WorldWideScience

Sample records for highly anisotropic systems

  1. Plasma resonance in anisotropic layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Sakai, Shigeki; Pedersen, Niels Falsig

    1999-01-01

    The plasma resonance is described theoretically by the inductive coupling model for a large stacked Josephson-junction system such as the intrinsic Josephson-junction array in anisotropic high- T-c superconductors. Eigenmodes of the plasma oscillation are analytically described and a numerical...

  2. Anisotropic properties of single crystals of high Tc superconductors

    International Nuclear Information System (INIS)

    Tholence, J.L.; Saint-Paul, M.; Laborde, O.; Monceau, P.; Guillot, M.; Niel, H.; Levet, J.C.; Potel, M.; Padiou, J.; Gougeon, P.

    1990-01-01

    In this article the authors make a review of some of the anisotropic properties of high T c compounds, essentially RE Ba 2 Cu 3 O 7 , Bi-SR-Ca-Cu-O and Tl-Ca-Ba-Cu-O systems. In section 2 a short description of the crystal growth is reported. Section 3 deals with the anisotropic elastic properties measured by ultrasonic techniques. In section 4 the authors discuss the anisotropy in magnetization measurements and consequently on the critical currents. Section 5 concerns the magnetoresistance measurements, and the determination of the superconducting critical magnetic field H c2 . Finally in section 6, in conclusion of result described in sections 4 and 5, the authors discuss on the pinning force and on the controversial Lorentz force for explaining the broadening of the superconducting transition under magnetic field. The authors apologize for not having quoted all the works published on these different topics, which is in fact practically impossible

  3. Gauge unification in highly anisotropic string compactifications

    International Nuclear Information System (INIS)

    Hebecker, A.; Trapletti, M.

    2005-01-01

    It is well known that heterotic string compactifications have, in spite of their conceptual simplicity and aesthetic appeal, a serious problem with precision gauge coupling unification in the perturbative regime of string theory. Using both a duality-based and a field-theoretic definition of the boundary of the perturbative regime, we reevaluate the situation in a quantitative manner. We conclude that the simplest and most promising situations are those where some of the compactification radii are exceptionally large, corresponding to highly anisotropic orbifold models. Thus, one is led to consider constructions which are known to the effective field-theorist as higher-dimensional or orbifold grand unified theories (orbifold GUTs). In particular, if the discrete symmetry used to break the GUT group acts freely, a non-local breaking in the larger compact dimensions can be realized, leading to a precise gauge coupling unification as expected on the basis of the MSSM particle spectrum. Furthermore, a somewhat more model dependent but nevertheless very promising scenario arises if the GUT breaking is restricted to certain singular points within the manifold spanned by the larger compactification radii

  4. Characterization of Anisotropic Behavior for High Grade Pipes

    Science.gov (United States)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the

  5. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  6. Sign rules for anisotropic quantum spin systems

    International Nuclear Information System (INIS)

    Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.

    2000-01-01

    We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model

  7. Creation of high-energy phonons by four-phonon processes in anisotropic phonon system of He II

    International Nuclear Information System (INIS)

    Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Kitsenko, Yu.A.; Wyatt, A.F.G.

    2007-01-01

    The problem of the creation of high-energy phonons (h-phonons) by a pulse of low-energy phonons (I-phonons) moving from a heater to a detector in superfluid helium, is solved. The rate of h-phonon creation is obtained and it is shown that created h-phonons occupy a much smaller solid angle in momentum space, than the I-phonons. Analytical expression for the creation rate of h-phonon, along the symmetry axis of a pulse, are derived. It allows us to get useful approximate analytical expressions for creation rate of h-phonons. The time dependences of the parameters which describe the I-phonon pulse are obtained. This shows that half of the initial energy of I-phonon pulse can be transferred into h-phonons. The results of the calculations are compared with experimental data and we show that this theory explains a number of experimental results. The value of the momentum, which separates the I- and h-phonon subsystems, is found

  8. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  9. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    International Nuclear Information System (INIS)

    Schmidt, Daniel

    2014-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example of metal slanted columnar thin films, which have been conformally coated with a thin passivating oxide layer by atomic layer deposition. Furthermore, the application of an effective medium approximation approach to in-situ growth monitoring of this anisotropic thin film functionalization process is presented. It was found that structural parameters determined with the presented optical model equivalents for slanted columnar thin films agree very well with scanning electron microscope image estimates. - Highlights: • Summary of optical model strategies for sculptured thin films with arbitrary geometries • Application of the rigorous anisotropic Bruggeman effective medium applications • In-situ growth monitoring of atomic layer deposition on biaxial metal slanted columnar thin film

  10. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    Science.gov (United States)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic

  11. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  12. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi; Schwingenschlö gl, Udo

    2015-01-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  13. Two-step condensation of the ideal Bose gas in highly anisotropic traps

    NARCIS (Netherlands)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum

  14. Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps

    International Nuclear Information System (INIS)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum states. In the second step, at a significantly lower temperature, the ground state becomes macroscopically occupied. It should be possible to verify these predictions using present-day atom traps. The two-step behavior can occur in a rather general class of anisotropic traps, including the box potential. copyright 1997 The American Physical Society

  15. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  16. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NARCIS (Netherlands)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar Gelepordsari, M.; Salavati-Fard, T.

    2016-01-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned

  18. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    dynamics of excitons, trions, and biexcitons in reduced dimensions and fundamental many body interactions. We begin by explaining the fundamental reasons for the highly enhanced interactions in the 2D systems influenced by dielectric screening, resulting in high binding energies of excitons and trions, which are supported by theoretical calculations and experimental observations. Phosphorene has shown much higher binding energies of excitons and trions than TMD monolayers, which allows robust quasi-particles in anisotropic materials at room temperature. We also discuss the role of extrinsic defects induced in phosphorene, resulting in localized excitonic emissions in the near-infrared range, making it suitable for optical telecommunication applications. Finally, we present our vision of the exciting device applications based on the highly enhanced many body interactions in phosphorene, including exciton-polariton devices, polariton lasers, single-photon emitters, and tunable light emitting diodes (LEDs).

  19. Giant spin torque in systems with anisotropic exchange interaction

    OpenAIRE

    Korenev, Vladimir L.

    2012-01-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the d...

  20. Apparent exchange rate imaging in anisotropic systems

    DEFF Research Database (Denmark)

    Sønderby, Casper Kaae; Lundell, Henrik M; Søgaard, Lise V

    2014-01-01

    Double-wave diffusion experiments offer the possibility of probing correlation between molecular diffusion at multiple time points. It has recently been shown that this technique is capable of measuring the exchange of water across cellular membranes. The aim of this study was to investigate...... the effect of macroscopic tissue anisotropy on the measurement of the apparent exchange rate (AXR) in multicompartment systems....

  1. Majorana flat bands in anisotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, Daniel; Kotetes, Panagiotis; Schoen, Gerd [Institut fuer theoretische Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    It has been recently proposed that topologically protected Majorana flat bands (MFBs) emerge in superconductors with nodal energy spectrum. In this work we introduce a new class of gapful superconductors, in which MFBs can occur due to strong anisotropy. The prototype system exhibiting this kind of behavior is the nematic p{sub x}+p{sub y} spinless superconductor, which supports an edge MFB with controllable bandwidth. Our proposal can be for instance experimentally implemented in topological superconductors engineered from i. semiconductors with tunable spin-orbit coupling or ii. topological insulator surfaces with intrinsic magnetic order in proximity to a conventional SC. By investigating the topological properties of both setups, we show that their unique features render them feasible platforms for manipulating the Majorana fermion bandstructure and realizing MFBs.

  2. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Heine, G.

    1999-05-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 b . The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single crystals is interpreted as the suppression of the fluctuation-conductivity enhancement including orbital and spin contributions, whereas the negative magnetoresistance arises from the reduction of the fluctuation-induced pseudogap in the single-electron density-of-states by the magnetic field. For higher temperatures a transition to the normal-state magnetoresistance occurs for the in-plane transport. In the less anisotropic YBa2CU307 b thin films the positive out-of-plane magnetoresistance near T, changes sign to a negative magnetoresistance at higher temperatures. This behavior is also consistent with predictions from the theory of thermodynamic order-parameter fluctuations. The agreement of the fluctuation theory with the experimental findings is excellent for samples from the over doped side of the phase diagram, but deteriorate with decreasing carrier concentration. This behavior is interpreted by the dominating d-wave symmetry of the superconducting order

  3. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  4. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  5. Nematic and Valley Ordering in Anisotropic Quantum Hall Systems

    Science.gov (United States)

    Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.

    2010-03-01

    We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.

  6. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1992-01-01

    The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs

  7. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1991-01-01

    This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented

  8. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    x2µ(x)dx which is the mass function. The radial pressure pr = p + 2S/. √. 3 and the tangential pressure p⊥ = p − S/. √. 3 are not equal for anisotropic matter. The magnitude S provides a measure of anisotropy. The field equations (1)–(3) were integrated by Chaisi and Maharaj [12] for the energy density. µ = j r2. + k + lr2,. (4).

  9. An efficient explicit numerical scheme for diffusion-type equations with a highly inhomogeneous and highly anisotropic diffusion tensor

    International Nuclear Information System (INIS)

    Larroche, O.

    2007-01-01

    A locally split-step explicit (LSSE) algorithm was developed for efficiently solving a multi-dimensional advection-diffusion type equation involving a highly inhomogeneous and highly anisotropic diffusion tensor, which makes the problem very ill-conditioned for standard implicit methods involving the iterative solution of large linear systems. The need for such an optimized algorithm arises, in particular, in the frame of thermonuclear fusion applications, for the purpose of simulating fast charged-particle slowing-down with an ion Fokker-Planck code. The LSSE algorithm is presented in this paper along with the results of a model slowing-down problem to which it has been applied

  10. Remarks on the percolation problem in anisotropic systems

    International Nuclear Information System (INIS)

    Chaves, C.M.G.F.; Oliveira, P.M.C. de; Queiroz, S.L.A. de; Riera, R.

    1979-07-01

    The bond percolation problem is discused in an anisotropic square lattice using the position space renormalization group. It is shown that, due to symmetry, this treatment reproduces known exact results for this problem. The phase diagram and the flow lines in parameter space are also shown. Results are in agreement with universality.(Author) [pt

  11. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    Science.gov (United States)

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.

    Science.gov (United States)

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael

    2016-10-15

    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate

  13. High-rate anisotropic ablation and deposition of polytetrafluoroethylene using synchrotron radiation process

    International Nuclear Information System (INIS)

    Inayoshi, Muneto; Ikeda, Masanobu; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Hiraya, Atsunari.

    1995-01-01

    Both anisotropic ablation and thin film formation of polytetrafluoroethylene (PTFE) were successfully demonstrated using synchrotron radiation (SR) irradiation of PTFE, that is, the SR ablation process. Anisotropic ablation by the SR irradiation was performed at an extremely high rate of 3500 μm/min at a PTFE target temperature of 200degC. Moreover, a PTFE thin film was formed at a high rate of 2.6 μm/min using SR ablation of PTFE. The chemical structure of the deposited film was similar to that of the PTFE target as determined from Fourier transform infrared absorption spectroscopy (FT-IR) analysis. (author)

  14. High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well

    Science.gov (United States)

    Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando

    2016-05-01

    An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.

  15. Highly anisotropic optoelectronic properties of aligned films of self-assembled platinum molecular wires

    NARCIS (Netherlands)

    Debije, M.G.; Haas, de M.P.; Savenije, T.J.; Warman, J.M.; Fontana, M.; Stutzmann, N.; Caseri, W.R.; Smith, P.

    2003-01-01

    Self-assembled columns of alternating tetrachloro- and tetraalkylaminoplatinum moieties form stable, highly oriented, optically anisotropic films on a friction-deposited polytetrafluoroethylene surface (see Figure). Charge transport in the films is rapid (mobility =¿ca. 10–2 cm2¿V–1¿s–1) and highly

  16. Anisotropic spin motive force in multi-layered Dirac fermion system, α-(BEDT-TTF)2I3

    International Nuclear Information System (INIS)

    Kubo, K; Morinari, T

    2015-01-01

    We investigate the anisotropic spin motive force in α-(BEDT-TTF) 2 I 3 , which is a multi-layered massless Dirac fermion system under pressure. Assuming the interlayer antiferromagnetic interaction and the interlayer anisotropic ferromagnetic interaction, we numerically examine the spin ordered state of the ground state using the steepest descent method. The anisotropic interaction leads to the anisotropic spin ordered state. We calculate the spin motive force produced by the anisotropic spin texture. The result quantitatively agrees with the experiment. (paper)

  17. An explanation of the irreversibility behavior in the highly- anisotropic high-temperature superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kim, D.H.

    1991-01-01

    The wide temperature range of the reversible, lossy state of the new high-temperature superconductors in a magnetic field was recognized soon after their discovery. This behavior, which had gone virtually undetected in conventional superconductors, has generated considerable interest, both for a fundamental understanding of the HTS and because it degrades the performance of HTS for finite-field applications. We show that recently proposed explanation of this behavior for the highly-anisotropic high-temperature superconductors, as a dimensional crossover of the magnetic vortices, is strongly supported by recent experiments on a Bi 2 Sr 2 CaCu 2 O x single crystal using the high-Q mechanical oscillator techniques

  18. Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence

    International Nuclear Information System (INIS)

    Moelans, N.; Blanpain, B.; Wollants, P.

    2008-01-01

    A phase-field approach for quantitative simulations of grain growth in anisotropic systems is introduced, together with a new methodology to derive appropriate model parameters that reproduce given misorientation and inclination dependent grain boundary energy and mobility in the simulations. The proposed model formulation and parameter choice guarantee a constant diffuse interface width and consequently give high controllability of the accuracy in grain growth simulations

  19. ON THE ANISOTROPIC NORM OF DISCRETE TIME STOCHASTIC SYSTEMS WITH STATE DEPENDENT NOISE

    Directory of Open Access Journals (Sweden)

    Isaac Yaesh

    2013-01-01

    Full Text Available The purpose of this paper is to determine conditions for the bound-edness of the anisotropic norm of discrete-time linear stochastic sys-tems with state dependent noise. It is proved that these conditions canbe expressed in terms of the feasibility of a specific system of matrixinequalities.

  20. Multi-critical points in weakly anisotropic magnetic systems

    International Nuclear Information System (INIS)

    Basten, J.A.J.

    1979-02-01

    This report starts with a rather extensive presentation of the concepts and ideas which constitute the basis of the modern theory of static critical phenomena. It is shown how at a critical point the semi-phenomenological concepts of universality and scaling are directly related to the divergence of the correlation length and how they are extended to a calculational method for critical behaviour in Wilson's Renormalization-Group (RG) approach. Subsequently the predictions of the molecular-field and RG-theories on the phase transitions and critical behaviour in weakly anisotropic antiferromagnets are treated. In a magnetic field applied along the easy axis, these materials can display an (H,T) phase diagram which contains either a bicritical point or a tetracritical point. Especially the behaviour close to these multi-critical points, as predicted by the extended-scaling theory, is discussed. (Auth.)

  1. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  2. High-throughput anisotropic plasma etching of polyimide for MEMS

    International Nuclear Information System (INIS)

    Bliznetsov, Vladimir; Manickam, Anbumalar; Ranganathan, Nagarajan; Chen, Junwei

    2011-01-01

    This note describes a new high-throughput process of polyimide etching for the fabrication of MEMS devices with an organic sacrificial layer approach. Using dual frequency superimposed capacitively coupled plasma we achieved a vertical profile of polyimide with an etching rate as high as 3.5 µm min −1 . After the fabrication of vertical structures in a polyimide material, additional steps were performed to fabricate structural elements of MEMS by deposition of a SiO 2 layer and performing release etching of polyimide. (technical note)

  3. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    Science.gov (United States)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  4. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

    Science.gov (United States)

    Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.

    2018-05-01

    Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

  5. A modified Rietveld method to model highly anisotropic ceramics

    International Nuclear Information System (INIS)

    Tutuncu, G.; Motahari, M.; Daymond, M.R.; Ustundag, E.

    2012-01-01

    High energy X-ray diffraction was employed to probe the complex constitutive behavior of a polycrystalline ferroelectric material in various sample orientations. Pb(Zn,Nb)O 3 –Pb(Zr,Ti)O 3 (PZN–PZT) ceramics were subjected to a cyclic bipolar electric field while diffraction patterns were taken. Using transmission geometry and a two-dimensional detector, lattice strain and texture evolution (domain switching) were measured in multiple sample directions simultaneously. In addition, texture analysis suggests that non-180° domain switching is coupled with lattice strain evolution during uniaxial electrical loading. As a result of this material’s high strain anisotropy, the full-pattern Rietveld method was inadequate to analyze the diffraction data. Instead, a modified Rietveld method, which includes an elastic anisotropy term, yielded significant improvements in the data analysis results.

  6. High-temperature reaction of ''anisotropic'' pyrolitic graphite with oxygen

    International Nuclear Information System (INIS)

    Lavrenko, V.A.; Pomytkin, A.P.; Neshpor, V.S.; Vinokur, F.L.

    1980-01-01

    Investigated is the kinetics of initial interaction stages of highly dense crystalloorientated pyrographite with oxygen. Oxidation was carried out in pure oxygen within 0.1-740 mm Hg pressure range and 500-1100 deg C temperature range. It is stated, that at the temperatures below 700 deg C pyrographite oxidation is subjected to a linear law. Above 700-800 deg C the linear law is preserved only at the initial oxidation stage, then the process is described by a parabolic law. Extension of the linear site is decreased in time with the reduction of oxygen pressure. The reaction has apparent fractional order. Activation energy of pyrogrpahite oxidation by the linear low constitutes approximately 58 kcal/mol within 600-800 deg C range and 14 kcal/mol within 800-1100 deg C range. The apparent activation energy constitutes approximately 13 kcal/mol in the region of correspondence to the parabolic law

  7. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  8. Highly anisotropic metasurface: a polarized beam splitter and hologram

    Science.gov (United States)

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D.; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. PMID:25262791

  9. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight

    Science.gov (United States)

    Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye

    2018-04-01

    This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119  ×  10-7). Detection sensitivity up to 7.4914  ×  104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.

