

  8. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    Science.gov (United States)

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  9. Asymmetric information and economics

    Science.gov (United States)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  10. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    Science.gov (United States)

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  11. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  12. Decoding Pure Rotational Molecular Spectra for Asymmetric Molecules

    Directory of Open Access Journals (Sweden)

    S. A. Cooke

    2013-01-01

    Full Text Available Rotational spectroscopy can provide insights of unparalleled precision with respect to the wavefunctions of molecular systems that have relevance in fields as diverse as astronomy and biology. In this paper, we demonstrate how asymmetric molecular pure rotational spectra may be analyzed “pictorially” and with simple formulae. It is shown that the interpretation of such spectra relies heavily upon pattern recognition. The presentation of some common spectral line positions in near-prolate asymmetric rotational spectra provides a means by which spectral assignment, and approximate rotational constant determination, may be usefully explored. To aid in this endeavor we have created a supporting, free, web page and mobile web page.

  13. Finite stage asymmetric repeated games: Both players' viewpoints

    KAUST Repository

    Li, Lichun

    2017-01-05

    In asymmetric zero-sum games, one player has superior information about the game over the other. It is known that the informed players (maximizer) face the tradeoff of exploiting its superior information at the cost of revealing its superior information, but the basic point of the uninformed player (minimizer)\\'s decision making remains unknown. This paper studies the finite stage asymmetric repeated games from both players\\' viewpoints, and derives that not only security strategies but also the opponents\\' corresponding best responses depends only on the informed player\\'s history action sequences. Moreover, efficient LP formulations to compute both player\\'s security strategies are provided.

  14. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  15. Simulation of seismic signals from asymmetric LANL hydrodynamic calculations

    International Nuclear Information System (INIS)

    Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.

    1993-01-01

    Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation

  16. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces

    Science.gov (United States)

    Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.

    2014-04-01

    A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.

  17. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.

    Science.gov (United States)

    Lowery, Arthur James

    2016-02-22

    Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

  18. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  19. Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause

    Science.gov (United States)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.

    2014-01-01

    The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.

  20. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  1. Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.

    Science.gov (United States)

    Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo

    2017-08-29

    This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.

  2. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode

    Science.gov (United States)

    Vidyadharan, Baiju; Aziz, Radhiyah Abd; Misnon, Izan Izwan; Anil Kumar, Gopinathan M.; Ismail, Jamil; Yusoff, Mashitah M.; Jose, Rajan

    2014-12-01

    Electrochemical materials are under rigorous search for building advanced energy storage devices. Herein, supercapacitive properties of highly crystalline and ultrathin cobalt oxide (Co3O4) nanowires (diameter ∼30-60 nm) synthesized using an aqueous polymeric solution based electrospinning process are reported. These nanowire electrodes show a specific capacitance (CS) of ∼1110 F g-1 in 6 M KOH at a current density of 1 A g-1 with coulombic efficiency ∼100%. Asymmetric supercapacitors (ASCs) (CS ∼175 F g-1 at 2 A g-1 galvanostatic cycling) are fabricated using the Co3O4 as anode and commercial activated carbon (AC) as cathode and compared their performance with symmetric electrochemical double layer capacitors (EDLCs) fabricated using AC (CS ∼31 F g-1 at 2 A g-1 galvanostatic cycling). The Co3O4//AC ASCs deliver specific energy densities (ES) of 47.6, 35.4, 20 and 8 Wh kg-1 at specific power densities (PS) 1392, 3500, 7000 and 7400 W kg-1, respectively. The performance of ASCs is much superior to the control EDLCs, which deliver ES of 9.2, 8.9, 8.4 and 6.8 Wh kg-1 at PS 358, 695, 1400 and 3500 W kg-1, respectively. The ASCs show nearly six times higher energy density (∼47.6 Wh kg-1) than EDLC (8.4 Wh kg-1) without compromising its power density (∼1400 W kg-1) at similar galvanostatic cycling conditions (2 A g-1).

  3. Asymmetrical Representation of Gender in Amharic1

    African Journals Online (AJOL)

    Administrator

    in its grammar. Gender representation in this language is asymmetrical heavily ..... In dictionaries where. Amharic appears either as the target or the source language, verbs are entered ...... The Dialects of Amharic Revisited. Semitica et.

