WorldWideScience

Sample records for highly altered rivers

  1. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  2. Assessing flow regime alterations in a temporary river – the River Celone case study

    Directory of Open Access Journals (Sweden)

    De Girolamo Anna Maria

    2015-09-01

    Full Text Available In this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI river segments of the Celone stream (southern Italy whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf and the predictability of dry flow conditions (Sd6. Measured streamflow data were used to calculate the metrics in present conditions (impacted. Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6 before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.

  3. Hydrologic alteration affects aquatic plant assemblages in an arid-land river

    Science.gov (United States)

    Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.

    2014-01-01

    We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.

  4. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    Science.gov (United States)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  5. Using Pressure and Alteration Indicators to Assess River Morphological Quality: Case Study of the Prahova River (Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Ioana-Toroimac

    2015-06-01

    Full Text Available River morphological quality assessment, derived from quantification of human pressures as well as river channel alteration, is a demand of the Water Framework Directive (WFD in terms of integrating hydromorphological elements in defining ecological status. Our study’s aim is to contribute to the hydromorphological evaluation by proposing indicators and separating classes, based on a revisited Morphological Quality Index (rMQI protocol. The rMQI is based on 12 indicators of human pressures, 10 indicators of channel form adjustments, and 11 indicators of functionality. The rMQI scoring system allows for the quantification of changes when compared to reference conditions, be they undisturbed or nearly undisturbed by human interventions, with absent channel adjustments and a functioning natural river style. We used the lower, meandering sector of the Prahova River to demonstrate our assessment methodology. The Lower Prahova River suffers from a minor local intervention and a diminishing intensity of fluvial processes specific to a meandering style. Meanders geometry was affected by significant changes that included a decrease in the radius of curvature, width and width–to–mean–depth ratio. We concluded that the Lower Prahova River has a good morphological quality, which is rated as second class on a scale of five levels, from natural to severely modified. We recommend an improvement in the hydromorphological evaluation protocol in Romania by additional indicators for morphological alterations specific to each channel pattern.

  6. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    Science.gov (United States)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  7. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  8. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.

    Science.gov (United States)

    Merritt, David M; Poff, N LeRoy

    2010-01-01

    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  9. Big River Benthos: Linking Year Round Biological Response to Altered Hydrological Regimes

    Science.gov (United States)

    2017-04-02

    Sieved material was then placed in Whirl-Pak® bags, preserved with 80% EtOH, and returned to the ERDC Fish Ecology Laboratory in Vicksburg, MS... ecological response to altered flow regimes and help document benefits of restoring connectivity between secondary channels and the Mississippi River main...Modifications of the flow and function of the Mississippi River have only increased since then — markedly so after the Great Flood of 1927, an event that

  10. Effect of Hydrologic Alteration on the Community Succession of Macrophytes at Xiangyang Site, Hanjiang River, China.

    Science.gov (United States)

    Yang, Na; Zhang, Yehui; Duan, Kai

    2017-01-01

    With the intensification of human activities over the past three decades in China, adverse effects on river ecosystem become more serious especially in the Hanjiang River. Xiangyang site is an important spawn ground for four domestic fishes in the downstream region of Hanjiang River. Based on the field survey results of macrophytes during 1997-2000 and 2013-2014, community succession of aquatic macrophytes at Xiangyang site was evaluated and discussed. Two-key ecologic-related hydrologic characteristics, flow regime and water level, were identified as the main influence factors. The EFC (environmental flow components) parameters were adopted to evaluate the alteration of flow regimes at Xiangyang site during 1941-2013. Evaluation results demonstrate a highly altered flow process after being regulated by reservoir. The flow patterns tend to be an attenuation process with no large floods occurring but a higher monthly low flow. Furthermore, the water level decreased and fluctuation reduced after the dam was built, which caused the decrease of biomass but favored the submerged macrophytes during 1995-2009. However, with the water level increasing after 2010 and gently fluctuating, due to uplift by the hydraulic projects downstream as well as the flow attenuation, the dominant position of submerged macrophytes will be weakened.

  11. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    Energy Technology Data Exchange (ETDEWEB)

    Vigano, Luigi, E-mail: vigano@irsa.cnr.i [Water Research Institute, National Council of Research, Brugherio, Milan (Italy); Benfenati, Emilio [Mario Negri Institute, Laboratory of Environmental Chemistry and Toxicology, Milan (Italy); Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta [Department of Environmental, Experimental and Applied Biology, University of Genoa, Genoa (Italy)

    2010-12-15

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17{beta}-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  12. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    International Nuclear Information System (INIS)

    Vigano, Luigi; Benfenati, Emilio; Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta

    2010-01-01

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17β-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  13. Freshwater Ecosystem Services and Hydrologic Alteration in the Lower Mississippi River Basin

    Science.gov (United States)

    Yasarer, L.; Taylor, J.; Rigby, J.; Locke, M. A.

    2017-12-01

    Flowing freshwater ecosystems provide a variety of essential ecosystem services including: consumptive water for domestic, industrial, and agricultural use; transportation of goods; maintenance of aquatic biodiversity and water quality; and recreation. However, freshwater ecosystem services can oftentimes be at odds with each other. For example, the over-consumption of water for agricultural production or domestic use may alter hydrologic patterns and diminish the ability of flowing waters to sustain healthy aquatic ecosystems. In the Lower Mississippi River Basin there has been a substantial increase in groundwater-irrigated cropland acreage over the past several decades and subsequent declines in regional aquifer levels. Changes in aquifer levels potentially impact surface water hydrology throughout the region. This study tests the hypothesis that flowing water systems in lowland agricultural watersheds within the Lower Mississippi River Basin have greater hydrologic alteration compared to upland non-agricultural watersheds, particularly with declines in base flow and an increase in extreme low flows. Long-term streamflow records from USGS gauges located in predominantly agricultural and non-agricultural watersheds in Arkansas, Louisiana, Mississippi, and Tennessee were evaluated from 1969 -2016 using the Indicators of Hydrologic Alteration (IHA) software. Preliminary results from 8 non-agricultural and 5 agricultural watersheds demonstrate a substantial decline in base flow in the agricultural watersheds, which is not apparent in the non-agricultural watersheds. This exploratory study will analyze the trade-off between gains in agricultural productivity and changes in ecohydrological indicators over the last half century in diverse watersheds across the Lower Mississippi River Basin. By quantifying the changes in ecosystem services provided by flowing waters in the past, we can inform sustainable management pathways to better balance services in the future.

  14. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    Science.gov (United States)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  15. Simulating Spawning and Juvenile Rainbow Trout (Oncorhynchus mykiss Habitat in Colorado River Based on High-Flow Effects

    Directory of Open Access Journals (Sweden)

    Weiwei Yao

    2017-02-01

    Full Text Available High flow generates significant alterations in downstream river reaches, resulting in physical condition changes in the downstream regions of the river such as water depth, flow velocity, water temperature and river bed. These alterations will lead to change in fish habitat configuration in the river. This paper proposes a model system to evaluate the high flow effects on river velocity, water depth, substrates changes, temperature distribution and consequently assess the change in spawning and juvenile rainbow trout (Oncorhynchus mykiss habitats in the downstream region of the Glen Canyon Dam. Firstly, based on the 2 dimensional (2D depth-averaged CFD (Computational Fluid Dynamics model and heat transfer equation applied for simulation, three indices were simulated, namely depth, flow velocity and temperature distribution. Then, the spawning and juvenile fish preference curves were obtained based on these three indices and substrates distribution. After that, the habitat model was proposed and used to simulate the high flow effects on juvenile and spawning rainbow trout habitat structure. Finally, the weighted usable area (WUA and overall suitability index (OSI of the spawning and juvenile fish species were quantitatively simulated to estimate the habitat sensitivity. The results illustrate that the high flow effect (HFE increased the juvenile rainbow trout habitat quality but decreased the spawning rainbow trout habitat quality. The juvenile trout were mainly affected by the water depth while the spawning rainbow trout were dominated by the bed elevation.