  10. Anisotropic inharmonic Higgs oscillator and related (MICZ-)Kepler-like systems

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeghikyan, Vahagn

    2008-01-01

    We propose the integrable (pseudo)spherical generalization of the four-dimensional anisotropic oscillator with additional nonlinear potential. Performing its Kustaanheimo-Stiefel transformation we then obtain the pseudospherical generalization of the MICZ-Kepler system with linear and cos θ potential terms. We also present the generalization of the parabolic coordinates, in which this system admits the separation of variables. Finally, we get the spherical analog of the presented MICZ-Kepler-like system

  11. High-order dynamic lattice method for seismic simulation in anisotropic media

    Science.gov (United States)

    Hu, Xiaolin; Jia, Xiaofeng

    2018-03-01

    The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.

  12. Powder alignment system for anisotropic bonded NdFeB Halbach cylinders \\ud

    OpenAIRE

    Zhu, Z.Q.; Xia, Z.P.; Atallah, K.; Jewell, G.W.; Howe, D.

    2000-01-01

    A Halbach cylinder, fabricated from pre-magnetized sintered NdFeB magnet segments, is proposed for the powder aligning system during the compression or injection moulding of anisotropic bonded Halbach oriented NdFeB ring magnets. The influence of leading design parameters of the powder aligning system, viz. the number of magnet segments per pole, their axial length and radial thickness, and their clearance from the mould, is investigated by finite element analysis, and validated experimentally

  13. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad

    2015-11-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since the dawn of nuclear era. Albeit the relatively large number of research works that have been conducted to investigate temperature distribution surrounding waste canisters, they all abide to consider the host formations as homogeneous and isotropic. While this could be the case in some subsurface settings, in most cases, this is not true. In other words, subsurface formations are, in most cases, inherently anisotropic and heterogeneous. In this research, we show that even a slight difference in anisotropy of thermal conductivity of host rock with direction could have interesting effects on temperature fields. We investigate the effect of anisotropy angle (the angle the principal direction of anisotropy is making with the coordinate system) on the temperature field as well as on the maximum temperature attained in different barrier systems. This includes 0°, 30°, 45°, 60°, and 90°in addition to the isotropic case as a reference. We also consider the effect of anisotropy ratio (the ratio between the principal direction anisotropies) on the temperature fields and maximum temperature history. This includes ratios ranging between 1.5 and 4. Interesting patterns of temperature fields and profiles are obtained. It is found that the temperature contours are aligned more towards the principal direction of anisotropy. Furthermore the peak temperature in the buffer zone is found to be larger the smaller the anisotropy angle and vice versa. © 2015 Elsevier Ltd. All rights reserved.

  14. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  15. Efficient operation of anisotropic synchronous machines for wind energy systems

    International Nuclear Information System (INIS)

    Eldeeb, Hisham; Hackl, Christoph M.; Kullick, Julian

    2016-01-01

    This paper presents an analytical solution for the Maximum-Torque-per-Ampere (MTPA) operation of synchronous machines (SM) with anisotropy and magnetic cross-coupling for the application in wind turbine systems and airborne wind energy systems. For a given reference torque, the analytical MTPA solution provides the optimal stator current references which produce the desired torque while minimizing the stator copper losses. From an implementation point of view, the proposed analytical method is appealing in terms of its fast online computation (compared to classical numerical methods) and its efficiency enhancement of the electrical drive system. The efficiency of the analytical MTPA operation, with and without consideration of cross-coupling, is compared to the conventional method with zero direct current. (paper)

  16. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems

    International Nuclear Information System (INIS)

    Smith, Peter M; Kennett, Malcolm P

    2012-01-01

    Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role. (paper)

  17. Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2015-07-01

    Full Text Available Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO3 substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.

  18. Deep Drawing Simulation Of High And Ultrahigh Strength Steels Under Consideration Of Anisotropic Hardening

    International Nuclear Information System (INIS)

    Roll, Karl; Faust, Alexander; Kessler, Lutz

    2007-01-01

    In today's sheet metal forming simulation, most attention is paid to yield loci functions, which describe the anisotropy of the material in yielding. The coefficients, defining the shape of the yield locus in these functions are usually fitted at a certain level of plastic work and are then valid for the whole range of plastic deformation. Modern high and ultrahigh strength steels, especially those with induced plasticity, may often exhibit only a very small anisotropy in yielding, but a severe anisotropy in work hardening for different loading conditions. This behavior can not be described by fitting the yield locus at a specific value of plastic deformation. An approach to take into account the anisotropic hardening of sheet metals is to provide different yield curves for several loading conditions and expand the yield locus dependent on the current form of load. By doing this, one can use a comparatively simple yield locus, like that of Hill from 1948, because all anisotropy is given by the different hardening curves. For the commercial FEM code LS DYNA the material model MATFEM Generalized Yield is available as a user subroutine, which supports this approach. In this paper, forming simulation results of different yield loci are compared with experimental results. The simulations were carried out in LS-DYNA with the Barlat 89 and 2000 yield loci and isotropic hardening and with the GenYld model combining a Hill 48 yield locus and anisotropic hardening. The deep drawing experiments were conducted on a hydraulic press, measuring binder and punch forces. The deformation of the sheet was measured by optical grid analysis. A comparison of the simulated and measured plastic strains shows that using a model including anisotropic hardening can produce better results than the usage of a complex yield locus but isotropic hardening for the examined materials. This might be interesting for e.g. spring back simulations. By combining a simple yield locus with anisotropic

  19. Anisotropic etching of tungsten-nitride with ICP system

    CERN Document Server

    Lee, H G; Moon, H S; Kim, S H; Ahn, J; Sohn, S

    1998-01-01

    Inductively Coupled Plasma ion streaming etching of WN sub x film is investigated for preparing x-ray mask absorber patterns. SF sub 6 gas plasma provides for effective etching of WN sub x , and the addition of Ar and N sub 2 results in higher dissociation of SF sub 6 and sidewall passivation effect, respectively. Microloading effect observed for high aspect ratio patterns is minimized by multi-step etching and O sub 2 plasma treatment process. As a result, 0.18 mu m WN sub x line and space patterns with vertical sidewall profile are successfully fabricated.

  20. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    Science.gov (United States)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  1. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    International Nuclear Information System (INIS)

    Vasques, R.

    2013-01-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  2. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, R. [Department of Mathematics, Center for Computational Engineering Science, RWTH Aachen University, Schinkel Strasse 2, D-52062 Aachen (Germany)

    2013-07-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  3. The importance of anisotropic scattering in high energy neutron transport problems

    International Nuclear Information System (INIS)

    Prillinger, G.; Mattes, M.

    1984-01-01

    To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)

  4. Simulation of the passive UHF devices on the basis of high-temperature superconductors for planar multilayer anisotropic structures

    CERN Document Server

    Gashinova, M S; Kolmakov, Y A; Vendik, I B

    2002-01-01

    The electrodynamic analysis of the arbitrary multilayer medium, including the anisotropic layers and containing the arbitrary form conductors is carried out. Thin layers of the high-temperature superconductor (HTSC) are considered as conductors. Determination of the surface current density is a result of the numerical solution. Accounting for the losses in the HTSC is accomplished on the basis of determining the equivalent surface impedance and using the Leontovich boundary conditions. Anisotropy is accounted for in the determination of the Green spectral dyad for the structure with arbitrary number of the anisotropic or isotropic layers. Calculation of the surface current density distribution demonstrates the correctness of the proposed model

  5. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  6. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1989-01-01

    One of the iterative methods which is used to solve the discretized transport equation is called the Source Iteration Method (SI). The SI method converges very slowly for problems with optically thick regions and scattering ratios (σ s /σ t ) near unity. The Diffusion-Synthetic Acceleration method (DSA) is one of the methods which has been devised to improve the convergence rate of the SI method. The DSA method is a good tool to accelerate the SI method, if the particle which is being dealt with is a neutron. This is because the scattering process for neutrons is not severely anisotropic. However, if the particle is a charged particle (electron), DSA becomes ineffective as an acceleration device because here the scattering process is severely anisotropic. To improve the DSA algorithm for electron transport, the author approaches the problem in two different ways in this thesis. He develops the first approach by accelerating more angular moments (φ 0 , φ 1 , φ 2 , φ 3 ,...) than is done in DSA; he calls this approach the Modified P N Synthetic Acceleration (MPSA) method. In the second approach he modifies the definition of the transport sweep, using the physics of the scattering; he calls this approach the Modified Diffusion Synthetic Acceleration (MDSA) method. In general, he has developed, analyzed, and implemented the MPSA and MDSA methods in this thesis and has shown that for a high order quadrature set and mesh widths about 1.0 cm, they are each about 34 times faster (clock time) than the DSA method. Also, he has found that the MDSA spectral radius decreases as the mesh size increases. This makes the MDSA method a better choice for large spatial meshes

  7. Anisotropic photoconductivity and current deflection induced in Bi12SiO20 by high contrast interference pattern

    DEFF Research Database (Denmark)

    Kukhtarev, N.V.; Lyuksyutov, S; Buchhave, Preben

    1996-01-01

    We have predicted and observed an anisotropic photocurrent induced in the cubic crystal Bi/sub 12/SiO/sub 20/ by a high-contrast interference pattern. The transverse current detected when the interference pattern is tilted is caused by deflection of the direct current generated by an external...

  8. A multi-scale approach for high cycle anisotropic fatigue resistance: Application to forged components

    International Nuclear Information System (INIS)

    Milesi, M.; Chastel, Y.; Hachem, E.; Bernacki, M.; Loge, R.E.; Bouchard, P.O.

    2010-01-01

    Forged components exhibit good mechanical strength, particularly in terms of high cycle fatigue properties. This is due to the specific microstructure resulting from large plastic deformation as in a forging process. The goal of this study is to account for critical phenomena such as the anisotropy of the fatigue resistance in order to perform high cycle fatigue simulations on industrial forged components. Standard high cycle fatigue criteria usually give good results for isotropic behaviors but are not suitable for components with anisotropic features. The aim is to represent explicitly this anisotropy at a lower scale compared to the process scale and determined local coefficients needed to simulate a real case. We developed a multi-scale approach by considering the statistical morphology and mechanical characteristics of the microstructure to represent explicitly each element. From stochastic experimental data, realistic microstructures were reconstructed in order to perform high cycle fatigue simulations on it with different orientations. The meshing was improved by a local refinement of each interface and simulations were performed on each representative elementary volume. The local mechanical anisotropy is taken into account through the distribution of particles. Fatigue parameters identified at the microscale can then be used at the macroscale on the forged component. The linkage of these data and the process scale is the fiber vector and the deformation state, used to calculate global mechanical anisotropy. Numerical results reveal an expected behavior compared to experimental tendencies. We proved numerically the dependence of the anisotropy direction and the deformation state on the endurance limit evolution.

  9. Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system

    International Nuclear Information System (INIS)

    He Zhizhu; Liu, Jing

    2010-01-01

    This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.

  10. Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.

    Science.gov (United States)

    Samelsohn, Gregory; Gruzdev, Eugene

    2008-09-01

    A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.

  11. Effect of quasiparticles on interlayer transport in highly anisotropic layered superconductors

    International Nuclear Information System (INIS)

    Artemenko, S.N.; Bulaevskii, L.N.; Maley, M.P.; Vinokur, V.M.

    1999-01-01

    We have performed a microscopic calculation of the dielectric response function in highly anisotropic layered superconductors and used the developed approach to obtain the frequency-dependent London penetration length and conductivity in the case of d-wave pairing for currents perpendicular to the layers. We consider a BCS model with coherent interlayer tunneling of electrons and take into account contributions from both superconducting electrons and quasiparticles to the dielectric response. We show that quasiparticles change the low-temperature behavior of the penetration length in the intermediate frequency range where the frequency is smaller than the superconducting order parameter but larger than the inverse quasiparticle scattering time. The obtained results are used to describe the low-temperature behavior of the Josephson plasma resonance, in particular the temperature dependence of the resonance frequency and the resonance linewidth in zero external magnetic field. We compare our results with the available experimental data for Tl 2 Ba 2 CuO 6 and Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) and show that results of a BCS model with coherent interlayer tunneling for the dc c-axis resistivity in the superconducting state are inconsistent with experimental data for underdoped and optimally doped Bi-2212 crystals. copyright 1999 The American Physical Society

  12. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    Science.gov (United States)

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  13. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    International Nuclear Information System (INIS)

    Steele, J A; Lewis, R A; Sirbu, L; Enachi, M; Tiginyanu, I M; Skuratov, V A

    2015-01-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index n eff and compared to effective media approximations. (invited article)

  14. On the possibility of laser diagnostics of anisotropically superheated electrons in magnetic fusion systems

    International Nuclear Information System (INIS)

    Kukushkin, A.B.

    1990-01-01

    The anisotropically superheated electrons (ASE) are known to be generated by a resonance interaction of high-frequency electromagnetic waves with electron plasma. Under definite conditions the ASE energy may essentially exceed (by the order of magnitude or even more) thermal energies of background electron plasma, the ASE distribution in pitch-angle being concentrated around definite directions. This situation is typical for, e.g. electron cyclotron heating of magnetic mirror plasmas (generation of 'sloshing' electrons) and for current drive in tokamaks by means of lower-hybrid or, sometimes, electron cyclotron waves. In this work, an analysis of the possibility of the ASE laser diagnostics is based on the calculations of Thomson scattering of laser radiation by plasma electrons. The model electron velocity distribution functions, which provide qualitative description of the ASE peculiar features, were used in calculations. (author) 4 refs., 1 fig

  15. Development of an anisotropic beam finite element for composite wind turbine blades in multibody system

    DEFF Research Database (Denmark)

    Kim, Taeseong; Hansen, Anders Melchior; Branner, Kim

    2013-01-01

    In this paper a new anisotropic beam finite element for composite wind turbine blades is developed and implemented into the aeroelastic nonlinear multibody code, HAWC2, intended to be used to investigate if use of anisotropic material layups in wind turbine blades can be tailored for improved...

  16. Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi-Gaussian Beams

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Schmerr, Lester W.

    2007-01-01

    The necessity of nondestructively inspecting fiber-reinforced composites, austenitic steels, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface play key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasi longitudinal (qL) beam propagates in the symmetry plane of a transversely isotropic gr/ep composite. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions

  17. The generalized PN synthetic acceleration method for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1998-01-01

    The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotopic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) methods is proposed. This method converges (Clock time) faster than the MDSA method. It is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented. (author). 9 refs., 2 tabs., 5 figs

  18. The generalized PN synthetic acceleration method for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1997-01-01

    The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotropic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) method is proposed that converges (clock time) faster than the MDSA method. This method is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented

  19. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    Science.gov (United States)

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-06

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.

  20. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  1. The Role of Texture, Cracks, and Fractures in Highly Anisotropic Shales

    Science.gov (United States)

    Baird, Alan F.; Kendall, J. Michael; Fisher, Quentin J.; Budge, Jessica

    2017-12-01

    Organic shales generally have low permeability unless fractures are present. However, how gas, oil, and water flows into these fractures remains enigmatic. The alignment of clay minerals and the alignment of fractures and cracks are effective means to produce seismic anisotropy. Thus, the detection and characterization of this anisotropy can be used to infer details about lithology, rock fabric, and fracture and crack properties within the subsurface. We present a study characterizing anisotropy using S wave splitting from microseismic sources in a highly anisotropic shale. We observe very strong anisotropy (up to 30%) with predominantly VTI (vertical transverse isotropy) symmetry, but with evidence of an HTI (horizontal transverse isotropy) overprint due to a NE striking vertical fracture set parallel to the maximum horizontal compressive stress. We observe clear evidence of a shear wave triplication due to anisotropy, which to our knowledge is one of only a very few observations of such triplications in field-scale data. We use modal proportions of minerals derived from X-ray fluorescence data combined with realistic textures to estimate the contribution of intrinsic anisotropy as well as possible contributions of horizontally aligned cracks. We find that aligned clays can explain much of the observed anisotropy and that any cracks contributing to the vertical transverse isotropy (VTI) must have a low ratio of normal to tangential compliance (ZN/ZT), typical of isolated cracks with low hydraulic connectivity. Subhorizontal cracks have also been observed in the reservoir, and we propose that their reactivation during hydraulic fracturing may be an important mechanism to facilitate gas flow.

  2. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  3. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  4. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  5. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  6. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    Science.gov (United States)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  7. High-resolution, high-sensitivity NMR of nano-litre anisotropic samples by coil spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D [CEA Saclay, DSM, DRECAM, SCM, Lab Struct and Dynam Resonance Magnet, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Le Goff, G; Jacquinot, J F [CEA Saclay, DSM, DRECAM, SPEC: Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Nuclear magnetic resonance (NMR) can probe the local structure and dynamic properties of liquids and solids, making it one of the most powerful and versatile analytical methods available today. However, its intrinsically low sensitivity precludes NMR analysis of very small samples - as frequently used when studying isotopically labelled biological molecules or advanced materials, or as preferred when conducting high-throughput screening of biological samples or 'lab-on-a-chip' studies. The sensitivity of NMR has been improved by using static micro-coils, alternative detection schemes and pre-polarization approaches. But these strategies cannot be easily used in NMR experiments involving the fast sample spinning essential for obtaining well-resolved spectra from non-liquid samples. Here we demonstrate that inductive coupling allows wireless transmission of radio-frequency pulses and the reception of NMR signals under fast spinning of both detector coil and sample. This enables NMR measurements characterized by an optimal filling factor, very high radio-frequency field amplitudes and enhanced sensitivity that increases with decreasing sample volume. Signals obtained for nano-litre-sized samples of organic powders and biological tissue increase by almost one order of magnitude (or, equivalently, are acquired two orders of magnitude faster), compared to standard NMR measurements. Our approach also offers optimal sensitivity when studying samples that need to be confined inside multiple safety barriers, such as radioactive materials. In principle, the co-rotation of a micrometer-sized detector coil with the sample and the use of inductive coupling (techniques that are at the heart of our method) should enable highly sensitive NMR measurements on any mass-limited sample that requires fast mechanical rotation to obtain well-resolved spectra. The method is easy to implement on a commercial NMR set-up and exhibits improved performance with miniaturization, and we

  8. Resolution of anisotropic and shielded highly conductive layers using 2-D electromagnetic modelling in the Rhine Graben and Black Forest

    Science.gov (United States)

    Tezkan, Bülent; Červ, Václav; Pek, Josef

    1992-12-01

    Anisotropy in magnetotelluric (MT) data has been found very often and has been explained as the result of local structures of different conductivities. In this paper, an observed anisotropy in MT data is not interpreted qualitatively in terms of local structures but is modelled quantitatively by a quasi-anisotropic layer. Besides the MT transfer functions, measurements of the vertical magnetic component are required. The second goal of this paper is to describe a method which permits the resolution of mid-crustal conductive layers in the presence of an additional high-conductivity layer at the surface. This method is possible in a two-dimensional (2-D) situation that limits the spatial extension of the surface structure. Again, vertical magnetic field recordings are necessary, but the phase of the E-polarization with respect to the 2-D structure is the most sensitive parameter. Using two field sites in Southern Germany, it has been possible to give a quantitative explanation of anisotropy and an improved depth resolution, and to derive an integrated conductivity of the highly conductive mid-crustal layers using MT and geomagnetic depth sounding data. The anisotropic highly conductive layer is located 12 km beneath the poorly conductive Black Forest crystalline rocks, whereas it is at a depth of 6 km beneath the highly conductive Rhine Graben sediments.