  4. Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA

    International Nuclear Information System (INIS)

    Lee, Minhyuk; Song, Jae Wook; Park, Ji Hwan; Chang, Woojin

    2017-01-01

    Highlights: • ‘Index-based A-MFDFA’ model is proposed to assess the asymmetric multi-fractality. • The asymmetric multi-fractality in the U.S. stock indices are investigated using ‘Index-based’ and ‘Return-based’ A-MFDFA. • The asymmetric feature is more significantly identified by ‘Index-based’ model than ‘return-based’ model. • Source of multi-fractality and time-varying features are analyzed. - Abstract: We detect the asymmetric multi-fractality in the U.S. stock indices based on the asymmetric multi-fractal detrended fluctuation analysis (A-MFDFA). Instead using the conventional return-based approach, we propose the index-based model of A-MFDFA where the trend based on the evolution of stock index rather than stock price return plays a role for evaluating the asymmetric scaling behaviors. The results show that the multi-fractal behaviors of the U.S. stock indices are asymmetric and the index-based model detects the asymmetric multi-fractality better than return-based model. We also discuss the source of multi-fractality and its asymmetry and observe that the multi-fractal asymmetry in the U.S. stock indices has a time-varying feature where the degree of multi-fractality and asymmetry increase during the financial crisis.

  5. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  6. Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles

    International Nuclear Information System (INIS)

    Wang Yuanyuan; Xie Huaqing; Wu Zihua; Xing Jiaojiao

    2016-01-01

    We simulated the asymmetrical growth of cube-shaped nanoparticles by applying the Monte Carlo method. The influence of the specific mechanisms on the crystal growth of nanoparticles has been phenomenologically described by efficient growth possibilities along different directions (or crystal faces). The roles of the thermodynamic and kinetic factors have been evaluated in three phenomenological models. The simulation results would benefit the understanding about the cause and manner of the asymmetrical growth of nanoparticles. (paper)

  7. A high stability Ni-La0.5Ce0.5O2-δ asymmetrical metal-ceramic membrane for hydrogen separation and generation

    Science.gov (United States)

    Zhu, Zhiwen; Sun, Wenping; Wang, Zhongtao; Cao, Jiafeng; Dong, Yingchao; Liu, Wei

    2015-05-01

    In this work, hydrogen permeation properties of Ni-La0.5Ce0.5O2-δ (LDC) asymmetrical cermet membrane are investigated, including hydrogen fluxes (JH2) under different hydrogen partial pressures, the influence of water vapor on JH2 and the long-term stability of the membrane operating under the containing-CO2 atmosphere. Ni-LDC asymmetrical membrane shows the best hydrogen permeability among LDC-based hydrogen separation membranes, inferior to Ni-BaZr0.1Ce0.7Y0.2O3-δ asymmetrical membrane. The water vapor in feed gas is beneficial to hydrogen transport process, which promote an increase of JH2 from 5.64 × 10-8 to 6.83 × 10-8 mol cm-2 s-1 at 900 °C. Stability testing of hydrogen permeation suggests that Ni-LDC membrane remains stable against CO2. A dual function of combining hydrogen separation and generation can be realized by humidifying the sweep gas and enhance the hydrogen output by 1.0-1.5 times. Ni-LDC membrane exhibits desirable performance and durability in dual-function mode. Morphologies and phase structures of the membrane after tests are also characterized by SEM and XRD.

  8. Error Probability Analysis of Hardware Impaired Systems with Asymmetric Transmission

    KAUST Repository

    Javed, Sidrah; Amin, Osama; Ikki, Salama S.; Alouini, Mohamed-Slim

    2018-01-01

    Error probability study of the hardware impaired (HWI) systems highly depends on the adopted model. Recent models have proved that the aggregate noise is equivalent to improper Gaussian signals. Therefore, considering the distinct noise nature and self-interfering (SI) signals, an optimal maximum likelihood (ML) receiver is derived. This renders the conventional minimum Euclidean distance (MED) receiver as a sub-optimal receiver because it is based on the assumptions of ideal hardware transceivers and proper Gaussian noise in communication systems. Next, the average error probability performance of the proposed optimal ML receiver is analyzed and tight bounds and approximations are derived for various adopted systems including transmitter and receiver I/Q imbalanced systems with or without transmitter distortions as well as transmitter or receiver only impaired systems. Motivated by recent studies that shed the light on the benefit of improper Gaussian signaling in mitigating the HWIs, asymmetric quadrature amplitude modulation or phase shift keying is optimized and adapted for transmission. Finally, different numerical and simulation results are presented to support the superiority of the proposed ML receiver over MED receiver, the tightness of the derived bounds and effectiveness of asymmetric transmission in dampening HWIs and improving overall system performance