  16. Incorporating an approach to aid river and reservoir fisheries in an altered landscape

    Science.gov (United States)

    Brewer, Shannon K.; Shoup, Daniel E.; Dattillo, John

    2018-01-01

    Reservoir construction for human-use services alters connected riverine flow patterns and influences fish production. We sampled two pelagic fishes from two rivers and two reservoirs and related seasonal and annual hydrology patterns to the recruitment and growth of each species. River and reservoir populations of Freshwater Drum Aplodinotus grunniens reached similar ages (32 and 31, respectively). Likewise, longevity of Gizzard Shad Dorosoma cepedianum between the two systems was also similar (7 and 8 years, respectively). However, both species grew larger in the rivers compared to reservoir residents. Recruitment of Freshwater Drum in reservoirs was negatively related to water retention time (r2=0.59) suggesting moving water through the reservoir was beneficial. Riverine recruitment of Freshwater Drum populations was negatively related to the annual number of flow reversals and positively related to prespawn discharge (r2 = 0.33). Unlike Freshwater Drum, there was no relationship between flow metrics and Gizzard Shad recruitment in reservoirs. However, recruitment of riverine Gizzard Shad was positively related to high flow pulses during the prespawn and spawning seasons (r2 = 0.48). The growth of both species in reservoirs was positively related to the number of days each year that water levels were above the conservation pool. Growth of Freshwater Drum was also negatively related to minimum reservoir summer water levels (r2 = 0.84). Growth of both Freshwater Drum and Gizzard Shad occupying lotic systems was positively related to May (r2 = 0.86) and July discharge (r2 = 0.84), respectively. In general, growth and recruitment of the reservoir populations was more related to annual water patterns, whereas riverine fishes responded more to seasonal flow patterns. Results of this study provide important information on the relationship between hydrology and pelagic fish production in both rivers and reservoirs. This information is useful if agencies are interested in

  17. Characteristics of a Low-Sulfidation Epithermal Deposit in the River Reef Zone and the Watuputih Hill, the Poboya Gold Prospect, Central Sulawesi, Indonesia: Host Rocks and Hydrothermal Alteration

    Directory of Open Access Journals (Sweden)

    Syafrizal

    2017-07-01

    Full Text Available Systematic exploration has delineated significant gold mineralization in the River Reef Zone and the presence of a siliceous body at Watuputih Hill, which is a Poboya gold prospect in Central Sulawesi, Indonesia. The mineralization is hosted within the Palu Metamorphic Complex. The host rocks consist of granite, biotite gneiss, and biotite schist, which is intercalated by feldspar porphyroblastic biotite schist and amphibolitic schist. The X-ray fluorescence (XRF analysis of the granite and biotite gneiss suggests that the granitic rocks can be characterized as magnesian arc calc-alkaline rocks, with a weakly peraluminous composition. Alteration minerals were analyzed by a combination of petrographic and X-ray diffraction (XRD. In the River Reef Zone, the hydrothermal alteration zones can be sorted by their proximity to the primary fluid conduit and divided into inner, high-T, and low-T propylitic zones. In Watuputih Hill, the hydrothermal alteration can be divided into advanced argillic and argillic zones. The hydrothermal alteration assemblages indicated that the fluid was at a near-neutral pH in the River Reef Zone, whereas the fluid was acidic within Watuputih Hill. Because the hill is relatively distant from the River Reef Zone, the presence of these zones at Watuputih Hill may be indicative of another mineralization system beneath the hill.

  18. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  19. Integrated approach to assessing streamflow and precipitation alterations under environmental change: Application in the Niger River Basin

    Directory of Open Access Journals (Sweden)

    Dagbegnon Clement Sohoulande Djebou

    2015-09-01

    New hydrological insights for the region: Over the period 1961–2012, I conduct a change point analysis of the streamflow and report two sub-periods 1961–1982 and 1983–2012. A comparison of precipitation and streamflow during these two time-slices shows meaningful changes. I describe a Kernel density analysis of streamflow and yield a probabilistic estimate of discharge anomalies along the river. Later, I evaluate seasonal trends of precipitation and streamflow. The analyses bring out critical alterations in time and space. However, these alterations seem to foreshadow critical environmental degradations occurring across the watershed. I consider LAI series derived from MODIS images, then I examine and discuss trends in land-cover dynamics in relation with the patterns in precipitation and streamflow. This late analytical step yields a holistic picture of the ongoing alterations in the Niger River Basin. Finally, I emphasize suggestions, valuable for a comprehensive water resources and environment management.

  20. Assessment of Hydrologic Alterations Caused by the Three Gorges Dam in the Middle and Lower Reaches of Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Liuzhi Jiang

    2014-05-01

    Full Text Available Hydrologic regime plays a major role in structuring biotic diversity within river ecosystems by controlling key habitat conditions within the river channel and floodplain. Daily flow records from seven hydrological stations and the range of variability approach were utilized to investigate the variability and spatial pattern of the hydrologic alterations induced by the construction of the Three Gorges Dam (TGD in the middle and lower reaches of the Yangtze River, China. Results show that the impoundment of the TGD disturbed the hydrologic regime downstream and directly affected the streamflow variations. The rate of changes and the annual extreme conditions were more affected by the TGD, particularly the low-flow relevant parameters. The alterations in the hydrologic regime were mainly caused by the TGD storing water during early autumn and releasing water during winter and spring. The effects on spatial patterns decreased as the distance from the dam increased, which was mainly attributed to the inflows from large tributaries along the Yangtze River as well as the interaction with the two largest natural lakes (i.e., Dongting Lake and Poyang Lake. These hydrologic alterations not only break the natural balance of eco-flow regimes but also result in undesirable ecological effects, particularly in terms of habitat availability for the fish community.

  1. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    Science.gov (United States)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  2. Natural streamflow simulation for two largest river basins in Poland: a baseline for identification of flow alterations

    Science.gov (United States)

    Piniewski, Mikołaj

    2016-05-01

    The objective of this study was to apply a previously developed large-scale and high-resolution SWAT model of the Vistula and the Odra basins, calibrated with the focus of natural flow simulation, in order to assess the impact of three different dam reservoirs on streamflow using the Indicators of Hydrologic Alteration (IHA). A tailored spatial calibration approach was designed, in which calibration was focused on a large set of relatively small non-nested sub-catchments with semi-natural flow regime. These were classified into calibration clusters based on the flow statistics similarity. After performing calibration and validation that gave overall positive results, the calibrated parameter values were transferred to the remaining part of the basins using an approach based on hydrological similarity of donor and target catchments. The calibrated model was applied in three case studies with the purpose of assessing the effect of dam reservoirs (Włocławek, Siemianówka and Czorsztyn Reservoirs) on streamflow alteration. Both the assessment based on gauged streamflow (Before-After design) and the one based on simulated natural streamflow showed large alterations in selected flow statistics related to magnitude, duration, high and low flow pulses and rate of change. Some benefits of using a large-scale and high-resolution hydrological model for the assessment of streamflow alteration include: (1) providing an alternative or complementary approach to the classical Before-After designs, (2) isolating the climate variability effect from the dam (or any other source of alteration) effect, (3) providing a practical tool that can be applied at a range of spatial scales over large area such as a country, in a uniform way. Thus, presented approach can be applied for designing more natural flow regimes, which is crucial for river and floodplain ecosystem restoration in the context of the European Union's policy on environmental flows.

  3. Natural streamflow simulation for two largest river basins in Poland: a baseline for identification of flow alterations

    Directory of Open Access Journals (Sweden)

    M. Piniewski

    2016-05-01

    Full Text Available The objective of this study was to apply a previously developed large-scale and high-resolution SWAT model of the Vistula and the Odra basins, calibrated with the focus of natural flow simulation, in order to assess the impact of three different dam reservoirs on streamflow using the Indicators of Hydrologic Alteration (IHA. A tailored spatial calibration approach was designed, in which calibration was focused on a large set of relatively small non-nested sub-catchments with semi-natural flow regime. These were classified into calibration clusters based on the flow statistics similarity. After performing calibration and validation that gave overall positive results, the calibrated parameter values were transferred to the remaining part of the basins using an approach based on hydrological similarity of donor and target catchments. The calibrated model was applied in three case studies with the purpose of assessing the effect of dam reservoirs (Włocławek, Siemianówka and Czorsztyn Reservoirs on streamflow alteration. Both the assessment based on gauged streamflow (Before-After design and the one based on simulated natural streamflow showed large alterations in selected flow statistics related to magnitude, duration, high and low flow pulses and rate of change. Some benefits of using a large-scale and high-resolution hydrological model for the assessment of streamflow alteration include: (1 providing an alternative or complementary approach to the classical Before-After designs, (2 isolating the climate variability effect from the dam (or any other source of alteration effect, (3 providing a practical tool that can be applied at a range of spatial scales over large area such as a country, in a uniform way. Thus, presented approach can be applied for designing more natural flow regimes, which is crucial for river and floodplain ecosystem restoration in the context of the European Union's policy on environmental flows.