  9. Effect of reorientation of anisotropic point defects on relaxation of crystal elastic coefficients of high order

    International Nuclear Information System (INIS)

    Topchyan, I.I.; Dokhner, R.D.

    1977-01-01

    The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects

  10. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  11. High-pressure anisotropic distortion of Pb3Bi2S6

    DEFF Research Database (Denmark)

    Olsen, Lars Arnskov; Balic Zunic, Tonci; Makovicky, Emil

    2008-01-01

    The compound Pb3Bi2S6 is investigated by X-ray diffraction on single crystals in a diamond-anvil cell between 0.0001 and 10.5 GPa. It undergoes a first-order phase transition at hydrostatic pressure between 3.7 and 4.9 Gpa. The space group symmetry changes from Bbmm to Pbnm, and the unit......-cell volume decreases by 4%. The transition is strongly anisotropic, with a contraction along one of the crystal axes by 16% and expansion along another one by 14%. This is a piezoplastic phase transition, a displacive pressure-induced phase transition with systematic shearing of atomic planes and a migration...

  12. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  13. Maslov shear-waveforms in highly anisotropic shales and implications for shear-wave splitting analyses; Formes d`onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de birefringence des ondes transversales

    Energy Technology Data Exchange (ETDEWEB)

    Caddick, J. [Leeds Univ. (United Kingdom). Dept. of Earth Sciences; Kendall, J.M.; Raymer, D.G. [Western Geophysical, Middlesex (United Kingdom). Dept. of Earth Sciences

    1998-09-01

    Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platy nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslow asymptotic theory (MAT). This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding) where ray theory amplitudes are unstable. Asymptotic ray theory (ART) is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Ray-paths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line). One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. (authors) 21 refs.

  14. Decay constants for pulsed monoenergetic neutron systems with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1977-06-01

    The eigenvalues of the time-dependent transport equation for monoenergetic neutrons have been studied numerically for various combinations of linearly and quadratically anisotropic scattering assuming a space dependence of e β . The results, presented in the form of tables and graphs, show that quadratic anisotropy leads to a more complicated eigenvalue spectrum. However, no drastic changes occur in comparison to purely linear anistropy.(author)

  15. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  16. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel

    International Nuclear Information System (INIS)

    Shi, Duoqi; Sun, Yantao; Feng, Jian; Yang, Xiaoguang; Han, Shiwei; Mi, Chunhu; Jiang, Yonggang; Qi, Hongyu

    2013-01-01

    Compression tests were conducted on a ceramic-fiber-reinforced SiO 2 aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis

  17. Highly anisotropic electronic transport properties of monolayer and bilayer phosphorene from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Mullen, Jeffrey T. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kim, Ki Wook, E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-08-01

    The intrinsic carrier transport dynamics in phosphorene is theoretically examined. Utilizing a density functional theory treatment, the low-field mobility and the saturation velocity are characterized for both electrons and holes in the monolayer and bilayer structures. The analysis clearly elucidates the crystal orientation dependence manifested through the anisotropic band structure and the carrier-phonon scattering rates. In the monolayer, the hole mobility in the armchair direction is estimated to be approximately five times larger than in the zigzag direction at room temperature (460 cm{sup 2}/V s vs. 90 cm{sup 2}/V s). The bilayer transport, on the other hand, exhibits a more modest anisotropy with substantially higher mobilities (1610 cm{sup 2}/V s and 760 cm{sup 2}/V s, respectively). The calculations on the conduction-band electrons indicate a comparable dependence while the characteristic values are generally smaller by about a factor of two. The variation in the saturation velocity is found to be less pronounced. With the anticipated superior performance and the diminished anisotropy, few-layer phosphorene offers a promising opportunity particularly in p-type applications.

  18. The anisotropic magnetic property and Faraday rotation in Er3Ga5O12 under high magnetic field

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xijuan; Liu Gongqiang

    2005-01-01

    A theoretical investigation on the anisotropic magnetic property and Faraday rotation in Er 3 Ga 5 O 12 (ErGaG) is presented. With particular consideration of the anisotropy of the exchange interaction between rare-earth ions (Er 3+ ), the magnetization, based on the quantum theory, in ErGaG under high magnetic field (HMF) is calculated. Theoretical calculations show that the appropriate choice of the crystal field (CF) parameters is of great importance. A novel three-level model is presented, and in terms of this model the Faraday rotation under HMF is calculated. In addition, it is demonstrated that the Faraday rotation (θ) depends not only on the magnetization (M) but also on the magnetic field (H e ). The theory is in good agreement with the experiment

  19. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems

    Directory of Open Access Journals (Sweden)

    Jalani G

    2014-05-01

    Full Text Available Ghulam Jalani,* Chan Woo Jung,* Jae Sang Lee, Dong Woo Lim Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea*These authors contributed equally to this workAbstract: Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide poly(NIPAM copolymers, and poly(NIPAM-co-stearyl acrylate poly(NIPAM-co-SA, while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA. Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be

  20. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Science.gov (United States)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  1. High Statistics Analysis using Anisotropic Clover Lattices: (IV) The Volume Dependence of the Light Hadron Masses

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A

    2011-07-01

    The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is

  2. Computer-simulation study of a disordered classical spin system in one dimension with long-range anisotropic ferromagnetic interactions

    Science.gov (United States)

    Romano, S.

    1992-01-01

    The present paper considers a classical system, consisting of n-component unit vectors (n=2 or 3), associated with a one-dimensional lattice \\{uk||k∈openZ\\}, and interacting via a translationally invariant pair potential of the long-range, ferromagnetic and anisotropic form W=Wjk=-ɛ||j-k||-2(auj,nuk,n +b tsumλuk,λ denotes the Cartesian components of the unit vectors. According to the available rigorous results, the system disorders at all finite temperatures when a=b, or n=3, a=0, and possesses an ordering transition at finite temperature when b=0. Approximate arguments and simulation results suggest that the isotropic models (a=b) produce a transition to a low-temperature phase with infinite susceptibility and power-law decay of the correlation function. If this is true, the available correlation inequalities entail that it also happens in the anisotropic but O(2)-invariant case n=3, b=0. We report here Monte Carlo calculations for this latter potential model; simulation results were found to be consistent with this conjecture, and to suggest that T*c=0.65+/-0.01.

  3. Influence of f(R) models on the existence of anisotropic self-gravitating systems

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Z.; Sharif, M.; Bhatti, M.Z. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Ilyas, M. [University of the Punjab, Centre for High Energy Physics, Lahore (Pakistan)

    2017-10-15

    This paper aims to explore some realistic configurations of anisotropic spherical structures in the background of metric f(R) gravity, where R is the Ricci scalar. The solutions obtained by Krori and Barua are used to examine the nature of particular compact stars with three different modified gravity models. The behavior of material variables is analyzed through plots and the physical viability of compact stars is investigated through energy conditions. We also discuss the behavior of different forces, equation of state parameter, measure of anisotropy and Tolman-Oppenheimer-Volkoff equation in the modeling of stellar structures. The comparison from our graphical representations may provide evidence for the realistic and viable f(R) gravity models at both theoretical and the astrophysical scale. (orig.)

  4. Anisotropic Rabi model

    OpenAIRE

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-01-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...

  5. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation.

    Science.gov (United States)

    Roudier, François; Fernandez, Anita G; Fujita, Miki; Himmelspach, Regina; Borner, Georg H H; Schindelman, Gary; Song, Shuang; Baskin, Tobias I; Dupree, Paul; Wasteneys, Geoffrey O; Benfey, Philip N

    2005-06-01

    The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis.

  6. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation.

    Science.gov (United States)

    Lee, Won Hee; Kim, Tae-Seong

    2012-01-01

    This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions

  7. Band structure and optical properties of highly anisotropic LiBa2[B10O16(OH)3] decaborate crystal

    International Nuclear Information System (INIS)

    Smok, P.; Kityk, I.V.; Berdowski, J.

    2003-01-01

    The band structure (BS), charge density distribution and linear-optical properties of the anisotropic crystal LiBa 2 [B 10 O 16 (OH) 3 ] (LBBOH) are calculated using a self-consistent norm-conserving pseudopotential method within the framework of the local-density approximation theory. A high anisotropy of the band energy gap (4.22 eV for the E parallel b, 4.46 eV for the E parallel c) and giant birefringence (up to 0.20) are found. Comparison of the theoretically calculated and the experimentally measured polarised spectra of the imaginary part of the dielectric susceptibility ε 2 shows a good agreement. The anisotropy of the charge density distribution, BS dispersion and of the optical spectra originate from anisotropy between the 2p z B-2p z O and 2p y,x B-2p y,y O bonding orbitals. The observed anisotropy in the LBBOH is principally different from that of β-BaB 2 O 4 (BBO) single crystals. In the LBBOH single crystals the anisotropy of optical and charge density distribution is caused by different projection of the orbitals originating from particular borate clusters on the particular crystallographic axes, contrary to the BBO, where the anisotropy is caused prevailingly by a different local site symmetry of oxygen within the borate planes. The observed anisotropy is analysed in terms of the band energy dispersion and space charge density distribution

  8. Use of total cross sections for obtaining the anisotropic interaction potential in atom--diatom system

    International Nuclear Information System (INIS)

    Eccles, J.; Secrest, D.

    1977-01-01

    A study is made of the ''conservation of the total cross section'' and the ''equivalence of the total cross section'' rules for scattering from H 2 . It is shown that these rules are a better approximation than the random phase approximation would indicate. Cross section formulas are given for scattering atoms from m/sub j/ state selected molecules and it is shown that total cross sections for state selected molecules depend on the anisotropic part of the interaction potential, while the spin-averaged total cross section often depends only on the spherically symmetric part of the interaction potential. The total spin-averaged cross section is thus independent of the initial rotation state of the molecule and depends only on the relative collision energy. It is further demonstrated that isotopic substitution, which shifts the center of mass changing the symmetric part of the interaction potential, has too small an effect on the total cross section to be useful as a means of determining the anisotropy of the potential

  9. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  10. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  11. Quantum phase transition in a coupled two-level system embedded in anisotropic three-dimensional photonic crystals.

    Science.gov (United States)

    Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X

    2016-01-01

    The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.

  12. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    Science.gov (United States)

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  13. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  14. Anisotropic transport properties of quasiballistic InAs nanowires under high magnetic field

    Science.gov (United States)

    Vigneau, Florian; Zeng, Zaiping; Escoffier, Walter; Caroff, Philippe; Leturcq, Renaud; Niquet, Yann-Michel; Raquet, Bertrand; Goiran, Michel

    2018-03-01

    The magnetoconductance of a long channel InAs nanowire based field effect transistor in the quasiballistic regime under large magnetic field is investigated. The quasi-1D nanowire is fully characterized by a bias voltage spectroscopy and measurements under magnetic field up to 50 T applied either perpendicular or parallel to the nanowire axis lifting the spin and orbital degeneracies of the subbands. Under normal magnetic field, the conductance shows quantized steps due to the backscattering reduction and a decrease due to depopulation of the 1D modes. Under axial magnetic field, a quasioscillatory behavior is evidenced due to the coupling of the magnetic field with the angular momentum of the wave function. In addition the formation of cyclotron orbits is highlighted under high magnetic field. The experimental results are compared with theoretical calculation of the 1D band structure and related parameters.

  15. Small polarons and c-axis transport in highly anisotropic metals

    International Nuclear Information System (INIS)

    Ho, A.F.; Schofield, A.J.

    2002-09-01

    Motivated by the anomalous c-axis transport properties of the quasi two-dimensional metal, Sr 2 RuO 4 , and some of its relatives, we have studied the interlayer hopping of single electrons that are coupled strongly to c-axis bosons. We find a c-axis resistivity that reflects the in-plane electronic scattering in the low and very high temperature limits (relative to the characteristic temperature of the boson T boson ). For temperatures near the T boson , a broad maximum in the resistivity can appear for sufficiently strong electron-boson coupling. This feature may account for the observed 'metallic to non-metallic crossover' seen in these layered oxides, where the boson may be a phonon. (author)

  16. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Kulhánková, Lenka; Neuwirthová, Lucie; Mamulová Kutláková, Kateřina; Vallová, Silvie; Stýskala, Vítězslav; Čapková, Pavla

    2016-01-01

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  17. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  18. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz [Nanotechnology centre, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Kulhánková, Lenka [Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Neuwirthová, Lucie; Mamulová Kutláková, Kateřina [Nanotechnology centre, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Vallová, Silvie [Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Stýskala, Vítězslav [Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Čapková, Pavla [Faculty of Science, University of J.E. Purkyně, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic)

    2016-03-15

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  19. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  20. Highly anisotropic SmCo5 nanoflakes by surfactant-assisted ball milling at low temperature

    International Nuclear Information System (INIS)

    Liu, Lidong; Zhang, Songlin; Zhang, Jian; Ping Liu, J.; Xia, Weixing; Du, Juan; Yan, Aru; Yi, Jianhong; Li, Wei; Guo, Zhaohui

    2015-01-01

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo 5 nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo 5 nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo 5 nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo 5 nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo 5 nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified

  1. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc–dc power conversion

    International Nuclear Information System (INIS)

    Kim, Jooncheol; Kim, Minsoo; Herrault, Florian; Kim, Jung-Kwun; Allen, Mark G

    2015-01-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300–1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19 ) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50–100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500–1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc–dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors. (fast track communication)

  2. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  3. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  4. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  5. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  6. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  7. Characterisation of induced fracture networks within an enhanced geothermal system using anisotropic electromagnetic modelling

    Czech Academy of Sciences Publication Activity Database

    MacFarlane, J.; Thiel, S.; Pek, Josef; Peacock, J.; Heinson, G.

    2014-01-01

    Roč. 288, November (2014), s. 1-7 ISSN 0377-0273 Institutional support: RVO:67985530 Keywords : geothermal systems * magnetotellurics * fluid injection Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.543, year: 2014

  8. Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity

    International Nuclear Information System (INIS)

    Levin, G.A.; Quader, K.F.

    1992-01-01

    The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab

  9. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  10. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.

    Science.gov (United States)

    Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A

    2013-10-07

    In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

  11. First-principles study of optical, elastic anisotropic and thermodynamic properties of TiN under high temperature and high pressure

    Directory of Open Access Journals (Sweden)

    R. Yang

    2017-12-01

    Full Text Available The optical, elastic anisotropic and thermodynamic properties of TiN in the NaCl (B1 structure are analyzed in detail in the temperature range from 0 to 2000 K and the pressure range from 0 to 20 GPa. From the calculated dielectric constants, a first order isostructural phase transition between 29 and 30 GPa is found for TiN. The absorption spectra exhibit high values ranging from the far infrared region to the ultra-violet one. The anisotropy value of Young's modulus of TiN is smaller than that of c-BN at 0 GPa and the anisotropy of TiN clearly increases with an increase of pressure. The effects of pressure and temperature on the bulk modulus, Grüneisen parameter, Gibbs free energy, and Debye temperature are significant. The Grüneisen parameter of TiN is much larger than that of c-BN. At temperatures below 1000 K, TiN's heat capacity is much larger than that of c-BN.

  12. A modified phase coherence model for the non-linear c-axis V-I characteristics of highly anisotropic, high temperature superconductors

    CERN Document Server

    Luo Sheng; Huang Sai Jun; He Yu Sheng; Li Chun Guang; Zhang Xue Qiang

    2003-01-01

    A modified Ambegaokar-Halperin thermal-fluctuation model has been developed to describe the c-axis V-I characteristics and low-current ohmic resistance of highly anisotropic superconductors in a magnetic field parallel to the c-axis. The model assumes loss of phase coherence across the CuO-planes associated with the correlated motion of pancake vortices in the liquid state. The predicted V-I characteristics in the current-induced transition from the superconducting to the resistive state are in good agreement with measurements on a 2212-BSCCO single crystal as a function of temperature and field, provided the effect of the interlayer capacitance is taken into account. The measurements are consistent with a flux pancake correlation length within the CuO-planes varying as xi sub 0 /(T/T sub 0 - 1) supnu, where xi sub 0 = 1.57 +- 0.08 mu m and nu = 0.50 +- 0.01. Our measurements imply a current-dependent interlayer resistance above and below T sub c.

  13. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    Science.gov (United States)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  14. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    Science.gov (United States)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  15. Anisotropic Rabi model

    Science.gov (United States)

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-04-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  16. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  17. Accuracy of the solution of the transfer equation for a plane layer of high optical thickness with strongly anisotropic scattering

    International Nuclear Information System (INIS)

    Konovalov, N.V.

    The accuracy of the calculation of the characteristics of a radiation field in a plane layer is investigated by solving the transfer equation in dependence on the error in the specification of the scattering indicatrix. It is shown that a small error in the specification of the indicatrix can lead to a large error in the solution at large optical depths. An estimate is given for the region of optical thicknesses for which the emission field can be determined with sufficient degree of accuracy from the transfer equation with a known error in the specification of the indicatrix. For an estimation of the error involved in various numerical methods, and also for a determination of the region of their applicability, the results of calculations of problems with strongly anisotropic indicatrix are given

  18. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    -temperature Potts-ordered phase to an intermediate phase which lacks conventional long-range order, and another transition which takes the system to the high-temperature disordered phase. The linear nature of the sine potential used makes it a marginal case in the sense that it favors neither hard domain boundaries...