  9. Error Probability Analysis of Hardware Impaired Systems with Asymmetric Transmission

    KAUST Repository

    Javed, Sidrah

    2018-04-26

    Error probability study of the hardware impaired (HWI) systems highly depends on the adopted model. Recent models have proved that the aggregate noise is equivalent to improper Gaussian signals. Therefore, considering the distinct noise nature and self-interfering (SI) signals, an optimal maximum likelihood (ML) receiver is derived. This renders the conventional minimum Euclidean distance (MED) receiver as a sub-optimal receiver because it is based on the assumptions of ideal hardware transceivers and proper Gaussian noise in communication systems. Next, the average error probability performance of the proposed optimal ML receiver is analyzed and tight bounds and approximations are derived for various adopted systems including transmitter and receiver I/Q imbalanced systems with or without transmitter distortions as well as transmitter or receiver only impaired systems. Motivated by recent studies that shed the light on the benefit of improper Gaussian signaling in mitigating the HWIs, asymmetric quadrature amplitude modulation or phase shift keying is optimized and adapted for transmission. Finally, different numerical and simulation results are presented to support the superiority of the proposed ML receiver over MED receiver, the tightness of the derived bounds and effectiveness of asymmetric transmission in dampening HWIs and improving overall system performance

  10. Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics

    2012-01-15

    The observational relation between the density of baryon and dark matter in the Universe, {omega}{sub DM}/{omega}{sub B}{approx_equal}5, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry D that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only B-L but also D symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another B-L violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model. (orig.)

  11. Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion

    KAUST Repository

    Munirasu, Selvaraj

    2014-07-22

    A new kind of asymmetric organic-inorganic porous structure has been proposed. Asymmetric lattices of polymer grafted silica nanoparticles were manufactured by casting and phase inversion in water. Silica nanoparticles were first functionalized with 3-(dimethylethoxysilyl)propyl-2-bromoisobutyrate, followed by grafting of poly(methylmethacrylate) (PMMA) segments, performed by atom-transfer radical polymerization. Mechanically stable self-standing films were prepared by casting a dispersion of functionalized nanoparticles in different solvents and immersion in water. The resulting asymmetrically porous morphology and nanoparticle assembly was characterized by scanning electron and atomic force microscopy. The PMMA functionalized SiO2 hybrid material in acetone or acetone/dioxane led to the best-assembled structures. Porous asymmetric membranes were prepared by adding free PMMA and PMMA terminated with hydrophilic hydroxyl group. Nitrogen flow of 2800 L m-2 h -1 was measured at 1.3 bar demonstrating the porosity and potential application for membrane technology. © 2014 Springer Science+Business Media New York.

  12. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization

    NARCIS (Netherlands)

    El-Deen, Ahmed G.; Boom, Remko M.; Kim, Hak Yong; Duan, Hongwei; Chan-Park, Mary B.; Choi, Jae Hwan

    2016-01-01

    Nanoporous graphene based materials are a promising nanostructured carbon for energy storage and electrosorption applications. We present a novel and facile strategy for fabrication of asymmetrically functionalized microporous activated graphene electrodes for high performance capacitive

  13. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  14. The effect of symmetrical and asymmetrical hearing impairment on music quality perception.

    Science.gov (United States)

    Cai, Yuexin; Zhao, Fei; Chen, Yuebo; Liang, Maojin; Chen, Ling; Yang, Haidi; Xiong, Hao; Zhang, Xueyuan; Zheng, Yiqing

    2016-09-01

    The purpose of this study was to investigate the effect of symmetrical, asymmetrical and unilateral hearing impairment on music quality perception. Six validated music pieces in the categories of classical music, folk music and pop music were used to assess music quality in terms of its 'pleasantness', 'naturalness', 'fullness', 'roughness' and 'sharpness'. 58 participants with sensorineural hearing loss [20 with unilateral hearing loss (UHL), 20 with bilateral symmetrical hearing loss (BSHL) and 18 with bilateral asymmetrical hearing loss (BAHL)] and 29 normal hearing (NH) subjects participated in the present study. Hearing impaired (HI) participants had greater difficulty in overall music quality perception than NH participants. Participants with BSHL rated music pleasantness and naturalness to be higher than participants with BAHL. Moreover, the hearing thresholds of the better ears from BSHL and BAHL participants as well as the hearing thresholds of the worse ears from BSHL participants were negatively correlated to the pleasantness and naturalness perception. HI participants rated the familiar music pieces higher than unfamiliar music pieces in the three music categories. Music quality perception in participants with hearing impairment appeared to be affected by symmetry of hearing loss, degree of hearing loss and music familiarity when they were assessed using the music quality rating test (MQRT). This indicates that binaural symmetrical hearing is important to achieve a high level of music quality perception in HI listeners. This emphasizes the importance of provision of bilateral hearing assistive devices for people with asymmetrical hearing impairment.