  4. The Patoka River, Indiana: An ecosystem at risk

    International Nuclear Information System (INIS)

    Morales, N.E.; Sobiech, S.

    1993-01-01

    An ecological assessment of the Patoka River was conducted during the summer of 1992. The purpose of the study was to determine the status of the fish population along 68 sampling stations in the mainstream of the river and the watershed. The river system was subjected to various forms of man-made alterations including acid mine drainage, agricultural runoff, oil film drainage from oil drilling operations, feed lot runoff, domestic sewage disposal, illegal solid waste dumping, and partial channelization. The observed effects of these alterations to the fish community depended on the dominant environmental alterations to the studied sites. In sites impacted by heavy mine drainage, the fish were absent, probably due to the high toxicity observed at the sites. Oil film drainage effects were overshadowed by the effects of the nutrient enrichment from farm and feed lot runoff. Water eutrophication effects caused higher abundance of juvenile fish at selected sites. Within the channelized portion of the river, larger individuals were collected. This was probably due to the loss of habitat for young and for small individuals along the banks of the river. The extreme effects of these environmental alterations could be decreased by initiating a series of restoration efforts in the river and the watershed

  5. Alteration of Water Pollution Level with the Seasonal Changes in Mean Daily Discharge in Three Main Rivers around Dhaka City, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-06-01

    Full Text Available A study based on the physicochemical parameters and dissolved metals levels from three main rivers around Dhaka City, Bangladesh, was conducted in order to determine the present pollution status and their alteration trends with the seasonal change of discharge amount. The water samples were collected from the rivers Buriganga, Turag, and Shitalakkhya during both dry and monsoon seasons. Physicochemical analyses revealed that most of the water quality parameters exceeded the recommended levels set by the Department of Environment (DoE, Bangladesh, during both the dry and monsoon seasons. A very strong positive correlation was found between biochemical oxygen demand (BOD and chemical oxygen demand (COD in all sampling points. Both BOD and COD values had a strong negative correlation with dissolved oxygen (DO in the Shitalakkhya River. Most of the dissolved metals concentrations in the water samples were similar. However, the concentrations of different physicochemical properties varied with the seasons. The dry season had significantly higher contamination loads, which were decreased during the monsoon season. Anthropogenic activities, as well as the variation in river water flow during different seasons were the main reasons for this high degree of water pollution.

  6. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  7. To what extent do long-duration high-volume dam releases influence river-aquifer interactions? A case study in New South Wales, Australia

    Science.gov (United States)

    Graham, P. W.; Andersen, M. S.; McCabe, M. F.; Ajami, H.; Baker, A.; Acworth, I.

    2015-03-01

    Long-duration high-volume dam releases are unique anthropogenic events with no naturally occurring equivalents. The impact from such dam releases on a downstream Quaternary alluvial aquifer in New South Wales, Australia, is assessed. It is observed that long-duration (>26 days), high-volume dam releases (>8,000 ML/day average) result in significant variations in river-aquifer interactions. These variations include a flux from the river to the aquifer up to 6.3 m3/day per metre of bank (at distances of up to 330 m from the river bank), increased extent and volume of recharge/bank storage, and a long-term (>100 days) reversal of river-aquifer fluxes. In contrast, during lower-volume events (bank. A groundwater-head prediction model was constructed and river-aquifer fluxes were calculated; however, predicted fluxes from this method showed poor correlation to fluxes calculated using actual groundwater heads. Long-duration high-volume dam releases have the potential to skew estimates of long-term aquifer resources and detrimentally alter the chemical and physical properties of phreatic aquifers flanking the river. The findings have ramifications for improved integrated management of dam systems and downstream aquifers.

  8. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    Science.gov (United States)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  9. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  10. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Science.gov (United States)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  11. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  12. Geomorphic Change Induced by 100 years of Flow Alteration on the Diamond Fork River, Central Utah

    Science.gov (United States)

    Jones, J.; Belmont, P.; Wilcock, P. R.

    2017-12-01

    Changes in hydrology and sediment supply affect the form of rivers. The rate of change of fluvial form is controlled by a variety of factors, including valley confinement, sediment size, and antecedent condition. The Diamond Fork River in central Utah has been altered by trans-basin flows delivered from the Colorado River system for over a century. Beginning in 1915, water used for irrigation was delivered through a tributary, Sixth Water Creek, with daily summer flows regularly exceeding the 50 - 100 year flood. Elevated flows caused drastic geomorphic change - resulting in incision and widening of the channel, and the destruction of riparian vegetation. Beginning in 1997, the outlet for the trans-basin diversion was moved downstream on Sixth Water, bypassing a large landslide, and flows were drastically reduced in 2004 through management actions. We delineated eight distinct process domains for the Sixth Water-Diamond Fork system and examined the response of each process domain to the altered flow and sediment regimes through the analysis of aerial photographs and repeat cross-sections. We measured a variety of channel metrics, including channel width, areal extent of bars and islands, and sinuosity in ArcGIS. Results indicate that unconfined reaches that were wide and braided during the period of elevated flows have narrowed to become single threaded and meandering in response to the reduced flows. Confined reaches have experienced minor changes since the reduction in flows, suggesting that confinement is a primary control on the degree of channel response. These findings and complimentary studies will provide managers of Sixth Water and Diamond Fork with a greater understanding of the physical response of the streams, and the resulting effects on ecological communities.

  13. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  14. In-stream biogeochemical processes of a temporary river.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  15. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  16. Macroinvertebrate community responses to gravel augmentation in a high-gradient, Southeastern regulated river

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University; Dolloff, Dr. Charles A [United States Department of Agriculture (USDA), United States Forest Service (USFS) and Virginia Pol

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient, regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions.

  17. Patterns of occurrence of semi-aquatic reptiles in highly invaded Mediterranean rivers

    Directory of Open Access Journals (Sweden)

    Daniel Escoriza

    2018-05-01

    Full Text Available The fluvial systems in the north-east of the Iberian Peninsula are highly disturbed habitats, with widespread occurrence of alien species. Previous studies have shown that alien species have a major impact on native freshwater fauna, but it is not known what effect they have on semi-aquatic reptiles. Here the author investigated the factors that influence the occurrence of three species of semi-aquatic reptiles, one turtle (Mauremys leprosa and two snakes (Natrix astreptophora and Natrix maura, at 261 sites in seven rivers/streams in Girona (north-eastern Spain. The studied semi-aquatic reptiles are habitat generalists which can occupy sections of rivers with altered regimes. The relationships of reptile presence to abiotic niche parameters and the presence of alien species were evaluated, as well as the patterns of pairwise co-occurrence between the reptiles. The presence of alien species did impact one out of three reptiles in this community. The association between both species of natricines was weakly negative, suggesting that interspecific competition does not structure their co-occurrences. The removal of alien species is the most appropriate strategy to preserve the complete diversity of native semi-aquatic reptiles.

  18. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    Science.gov (United States)

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  19. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    Science.gov (United States)

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  20. The Role of Small Impoundments on Flow Alteration Within River Networks

    Science.gov (United States)

    Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.

    2017-12-01

    Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.

  1. Climate Change and River Ecosystems: Protection and Adaptation Options

    Science.gov (United States)

    Palmer, Margaret A.; Lettenmaier, Dennis P.; Poff, N. Leroy; Postel, Sandra L.; Richter, Brian; Warner, Richard

    2009-12-01

    Rivers provide a special suite of goods and services valued highly by the public that are inextricably linked to their flow dynamics and the interaction of flow with the landscape. Yet most rivers are within watersheds that are stressed to some extent by human activities including development, dams, or extractive uses. Climate change will add to and magnify risks that are already present through its potential to alter rainfall, temperature, runoff patterns, and to disrupt biological communities and sever ecological linkages. We provide an overview of the predicted impacts based on published studies to date, discuss both reactive and proactive management responses, and outline six categories of management actions that will contribute substantially to the protection of valuable river assets. To be effective, management must be place-based focusing on local watershed scales that are most relevant to management scales. The first priority should be enhancing environmental monitoring of changes and river responses coupled with the development of local scenario-building exercises that take land use and water use into account. Protection of a greater number of rivers and riparian corridors is essential, as is conjunctive groundwater/surface water management. This will require collaborations among multiple partners in the respective river basins and wise land use planning to minimize additional development in watersheds with valued rivers. Ensuring environmental flows by purchasing or leasing water rights and/or altering reservoir release patterns will be needed for many rivers. Implementing restoration projects proactively can be used to protect existing resources so that expensive reactive restoration to repair damage associated with a changing climate is minimized. Special attention should be given to diversifying and replicating habitats of special importance and to monitoring populations at high risk or of special value so that management interventions can occur if the

  2. Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river

    International Nuclear Information System (INIS)

    Proia, L.; Osorio, V.; Soley, S.; Köck-Schulmeyer, M.; Pérez, S.; Barceló, D.; Romaní, A.M.; Sabater, S.