  19. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  20. Ultra-high resistive and anisotropic CoPd–CaF{sub 2} nanogranular soft magnetic films prepared by tandem-sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Masayuki, E-mail: naoe@denjiken.ne.jp [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Kobayashi, Nobukiyo [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Ohnuma, Shigehiro [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Iwasa, Tadayoshi; Arai, Ken-Ichi [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Masumoto, Hiroshi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan)

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF{sub 2} matrix, and a specimen having a composition of (Co{sub 0.69}Pd{sub 0.31}){sub 52}–(Ca{sub 0.31}F{sub 0.69}){sub 48} exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau–Lifshitz–Gilbert equation. Furthermore, it was clarified that the CaF{sub 2}-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF{sub 2} matrix. - Highlights: • We fabricated high-resistive and anisotropic granular films by tandem-sputtering. • CaF{sub 2}-based films exhibit a hundredfold higher resistivity than conventional films. • Uniaxial field annealing improved the magnetic properties dramatically. • High uniaxial anisotropy extended ferromagnetic resonance frequency to 4 GHz. • Annealed samples can be regarded as a ferromagnetic homogenized material.

  1. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples

    Science.gov (United States)

    Ciftja, Orion

    2017-02-01

    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  2. Holographic models with anisotropic scaling

    Science.gov (United States)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  3. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  4. High T{sub g} and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Keeratitham, Waralee, E-mail: waralee.ke@student.chula.ac.th; Somwangthanaroj, Anongnat, E-mail: anongnat.s@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 (Thailand)

    2016-03-09

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (T{sub g}) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that T{sub g} obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (∼90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  5. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  6. Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system

    International Nuclear Information System (INIS)

    Moll, J; Schulte, R T; Fritzen, C-P; Hartmann, B; Nelles, O

    2010-01-01

    A new approach for structural health monitoring using guided waves in plate-like structures has been developed. In contrast to previous approaches, which mainly focused on isotropic or quasi-isotropic plates, the proposed algorithm does not assume any simplifications regarding anisotropic wave propagation. Thus, it can be used to improve the probability of detection. In this paper the mathematical background for damage localization in anisotropic plates will be introduced. This is an extension of the widely known ellipse method. The formalism is based on a distributed sensor network, where each piezoelectric sensor acts in turn as an actuator. The automatic extraction of the onset time of the first waveform in the differential signal in combination with a statistical post-processing via a two-dimensional probability density function and the application of the expectation-maximization algorithm allows a completely automatic localization procedure. Thus, multiple damages can be identified at the same time. The present study uses ultrasonic signals provided by the spectral element method. This simulation approach shows good agreement with experimental measurements. A local linear neural network is used to model the nonlinear dispersion curves. The benefit of using a neural network approach is to increase the angular resolution that results from the sparse sensor network. Furthermore, it can be used to shorten the computational time for the damage localization procedure

  7. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  8. Fast rigorous numerical method for the solution of the anisotropic neutron transport problem and the NITRAN system for fusion neutronics application. Pt. 1

    International Nuclear Information System (INIS)

    Takahashi, A.; Rusch, D.

    1979-07-01

    Some recent neutronics experiments for fusion reactor blankets show that the precise treatment of anisotropic secondary emissions for all types of neutron scattering is needed for neutron transport calculations. In the present work new rigorous methods, i.e. based on non-approximative microscopic neutron balance equations, are applied to treat the anisotropic collision source term in transport equations. The collision source calculation is free from approximations except for the discretization of energy, angle and space variables and includes the rigorous treatment of nonelastic collisions, as far as nuclear data are given. Two methods are presented: first the Ii-method, which relies on existing nuclear data files and then, as an ultimate goal, the I*-method, which aims at the use of future double-differential cross section data, but which is also applicable to the present single-differential data basis to allow a smooth transition to the new data type. An application of the Ii-method is given in the code system NITRAN which employs the Ssub(N)-method to solve the transport equations. Both rigorous methods, the Ii- and the I*-method, are applicable to all radiation transport problems and they can be used also in the Monte-Carlo-method to solve the transport problem. (orig./RW) [de

  9. Anisotropic characterization of magnetorheological materials

    Energy Technology Data Exchange (ETDEWEB)

    Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and

  10. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  11. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved

  12. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  13. Anisotropic Flow Measurements in ALICE at the Large Hadron Collider

    NARCIS (Netherlands)

    Bilandzic, A.

    2012-01-01

    Anisotropic flow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy

  14. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  15. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  16. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  17. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  18. Hydraulic Conductivity Distributions for Anisotropic Systems and Application to Tc Transport at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Hunt, A. G.

    2006-01-01

    At the United States Department of Energy Hanford Site a spill of radioactive Technetium has been migrating horizontally in the vadose zone rather than flowing vertically to the water table. This result has been interpreted as being due to horizontal anisotropy in the hydraulic conductivity, K, (a tendency for fluids to migrate more easily in the horizontal direction) due to high horizontal connectivity of sedimentary deposits with a tendency for larger values of K. Such layers have larger components of silt and clay than the predominantly sandy soils at the Hanford site. It is generally accepted that effects of such anisotropy tend to be greater at smaller length scales, probably because of the lack of perfect correlations at large length scales. It has also been suggested that this anisotropy in K is maximized under relatively dry conditions when finer soils (with smaller pores) trap moisture more effectively than sands and gravels. The random component of the distribution of the Hanford flood deposits requires a probabilistic framework for the calculation of K. The work on this project had two main components: (1) to use continuum percolation theory applied to random fractal models to produce a general framework for calculating distributions of K under anisotropic conditions and as a function of system scale, (2) to apply the scheme for calculation to the Hanford site. The results of the general calculation (submitted for publication in Philosophical Magazine) are that the mean horizontal and vertical K values become equal in the limit of large system size (in agreement with general perception above) while the distributions of K values cause significant overlap of expected experimental values of K in the vertical and horizontal directions already at intermediate length scales. In order to make these calculation specific to the Hanford site, however, values of the appropriate length scales to describe the Hanford subsurface as well as to describe the maximum

  19. Ultra-high resistive and anisotropic CoPd-CaF2 nanogranular soft magnetic films prepared by tandem-sputtering deposition

    Science.gov (United States)

    Naoe, Masayuki; Kobayashi, Nobukiyo; Ohnuma, Shigehiro; Iwasa, Tadayoshi; Arai, Ken-Ichi; Masumoto, Hiroshi

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF2 matrix, and a specimen having a composition of (Co0.69Pd0.31)52-(Ca0.31F0.69)48 exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau-Lifshitz-Gilbert equation. Furthermore, it was clarified that the CaF2-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF2 matrix.

  20. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  1. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  2. Anisotropic phonon coupling in the relaxor ferroelectric (Na1/2Bi1/2)TiO3 near its high-temperature phase transition

    Science.gov (United States)

    Cai, Ling; Toulouse, Jean; Luo, Haosu; Tian, Wei

    2014-08-01

    The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the [110] and [001] directions and across the cubic-tetragonal phase transition at TC˜800 K. The phonon spectra are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric perovskites, a precipitous drop of the TO phonon into the TA branch or "waterfall" is observed at a certain qwf˜0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling mechanism are proposed to explain these observations.

  3. Modeling and experimental investigations of Lamb waves focusing in anisotropic plates

    International Nuclear Information System (INIS)

    Chapuis, Bastien; Terrien, Nicolas; Royer, Daniel

    2011-01-01

    The phenomenon of Lamb waves focusing in anisotropic plates is theoretically and experimentally investigated. An analysis based on a far field approximation of the Green's function shows that Lamb waves focusing is analog to the phonon focusing effect. In highly anisotropic structures like composite plates the focusing of A 0 and S 0 mode is strong; the energy propagates preferentially in the fibre directions, which are minima of the slowness. This has to be taken into account when developing, for example, a transducer array for structural health monitoring systems based on Lamb waves in order to avoid dead zones.

  4. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  5. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes

    Science.gov (United States)

    Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun

    2017-08-01

    We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.

  6. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  7. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    Science.gov (United States)

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  8. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  9. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  10. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karelina, Anna

    2004-02-18

    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)

  11. High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Abbas, Nadeem; Fang, Qiuli; Wang, Fang; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-11-01

    Hard magnetic NdFeB submicro/nanoflakes were successfully prepared by surfactant-assisted ball milling at low temperature (SABMLT) by specially using 2-methyl pentane and trioctylamine (TOA) as solvent and surfactant, respectively. Influences of the amount of TOA and milling temperature on the crystal structure, morphology and magnetic performances of the as-prepared NdFeB powders were investigated systematically. There is significant difference on morphology between the NdFeB powders milled at room and low temperature. The NdFeB powders with flaky morphology could be obtained even with a small amount of TOA by SABMLT, which could not be achieved by surfactant-assisted ball milling at room temperature (SABMRT). The better crystallinity, better grain alignment, higher coercivity, larger saturation magnetization and remanence ratio were achieved in the samples prepared by SABMLT. Furthermore, the final NdFeB powders prepared by SABMLT possessed a lower amount of residual TOA than those prepared by SABMRT. It was demonstrated that SABMLT is a promising way to fabricate rare-earth-transition metal nanoflakes with high anisotropy for permanent magnetic materials. The effective method of preparing NdFeB flakes by lowering temperature will be also useful to fabricate flakes of other functional materials.

  12. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...

  13. Highly anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lidong; Zhang, Songlin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhang, Jian, E-mail: zhangj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Ping Liu, J. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Xia, Weixing; Du, Juan; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Yi, Jianhong [Institute of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Wei; Guo, Zhaohui [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-01-15

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo{sub 5} nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo{sub 5} nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo{sub 5} nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo{sub 5} nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified.

  14. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Evren [Department of Electrical and Electronics Engineering, Mersin University, Mersin (Turkey); Eyueboglu, B Murat [Department of Electrical and Electronics Engineering, Middle East Technical University, 06531, Ankara (Turkey)

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  15. Stability of anisotropic stellar filaments

    Science.gov (United States)

    Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.

    2017-12-01

    The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.

  16. Inhomogeneous anisotropic cosmology

    International Nuclear Information System (INIS)

    Kleban, Matthew; Senatore, Leonardo

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  17. Data-driven imaging in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Volker, Arno; Hunter, Alan [TNO Stieltjes weg 1, 2600 AD, Delft (Netherlands)

    2012-05-17

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.

  18. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  19. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  20. Maslov Shear-Waveforms in Highly Anisotropic Shales and Implications for Shear-Wave Splitting Analyses Formes d'onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de biréfringence des ondes transversales

    Directory of Open Access Journals (Sweden)

    Caddick J.

    2006-12-01

    Full Text Available Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platey nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslov asymptotic theory (MAT. This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding where ray theory amplitudes are unstable. Asymptotic ray theory (ART is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Raypaths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line. One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. Les argiles sont les roches sédimentaires les plus répandues dans l'environnement des hydrocarbures, et forment souvent la roche mère et la roche des pièges pétrolifères. En raison de la structure en plaques des grains, les argiles sont g

  1. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    International Nuclear Information System (INIS)

    Miccoli, I; Edler, F; Pfnür, H; Tegenkamp, C

    2015-01-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field. (topical review)

  2. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  3. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  4. Fabrication of micromirrors with pyramidal shape using anisotropic etching of silicon

    OpenAIRE

    Moktadir, Z.; Vijaya Prakash, G.; Trupke, M.; Koukharenko, E.; Kraft, M.; Baumberg, J.J.; Eriksson, S.; Hinds, E.A.

    2005-01-01

    Gold micro-mirrors have been formed in silicon in an inverted pyramidal shape. The pyramidal structures are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micro-mirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into MOEMS systems.

  5. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Science.gov (United States)

    Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio

    2016-01-01

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278

  6. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Directory of Open Access Journals (Sweden)

    Letícia Streck

    2016-06-01

    Full Text Available Previous studies reported low benznidazole (BNZ loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR and oil-to-water ratio w/w (OWR change the phase behavior of different lipid-based drug delivery systems (LBDDS produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16 stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4 were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.

  7. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  8. Applying distributions of hydraulic conductivity for anisotropic systems and applications to Tc Transport at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Hunt, Allen G.

    2008-01-01

    43Tc99 is spreading mostly laterally through the U.S. Department of Energy Hanford site sediments. At higher tensions in the unsaturated zone, the hydraulic conductivity may be strongly anisotropic as a consequence of finer soils to retain more water than coarser ones, and for these soils to have been deposited primarily in horizontal structures. We have tried to develop a consistent modeling procedure that could predict the behavior of Tc plumes. Our procedure consists of: (1) Adapting existing numerical recipes based on critical path analysis to calculate the hydraulic conductivity, K, as a function of tension, h, (2) Statistically correlating the predicted K at various values of the tension with fine content, (3) Seeking a tension value, for which the anisotropy and the horizontal K values are both sufficiently large to accommodate multi-kilometer spreading, (4) Predicting the distribution of K values for vertical flow as a function of system support volume, (5) Comparing the largest likely K value in the vertical direction with the expected K in the horizontal direction, (6) Finding the length scale at which the two K values are roughly equal, (7) Comparing that length scale with the horizontal spreading of the plume. We find that our predictions of the value of the tension at which the principle spreading is likely occurring compares very well with experiment. However, we seem to underestimate the physical length scale at which the predominantly horizontal spreading begins to take on significant vertical characteristics. Our data and predictions would seem to indicate that this should happen after horizontal transport of somewhat over a km, but the chiefly horizontal transport appears to continue out to scales of 10km or so.

  9. Measurements of the superconducting fluctuations in optimally doped BaFe2−xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach

    International Nuclear Information System (INIS)

    Rey, R I; Ramos-Álvarez, A; Carballeira, C; Mosqueira, J; Vidal, F; Salem-Sugui, S Jr.; Alvarenga, A D; Zhang, Rui; Luo, Huiqian

    2014-01-01

    The superconducting fluctuations well inside the normal state of Fe-based superconductors were experimentally studied through the in-plane paraconductivity in several high-quality, optimally doped BaFe 2−x Ni x As 2 crystals. These measurements were performed in magnetic fields with amplitudes up to 14 T, and different orientations relative to the c-axis of the crystals (θ=0 ∘ , 53 ∘ , and 90 ∘ ). The results allowed a stringent check of the applicability of a recently proposed Ginzburg–Landau approach for the fluctuating electrical conductivity of three-dimensional (3D) anisotropic materials in the presence of finite applied magnetic fields. (papers)

  10. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  11. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  12. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    Science.gov (United States)

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  13. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.

    2013-01-01

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained

  14. Anisotropic diffusion tensor applied to temporal mammograms

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, Sami; Sporring, Jon

    2010-01-01

    changes related to  specific  effects  like  Hormonal  Replacement  Therapy  (HRT) and aging. Given effect-grouped patient data, we demonstrated how  anisotropic  diffusion  tensor  and  its  coherence  features computed in an anatomically oriented breast coordinate system followed by statistical learning...

  15. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  16. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  17. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  18. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  19. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  20. Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics

    International Nuclear Information System (INIS)

    Cissoko, Mahdy

    1975-01-01

    This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr

  1. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-02

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  2. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-01-01

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  3. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  4. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  5. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  6. Anisotropic hydrodynamics for conformal Gubser flow

    International Nuclear Information System (INIS)

    Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw

    2016-01-01

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  7. Selective optical transmission in anisotropic multilayers structure

    International Nuclear Information System (INIS)

    Ouchani, N.; Bria, D.; Nougaoui, A.; Merad, A.E.

    2007-08-01

    We developed a Green's function method to study theoretically a single-defect photonic crystal composed of anisotropic dielectric materials. This structure can trap light of a given frequency range and filter only a certain frequency light with a very high quality. It is shown that the defect modes appear as peaks in the transmission spectrum. Their intensities and frequency positions depend on the incidence angle and the orientation of the principal axes of layers consisting of the superlattice and the layer defect. Our structure offers a great variety of possibilities for creating and controlling the number and transmitted intensities of defect modes. It can be a good candidate for realizing a selective electromagnetic filter. In addition to this filtration process, the defective anisotropic photonic crystal can be used to switch the modes when appropriate geometry is selected. (author)

  8. Rotational state modification and fast ortho-para conversion of H2 trapped within the highly anisotropic potential of Pd(210)

    Science.gov (United States)

    Ohno, S.; Ivanov, D.; Ogura, S.; Wilde, M.; Arguelles, E. F.; Diño, W. A.; Kasai, H.; Fukutani, K.

    2018-02-01

    The rotational state and ortho-para conversion of H2 on a Pd(210) surface is investigated with rotational-state-selective temperature-programmed desorption (RS-TPD) and theoretical calculations. The isotope dependence of TPD shows a higher desorption energy for D2 than that for H2, which is ascribed to the rotational and zero-point vibrational energies. The RS-TPD data show that the desorption energy of H2(J =1 ) (J : rotational quantum number) is higher than that of H2(J =0 ). This is due to the orientationally anisotropic potential confining the adsorbed H2, which is in agreement with theoretical calculations. Furthermore, the H2 desorption intensity ratio in J =1 and J =0 indicates fast ortho-para conversion in the adsorption state, which we estimate to be of the order of 1 s.

  9. High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Nagashima, S.; Yano, M.; Shoji, T.; Kato, A.; Schrefl, T.; Hono, K.

    2013-01-01

    The grain boundary diffusion process using an Nd 70 Cu 30 eutectic alloy has been applied to hot-deformed anisotropic Nd–Fe–B magnets, resulting in a substantial enhancement of coercivity, from 1.5 T to 2.3 T, at the expense of remanence. Scanning electron microscopy showed that the areal fraction of an Nd-rich intergranular phase increased from 10% to 37%. The intergranular phase of the hot-deformed magnet initially contained ∼55 at.% ferromagnetic element, while it diminished to an undetectable level after the process. Microscale eutectic solidification of Nd/NdCu as well as a fine lamellae structure of Nd 70 (Co,Cu) 30 /Nd were observed in the intergranular phase. Micromagnetic simulations indicated that the reduction of the magnetization in the intergranular phases leads to the enhancement of coercivity in agreement with the experimental observation

  10. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  11. Anisotropic cosmological solutions in massive vector theories

    Energy Technology Data Exchange (ETDEWEB)

    Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji, E-mail: Lavinia.heisenberg@googlemail.com, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v {sup 2} || φ{sup 2} are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w {sub DE} in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w {sub DE}{sup (iso)} typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  12. Anisotropic cosmological solutions in massive vector theories

    International Nuclear Information System (INIS)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  13. Mechanics of anisotropic spring networks.