  15. Some Families of Asymmetric Quantum MDS Codes Constructed from Constacyclic Codes

    Science.gov (United States)

    Huang, Yuanyuan; Chen, Jianzhang; Feng, Chunhui; Chen, Riqing

    2018-02-01

    Quantum maximal-distance-separable (MDS) codes that satisfy quantum Singleton bound with different lengths have been constructed by some researchers. In this paper, seven families of asymmetric quantum MDS codes are constructed by using constacyclic codes. We weaken the case of Hermitian-dual containing codes that can be applied to construct asymmetric quantum MDS codes with parameters [[n,k,dz/dx

  16. The effect of asymmetric barrier layers in the waveguide region on power characteristics of QW lasers

    DEFF Research Database (Denmark)

    Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.

    2015-01-01

    Current-voltage and light-current characteristics of quantum-well lasers have been studied at high drive currents. The introduction of asymmetric barrier layers adjacent to the active region caused a significant suppression of the nonlinearity in the light-current characteristic and an increase...

  17. A short TE gradient-echo sequence using asymmetric sampling

    International Nuclear Information System (INIS)

    Fujita, Norihiko; Harada, Kohshi; Sakurai, Kosuke; Nakanishi, Katsuyuki; Kim, Shyogen; Kozuka, Takahiro

    1990-01-01

    We have developed a gradient-echo pulse sequence with a short TE less than 4 msec using a data set of asymmetric off-center sampling with a broad bandwidth. The use of such a short TE significantly reduces T 2 * dephasing effect even in a two-dimensional mode, and by collecting an off-center echo, motion-induced phase dispersion is also considerably decreased. High immunity of this sequence to these dephasing effects permits clear visualization of anatomical details near the skull base where large local field inhomogeneities and rapid blood flow such as in the internal carotid artery are present. (author)

  18. Architecture-Aware Configuration and Scheduling of Matrix Multiplication on Asymmetric Multicore Processors

    OpenAIRE

    Catalán, Sandra; Igual, Francisco D.; Mayo, Rafael; Rodríguez-Sánchez, Rafael; Quintana-Ortí, Enrique S.

    2015-01-01

    Asymmetric multicore processors (AMPs) have recently emerged as an appealing technology for severely energy-constrained environments, especially in mobile appliances where heterogeneity in applications is mainstream. In addition, given the growing interest for low-power high performance computing, this type of architectures is also being investigated as a means to improve the throughput-per-Watt of complex scientific applications. In this paper, we design and embed several architecture-aware ...

  19. Organocatalyzed Asymmetric α-Oxidation, α-Aminoxylation and α-Amination of Carbonyl Compounds

    OpenAIRE

    Worawan Bhanthumnavin; Tirayut Vilaivan

    2010-01-01

    Organocatalytic asymmetric α-oxidation and amination reactions of carbonyl compounds are highly useful synthetic methodologies, especially in generating chiral building blocks that previously have not been easily accessible by traditional methods. The concept is relatively new and therefore the list of new catalysts, oxidizing and aminating reagents, as well as new substrates, are expanding at an amazing rate. The scope of this review includes new reactions and catalysts, mechanistic aspects ...

  20. Effects of Asymmetric Secondary Eyewall on Tropical Cyclone Evolution in Hurricane Ike (2008)

    Science.gov (United States)

    Zhang, Guosheng; Perrie, William

    2018-02-01

    The secondary eyewall plays an important role in tropical cyclone evolution and intensification and is routinely assumed to be axisymmetric. A unique opportunity to investigate the characteristics of the secondary eyewall in two dimensions is provided by the high spatial resolution (about 1 km) sea surface winds that were observed by spaceborne synthetic aperture radar over Hurricane Ike (2008). Here we extract the asymmetric characteristics using our Symmetric Hurricane Estimates for Winds model and analyze the related hurricane evolution by comparisons with aircraft measurements. Compared to the classic eyewall replacement cycle theory, our investigation finds that the primary eyewall did not weaken and the secondary eyewall did not shrink over a period of more than 30 hr. We suggest that the reason for this persistence is that a boundary layer inflow pathway is provided by the relatively low winds in the asymmetric secondary eyewall area, as observed by synthetic aperture radar.