    2013-01-01

    We investigated the effects of pharmaceuticals and pesticides detected in a Mediterranean river, on fluvial biofilms by translocation experiments performed under controlled conditions. Water was sampled from three sites along a pollution gradient. Biofilms grown in mesocosms containing relatively clean water were translocated to heavily polluted water. Several biofilm descriptors were measured before and after translocations. Fifty-seven pharmaceuticals and sixteen pesticides compounds were detected in river waters. The translocation from less to more polluted site was the most effective. Autotrophic biomass and peptidase increased while phosphatase and photosynthetic efficiency decreased. Multivariate analysis revealed that analgesics and anti-inflammatories significantly affected biofilm responses. Ibuprofen and paracetamol were associated with negative effects on photosynthesis, and with the decrease of the green algae/cyanobacteria ratio, while diclofenac was associated with phosphatase activity. The effects of these emerging compounds on biofilms structure and function may cause important alterations in river ecosystem functioning. -- Highlights: •We investigated the pharmaceuticals and pesticides occurrence in the Llobregat River. •We studied the effects on biofilm communities by translocation experiments. •Both authotrophs and heterotrophs responded when translocated to more polluted sites. •Analgesics and anti-inflammatories significantly affected biofilm responses. •Ibuprofen, Paracetamol and Diclofenac are the most effective compounds. -- Analgesics and anti-inflammatories detected in river water significantly affected responses of biofilm communities when translocated along a pollution gradient

  3. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    OpenAIRE

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-01-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substa...

  4. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Science.gov (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  5. Landscape elements and river chemistry as affected by river regulation – a 3-D perspective

    Directory of Open Access Journals (Sweden)

    E. Smedberg

    2009-09-01

    Full Text Available We tested the hypothesis whether individual land classes within a river catchment contribute equally to river loading with dissolved constituents or whether some land classes act as "hot spots" to river loading and if so, are these land classes especially affected by hydrological alterations. The amount of land covered by forests and wetlands and the average soil depth (throughout this paper soil refers to everything overlying bedrock i.e. regolith of a river catchment explain 58–93% of the variability in total organic carbon (TOC and dissolved silicate (DSi concentrations for 22 river catchments in Northern Sweden. For the heavily regulated Luleälven, with 7 studied sub-catchments, only 3% of the headwater areas have been inundated by reservoirs, some 10% of the soils and aggregated forest and wetland areas have been lost due to damming and further hydrological alteration such as bypassing entire sub-catchments by headrace tunnels. However, looking at individual forest classes, our estimates indicate that some 37% of the deciduous forests have been inundated by the four major reservoirs built in the Luleälven headwaters. These deciduous forest and wetlands formerly growing on top of alluvial deposits along the river corridors forming the riparian zone play a vital role in loading river water with dissolved constituents, especially DSi. A digital elevation model draped with land classes and soil depths which highlights that topography of various land classes acting as hot spots is critical in determining water residence time in soils and biogeochemical fluxes. Thus, headwater areas of the Luleälven appear to be most sensitive to hydrological alterations due to the thin soil cover (on average 2.7–4.5 m and only patchy appearance of forest and wetlands that were significantly perturbed. Hydrological alterations of these relatively small headwater areas significantly impacts downstream flux of dissolved constituents and their delivery to

  6. IMPACT OF SAND DREDGING AND SILT EXTRACTION ACTIVITY ON RIVER AND ITS CHARACTERISTICS : A REVIEW

    OpenAIRE

    Vishal S. Gholap

    2016-01-01

    The present research work highlights the influences of sand dredging and extensive silt quarrying activity on rivers. The sand dredging activity and its impact on the river processes and other river environment have discussed in the present review paper. It has seen that most of the rivers and their processes are highly degraded and altered due to these activities. In India and almost in the regions of Maharashtra, the ground water is decreasing and such activities also invited the problems ...

  7. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  8. Climatic control of Mississippi River flood hazard amplified by river engineering

    Science.gov (United States)

    Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.

    2018-04-01

    Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.

  9. Role of vegetation on river bank accretion

    NARCIS (Netherlands)

    Vargas Luna, A.

    2016-01-01

    There is rising awareness of the need to include the effects of vegetation in studies dealing with the morphological response of rivers. Vegetation growth on river banks and floodplains alters the river bed topography, reduces the bank erosion rates and enhances the development of new floodplains

  10. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra

    2017-01-01

    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  11. Integrated Analysis of Flow, Form, and Function for River Management and Design Testing

    Science.gov (United States)

    Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.

    2017-12-01

    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.

  12. The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System

    Directory of Open Access Journals (Sweden)

    Sarah J. Halliday

    2014-01-01

    Full Text Available This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly, using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  13. Detecting Human Hydrologic Alteration from Diversion Hydropower Requires Universal Flow Prediction Tools: A Proposed Framework for Flow Prediction in Poorly-gauged, Regulated Rivers

    Science.gov (United States)

    Kibler, K. M.; Alipour, M.

    2016-12-01

    Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.

  14. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin

    Directory of Open Access Journals (Sweden)

    Phan Cao Duong

    2016-09-01

    Full Text Available Global warming has caused dramatic changes in regional climate variability, particularly regarding fluctuations in temperature and rainfall. Thus, it is predicted that river flow regimes will be altered accordingly. The purpose of this paper is to present the results of modeling such changes by simulating discharge using the HEC-HMS model. The precipitation was projected using super-high resolution multiple climate models (20 km resolution with newly updated emission scenarios as the input for the HEC-HMS model for flow analysis at the Red River Basin in the northern area of Vietnam. The findings showed that climate change impact on the river flow regimes tend towards a decrease in the dry season and a longer duration of flood flow. A slight runoff reduction is simulated for November while a considerable runoff increase is modeled for July and August amounting to 30% and 25%, respectively. The discharge scenarios serve as a basis for water managers to develop suitable adaptation methods and responses on the river basin scale.

  15. Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong

    2015-10-01

    Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly

  16. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    Science.gov (United States)

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  17. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  18. Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart. Solms] due to anthropogenic stress in Brazilian rivers

    Directory of Open Access Journals (Sweden)

    Angela Pierre Vitória

    2011-10-01

    Full Text Available In this work, the structural and ecophysiological alterations (chlorophyll a fluorescence and photosynthetic pigments, and quantification of Cr, Pb and Zn in the leaf limb, petiole and younger and older roots of water hyacinth from the lower, medium and upper Paraíba do Sul river (PSR and Imbé river were evaluated. The plants from the medium and upper PSR (more industrialized and populated regions exhibited lower turgid cell in the root cortex, less root hairs and leaf epidermis, chloroplasts with plastoglobules and increased stroma volume. Higher concentrations of metals were observed in the younger and older roots from the medium PSR plants. The results suggested that the plants from more anthropized regions were able to maintain the maximum quantum yield (Fv/Fm which was a result from the metabolic fitting, increasing the non-photochemical quenching, reducing total chlorophyll/carotenoids and leading to the structural modifications.