    Science.gov (United States)

    Zhang, T; Schwarz, J M; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  14. On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows

    CERN Document Server

    2018-01-01

    We study the evolution of hydrodynamic and non-hydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e. of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from non-hydrodynamic modes coupling into the entropy evolution which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipati...

  15. arXiv On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows

    CERN Document Server

    Chattopadhyay, Chandrodoy; Pal, Subrata; Vujanovic, Gojko

    2018-06-15

    We study the evolution of hydrodynamic and nonhydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e., of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from nonhydrodynamic modes coupling into the entropy evolution, which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipativ...

  16. Modeling of anisotropic wound healing

    Science.gov (United States)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  17. Magnetization in quenched bond-mixed Ising ferromagnetic with anisotropic coupling constants

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Tsallis, C.

    1982-01-01

    Within the framework of an effective field theory the phase diagram (ferromagnetic phase stability limit) and magnetization of a quenched bond-mixed spin 1 / 2 Ising model in anisotropic simple cubic lattice for both competing and non competing interactions is dicussed. Although analytically simple, the present formalism is superior to the standard Mean Field Approximation regarding at least two important features, namely it is capable of providing: (i) vanishing critical temperatures for one-dimensional systems; (ii) expected non uniform convergences in the highly diluted and highly anisotropic limits. The largeness of the model under consideration enables the exhibition of a certain amount of physically interesting crossovers (dimensionality changements, (dilute) - (non dilute) behavior, or even mixed situations) at both the phase diagram and magnetization levels. Whenever comparison is possible a satisfactory qualitative (and to a certain extent quantitative) agreement is observed with results available in the literature. (Author) [pt

  18. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Mulder, C.W.R.

    1984-01-01

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  19. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  20. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  1. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  2. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  3. Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior

    International Nuclear Information System (INIS)

    Buyers, W.J.L.; Holden, T.M.; Svensson, E.C.; Lander, G.H.

    1977-11-01

    Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the [001] domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along the spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons

  4. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  5. k-Space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures

    OpenAIRE

    Lev, L. L.; Maiboroda, I. O.; Husanu, M. -A.; Grichuk, E. S.; Chumakov, N. K.; Ezubchenko, I. S.; Chernykh, I. A.; Wang, X.; Tobler, B.; Schmitt, T.; Zanaveskin, M. L.; Valeyev, V. G.; Strocov, V. N.

    2018-01-01

    Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here, we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor (HEMT) heterostructures with an ult...

  6. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  7. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonschior, Alexey; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-02-12

    The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range |$\\eta$|8 GeV/c. The small $p_T$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_T$ =8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_T$ =8 GeV/c indicating that the particle type dependence persists out to high $p_T$.

  8. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  9. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    Science.gov (United States)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  10. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

    International Nuclear Information System (INIS)

    De France, Kevin J.; Yager, Kevin G.; Chan, Katelyn J. W.; Corbett, Brandon; Cranston, Emily D.; Hoare, Todd

    2017-01-01

    Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblasts and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.

  11. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik

    2014-01-01

    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin crysta...... analytical models involving crystalline plates, such as those often found in the field of micro electro mechanical systems. The effect of elastic boundary conditions is taken into account by using an effective radius of the plate....

  12. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  13. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  14. Creating an anisotropic plasma resistivity with waves

    International Nuclear Information System (INIS)

    Fisch, N.J.; Boozer, A.H.

    1980-05-01

    An anisotropic plasma resistivity may be created by preferential heating of electrons traveling in one direction. This can result in a steady-state toroidal current in a tokamak even in the absence of net wave momentum. In fact, at high wave phase velocities, the current associated with the change in resistivity is greater than that associated with net momentum input. An immediate implication is that other waves, such as electron cyclotron waves, may be competitive with lower-hybrid waves as a means for generating current. An analytical expression is derived for the current generated per power dissipated which agrees remarkably well with numerical calculations

  15. Longitudinal disordering of vortex lattices in anisotropic superconductors

    International Nuclear Information System (INIS)

    Harshman, D.R.; Brandt, E.H.; Fiory, A.T.; Inui, M.; Mitzi, D.B.; Schneemeyer, L.F.; Waszczak, J.V.

    1993-01-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa 2 Cu 3 O 7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction

  16. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...

  17. Making of Magnet Barium Ferit Anisotropic

    International Nuclear Information System (INIS)

    Idayati, Novrita; Dedi

    2003-01-01

    Barium Hexa ferrite (BaFe 12 O 19 ) is ceramic and materials which usually used for making of permanent magnet. In this research Barium Hexa ferrite were made Anisotropic, and applied for loudspeaker, electro motors, dynamo, KWh metre, etc. this Magnet is commonly used due to its high Induction of Remanen (Br) and coercivity (high Hc). Besides it applies a more simple and easier process technology, cheaper raw material, and easy to find it, hence the magnetic component is much cheaper. Powder Metallurgy was used for the process technology, by reacting all materials in the powder (oxide), with a certain size distribution and a tight preparation step. The next step was mixing ferrite and Barium Carbonate (in the form of oxide), calcination, compaction, cantering and characterisation. The Anisotropic particle effects a high Induce Remanen (Br) and of koersifitas (high Hc). All the process steps will is determine physical and chemical characteristics of the magnet. The best Magnet characteristic of the magnet produced in this research is Induction of Remanen (Br) = 4,27 kg, Coercivity (Hc) = 1,745 kOe, Energy Product max (BHmaks) = 2,31 MGOe

  18. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  19. Anisotropic hydrodynamics with a scalar collisional kernel

    Science.gov (United States)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  20. Temperature-dependent of Nonlinear Optical Conductance of Graphene-based Systems in High-intensity Terahertz Field

    Institute of Scientific and Technical Information of China (English)

    Jing Lv; Rui-yang Yuan; Hui Yan

    2014-01-01

    For multi-photon processed with the linear dispersion in the high-intensity terahertz(THz) field,we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the thirdand fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.

  1. Temp erature-dep endent of Nonlinear Optical Conductance of Graphene-based Systems in High-intensity Terahertz Field

    Institute of Scientific and Technical Information of China (English)

    Jing Lv; Rui-yang Yuan; Hui Yan

    2014-01-01

    For multi-photon processed with the linear dispersion in the high-intensity terahertz (THz) field, we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the third-and fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.

  2. The Effective Coherence Length in Anisotropic Superconductors

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Nesher, O

    1999-01-01

    If electrons are transmitted from a normal conductor(N) into a superconductor(S), common wisdom has it that the electrons are converted into Cooper pairs within a coherence length from the interface. This is true in conventional superconductors with an isotropic order parameter. We have established experimentally that the situation is rather different in high Tc superconductors having an anisotropic order parameter. We used epitaxial thin film S/N bilayers having different interface orientations in order to inject carriers from S into N along different directions. The distance to which these carriers penetrate were determined through their effect on the Tc of the bilayers. We found that the effective coherence length is 20A only along the a or b directions, while in other directions we find a length of 250dr20A out of plane, and an even larger value for in-plane, off high symmetry directions. These observations can be explained using the Blonder-Tinkham-Klapwijk model adapted to anisotropic superconductivity. Several implications of our results on outstanding problems with high Tc junctions will be discussed

  3. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.

    Science.gov (United States)

    Sunwong, P; Higgins, J S; Hampshire, D P

    2014-06-01

    We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10⁶ A m⁻¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max)  ≈ (1.35 × 10(-3))D(0.41) l h(‑1) A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high

  4. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

    International Nuclear Information System (INIS)

    Sunwong, P.; Higgins, J. S.; Hampshire, D. P.

    2014-01-01

    We present the designs of probes for making critical current density (J c ) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ∼0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J c measurements, made by uniformly ramping the current up to a maximum current (I max ) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b ′ ), and the maximum safe temperature for the critical-current leads (T max ). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI max /A=[1.46D −0.18 L 0.4 (T max −300) 0.25D −0.09 +750(b ′ /I max )D 10 −3 I max −2.87b ′ ]× 10 6 A m −1 where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm 2 is obtained when I max = 1000 A, T max = 400 K, D = 0.2, b ′ = 0.3 l h −1 and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h −1 . When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I max  ≈ (1.35 × 10 −3 )D 0.41 l h ‑1  A −1 . A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in

  5. Adaptive weighted anisotropic diffusion for computed tomography denoising

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi; Silver, Michael D. [Toshiba Medical Research Institute USA, Inc., Vernon Hills, IL (United States); Noshi, Yasuhiro [Toshiba Medical System Corporation, Tokyo (Japan)

    2011-07-01

    With increasing awareness of radiation safety, dose reduction has become an important task of modern CT system development. This paper proposes an adaptive weighted anisotropic diffusion method and an adaptive weighted sharp source anisotropic diffusion method as image domain filters to potentially help dose reduction. Different from existing anisotropic diffusion methods, the proposed methods incorporate an edge-sensitive adaptive source term as part of the diffusion iteration. It provides better edge and detail preservation. Visual evaluation showed that the new methods can reduce noise substantially without apparent edge and detail loss. The quantitative evaluations also showed over 50% of noise reduction in terms of noise standard deviations, which is equivalent to over 75% of dose reduction for a normal dose image quality. (orig.)

  6. Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene

    Science.gov (United States)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-01-01

    We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.

  7. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  8. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  9. High intensity radiation imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A nuclear imaging system is described for mapping a spatially distributed source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound in which the nuclear energy is spatially coded by a zone plate positioned between the source and a spatial detector, and a half tone screen is positioned between the source and the zone plate to increase the definition of the image

  10. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  11. Lower critical field of an anisotropic type-II superconductor

    International Nuclear Information System (INIS)

    Klemm, R.A.; Clem, J.R.

    1980-01-01

    We consider the Ginzburg-Landau free energy of the anisotropic mass form in the presence of a magnetic field of arbitrary fixed direction. It is shown that the free energy may be transformed into the isotropic Ginsburg-Landau form with a kappa that depends upon the direction of the magnetic induction B relative to the crystal lattice. The lower critical field H/sub c/1 is then found for arbitrary direction of B. For highly anisotropic crystals the angular dependence of H/sub c/1 can exhibit a discontinuity or a cusp. The special case of a crystal with uniaxial symmetry is considered in detail

  12. MHz gravitational waves from short-term anisotropic inflation

    International Nuclear Information System (INIS)

    Ito, Asuka; Soda, Jiro

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  13. Anisotropic models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2015-05-15

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  14. Anisotropic charged generalized polytropic models

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  15. Anisotropic superfluidity of hadronic matter

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1977-10-01

    From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions

  16. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  17. Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior

    NARCIS (Netherlands)

    Sagis, L.M.C.; Linden, van der E.

    2001-01-01

    In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly

  18. Comparison of two anisotropic layer models applied to induction motors

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Boynov, K.O.; Waarma, J.; Lomonova, E.

    2013-01-01

    A general description of the Anisotropic Layer Theory, derived in the polar coordinate system, and applied to the analysis of squirrel-cage induction motors (IMs), is presented. The theory considers non-conductive layers, layer with predefined current density and layers with induced current density.

  19. Theory of Spin Waves in Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Cooke, J. F.

    1976-01-01

    A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...

  20. Comparison of two anisotropic layer models applied to induction motors

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Boynov, K.O.; Lomonova, E.A.; Waarma, J.

    2014-01-01

    A general description of the Anisotropic Layer Theory, derived in the polar coordinate system, and applied to the analysis of squirrel-cage induction motors (IMs), is presented. The theory considers non-conductive layers, layer with predefined current density and layers with induced current density.

  1. Anisotropic phenomena in gauge/gravity duality

    International Nuclear Information System (INIS)

    Zeller, Hansjoerg

    2014-01-01

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  2. Anisotropic phenomena in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Hansjoerg

    2014-05-26

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  3. Derivation of the optical constants of anisotropic

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.; Strong, P. F.

    1985-07-01

    This report concerns the development of methods for obtaining the optical constants of anisotropic crystals of the triclinic and monoclinic systems. The principal method used, classical dispersion theory, is adapted to these crystal systems by extending the Lorentz line parameters to include the angles characterizing the individual resonances, and by replacing the dielectric constant by a dielectric tensor. The sample crystals are gypsium, orthoclase and chalcanthite. The derived optical constants are shown to be suitable for modeling the optical properties of particulate media in the infrared spectral region. For those materials where suitable size single crystals are not available, an extension of a previously used method is applied to alabaster, a polycrystalline material of the monoclinic crystal system.

  4. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  5. Anisotropic properties of aligned SWNT modified poly (methyl ...

    Indian Academy of Sciences (India)

    The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of ...

  6. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  7. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  8. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  9. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    Science.gov (United States)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  10. Anisotropic opinion dynamics

    Science.gov (United States)

    Neirotti, Juan

    2016-07-01

    We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B ) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged.

  11. High Pressure Electrolyzer System Evaluation

    Science.gov (United States)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  12. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  13. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated

  14. Supplemental figure: Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76 TeV

    CERN Document Server

    2015-01-01

    This note provides a supplemental figure for data on ``Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76~TeV" published in \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{Phys.\\ Lett.\\ B {\\bf 719}, 18 (2013)}, \\href{http://arxiv.org/abs/1205.5761}{arXiv:1205.5761}. The figure~(\\ref{fig:v2_pid}) presents the $v_2$ of charged pions and protons (particles and anti-particles are not distinguished in this analysis) from the event plane method as a function of transverse momentum for different centrality classes as reported in Fig. 5 of the \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{publication}. The proton $v_2$ is higher than that of pions out to $\\pt=8$~GeV/$c$ where the uncertainties become large.

  15. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  16. An optimization-based framework for anisotropic simplex mesh adaptation

    Science.gov (United States)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  17. Neutron transfer with anisotropic scattering

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Haggag, M.H.; Saad, E.A.

    1979-01-01

    The finite slab problem is reduced to a semi-infinite one by adding an infinitesimally thick layer such that both the added layer and the total layer are semi-infinite. The relation between the reflection and transmission functions for a finite slab and those for an infinite one are obtained in terms of an operator which satisfies a semigroup equation. The method is applied to anisotropic scattering with azimuthal dependence. Numerical calculations are made and the results compared with those of other workers. (author)

  18. Anisotropic densification of reference steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Bates, J.F.; Gilbert, E.R.

    1975-09-01

    A correlation is presented for the densification expected during neutron irradiation of 20 percent CW 316 stainless steel cladding of FTR specification. The densification is known to be a function of time, prior heat treatment, cold work level, irradiation temperature and minor element composition. For FTR fuel pin use, the temperature and carbon composition were chosen as the only relevant variables on which to base the correlation. The densification of FTR cladding is expected to be slightly anisotropic, leading to a diameter change somewhat less than that predicted by the isotropic relationship ΔD = -D 0 /3

  19. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  20. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  1. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  2. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  3. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  4. Anisotropic gradients in the upper mantle

    International Nuclear Information System (INIS)

    Garmany, J.

    1981-01-01

    Pn amplitudes in some widely spaced sets of orthogonal marine refraction lines on young oceanic crust are greater in the fast direction than in the slow direction. This is inconsistent with the predicted amplitude behavior for simple head waves, but can be explained by an increase in anisotropy with depth. It appears that these gradients are due to increasing olivine crystal orientation, although changes in the relative abundance of two anisotropic minerals without variable tectonization could also account for the observations. Depth variation of tectonization most probably indicates very high temperature gradients at the Moho. This would imply a substantial amount of convective heat transport in the whole oceanic crust near mid-ocean rises

  5. Turbulent Output-Based Anisotropic Adaptation

    Science.gov (United States)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  6. Extended phase graphs with anisotropic diffusion

    Science.gov (United States)

    Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.

  7. Stability of anisotropic beams with space charge

    International Nuclear Information System (INIS)

    Hofmann, I.

    1997-07-01

    We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)

  8. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  9. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  10. An Anisotropic Hardening Model for Springback Prediction

    International Nuclear Information System (INIS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-01-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test

  11. Double anisotropic electrically conductive flexible Janus-typed membranes.

    Science.gov (United States)

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  12. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  13. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  14. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    Science.gov (United States)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  15. Anisotropic physical properties of single-crystal U.sub.2./sub.Rh.sub.2./sub.Sn in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Gorbunov, D.I.; Reehuis, M.; Klemke, B.; Gukasov, A.; Uhlířová, K.; Fabrèges, X.; Skourski, Y.; Yokaichiya, F.; Hartwig, S.; Andreev, Alexander V.

    2017-01-01

    Roč. 95, č. 17 (2017), 1-12, č. článku 174433. ISSN 2469-9950 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : uranium intermetallics * antiferromagnetism * neutron diffraction * high magnetic field Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  16. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  17. Anisotropic to Isotropic Phase Transitions in the Early Universe

    Directory of Open Access Journals (Sweden)

    Ajaib M. A.

    2012-04-01

    Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.

  18. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kamal P. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Mahyavanshi, Rakesh D. [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2017-01-30

    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  19. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    International Nuclear Information System (INIS)

    Sharma, Kamal P.; Mahyavanshi, Rakesh D.; Kalita, Golap; Tanemura, Masaki

    2017-01-01

    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  20. Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T '-ReSe2

    DEFF Research Database (Denmark)

    Arora, Ashish; Noky, Jonathan; Drueppel, Matthias

    2017-01-01

    and photoluminescence spectroscopy of excitons in 1T '-ReSe2. On reducing the crystal thickness from bulk to a monolayer, we observe a strong blue shift of the optical band gap from 1.37 to 1.50 eV. The excitons are strongly polarized with dipole vectors along different crystal directions, which persist from bulk down......Atomically thin materials such as graphene or MoS2 are of high in-plane symmetry. Crystals with reduced symmetry hold the promise for novel optoelectronic devices based on their anisotropy in current flow or light polarization. Here, we present polarization-resolved optical transmission...... crystal. In addition, we find in our calculations a direct band gap in 1T '-ReSe2 regardless of crystal thickness, indicating weak interlayer coupling effects on the band gap characteristics. Our results pave the way for polarization-sensitive applications, such as optical logic circuits operating...

  1. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Jiang Weixiang; Cui Tiejun

    2010-01-01

    We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.

  2. Warm anisotropic inflationary universe model

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  3. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  4. Anisotropic magnetic structures of the Mn R MnSbO6 high-pressure doubly ordered perovskites (R =La , Pr, and Nd)

    Science.gov (United States)

    Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul

    2018-04-01

    A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .

  5. Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Daisuke; Uchihashi, Takayuki; Kodera, Noriyuki; Ando, Toshio

    2008-01-01

    The diffusion of individual point defects in a two-dimensional streptavidin crystal formed on biotin-containing supported lipid bilayers was observed by high-speed atomic force microscopy. The two-dimensional diffusion of monovacancy defects exhibited anisotropy correlated with the two crystallographic axes in the orthorhombic C 222 crystal; in the 2D plane, one axis (the a-axis) is comprised of contiguous biotin-bound subunit pairs whereas the other axis (the b-axis) is comprised of contiguous biotin-unbound subunit pairs. The diffusivity along the b-axis is approximately 2.4 times larger than that along the a-axis. This anisotropy is ascribed to the difference in the association free energy between the biotin-bound subunit-subunit interaction and the biotin-unbound subunit-subunit interaction. The preferred intermolecular contact occurs between the biotin-unbound subunits. The difference in the intermolecular binding energy between the two types of subunit pair is estimated to be approximately 0.52 kcal mol -1 . Another observed dynamic behavior of point defects was fusion of two point defects into a larger defect, which occurred much more frequently than the fission of a point defect into smaller defects. The diffusivity of point defects increased with increasing defect size. The fusion and the higher diffusivity of larger defects are suggested to be involved in the mechanism for the formation of defect-free crystals

  6. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  7. High Confidence Software and Systems Research Needs

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This White Paper presents a survey of high confidence software and systems research needs. It has been prepared by the High Confidence Software and Systems...

  8. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    Science.gov (United States)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  9. The chemical and electrochemical anisotropic etching of silicon

    International Nuclear Information System (INIS)

    Dixon, E.

    1997-06-01

    The success of silicon IC technology in producing a wide variety of microstructures relies heavily on the orientation dependant etching observed for silicon in alkaline media. Despite the rapid growth of this industry, the chemical and electrochemical mechanisms by which anisotropic etching occurs remain poorly understood. The most common etchant systems in use are ethylenediamine-pyrocatechol-water (EPW) and potassium hydroxide-isopropanol-water (KOH-IPA), and whilst these systems are highly plane selective they each have distinct disadvantages. The occurrence of inhomogeneities such as micropyramids and pits on the surface of etched substrates is a particularly disadvantageous characteristic of many alkaline etching systems. A complete understanding of the chemical and electrochemical anisotropic etching mechanisms is essential in order to obtain more reproducible etching, improved etch rate ratios and the development of more reliable etching baths. Wet chemical etching experiments to evaluate the etching rates for the different alkali metal cations have shown that similar etch rates are observed for LiOH, NaOH and KOH but those of RbOH and CsOH are significantly lower. The presence of impurities was shown to worsen the etched wafer's surface finish obtained in these etching baths. Additives have been shown to dramatically improve the surface finish with the presence of IPA in conjunction with etchant oxygenation virtually eliminating all surface defects. Electrochemical experiments were used to assess the electrochemical behaviour of Si p-(100) in of a wide variety of etchants and variations were seen according to the etchant used. A.C impedance spectroscopy showed a variation in the flat-band potential (V FB ) according to alkali metal hydroxide etchant used. These trends were similarly observed in the presence of isopropanol. Oxygenation was observed to reproducibly alter the flat-band potentials. A.c impedance spectroscopic studies additionally confirmed the

  10. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  11. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  12. Anisotropic flux pinning in high Tc superconductors

    International Nuclear Information System (INIS)

    Kolesnik, S.; Igalson, J.; Skoskiewicz, T.; Szymczak, R.; Baran, M.; Pytel, K.; Pytel, B.

    1995-01-01

    In this paper we present a comparison of the results of FC magnetization measurements on several Pb-Sr-(Y,Ca)-Cu-O crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed. ((orig.))

  13. Yang—Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement

    International Nuclear Information System (INIS)

    Hao Ya-Jiang; Yin Xiang-Guo

    2011-01-01

    By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases. (general)

  14. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  15. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    images using a 12.1 megapixel camera. Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add texture to the volume rendered images....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  16. Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field

    Science.gov (United States)

    Skrypnyk, T.

    2017-08-01

    We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.

  17. High frequency system project implementation plan

    International Nuclear Information System (INIS)

    Moon, L.L.

    1976-01-01

    The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed

  18. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying; Mei, Jun; Sheng, Ping

    2012-01-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle

  19. Anisotropic magnetoresistance in a Fermi glass

    International Nuclear Information System (INIS)

    Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)

    1986-01-01

    Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity

  20. Anisotropic stars obeying Chaplygin equation of state

    Indian Academy of Sciences (India)

    P Bhar

    2017-12-14

    Dec 14, 2017 ... Anisotropic effects may also originate from slow rotation of the core ... to include the effects of pressure anisotropy, electric charge, scalar field, dark energy and the cosmological constant in .... Generating solutions. In order to ...

  1. Quantitative multi-waves migration in elastic anisotropic media; Migration quantitative multi-ondes en milieu elastique anisotrope

    Energy Technology Data Exchange (ETDEWEB)

    Borgne, H.

    2004-12-01

    Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the

  2. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  3. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre

    2013-01-01

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  4. Coherent manipulation of dipolar coupled spins in an anisotropic environment

    Science.gov (United States)

    Baibekov, E. I.; Gafurov, M. R.; Zverev, D. G.; Kurkin, I. N.; Malkin, B. Z.; Barbara, B.

    2014-11-01

    We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaW O4 crystals with different concentrations of N d3 + ions.

  5. Newton–Hooke-type symmetry of anisotropic oscillators

    International Nuclear Information System (INIS)

    Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.

    2013-01-01

    Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition

  6. A resistor interpretation of general anisotropic cardiac tissue.

    Science.gov (United States)

    Shao, Hai; Sampson, Kevin J; Pormann, John B; Rose, Donald J; Henriquez, Craig S

    2004-02-01

    This paper describes a spatial discretization scheme for partial differential equation systems that contain anisotropic diffusion. The discretization method uses unstructured finite volumes, or the boxes, that are formed as a secondary geometric structure from an underlying triangular mesh. We show how the discretization can be interpreted as a resistive circuit network, where each resistor is assigned at each edge of the triangular element. The resistor is computed as an anisotropy dependent geometric quantity of the local mesh structure. Finally, we show that under certain conditions, the discretization gives rise to negative resistors that can produce non-physical hyperpolarizations near depolarizing stimuli. We discuss how the proper choice of triangulation (anisotropic Delaunay triangulation) can ensure monotonicity (i.e. all resistors are positive).

  7. Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory

    International Nuclear Information System (INIS)

    Kuang, Xiao-Mei; Fang, Li-Qing

    2015-01-01

    We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated

  8. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  9. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  10. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  11. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    Fedorov, Roman G; Mandler, Daniel

    2013-02-28

    We demonstrate localized electrodeposition of anisotropic metal nanoobjects, namely Au nanorods (GNR), on indium tin oxide (ITO) using scanning electrochemical microscopy (SECM). A gold microelectrode was the source of the gold ions whereby double pulse chronoamperometry was employed to generate initially Au seeds which were further grown under controlled conditions. The distance between the microelectrode and the ITO surface as well as the different experimental parameters (electrodeposition regime, solution composition and temperature) were optimized to produce faceted gold seeds with the required characteristics (size and distribution). Colloidal chemical synthesis was successfully exploited for better understanding the role of the surfactant and different additives in breaking the crystallographic symmetry and anisotropic growth of GNR. Experiments performed in a conventional three-electrode cell revealed the most appropriate electrochemical conditions allowing high yield synthesis of nanorods with well-defined shape as well as nanocubes and bipyramids.

  12. Meson life time in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Allahbakhshi, Davood

    2014-01-01

    In the hot (an)isotropic plasma the meson life time τ is defined as a time scale after which the meson dissociates. According to the gauge/gravity duality, this time can be identified with the inverse of the imaginary part of the frequency of the quasinormal modes, ω_I, in the (an)isotropic black hole background. In the high temperature limit, we numerically show that at fixed temperature(entropy density) the life time of the mesons decreases(increases) as the anisotropy parameter raises. For general case, at fixed temperature we introduce a polynomial function for ω_I and observe that the meson life time decreases. Moreover, we realize that (s/T"3)"6, where s and T are entropy density and temperature of the plasma respectively, can be expressed as a function of anisotropy parameter over temperature. Interestingly, this function is a Padé approximant.

  13. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  14. SO-FDTD analysis of anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Univ. of Science and Technology, Nanjing; Yuan Hong; Chen Rushan; Yang Yang

    2007-01-01

    A novel finite-difference time-domain (FDTD) method, called shift operator FDTD (SO-FDTD) method is developed for anisotropic magnetized dispersive media. The recursive relation between operators is used. In this paper, some expressions containing the dielectric constants of magnetized dispersive media are written as rational polynomial function. The SO-FDTD formulation for anisotropic magnetized plasma is derived. The high efficiency and effectiveness of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer, with the direction of the propagation parallel to the direction of the biasing field. A comparison with frequency domain analytic results is included. The CPU time was several times shorter than that of the JEC method. (authors)

  15. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  16. Anisotropic intrinsic spin Hall effect in quantum wires

    International Nuclear Information System (INIS)

    Cummings, A W; Akis, R; Ferry, D K

    2011-01-01

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)

  17. Timescales of isotropic and anisotropic cluster collapse

    Science.gov (United States)

    Bartelmann, M.; Ehlers, J.; Schneider, P.

    1993-12-01

    From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be

  18. Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity.

    Science.gov (United States)

    Liang, Meimei; Chen, Xin; Xu, Yang; Zhu, Lei; Jin, Xiangyu; Huang, Chen

    2017-11-02

    This study reports a facile method for fabricating double-grooved fibrous surfaces. The primary grooves of the surface are formed by aligned fibres, while the secondary grooves are achieved by oriented nanogrooves on the fibre surface. Investigation into the formation mechanism reveals that the nanogrooves can be readily tailored through adjusting the solvent ratio and relative humidity. With this understanding, a variety of polymers have been successfully electrospun into fibres having the same nanogrooved feature. These fibres show high resemblance to natural hierarchical structures, and thereby endowing the corresponding double-grooved surface with enhanced anisotropic hydrophobicity. A water droplet at a parallel direction to the grooves exhibits a much higher contact angle and a lower roll-off angle than the droplet at a perpendicular direction. The application potential of such anisotropic hydrophobicity has been demonstrated via a fog collection experiment, in which the double-grooved surface can harvest the largest amount of water. Moreover, the fabrication method requires neither post-treatment nor sophisticated equipment, making us anticipate that the double-grooved surface would be competitive in areas where a highly ordered surface, a large surface area and an anisotropic hydrophobicity are preferred.

  19. Self-assembly via anisotropic interactions : Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

    NARCIS (Netherlands)

    Newton, A.C.

    2017-01-01

    Self-assembly, the non-dissipative spontaneous formation of structural order spans many length scales, from amphiphilic molecules forming micelles to stars forming galaxies. This thesis mainly deals with systems on the colloidal length scale where the size of a particle is between a nanometer and a

  20. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    International Nuclear Information System (INIS)

    Bierwagen, O.

    2007-01-01

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  1. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.

    2007-12-20

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  2. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    2001-01-01

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites

  3. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    Science.gov (United States)

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  4. Anisotropic instability of the photoelectrons generated by soft x-ray radiation of the laser-produced plasma focus

    International Nuclear Information System (INIS)

    Klumov, B.A.; Tarakanov, V.P.

    1994-01-01

    The electron field with the anisotropic distribution function is being formed when the gas is being affected with ionizing radiation. The anisotropy of the distribution function occurs due to the fact that photoelectrons fly mainly in the direction perpendicular to that of ionizing radiation quantum propagation. In order to emphasize the most typical features of the developed anisotropic instability, photoelectrons were believed to fly strictly across the photon propagation direction. Two-dimensional electromagnetic particle simulations have been carried out to study high-frequency disturbances in the plasma produced by ionizing radiation. Elastic processes were taken into account. It has been shown, in particular, that the energy of anisotropic electrons transforms mainly into that of magnetic pulsations (approximately 7% of the energy transforms into that of magnetic pulsations). Development of the anisotropic instability result in a space stratification into current filaments. The anisotropic instability study can be important for an interpretation of electromagnetic emission spectra for a plasma disturbed by radiation

  5. Fast rigorous numerical method for the solution of the anisotropic neutron transport problem and the NITRAN system for fusion neutronics application. Pt. 2

    International Nuclear Information System (INIS)

    Takahashi, A.; Rusch, D.

    1979-10-01

    The I*-method, which is a non-approximative treatment of the neutron balance equations by the use of double-differential cross sections and a generalized angular transfer probability, is realized within the NITRAN system. It is shown, by means of test calculations for assemblies related to fusion reactor neutronics that double-differential cross section data provide substantial progress in transport problems with kinematically complicated reaction channels like (n,2n), (n,n'γ), and (n,n'α), because the I*-method is free from kinematic assumptions. The properties of the exponential method to generate the supplementary equations to the SN equations are investigated. (orig.) [de

  6. The Control of Anisotropic Transport in Manganites by Stripy Domains

    Science.gov (United States)

    Ju, Changcheng; Lu, Xiaomei; Chu, Yinghao

    2014-03-01

    Epitaxial thin film acts as a significant tool to investigate novel phenomena of complex oxide systems. Extrinsic constraint1 of uniform or certain designed buffer layer strain could be easily implanted to these materials. However, the strain distribution might be quite complicated by involving micro- or nano-lattice distortions which could partially relax the strain and determine the complex phase diagrams of thin film, meanwhile introducing structural and physical inhomogeneities. In this work , we report 71° striped ferroelectric domains created in BFO can also epitaxially lock the perovskite manganites leading to the emerge of ordered structural domain. LSMO/BFO hetero-epitaxial samples are deposited by PLD. The 71° periodic striped domains and coherent growth are demonstrated by PFM and X-ray analysis. Plan-view TEM and X-ray RSM have been used to confirm the epitaxial relationships of the functional layers and IP lattice constant. Both the simulation and structural analysis demonstrate we can create a periodic ordered stripe structural domain in LSMO. And this will leave an anisotropic distribution of structural domain walls which makes it possible to capture the anisotropic tunneling for strong electron-lattice coupling in manganites. Temperature-dependent resistivity measurements reveal a substantial anisotropic resistivities and a remarkable shift of the MI transition between the perpendicular and parallel to the stripe domain directions.

  7. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  8. GANTRAS - a system of codes for the solution of the multigroup transport equation with a rigorous treatment of anisotropic neutron scattering

    International Nuclear Information System (INIS)

    Schwenk-Ferrero, A.

    1986-11-01

    GANTRAS is a system of codes for neutron transport calculations in which the anisotropy of elastic and inelastic (including (n,n'x)-reactions) scattering is fully taken into account. This is achieved by employing a rigorous method, so-called I * -method, to represent the scattering term of the transport equation and with the use of double-differential cross-sections for the description of the emission of secondary neutrons. The I * -method was incorporated into the conventional transport code ONETRAN. The ONETRAN subroutines were modified for the new purpose. An implementation of the updated version ANTRA1 was accomplished for plane and spherical geometry. ANTRA1 was included in GANTRAS and linked to another modules which prepare angle-dependent transfer matrices. The GANTRAS code consists of three modules: 1. The CROMIX code which calculates the macroscopic transfer matrices for mixtures on the base of microscopic nuclide-dependent data. 2. The ATP code which generates discretized angular transfer probabilities (i.e. discretizes the I * -function). 3. The ANTRA1 code to perform S N transport calculations in one-dimensional plane and spherical geometries. This structure of GANTRAS allows to accommodate the system to various transport problems. (orig.) [de

  9. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  10. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  11. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  12. Polarization dynamics in nonlinear anisotropic fibers

    International Nuclear Information System (INIS)

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-01-01

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  13. Stoner–Wohlfarth model for the anisotropic case

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Marcos F. de, E-mail: mcampos@metal.eeimvr.uff.br [Programa de Pós-graduação em Engenharia Metalúrgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420,27255-125 Volta Redonda, Rio de Janeiro (Brazil); Sampaio da Silva, Fernanda A. [Programa de Pós-graduação em Engenharia Metalúrgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420,27255-125 Volta Redonda, Rio de Janeiro (Brazil); Perigo, Elio A. [Laboratory for the Physics of Advanced Materials, University of Luxembourg, L1511 Luxembourg (Luxembourg); Castro, José A. de [Programa de Pós-graduação em Engenharia Metalúrgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420,27255-125 Volta Redonda, Rio de Janeiro (Brazil)

    2013-11-15

    The Stoner–Wohlfarth (SW) model was calculated for the anisotropic case, by assuming crystallographical texture distributions as Gaussian, Lorentzian and Cos{sup n} (alpha). All these distributions were tested and both Gaussian and Cos{sup n} (alpha) give similar results for M{sub r}/M{sub s} above 0.8. However, the use of Cos{sup n} (alpha) makes it easier to find analytical expressions representing texture. The Lorentzian distribution is a suitable choice for not well aligned magnets, or magnets with a high fraction of misaligned grains. It is discussed how to obtain the alignment degree M{sub r}/M{sub s} directly from two measurements of magnetic remanence at the transverse and parallel directions to the alignment direction of the magnet. It is demonstrated that even the well aligned magnets with M{sub r}/M{sub s}=0.96 present coercive field of 60–70% of the anisotropy field, depending on the chosen distribution. The anisotropic SW model was used for discussing hysteresis squareness. Improving the crystalographical texture, the loop squareness also increases. - Highlights: • The Stoner–Wohlfarth model was calculated for the anisotropic case. • Different distribution functions for texture description were compared and discussed. • Lorentzian distribution is adequate for not well oriented magnets. • Determination of the alignment ratio M{sub r}/M{sub s} from 2 remanence measurements. • Prediction of the coercive field in Stoner–Wohlfarth aligned magnets.