  19. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Kai [School of Ocean and Earth Science, Tongji University, Shanghai, 200092 (China); State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Yang, Shouye, E-mail: syyang@tongji.edu.cn [State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061 (China); Lian, Ergang [School of Ocean and Earth Science, Tongji University, Shanghai, 200092 (China); State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Li, Chao [State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Yang, Chengfan; Wei, Hailun [School of Ocean and Earth Science, Tongji University, Shanghai, 200092 (China); State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China)

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter “deuterium excess” (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. - Highlights: • Stable H-O isotopes indicate the Changjiang river water cycle in dry seasons. • The isotopic parameter “d-excess” reveals the origins of

  20. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes

    International Nuclear Information System (INIS)

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-01-01

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter “deuterium excess” (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. - Highlights: • Stable H-O isotopes indicate the Changjiang river water cycle in dry seasons. • The isotopic parameter “d-excess” reveals the origins of

  1. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Monica Rivas Casado

    2015-11-01

    Full Text Available European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  2. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    Science.gov (United States)

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  3. Application of the ELOHA framework to regulated rivers in the upper Tennessee River Basin: A case study

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; David C. Mathews

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and...

  4. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  5. The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.

    2005-05-01

    Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17

  6. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  7. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  8. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2014-01-01

    Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long-term effects of drying

  9. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    Full Text Available Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively.In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying.Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles. However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long

  10. Geological investigation of hydrothermal alteration haloes in Toyoha geothermal field, Hakkaido

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, T; Furukawa, Y; Sugawara, K; Nishimura, S; Okabe, K

    1978-01-01

    In Toyoha geothermal field, the altered haloes are located along a tectonic line extending on a NW-SE direction along the Yunosawa River, east of the Toyoha Mine, a well known Neogene epithermal ore deposit. The investigation was carried out to clarify the stage of alteration, based on the altered haloes geologic structure, composition, and size. The Quaternary distribution at the eastern foot of Mt. Yotei was also studied. The field is covered by various kinds of Miocene sediments but the altered haloes are found only in an area covered by the Takinosawa formation and its older formations. Among the Yunosawa, Koyanagizawa and Takinosawa alteration haloes, the Yunosawa is the most important. It is composed of blocky silicified rock extending along a river and surrounding argillaceous rock. The silicified rock is composed primarily of quartz and subordinate alunite and opal, while the argillaceous rock consists chiefly of kaloin and is characterized by the occasional presence of sericite and montmorillinite. Fission-track and /sup 14/C methods were employed to determine the stage of alteration, but the results were unsatisfactory. The sublimation sulfur ore deposits in the Yunosawa and Koyanagizawa areas were comparatively small, but their original depositional features remain intact, indicating that geothermal activity continued until recently. Yunosawa is the most promising area as it is closely related to the tectonic line and also it has extraordinarily high ground temperature determined by a recent heat flow survey. Twenty-three references are provided.

  11. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  12. Hydrothermal alteration in the Matok Igneous Complex, Southern Marginal Zone of the Limpopo Belt, South Africa

    International Nuclear Information System (INIS)

    Sieber, T.; Van Reenen, D.D.; Barton, J.M.

    1991-01-01

    Ductile shear zones associated with the 2700 to 2650 Ma Limpopo Orogeny locally contained gold mineralization. Some of these shear zones were reactivated under brittle conditions and contain zones of hydrothermal alteration that are of potential economic significance. Within the approximately 2670 Ma Matok Complex, two examples of this shear zone controlled alteration are exposed, the Dwars River and Sand River alteration zones. The granitic rocks of this Complex experienced early selective sericitization of plagioclase and the subsequent development of perthitic porphyroblasts. This early regional alteration was overprinted along brittle shear zones by pervasive propylitization and vein controlled quartz-albite alteration. The setting, composition, and the age of the Matok Complex make it a possible source for Archaean gold mineralization. The Dwars River and Sand River alteration zones are characterized by the absence of significant gold mineralization. The pattern of wall-rock alteration indicates that the hydrothermal processes were different from typical Archaean lode gold deposits. P-T conditions during the shear-zone controlled alteration were less than 400 degrees C and 1,9 - 2,8 kb. The shear zone hosted alteration could have taken place anytime between emplacement of the Matok Complex and about 1315 Ma ago. 35 refs., 10 figs., 4 tabs

  13. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  14. Simple Words and Fuzzy Zones: Early Directions for Temporary River Research in South Africa

    Science.gov (United States)

    Uys; O'Keeffe

    1997-07-01

    / Although a large proportion of South Africa's rivers are nonperennial, ecological research into these systems has only recently been initiated. Consequently, we have little verified information about the ecological functioning of these rivers or knowledge of how best to manage them. High water demands in a semiarid region results in the flow of most perennial rivers being altered from permanent to temporary in sections, through impoundment, land-use changes, abstraction, etc. Conversely, sections of many temporary rivers are altered to perennial as a result of interbasin transfers or may be exploited for surface water. Effective and appropriate management of these modifications must be based on sound scientific information, which requires intensified, directed research. We anticipate that temporary river research in South Africa will, of necessity, be driven primarily by short-term collaborative efforts and secondarily by long-term ecological studies. At the outset, a simple conceptual framework is required to encourage an appreciation of current views of the spatial and temporal dynamics of nonperennial rivers and of the variability and unpredictability that characterize these systems. We adopt the view that perennial and episodic/ephemeral rivers represent either end of a continuum, separated by a suite of intermediate flow regimes. A conceptual diagram of this continuum is presented. In the absence of a functional classification for temporary rivers, a descriptive terminology has been systematically devised in an attempt to standardize definition of the different types of river regimes encountered in the country. Present terminology lacks structure and commonly accepted working definitions. KEY WORDS: Temporary rivers; Intermittent rivers; Continuum; Terminology; Classification; Ecosystem management; South Africa

  15. Pulsed flows, tributary inputs, and food web structure in a highly regulated river

    Science.gov (United States)

    Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.

    2018-01-01

    1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.

  16. Quantifying flooding regime in floodplain forests to guide river restoration

    Science.gov (United States)

    Christian O. Marks; Keith H. Nislow; Francis J. Magilligan

    2014-01-01

    Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...

  17. INVESTIGATIONS INTO THE EFFECTS OF SEASON AND WATER QUALITY ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH ASSEMBLAGES IN THE CALOOSAHATCHEE RIVER ESTUARY, FLORIDA: IMPLICATIONS OF ALTERED FRESHWATER INFLOW

    Science.gov (United States)

    A suite of biological and ecological responses of a Valued Ecosystem Component species, Crassostrea virginica, was used to investigate ecosystem-wide health effects of watershed alterations in the Caloosahatchee River estuary, Florida. The influence of water quality and season on...

  18. Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems.

    Science.gov (United States)

    Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine

    2017-12-14

    The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.

  19. Determination of re-aeration coefficients on high mountain rivers using nuclear techniques

    International Nuclear Information System (INIS)

    Fajardo, Marco

    2001-01-01

    The rivers Machangara and Guayllabamba in Quito, Ecuador, currently are highly polluted, mainly due to human and industrial residues from the city. The objective of this survey is to establish the dynamics of dissolved oxygen in these rivers using the Krypton 85 method to determine the re aeration coefficient in representative sectors of the rivers. In addition, conventional test tracers establish mean flow speed and flow longitudinal dispersion coefficients. The results of this study will be useful for future water quality modelling of these rivers, in order to define their behaviour and auto depurative capacity to treat sludge waters from Quito

  20. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary, and the Amazon River estuary were studied to elucidate some of the processes which control river water chemistry and the flux of elements to the sea. The approach taken was to identify inputs to the Connecticut River and to investigate geochemical processes which modify the dissolved load. The form and quantity of nuclides which are in turn supplied to the estuary are altered by processes unique to that transition zone to the ocean. The Connecticut River estuary was sampled on a seasonal basis to investigate the role of the estuary in controlling the flux of elements to the sea. The knowledge gained from the Connecticut River study was applied to the quantitatively more significant Amazon River estuary. There a variety of samples were analyzed to understand the processes controlling the single greatest flux of elements to the Atlantic Ocean. The results indicate that estimates of the total flux of nuclides to the oceans can best be calculated based on groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is that which will eventually be delivered to the ocean despite the reactions which were shown to occur in both rivers and estuaries. 153 references, 63 figures, 28 tables

  1. Effects of an extreme flood on river morphology (case study: Karoon River, Iran)

    Science.gov (United States)

    Yousefi, Saleh; Mirzaee, Somayeh; Keesstra, Saskia; Surian, Nicola; Pourghasemi, Hamid Reza; Zakizadeh, Hamid Reza; Tabibian, Sahar

    2018-03-01

    An extreme flood occurred on 14 April 2016 in the Karoon River, Iran. The occurred flood discharge was the highest discharge recorded over the last 60 years in the Karoon River. Using the OLI Landsat images taken on 8 April 2016 (before the flood) and 24 April 2016 (after the flood) the geomorphic effects were detected in different land cover types within the 155-km-long study reach. The results show that the flood significantly affected the channel width and the main effect was high mobilization of channel sediments and severe bank erosion in the meandering reaches. According to field surveys, the flood occupied the channel corridor and even the floodplain parts. However, the channel pattern was not significantly altered, although the results show that the average channel width increased from 192 to 256 m. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. The flood-induced morphological changes varied significantly for different land cover types along the Karoon River. Specifically, the channel has widened less in residential areas than in other land cover types because of the occurrence of bank protection structures. However, the value of bank retreat in residential and protected sides of the Karoon River is more than what we expected during the study of extreme flood.