  14. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  15. Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications

    Science.gov (United States)

    Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.

    Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  16. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  17. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  18. Computer simulation studies of anisotropic systems. XXXII. Field-induction of a smectic A phase in a Gay-Berne mesogen

    Science.gov (United States)

    Luckhurst, G. R.; Saielli, G.

    2000-03-01

    Molecular field theory predicts the induction of a smectic A phase by the application of a field, either magnetic or electric, to a nematic phase. This intriguing behavior results from an enhancement of the orientational order which is coupled to the translational order and so shifts the smectic A-nematic transition. To test this prediction we have investigated a system of Gay-Berne mesogenic molecules subject to an applied field of second rank using isothermal-isobaric Monte Carlo simulations. The results of our calculations are compared with the Kventsel-Luckhurst-Zewdie molecular field theory of smectogens, modified to include the effect of an external field. We have also used the simulations to explore the possibility of inducing more ordered smectic phases with stronger fields.

  19. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  20. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  1. Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Science.gov (United States)

    Boukraa, S.; Hassani, S.; Maillard, J.-M.

    2012-12-01

    Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard-Fuchs systems of two-variables ‘above’ Calabi-Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ(n), corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ(3) and χ(4), that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ(n)s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi-Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non-holonomic anisotropic full

  2. Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    International Nuclear Information System (INIS)

    Boukraa, S; Hassani, S; Maillard, J-M

    2012-01-01

    Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard–Fuchs systems of two-variables ‘above’ Calabi–Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ (n) , corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ (3) and χ (4) , that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ (n) s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi–Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non

  3. Numerical simulation of anisotropic polymeric foams

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

  4. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  5. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  6. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  7. An Efficient FPGA Implementation of Optimized Anisotropic Diffusion Filtering of Images

    Directory of Open Access Journals (Sweden)

    Chandrajit Pal

    2016-01-01

    Full Text Available Digital image processing is an exciting area of research with a variety of applications including medical, surveillance security systems, defence, and space applications. Noise removal as a preprocessing step helps to improve the performance of the signal processing algorithms, thereby enhancing image quality. Anisotropic diffusion filtering proposed by Perona and Malik can be used as an edge-preserving smoother, removing high-frequency components of images without blurring their edges. In this paper, we present the FPGA implementation of an edge-preserving anisotropic diffusion filter for digital images. The designed architecture completely replaced the convolution operation and implemented the same using simple arithmetic subtraction of the neighboring intensities within a kernel, preceded by multiple operations in parallel within the kernel. To improve the image reconstruction quality, the diffusion coefficient parameter, responsible for controlling the filtering process, has been properly analyzed. Its signal behavior has been studied by subsequently scaling and differentiating the signal. The hardware implementation of the proposed design shows better performance in terms of reconstruction quality and accelerated performance with respect to its software implementation. It also reduces computation, power consumption, and resource utilization with respect to other related works.

  8. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  9. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  10. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  11. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  12. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  13. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.

    Science.gov (United States)

    Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J

    2013-01-01

    High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

  14. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  15. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  16. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  17. Anisotropic Intervalley Plasmon Excitations in Graphene

    International Nuclear Information System (INIS)

    Chen Jian; Xu Huai-Zhe

    2015-01-01

    We investigate theoretically the intervalley plasmon excitations (IPEs) in graphene monolayer within the random-phase approximation. We derive an analytical expression of the real part of the dielectric function. We find a low-energy plasmon mode with a linear anisotropic dispersion which depends on the Fermi energy and the dielectric constant of substrate. The IPEs show strongly anisotropic behavior, which becomes significant around the zigzag crystallographic direction. More interestingly, the group velocity of IPE varies from negative to positive, and vanishes at special energy. (paper)

  18. On cracking of charged anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  19. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...

  20. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang; Schuster, Gerard T.

    2016-01-01

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially

  1. High Production Volume Information System (HPVIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The High Production Volume Information System (HPVIS) provides access to select health and environmental effect information on chemicals that are manufactured in...

  2. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  3. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  4. Navigation and Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi; Harada, Masashi

    Recently, some countries have begun conducting feasibility studies and R&D projects on High Altitude Platform Systems (HAPS). Japan has been investigating the use of an airship system that will function as a stratospheric platform for applications such as environmental monitoring, communications and broadcasting. If pseudolites were mounted on the airships, their GPS-like signals would be stable augmentations that would improve the accuracy, availability, and integrity of GPS-based positioning systems. Also, the sufficient number of HAPS can function as a positioning system independent of GPS. In this paper, a system design of the HAPS-based positioning system and its positioning error analyses are described.

  5. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  6. Delivering Training for Highly Demanding Information Systems

    Science.gov (United States)

    Norton, Andrew Lawrence; Coulson-Thomas, Yvette May; Coulson-Thomas, Colin Joseph; Ashurst, Colin

    2012-01-01

    Purpose: There is a lack of research covering the training requirements of organisations implementing highly demanding information systems (HDISs). The aim of this paper is to help in the understanding of appropriate training requirements for such systems. Design/methodology/approach: This research investigates the training delivery within a…

  7. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  8. Towards high performance in industrial refrigeration systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, R.; Niemann, Hans Henrik

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  9. A high compression crystal growth system

    International Nuclear Information System (INIS)

    Nieman, H.F.; Walton, A.A.; Powell, B.M.; Dolling, G.

    1980-01-01

    This report describes the construction and operating procedure for a high compression crystal growth system, capable of growing single crystals from the fluid phase over the temperature range of 4.2 K to 300 K, at pressures up to 900 MPa. Some experimental results obtained with the system are given for solid β-nitrogen. (auth)

  10. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  11. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  12. Anisotropic flow and related phenomena in Pb-Pb collisions at $\\sqrt{{s}_{NN}} = 5.02$ TeV with ALICE

    CERN Document Server

    Margutti, Jacopo

    2016-01-01

    ALICE (A Large Ion Collider Experiment) is designed and optimised to study the properties of the Quark-Gluon Plasma (QGP), a new state of matter, which is expected to be created at the high energy densities reached at the LHC. One of the key observables used to characterize the proper- ties of the QGP is the azimuthal anisotropy in particle production. This so-called anisotropic flow is sensitive to the transport properties and equation of state of the QGP. In this presentation, we report the first measurements of anisotropic flow in Pb–Pb collisions at √ s NN = 5 . 02 TeV with ALICE and compare them with both theoretical predictions and experimental measurements at lower energies and other collision systems. This provides a unique opportunity to test the validity of the hydrodynamic paradigm and to further constraint the key transport parameters of the QGP.

  13. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  15. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  16. Out-of-Bounds Hydrodynamics in Anisotropic Dirac Fluids

    Science.gov (United States)

    Link, Julia M.; Narozhny, Boris N.; Kiselev, Egor I.; Schmalian, Jörg

    2018-05-01

    We study hydrodynamic transport in two-dimensional, interacting electronic systems with merging Dirac points at charge neutrality. The dispersion along one crystallographic direction is Dirac-like, while it is Newtonian-like in the orthogonal direction. As a result, the electrical conductivity is metallic in one and insulating in the other direction. The shear viscosity tensor contains six independent components, which can be probed by measuring an anisotropic thermal flow. One of the viscosity components vanishes at zero temperature leading to a generalization of the previously conjectured lower bound for the shear viscosity to entropy density ratio.

  17. Comparing energy levels in isotropic and anisotropic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Pikovski, Alexander, E-mail: alexander.pikovski@colorado.edu

    2015-11-06

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  18. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)

    2009-08-10

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  19. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    International Nuclear Information System (INIS)

    Kravtsov, Yu.A.; Berczynski, P.; Bieg, B.

    2009-01-01

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  20. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fisker Skjoldan, P.

    2011-03-15

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between

  1. Comparing energy levels in isotropic and anisotropic potentials

    International Nuclear Information System (INIS)

    Pikovski, Alexander

    2015-01-01

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  2. Anisotropic diffusion in a toroidal geometry

    International Nuclear Information System (INIS)

    Fischer, Paul F

    2005-01-01

    As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note

  3. Anisotropic Interactions between Cold Rydberg Atoms

    Science.gov (United States)

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  4. Adaptive slices for acquisition of anisotropic BRDF

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    (2018) ISSN 2096-0433 R&D Projects: GA ČR GA17-18407S Institutional support: RVO:67985556 Keywords : anisotropic BRDF * slice * sampling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2018/RO/vavra-0486116.pdf

  5. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NARCIS (Netherlands)

    Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan

    2016-01-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times

  6. Jets in a strongly coupled anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)

    2018-01-15

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)

  7. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  8. Algebraic solution of an anisotropic nonquadratic potential

    International Nuclear Information System (INIS)

    Boschi Filho, H.; Vaidya, A.N.

    1990-06-01

    We show that an anisotropic nonquadratic potential, for which a path integral treatment had been recently discussed in the literature, possesses the (SO(2,1)xSO(2,1))ΛSO(2,1) dynamical symmetry and constructs its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. (author). 11 refs

  9. Nonlinear anisotropic parabolic equations in Lm

    Directory of Open Access Journals (Sweden)

    Fares Mokhtari

    2014-01-01

    Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].

  10. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  11. Hydraulic fracturing in anisotropic and heterogeneous rocks

    NARCIS (Netherlands)

    Valliappan, V.; Remmers, J.J.C.; Barnhoorn, A.; Smeulders, D.M.J.

    2017-01-01

    In this paper, we present a two dimensional model for modelling the hydraulic fracture process in anisotropic and heterogeneous rocks. The model is formulated using extended finite elements (XFEM) in combination with Newton-Raphson method for spatial and Euler's implicit scheme for time. The

  12. On characterization of anisotropic plant protein structures

    NARCIS (Netherlands)

    Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Goot, van der A.J.; Stefanidis, G.D.

    2014-01-01

    In this paper, a set of complementary techniques was used to characterize surface and bulk structures of an anisotropic Soy Protein Isolate (SPI)–vital wheat gluten blend after it was subjected to heat and simple shear flow in a Couette Cell. The structured biopolymer blend can form a basis for a

  13. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing

  14. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  15. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  16. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Huang, Shiming [Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Yilong, E-mail: yilongwang@tongji.edu.cn [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Shi, Donglu, E-mail: shid@ucmail.uc.edu [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol–gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk–shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection. - Graphical abstract: Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. - Highlights: • Non-magnetic anisotropic yolk/shell or Janus nanocomposites are prepared and characterized. • Different surface modification of zinc oxide (ZnO) nanoparticles results in varied morphology and size of the final product. • Fluorescent anisotropic nanocomposites embodying quantum dots are an ideal candidate for bio-detection applications.

  17. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2015-01-01

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken's extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  18. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin

    2015-03-30

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken\\'s extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  19. Optimization of anisotropic photonic density of states for Raman cooling of solids

    Science.gov (United States)

    Chen, Yin-Chung; Ghosh, Indronil; Schleife, André; Carney, P. Scott; Bahl, Gaurav

    2018-04-01

    Optical refrigeration of solids holds tremendous promise for applications in thermal management. It can be achieved through multiple mechanisms including inelastic anti-Stokes Brillouin and Raman scattering. However, engineering of these mechanisms remains relatively unexplored. The major challenge lies in the natural unfavorable imbalance in transition rates for Stokes and anti-Stokes scattering. We consider the influence of anisotropic photonic density of states on Raman scattering and derive expressions for cooling in such photonically anisotropic systems. We demonstrate optimization of the Raman cooling figure of merit considering all possible orientations for the material crystal and two example photonic crystals. We find that the anisotropic description of the photonic density of states and the optimization process is necessary to obtain the best Raman cooling efficiency for systems having lower symmetry. This general result applies to a wide array of other laser cooling methods in the presence of anisotropy.

  20. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  1. Coleman-Weinberg symmetry breaking in an anisotropic spacetime

    International Nuclear Information System (INIS)

    Futamase, T.

    1984-01-01

    The Coleman-Weinberg mechanism of symmetry breaking in a Bianchi type-I universe is investigated. The one-loop effective potential for a phi 4 theory and for scalar electrodynamics is calculated by the zeta-function method. The result indicates that the symmetry of the theory will be restored in the highly anisotropic, cold, early universe, irrespective of the coupling between the scalar field and the spacetime curvature scalar. This mechanism of the phase transition explains the isotropy of our universe

  2. Anisotropic parameter inversion in VTI media using diffraction data

    KAUST Repository

    Waheed, Umair bin

    2013-09-22

    Diffracted waves contain useful information regarding the subsurface geometry and velocity. They are particularly valuable for anisotropic media as they inherently possess a wide range of dips necessary to resolve angular dependence of velocity. Using this property of diffraction data to our vantage, we develop an algorithm to invert for effective η model, assuming no prior knowledge of it. The obtained effective η model is then converted to interval η model using Dix-type inversion formula. The effectiveness of this approach is tested on the VTI Marmousi model, which yields good structural match even for a highly complex media such as the Marmousi model.

  3. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  4. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad

    2015-07-13

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  5. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-01-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  6. Phase transitions and transport in anisotropic superconductors with large thermal fluctuations

    International Nuclear Information System (INIS)

    Fisher, D.S.

    1991-01-01

    Fluctuation effects in conventional superconductors such as broadening of phase transitions and flux creep tend to be very small primarily because of the large coherence lengths. Thus mean field theory, with only small fluctuation corrections, usually provides an adequate description of these systems. Regimes in which fluctuation effects cause qualitatively different physics are very difficult to study as they typically occur in very small regions of the phase diagram or, in transport, require measuring extremely small voltages. In striking contrast, in the high temperature cuprate superconductors a combination of factors - short coherence lengths, anisotropy and higher temperatures - make fluctuation effects many orders of magnitude larger. The current understanding of transport and phase transitions in the cuprate superconductors-particularly YBCO and BSCCO-is reviewed. New results are presented on the two-dimensional regimes and 2D-3D crossover in the strongly anisotropic case of BSCCO. The emphasis is on pinning and vortex glass behavior

  7. 3-D anisotropic neutron diffusion in optically thick media with optically thin channels

    International Nuclear Information System (INIS)

    Trahan, Travis J.; Larsen, Edward W.

    2011-01-01

    Standard neutron diffusion theory accurately approximates the neutron transport process for optically thick, scattering-dominated systems in which the angular neutron flux is a weak (nearly linear) function of angle. Therefore, standard diffusion theory is not directly applicable for Very High Temperature Reactor (VHTR) cores, which contain numerous narrow, axially-oriented, nearly-voided coolant channels. However, we have derived a new, accurate diffusion equation for such problems, which contains nonstandard anisotropic diffusion coefficients near and within the channels, but which reduces to the standard diffusion approximation away from the channels. The new diffusion approximation significantly improves the accuracy of VHTR diffusion simulations, while having lower computational cost than higher-order transport methods. (author)

  8. Nonequilibrium current-carrying steady states in the anisotropic X Y spin chain

    Science.gov (United States)

    Lancaster, Jarrett L.

    2016-05-01

    Out-of-equilibrium behavior is explored in the one-dimensional anisotropic X Y model. Initially preparing the system in the isotropic X X model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is generated by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs' ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.

  9. Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene

    Science.gov (United States)

    O'Connor, Thomas C.; Elder, Robert M.; Sliozberg, Yelena R.; Sirk, Timothy W.; Andzelm, Jan W.; Robbins, Mark O.

    2018-03-01

    Molecular dynamics simulations are used to analyze shock propagation in amorphous and crystalline polyethylene. Results for the shock velocity Us are compared to predictions from Pastine's equation of state and hydrostatic theory. The results agree with Pastine at high impact velocities. At low velocities the yield stress becomes important, increasing the shock velocity and leading to anisotropy in the crystalline response. Detailed analysis of changes in atomic order reveals the origin of the anisotropic response. For shock along the polymer backbone, an elastic front is followed by a plastic front where chains buckle with a characteristic wavelength. Shock perpendicular to the chain backbone can produce plastic deformation or transitions to different orthorhombic or monoclinic structures, depending on the impact speed and direction. Tensile loading does not produce stable shocks: Amorphous systems craze and fracture while for crystals the front broadens linearly with time.

  10. Analysis and interpretation of diffraction data from complex, anisotropic materials

    Science.gov (United States)

    Tutuncu, Goknur

    Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl

  11. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  12. In situ determination of anisotropic permeability of clay

    International Nuclear Information System (INIS)

    Shao, H.; Soennke, J.; Morel, J.; Krug, S.

    2011-01-01

    Argillaceous formations are being considered as potential host rocks for repositories of radioactive waste in many countries. For this purpose, the thermal, hydraulic, mechanical, and chemical properties of the clay stone are being widely investigated in the laboratories and in situ. However, clay stone behaves, due to its tectonic evolution of the formation, hydraulically and mechanically transversal isotropic. Argillite bedding or layering structure has been observed in the underground laboratories Mont Terri in the Switzerland and Meuse/Haute-Marne at Bure site in France. Conventional packer systems used for the borehole hydraulic characterisation cannot distinguish the difference between the properties parallel and perpendicular to the bedding. For this purpose, a new 'slot packer' system has been developed by the BGR. This type of new packer system is intensively tested in the BGR laboratory and the Mont Terri Rock Laboratory to judge the feasibility. The anisotropic ratio of the Opalinus clay defined by permeability value parallel to the bedding/permeability value perpendicular to the bedding is evaluated up to eight times to one order of magnitude within the HG-B experiment in the Mont Terri Rock Laboratory. Within the cooperation between BGR and ANDRA, the 'slot packer' will be used for the measurement of anisotropic permeability of the Callovo-Oxfordian formation at the Bure site. (authors)

  13. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  14. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    Science.gov (United States)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  15. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  16. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  17. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  18. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  19. δ M formalism and anisotropic chaotic inflation power spectrum

    Science.gov (United States)

    Talebian-Ashkezari, A.; Ahmadi, N.

    2018-05-01

    A new analytical approach to linear perturbations in anisotropic inflation has been introduced in [A. Talebian-Ashkezari, N. Ahmadi and A.A. Abolhasani, JCAP 03 (2018) 001] under the name of δ M formalism. In this paper we apply the mentioned approach to a model of anisotropic inflation driven by a scalar field, coupled to the kinetic term of a vector field with a U(1) symmetry. The δ M formalism provides an efficient way of computing tensor-tensor, tensor-scalar as well as scalar-scalar 2-point correlations that are needed for the analysis of the observational features of an anisotropic model on the CMB. A comparison between δ M results and the tedious calculations using in-in formalism shows the aptitude of the δ M formalism in calculating accurate two point correlation functions between physical modes of the system.

  20. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  1. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  2. Measurements of correlations of anisotropic flow harmonics in Pb–Pb Collisions with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, You, E-mail: you.zhou@cern.ch

    2016-12-15

    We report the first measurements of the correlation strength between various anisotropic flow harmonics, using ALICE data. This correlation strength is characterized with multi-particle cumulants of mixed harmonics, which by construction depend only on the fluctuations of magnitudes of the anisotropic flow vectors. A detailed comparison to theoretical model calculations, including HIJING, Monte Carlo Glauber and hydrodynamics is also presented. These studies further constrain initial conditions, the properties and the evolution of the system to be used in theoretical simulations of heavy-ion collisions.

  3. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    Science.gov (United States)

    Korenev, V. L.

    2014-03-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 104 A/cm2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  4. Complex emergent dynamics of anisotropic swarms: Convergence vs oscillation

    International Nuclear Information System (INIS)

    Chu Tianguang; Wang Long; Chen Tongwen; Mu Shumei

    2006-01-01

    This paper considers an anisotropic swarm model with a simple attraction and repulsion function. It is shown that the members of a reciprocal swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover, the swarm system is also completely stable, i.e., every solution converges to the set of equilibrium points of the system. These results are also valid for a class of non-reciprocal swarms under the detailed balance condition on coupling weights. For general non-reciprocal swarms, numerical simulations are worked out to demonstrate more complex oscillatory motions in the systems. The study provides further insight into the effect of the interaction pattern on the collective behavior of a swarm system

  5. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  6. Reverse engineering of heavy-ion collisions: Unraveling initial conditions from anisotropic flow data

    International Nuclear Information System (INIS)

    Retinskaya, Ekaterina

    2014-01-01

    Ultra-Relativistic heavy-ion physics is a promising field of high energy physics connecting two fields: nuclear physics and elementary particle physics. Experimental achievements of the last years have provided an opportunity to study the properties of a new state of matter created in heavy-ion collisions called quark-gluon plasma. The initial state of two colliding nuclei is affected by fluctuations coming from wave- functions of nucleons. These fluctuations lead to the momentum anisotropy of the hadronic matter which is observed by the detectors. The system created in the collision behaves like a fluid, so the initial state is connected to the final state via hydrodynamic evolution. In this thesis we model the evolution with relativistic viscous hydrodynamics. Our results, combined with experimental data, give non trivial constraints on the initial state, thus achieving 'reverse engineering' of the heavy-ion collisions. The observable which characterizes the momentum anisotropy is the anisotropic flow v n . We present the first measurements of the first harmonic of the anisotropic flow called directed flow v 1 in Pb-Pb collisions at the LHC. We then perform the first viscous hydrodynamic modeling of directed flow and show that it is less sensitive to viscosity than higher harmonics. Comparison of these experimental data with the modeling allows to extract the values of the dipole asymmetry of the initial state, which provides constraints on the models of initial states. A prediction for directed flow v 1 in Au-Au collisions is also made for RHIC. We then perform a similar modeling of the second and third harmonics of the anisotropic flow, called respectively elliptic v 2 and triangular v 3 flow. A combined analysis of the elliptic and triangular flow data compared with viscous hydrodynamic calculations allows us to put constraints on initial ellipticity and triangularity of the system. These constraints are then used as a filter for different models of

  7. A highly ductile magnesium alloy system

    International Nuclear Information System (INIS)

    Gao, W; Liu, H

    2009-01-01

    Magnesium (Mg) alloys are finding increasing applications in industry mainly due to their high strength-to-weight ratio. However, they have intrinsically poor plastic deformation ability at room temperature. Therefore, the vast majority of Mg alloys are used only in cast state, severely limiting the development of their applications. We have recently discovered a new Mg alloy system that possesses exceptionally high ductility as well as good mechanical strength. The superior plasticity allows this alloy system to be mechanically deformed at room temperature, directly from an as-cast alloy plate, sheet or ingot into working parts. This type of cold mechanical forming properties has never been reported with any other Mg alloy systems.

  8. Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2

    Science.gov (United States)

    Li, Hui; Wang, Huan-Wen; He, Hongtao; Wang, Jiannong; Shen, Shun-Qing

    2018-05-01

    Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac semimetal Cd3As2 of giant anisotropic magnetoresistance and its transverse version, called the planar Hall effect. The relative anisotropic magnetoresistance is negative and up to -68% at 2 K and 10 T. The high anisotropy and the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures of Weyl and Dirac fermions other than negative magnetoresistance.

  9. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  10. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  11. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  12. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  13. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  14. Radiative Transfer Equation for Anisotropic Spherical Medium with Specular Reflective Index

    International Nuclear Information System (INIS)

    Elghazaly, A.

    2009-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with diffuse and angular dependent (specular) reflecting boundaries is solved using the Pomraning-Eddington approximation method. The angular dependent specular reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. The calculations are carried out for spherical media of radii 0.1, 1.0, and 10 mfp and for different scattering albedo. Two different weight functions are used to verify the boundary conditions. Our results are compared with the available data and give an excellent agreement for thick and highly scattering media

  15. Anisotropic Magnus Force in Type-II Superconductors with Planar Defects

    Science.gov (United States)

    Monroy, Ricardo Vega; Gomez, Eliceo Cortés

    2015-02-01

    The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.

  16. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  17. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  18. Anisotropic magnetotelluric inversion using a mutual information constraint

    Science.gov (United States)

    Mandolesi, E.; Jones, A. G.

    2012-12-01

    In recent years, several authors pointed that the electrical conductivity of many subsurface structures cannot be described properly by a scalar field. With the development of field devices and techniques, data quality improved to the point that the anisotropy in conductivity of rocks (microscopic anisotropy) and tectonic structures (macroscopic anisotropy) cannot be neglected. Therefore a correct use of high quality data has to include electrical anisotropy and a correct interpretation of anisotropic data characterizes directly a non-negligible part of the subsurface. In this work we test an inversion routine that takes advantage of the classic Levenberg-Marquardt (LM) algorithm to invert magnetotelluric (MT) data generated from a bi-dimensional (2D) anisotropic domain. The LM method is routinely used in inverse problems due its performance and robustness. In non-linear inverse problems -such the MT problem- the LM method provides a spectacular compromise betwee quick and secure convergence at the price of the explicit computation and storage of the sensitivity matrix. Regularization in inverse MT problems has been used extensively, due to the necessity to constrain model space and to reduce the ill-posedness of the anisotropic MT problem, which makes MT inversions extremely challenging. In order to reduce non-uniqueness of the MT problem and to reach a model compatible with other different tomographic results from the same target region, we used a mutual information (MI) based constraint. MI is a basic quantity in information theory that can be used to define a metric between images, and it is routinely used in fields as computer vision, image registration and medical tomography, to cite some applications. We -thus- inverted for the model that best fits the anisotropic data and that is the closest -in a MI sense- to a tomographic model of the target area. The advantage of this technique is that the tomographic model of the studied region may be produced by any

  19. Anisotropic conducting films for electromagnetic radiation applications

    Science.gov (United States)

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  20. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  1. Entanglement of periodic anisotropic XY chains

    International Nuclear Information System (INIS)

    Zhang Lifa; Tong Peiqing

    2005-01-01

    By using the concept of concurrence, the entanglement of periodic anisotropic XY chains in a transverse field is studied numerically. It is found that the derivatives ∂ λ C(1) of nearest-neighbour concurrence diverge at quantum critical points. By proper scaling, we found that all the derivatives ∂ λ C(1) for periodic XY chains in the vicinity of quantum critical points have the same behaviours as that of a uniform chain

  2. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tensio...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....

  3. Symmetry analysis for anisotropic field theories

    International Nuclear Information System (INIS)

    Parra, Lorena; Vergara, J. David

    2012-01-01

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  4. Electromagnetic effects on cracking of anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-10-15

    In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)

  5. National high-level waste systems analysis

    International Nuclear Information System (INIS)

    Kristofferson, K.; O'Holleran, T.P.

    1996-01-01

    Previously, no mechanism existed that provided a systematic, interrelated view or national perspective of all high-level waste treatment and storage systems that the US Department of Energy manages. The impacts of budgetary constraints and repository availability on storage and treatment must be assessed against existing and pending negotiated milestones for their impact on the overall HLW system. This assessment can give DOE a complex-wide view of the availability of waste treatment and help project the time required to prepare HLW for disposal. Facilities, throughputs, schedules, and milestones were modeled to ascertain the treatment and storage systems resource requirements at the Hanford Site, Savannah River Site, Idaho National Engineering Laboratory, and West Valley Demonstration Project. The impacts of various treatment system availabilities on schedule and throughput were compared to repository readiness to determine the prudent application of resources. To assess the various impacts, the model was exercised against a number of plausible scenarios as discussed in this paper

  6. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  7. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  8. Veselago focusing of anisotropic massless Dirac fermions

    Science.gov (United States)

    Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.

    2018-05-01

    Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.

  9. ANALYSIS OF DEFORMABILITY OF ANISOTROPIC AGRILLITE CLAYSTONES

    Directory of Open Access Journals (Sweden)

    Ponomaryov Andrey Budimirovicn

    2017-08-01

    Full Text Available In the paper, the results of deformability study of agrillite claystones are used for determination of the Jointed rock model parameters. The number of stamp, pressuremeter and compressive tests allowed to research anisotropic deformability of argillite claystone in vertical and horizontal direction. The following problems were solved during the study: 1 the in-place and laboratory experiments to calculate the anisotropy coefficient were done for anisotropic agrillite claystones with both natural moisture and total water saturation; 2 the deformation parameters were determined and the numerical simulation of the stress-strain state of claystone in field tests was carried out with the use of Plaxis 2D software application; 3 the comparative analysis was done for calculated claystone deformation and the values obtained during the in-place tests. The authors proved that agrillite claystones shows two times less deformation under loading in the horizontal direction than vertically. The ratio is obtained to determine the parameters for numerical simulation of the Jointed Rock model used as a practical tool for analysis of stress-strain behavior of anisotropic soils. The authors provided a recommended practice for consideration of specific properties of argillite claystones when carrying out foundation works.

  10. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology.

    Science.gov (United States)

    Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V

    2016-06-28

    Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.

  11. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  12. Accelerator System Development at High Voltage Engineering

    International Nuclear Information System (INIS)

    Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W.

    2009-01-01

    Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

  13. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  14. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.; RamaRao, P.

    . Anisotropic AVA analysis of the BSR from the inline seismic profile shows 5-30 percent gas hydrate concentration (equivalent to fracture density) and the azimuth of fracture system (fracture orientation) with respect to the seismic profile is close to 45...

  15. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.; Sun, S.; Chen, Z.

    2014-01-01

    in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition

  16. Anisotropic spheres with Van der Waals-type equation of state

    Indian Academy of Sciences (India)

    We study static spherically symmetric space-time to describe relativistic compact objects with anisotropic matter distribution and derive two classes of exact models to the Einstein–Maxwell system ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  17. A two-dimensional linear elasticity problem for anisotropic materials, solved with a parallelization code

    Directory of Open Access Journals (Sweden)

    Mihai-Victor PRICOP

    2010-09-01

    Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.

  18. Anisotropic spheres with Van der Waals-type equation of state

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Einstein–Maxwell system; anisotropic matter; equation of state; relativistic star. ... the temperature-dominated phase in the early Universe or in ..... of Lobo [22], the de Sitter isotropic model and Einstein's model can be regained ...

  19. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  20. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  1. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Science.gov (United States)

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  2. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Univ. of Oregon, Eugene, OR (United States). Dept. of Chemistry; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Torres, Joseph Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Volz, Heather Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallegos, Jennifer Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it is determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.

  3. Oscillating electromagnetic soliton in an anisotropic ferromagnetic medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, P., E-mail: perumal_sathish@yahoo.co.in [Department of Physics, K.S.R. College of Engineering (Autonomous), Tiruchengode 637215, Tamilnadu (India); Senjudarvannan, R. [Department of Physics, Jansons Institute of Technology, Karumathampatty, Coimbatore 641659 (India)

    2017-05-01

    We investigate theoretically the propagation of electromagnetic oscillating soliton in the form of breather in an anisotropic ferromagnetic medium. The interaction of magnetization with the magnetic field component of the electromagnetic (EM) wave has been studied by solving Maxwell's equations coupled with a Landau–Lifshitz equation for the magnetization of the medium. We made a small perturbation on the magnetization and magnetic field along the direction of propagation of EM wave in the framework of reductive perturbation method and the associated nonlinear magnetization dynamics is governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. In order to understand the dynamics of the concerned system, we employ the Jacobi elliptic function method to solve the DNLS equation and deduce breatherlike soliton modes for the EM wave in the medium. - Highlights: • The propagation of electromagnetic oscillating soliton in an anisotropic ferromagnetic medium is investigated in the presence of varying external magnetic field. • The magnetization and electromagnetic wave modulates in the form of breathing like oscillating solitons. • The governing nonlinear spin dynamical equation is studied through a reductive perturbation method. • The magnetization components of the ferromagnetic medium are derived using Jacobi elliptic functions method with the aid of symbolic computation.

  4. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  5. Geometry of anisotropic CO outflows

    International Nuclear Information System (INIS)

    Liseau, R.; Sandell, G.; Helsinki Univ., Observatory, Finland)

    1986-01-01

    A simple geometrical model for the space motions of the bipolar high-velocity CO outflows in regions of recent, active star formation is proposed. It is assumed that the velocity field of the neutral gas component can be represented by large-scale uniform motions. From observations of the spatial distribution and from the characteristics of the line shape of the high-velocity molecular gas emission the geometry of the line-emitting regions can be inferred, i.e., the direction in space and the collimating angle of the flow. The model has been applied to regions where a check on presently obtained results is provided by independent optical determinations of the motions of Herbig-Haro objects associated with the CO flows. These two methods are in good agreement and, furthermore, the results obtained provide convincingly strong evidence for the physical association of CO outflows and Herbig-Haro objects. This also supports the common view that a young stellar central source is responsible for the active phenomena observed in its environmental neighborhood. It is noteworthy that within the framework of the model the determination of the flow geometry of the high-velocity gas from CO measurements is independent of the distance to the source and, furthermore, can be done at relatively low spatial resolution. 32 references

  6. Method to incorporate anisotropic semiconductor nanocrystals of all shapes in an ultrathin and uniform silica shell

    NARCIS (Netherlands)

    Hutter, Eline M.; Pietra, Francesca; Moes, Relinde; Mitoraj, Dariusz; Meeldijk, Johannes D.; De Mello Donegá, Celso; Vanmaekelbergh, Daniël

    2014-01-01

    In this work, we present a method for the incorporation of anisotropic colloidal nanocrystals of many different shapes in silica in a highly controlled way. This method yields a uniform silica shell, with thickness tunable from 3 to 17 nm. The silica shell perfectly adapts to the shape of the

  7. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.

    1993-01-01

    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  8. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.

    1993-05-01

    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  9. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  10. Level Set Approach to Anisotropic Wet Etching of Silicon

    Directory of Open Access Journals (Sweden)

    Branislav Radjenović

    2010-05-01

    Full Text Available In this paper a methodology for the three dimensional (3D modeling and simulation of the profile evolution during anisotropic wet etching of silicon based on the level set method is presented. Etching rate anisotropy in silicon is modeled taking into account full silicon symmetry properties, by means of the interpolation technique using experimentally obtained values for the etching rates along thirteen principal and high index directions in KOH solutions. The resulting level set equations are solved using an open source implementation of the sparse field method (ITK library, developed in medical image processing community, extended for the case of non-convex Hamiltonians. Simulation results for some interesting initial 3D shapes, as well as some more practical examples illustrating anisotropic etching simulation in the presence of masks (simple square aperture mask, convex corner undercutting and convex corner compensation, formation of suspended structures are shown also. The obtained results show that level set method can be used as an effective tool for wet etching process modeling, and that is a viable alternative to the Cellular Automata method which now prevails in the simulations of the wet etching process.

  11. Strongly anisotropic RKKY interaction in monolayer black phosphorus

    Science.gov (United States)

    Zare, Moslem; Parhizgar, Fariborz; Asgari, Reza

    2018-06-01

    We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in two-dimensional black phosphorus, phosphorene. The RKKY interaction enhances significantly for the low levels of hole doping owing to the nearly valence flat band. Remarkably, for the hole-doped phosphorene, the highest RKKY interaction occurs when two impurities located along the zigzag direction and it tends to a minimum value with changing the direction from the zigzag to the armchair direction. We show that the interaction is highly anisotropic and the magnetic ground-state of two magnetic adatoms can be tuned by changing the rotational configuration of impurities. Owing to the anisotropic band dispersion, the oscillatory behavior with respect to the angle of the rotation and the distance of two magnetic impurities, R is well-described by sin (2kF R) , where the Fermi wavelength kF changes in different directions. We also find that the tail of the RKKY oscillations falls off as 1 /R2 at large distances.

  12. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  13. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  14. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  15. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  16. Topics on frustrated spin systems and high-temperature superconductors

    International Nuclear Information System (INIS)

    Lu Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa 2 Cu 3 O 6+x via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  17. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  18. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    Science.gov (United States)

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  19. Testing of the analytical anisotropic algorithm for photon dose calculation

    International Nuclear Information System (INIS)

    Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka; Tenhunen, Mikko; Helminen, Hannu; Siljamaeki, Sami; Alakuijala, Jyrki; Paiusco, Marta; Iori, Mauro; Huyskens, Dominique P.

    2006-01-01

    The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d max . The electron contamination model was found to be suboptimal to model the dose around d max , especially for physical

  20. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....