  2. Interacting effects of discharge and channel morphology on transport of semibuoyant fish eggs in large, altered river systems.

    Directory of Open Access Journals (Sweden)

    Thomas A Worthington

    Full Text Available Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2-3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured and sampling period (time period when 2.5% and 97.5% of beads were captured. Habitat complexity was assessed by calculating width∶depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems.

  3. Remote sensing of wetlands at the Savannah River Plant

    International Nuclear Information System (INIS)

    Christensen, E.J.; Jensen, J.R.; Sharitz, R.R.

    1985-01-01

    The Savannah River Plant (SRP) occupies about 300 sq mi along a 10-mile stretch of the Savannah River. Large areas of wetlands cover the site, especially along tributary stream floodplains and the Savannah River. Some of these areas have been altered by cooling water discharges from nuclear production reactors onsite. To assess the effects of current and future plant operations on SRP and regional wetlands, an accurate quantitative survey was needed. Several studies were initiated to provide wetland acreage and distribution information: regional wetland inventories were provided from an analysis of LANDSAT multispectral scanner (MSS) satellite data. Wetlands were mapped throughout the entire Savannah River watershed and in the Savannah River floodplain. SRP wetlands were identified using a combination of LANDSAT MSS and Thematic Mapper satellite data and aerial photography. Wetlands in the SRP Savannah River swamp and thermally affected areas were mapped using high resolution MSS data collected from a low-flying aircraft. Vegetation communities in areas receiving cooling water discharges were then compared to surface temperatures measured from the airborne scanner at the same time to evaluate plant temperature tolerance. Historic changes to SRP wetlands from cooling water discharges were tabulated using aerial photography

  4. Metapopulation modelling of riparian tree species persistence in river networks under climate change.

    Science.gov (United States)

    Van Looy, Kris; Piffady, Jérémy

    2017-11-01

    Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even

  5. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    Science.gov (United States)

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  6. Hydrological and geochemical consequences of river regulation - hyporheic perspective

    Science.gov (United States)

    Siergieiev, Dmytro; Lundberg, Angela; Widerlund, Anders

    2014-05-01

    River-aquifer interfaces, essential for ecosystem functioning in terms of nutrient exchange and biological habitat, appear greatly threatened worldwide. Although river regulation is a vast pressure on river-aquifer interaction, influencing entire watersheds, knowledge about hyporheic exchange in regulated rivers is rather limited. In this study, we combine two decades of research on hydrological and geochemical impacts of hydropower regulation on river water and hyporheic zone in two large boreal rivers, unregulated Kalix River and regulated Lule River. Altered river discharge, with reduced spring peaks, daily summer fluctuations and elevated winter base flow severely modified Lule River water geochemistry and thus the transport of solutes to the Bothnian Bay (Baltic Sea). Further, these river modifications changed the river-aquifer exchange on both daily and seasonal scale, which resulted in deteriorated hyporheic conditions with reduced riverbed hydraulic conductivity (formation of a clogging layer) reflected in a declined hyporheic flux. Altered hydrological regime of the hyporheic zone created quasi-stagnant conditions beneath the river-aquifer interface and promoted the formation of geochemically suboxic environment. Taken that hyporheic water is a mixture of river water and groundwater, mixing models for the regulated site demonstrate a considerable addition of Fe, Mn, Al, NH4 and removal of dissolved oxygen and nitrate, which suggests the hyporheic zone in the Lule River to be a source of solutes. This contradicts the observations from the hyporheic zone in the unregulated river, with opposite behaviour functioning as a barrier. These results suggest that the hyporheic zone function is dependent on the river discharge and the state of the river-aquifer connectivity. Improved knowledge about the latter on a watershed scale will substantially increase our understanding about the status and potential pressures of riverine ecosystems and assist management and

  7. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Ortega, J.

    2012-01-01

    Full Text Available Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 individuals in multiple rivers at multiple times. We found high levels of dispersion and low levels of genetic differentiation among otters from the six surveyed rivers (P > 0.05, except for the pairwise comparison among the Lacantún and José rivers (P < 0.05. We recommend that conservation management plans for the species consider the entire Lacantún River System and its tributaries as a single management unit to ensure the maintenance of current levels of population genetic diversity, because the population analyzed seems to follow a source–sink dynamic mainly determined by the existence of the major river.

  8. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    Science.gov (United States)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  9. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    Science.gov (United States)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  10. Dynamic hydro-climatic networks in pristine and regulated rivers

    Science.gov (United States)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes

  11. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Science.gov (United States)

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  12. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  13. Restoring Oaks in the Missouri River Floodplain

    Science.gov (United States)

    Dan Dey; John Kabrick; Jennifer Grabner; Mike Gold

    2001-01-01

    Restoration of native vegetation and hydrologic regimes in the Mississippi and Missouri River floodplains is problematic because they are among the most altered ecosystems in North America (Noss et al. 1995), and because of the competing demands placed on these river ecosystems by commercial, private and social interests. Since the 1780s, more than half (53 percent) of...

  14. Predicting future changes in Muskegon River Watershed game fish distributions under future land cover alteration and climate change scenarios

    Science.gov (United States)

    Steen, Paul J.; Wiley, Michael J.; Schaeffer, Jeffrey S.

    2010-01-01

    Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool- and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n-dimensional niches for particular species.

  15. Linking hydrology, morphodynamics and ecology to assess the restoration potential of the heavily regulated Sarca River, NE Italy

    Science.gov (United States)

    Carolli, Mauro; Zolezzi, Guido; Pellegrini, Stefano; Gelmini, Francesca; Deriu, Micaela

    2017-04-01

    We develop an integrated eco-hydro-morphological quantitative investigation of the upper course of the Alpine Sarca River (NE Italy), for the purpose of assessing its potential in terms of environmental restoration. The Sarca River has been subject to heavy exploitation for hydropower production since the 1950s through a complex infrastructural system. As for many regulated Alpine rivers, increasing local interest has recently been developing to design and implement river restoration measures to improve the environmental conditions and ecosystem services that the river can provide. The aim of the work is to develop and apply a quantitative approach for a preliminary assessment of the successful potential of different river restoration options in the light of the recent eco-hydro-morphological dynamics of the Sarca river system at the catchment scale. The proposed analysis consists of three main steps: (1) detection of the main drivers of flow and sediment supply regimes alteration and characterization of such alteration; (2) a quantification of the effects of those alterations on geomorphic processes and fish habitat conditions; (3) the analysis of the restoration potential in the light of the results of the previous assessment. The analysis is tailored to the existing data availability, which is relatively high as for most river systems of comparable size in Europe, but not as much as in the case of a targeted research project, thus providing a representative case for many other regulated river catchments. Hydrological alteration is quantified by comparing recent (20 years) streamflow time series with a reconstructed series of analogous length, using a hydrological model that has been run excluding any man-made water abstraction, release and artificial reservoirs. upstream and downstream a large dam in the middle course of the river. By choosing the adult marble trout as target (endemic) fish species, effects of the alterations on the temporal and spatial habitat

  16. Predicting effects of environmental change on river inflows to ...

    Science.gov (United States)

    Estuarine river watersheds provide valued ecosystem services to their surrounding communities including drinking water, fish habitat, and regulation of estuarine water quality. However, the provisioning of these services can be affected by changes in the quantity and quality of river water, such as those caused by altered landscapes or shifting temperatures or precipitation. We used the ecohydrology model, VELMA, in the Trask River watershed to simulate the effects of environmental change scenarios on estuarine river inputs to Tillamook Bay (OR) estuary. The Trask River watershed is 453 km2 and contains extensive agriculture, silviculture, urban, and wetland areas. VELMA was parameterized using existing spatial datasets of elevation, soil type, land use, air temperature, precipitation, river flow, and water quality. Simulated land use change scenarios included alterations in the distribution of the nitrogen-fixing tree species Alnus rubra, and comparisons of varying timber harvest plans. Scenarios involving spatial and temporal shifts in air temperature and precipitation trends were also simulated. Our research demonstrates the utility of ecohydrology models such as VELMA to aid in watershed management decision-making. Model outputs of river water flow, temperature, and nutrient concentrations can be used to predict effects on drinking water quality, salmonid populations, and estuarine water quality. This modeling effort is part of a larger framework of

  17. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    Science.gov (United States)

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the

  18. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    Science.gov (United States)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  19. Rivers we can't bring ourselves to clean - historical insights into the pollution of the Moselle River (France), 1850-2000

    Science.gov (United States)

    Garcier, R. J.

    2007-11-01

    As products of both natural and social systems, rivers are highly complex historical objects. We show in this paper that historical analysis works on two different levels: one level, which we call "structural", shows the materiality of the riverine environment as the spatial-temporal product of natural factors and human impacts (bed and course alterations, pollution, etc.). On a second level -"semiotic" - we show that river systems are also social constructs and the subjects of ancient and diverse management practices. The quality of a river will be a function of the dialectical interaction between both levels. Historical analysis can uncover the inherited constraints that bear upon current management practices. To help substantiate this analytical framework, we analyse the case of the Moselle river in eastern France by using archival sources and statistical data. Severely impaired by industrial discharges from iron, coal and salt industries between the 1875s and the early 1980s, the waters of the Moselle became the subject of a social consensus between stakeholders that prevented the implementation of efficient pollution management policies until the 1990s. The example urges caution on the pervasiveness of participatory approaches to river management: social consensus does not necessarily benefit the environment.

  20. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.

    Science.gov (United States)

    Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem

    2018-03-01

    Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species

  1. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    International Nuclear Information System (INIS)

    Walker, D.D.

    2001-01-01

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively

  2. Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast.

    Science.gov (United States)

    Kominoski, John S; Ruhí, Albert; Hagler, Megan M; Petersen, Kelly; Sabo, John L; Sinha, Tushar; Sankarasubramanian, Arumugam; Olden, Julian D

    2018-03-01

    Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure "expected" streamflow) at the sub-basin scale over the past half-century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n = 95 Upper CR, n = 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n = 46, ACF n = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be

  3. Hydropeaking in Nordic rivers - combined analysis from effects of changing climate conditions and energy demands to river regimes

    Science.gov (United States)

    Ashraf, Faisal Bin; Marttila, Hannu; Torabi Haghighi, Ali; Alfredsen, Knut; Riml, Joakim; Kløve, Bjørn

    2017-04-01

    Increasing national and international demands for more flexible management of the energy resources with more non-storable renewables being used in adapting to the ongoing climate change will influence hydropower operations. Damming and regulation practices of river systems causes homogenization of long term river dynamics but also higher temporal sub-daily flow variations i.e. hydropeaking. In Nordic countries, many major rivers and lakes are regulated for hydropower purposes, which have caused considerable changes in river biotic, hydrologic and morphologic structures. Due to rapidly changing energy markets in the Nordic countries (deregulation of the power market and adding of renewable but intermittent sources of energy like, wind, solar, etc.) sub-daily flow conditions are under change within regulated river systems due to the increased demand on hydropower for providing balancing power. However, holistic analysis from changes in energy markets and its effect on sub-daily river regimes is lacking. This study analyzes the effects of hydropeaking on river regime in Finland, Sweden and Norway using long term high resolution data (15 minutes to hourly time interval) from 72 pristine and 136 regulated rivers with large spatial coverage across Fennoscandia. Since the sub-daily discharge variation is masked through the monthly or daily analyzes, in order to quantify these changes high resolution data is needed. In our study we will document, characterize and classify the impacts of sub-daily flow variation due to regulation and climatic variation on various river systems in Fennoscandia. Further, with increasing social demands for ecosystem services in regulated rivers, it is important to evaluate the new demand and update hydropower operation plan accordingly. We will analyse ecological response relationships along gradients of hydrological alteration for the biological communities, processes of river ecosystems and climate boundaries together with considering the

  4. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems - concepts, emerging trends, and research challenges

    Science.gov (United States)

    Park, Ji-Hyung; Nayna, Omme K.; Begum, Most S.; Chea, Eliyan; Hartmann, Jens; Keil, Richard G.; Kumar, Sanjeev; Lu, Xixi; Ran, Lishan; Richey, Jeffrey E.; Sarma, Vedula V. S. S.; Tareq, Shafi M.; Xuan, Do Thi; Yu, Ruihong

    2018-05-01

    combined result of diel shifts in the balance between autotrophy and heterotrophy, seasonal fluctuations between dry and monsoon periods, and a long-term change from a leaky post-construction phase to a gradual C sink. The rapid pace of urbanization across southern and eastern Asian regions has dramatically increased municipal water withdrawal, generating annually 120 km3 of wastewater in 24 countries, which comprises 39 % of the global municipal wastewater production. Although municipal wastewater constitutes only 1 % of the renewable surface water, it can disproportionately affect the receiving river water, particularly downstream of rapidly expanding metropolitan areas, resulting in eutrophication, increases in the amount and lability of organic C, and pulse emissions of CO2 and other GHGs. In rivers draining highly populated metropolitan areas, lower reaches and tributaries, which are often plagued by frequent algal blooms and pulsatile CO2 emissions from urban tributaries delivering high loads of wastewater, tended to exhibit higher levels of organic C and the partial pressure of CO2 (pCO2) than less impacted upstream reaches and eutrophic impounded reaches. More field measurements of pCO2, together with accurate flux calculations based on river-specific model parameters, are required to provide more accurate estimates of GHG emissions from the Asian rivers that are now underrepresented in the global C budgets. The new conceptual framework incorporating discontinuities created by impoundment and pollution into the river continuum needs to be tested with more field measurements of riverine metabolisms and CO2 dynamics across variously affected reaches to better constrain altered fluxes of organic C and CO2 resulting from changes in the balance between autotrophy and heterotrophy in increasingly human-modified river systems across Asia and other continents.

  5. Oldman river dam mitigation program downstream vegetation project report, Volume II: The potential effects of an operating plan for the Oldman River dam on Riparian cottonwood forests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.M.

    1993-01-01

    Extensive cottonwood (poplar) forests exist in the Oldman River valley downstream of the Oldman River dam. Studies of similar forests in nearby river valleys and elsewhere on the western prairies have found significant declines of some riparian forests following river damming. This investigation was initiated to determine the causes of cottonwood forest decline downstream from existing dams in southern Alberta; inventory the existing river valley forests in the Oldman Basin; establish study sites in the Oldman River forests to monitor changes in forest status following commissioning of the Oldman River dam, and evaluate the probable impact of proposed operating plans for the Oldman River dam and associated water control structures on downstream forests. This report summarizes the progress made in the analyses of the probable effects on the survival of the forests, including a discussion of the hydrological conditions essential for cottonwood forest regeneration and an explanation of the effects of altering these characteristics on riparian forests; the hydrological alterations expected along various river reaches in the Oldman Basin with the implementation of the proposed OD05 Oldman Dam operating plan; and preliminary analyses of the problem impacts of the OD05 operating plan on the cottonwood forests along these reaches.

  6. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Science.gov (United States)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán

    2018-03-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  7. Use of airborne multispectral scanner data to map alteration related to roll-front uranium migration

    International Nuclear Information System (INIS)

    Peters, D.C.

    1983-01-01

    Computer-enhanced airborne multispectral scanner (MSS) images have been used to detect and map red oxidized alteration related to roll-front uranium migration in the southern Powder River basin, Wyoming. Information in the 0.4- to 1.1-μm spectral region was used to produce a color ratio composite image, upon which the red-altered areas can be differentiated. The red-altered and incipiently altered sandstones result from the migration of a roll-front (or geochemical cell) through the sandstone in the direction of the hydrologic gradient. Most uranium deposits in the Powder River basin occur at the boundary between this oxidized sandstone and reduced sandstone. Therefore, the ability to detect and map this alteration reliably can provide important information about the potential for uranium mineralization down gradient from the altered areas, at the surface in an area of interest. Spectral reflectance studies indicate that a shift in the absorption band edge from 0.52 μm (for goethitic sandstone) to 0.58 μm (for hematitic sandstone) and an intensification of an absorption band at 0.85 μm (for hematitic sandstone) are the bases for identifying the red-altered sandstone as green anomalous areas on the color ratio composite image. Some of the incipiently altered sandstone also appears green, whereas unaltered material and white-altered sandstone appear as blue to cyan colors. Therefore, the composite image is useful in discriminating hematitic sandstone from goethitic sandstone. At high densities (>65%), vegetation masks the sandstones on the color ratio composite image. Artemisia tridentata (sage) and Stipa comata (grass) are the species that have the greatest individual effect on the image

  8. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  9. Untangling Trends and Drivers of Changing River Discharge Along Florida's Gulf Coast

    Science.gov (United States)

    Glodzik, K.; Kaplan, D. A.; Klarenberg, G.

    2017-12-01

    Along the relatively undeveloped Big Bend coastline of Florida, discharge in many rivers and springs is decreasing. The causes are unclear, though they likely include a combination of groundwater extraction for water supply, climate variability, and altered land use. Saltwater intrusion from altered freshwater influence and sea level rise is causing transformative ecosystem impacts along this flat coastline, including coastal forest die-off and oyster reef collapse. A key uncertainty for understanding river discharge change is predicting discharge from rainfall, since Florida's karstic bedrock stores large amounts of groundwater, which has a long residence time. This study uses Dynamic Factor Analysis (DFA), a multivariate data reduction technique for time series, to find common trends in flow and reveal hydrologic variables affecting flow in eight Big Bend rivers since 1965. The DFA uses annual river flows as response time series, and climate data (annual rainfall and evapotranspiration by watershed) and climatic indices (El Niño Southern Oscillation [ENSO] Index and North Atlantic Oscillation [NAO] Index) as candidate explanatory variables. Significant explanatory variables (one evapotranspiration and three rainfall time series) explained roughly 50% of discharge variation across rivers. Significant trends (representing unexplained variation) were shared among rivers, with geographical grouping of five northern rivers and three southern rivers, along with a strong downward trend affecting six out of eight systems. ENSO and NAO had no significant impact. Advancing knowledge of these dynamics is necessary for forecasting how altered rainfall and temperatures from climate change may impact flows. Improved forecasting is especially important given Florida's reliance on groundwater extraction to support its growing population.

  10. Macroinvertebrate Community responses to gravel addition in a Southeastern regulated river

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; A. Charles. Dolloff

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread...

  11. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges

    Directory of Open Access Journals (Sweden)

    J.-H. Park

    2018-05-01

    over time as a combined result of diel shifts in the balance between autotrophy and heterotrophy, seasonal fluctuations between dry and monsoon periods, and a long-term change from a leaky post-construction phase to a gradual C sink. The rapid pace of urbanization across southern and eastern Asian regions has dramatically increased municipal water withdrawal, generating annually 120 km3 of wastewater in 24 countries, which comprises 39 % of the global municipal wastewater production. Although municipal wastewater constitutes only 1 % of the renewable surface water, it can disproportionately affect the receiving river water, particularly downstream of rapidly expanding metropolitan areas, resulting in eutrophication, increases in the amount and lability of organic C, and pulse emissions of CO2 and other GHGs. In rivers draining highly populated metropolitan areas, lower reaches and tributaries, which are often plagued by frequent algal blooms and pulsatile CO2 emissions from urban tributaries delivering high loads of wastewater, tended to exhibit higher levels of organic C and the partial pressure of CO2 (pCO2 than less impacted upstream reaches and eutrophic impounded reaches. More field measurements of pCO2, together with accurate flux calculations based on river-specific model parameters, are required to provide more accurate estimates of GHG emissions from the Asian rivers that are now underrepresented in the global C budgets. The new conceptual framework incorporating discontinuities created by impoundment and pollution into the river continuum needs to be tested with more field measurements of riverine metabolisms and CO2 dynamics across variously affected reaches to better constrain altered fluxes of organic C and CO2 resulting from changes in the balance between autotrophy and heterotrophy in increasingly human-modified river systems across Asia and other continents.

  12. Bacterial communities hitching a hike - a guide to the river system of the Red river, Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N.; Stibal, Marek

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on Disko Island, West Greenland (69°N). We describe the bacterial community through a river into the estuary......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact......, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while...

  13. Resilience scales of a dammed tropical river

    Science.gov (United States)

    Calamita, Elisa; Schmid, Martin; Wehrli, Bernhard

    2017-04-01

    Artificial river impoundments disrupt the seasonality and dynamics of thermal, chemical, morphological and ecological regimes in river systems. These alterations affect the aquatic ecosystems in space and time and specifically modify the seasonality and the longitudinal gradients of important biogeochemical processes. Resilience of river systems to anthropogenic stressors enables their recovery along the flow path; however little is known about the longitudinal distance that rivers need to partially restore their physical, chemical and biological integrity. In this study, the concept of a "resilience scale" will be explored for different water quality parameters downstream of Kariba dam, the largest artificial lake in the Zambezi basin (South-East Africa). The goal of this project is to develop a modelling framework to investigate and quantify the impact of large dams on downstream water quality in tropical context. In particular, we aim to assess the degree of reversibility of the main downstream alterations (temperature, oxygen, nutrients) and consequently the quantification of their longitudinal extent. Coupling in-situ measurements with hydraulic and hydrological parameters such as travel times, will allow us to define a physically-based parametrization of the different resilience scales for tropical rivers. The results will be used for improving future dam management at the local scale and assessing the ecological impact of planned dams at the catchment scale.

  14. Rivers we can't bring ourselves to clean – historical insights into the pollution of the Moselle River (France, 1850–2000

    Directory of Open Access Journals (Sweden)

    R. J. Garcier

    2007-11-01

    Full Text Available As products of both natural and social systems, rivers are highly complex historical objects. We show in this paper that historical analysis works on two different levels: one level, which we call "structural", shows the materiality of the riverine environment as the spatial-temporal product of natural factors and human impacts (bed and course alterations, pollution, etc.. On a second level –"semiotic" – we show that river systems are also social constructs and the subjects of ancient and diverse management practices. The quality of a river will be a function of the dialectical interaction between both levels. Historical analysis can uncover the inherited constraints that bear upon current management practices. To help substantiate this analytical framework, we analyse the case of the Moselle river in eastern France by using archival sources and statistical data. Severely impaired by industrial discharges from iron, coal and salt industries between the 1875s and the early 1980s, the waters of the Moselle became the subject of a social consensus between stakeholders that prevented the implementation of efficient pollution management policies until the 1990s. The example urges caution on the pervasiveness of participatory approaches to river management: social consensus does not necessarily benefit the environment.

  15. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    Science.gov (United States)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  16. Genetic Alterations and Their Clinical Implications in High-Recurrence Risk Papillary Thyroid Cancer.

    Science.gov (United States)

    Lee, Min-Young; Ku, Bo Mi; Kim, Hae Su; Lee, Ji Yun; Lim, Sung Hee; Sun, Jong-Mu; Lee, Se-Hoon; Park, Keunchil; Oh, Young Lyun; Hong, Mineui; Jeong, Han-Sin; Son, Young-Ik; Baek, Chung-Hwan; Ahn, Myung-Ju

    2017-10-01

    Papillary thyroid carcinomas (PTCs) frequently involve genetic alterations. The objective of this study was to investigate genetic alterations and further explore the relationships between these genetic alterations and clinicopathological characteristics in a high-recurrence risk (node positive, N1) PTC group. Tumor tissue blocks were obtained from 240 surgically resected patients with histologically confirmed stage III/IV (pT3/4 or N1) PTCs. We screened gene fusions using NanoString's nCounter technology and mutational analysis was performed by direct DNA sequencing. Data describing the clinicopathological characteristics and clinical courses were retrospectively collected. Of the 240 PTC patients, 207 (86.3%) had at least one genetic alteration, including BRAF mutation in 190 patients (79.2%), PIK3CA mutation in 25 patients (10.4%), NTRK1/3 fusion in six patients (2.5%), and RET fusion in 24 patients (10.0%). Concomitant presence of more than two genetic alterations was seen in 36 patients (15%). PTCs harboring BRAF mutation were associated with RET wild-type expression (p=0.001). RET fusion genes have been found to occur with significantly higher frequency in N1b stage patients (p=0.003) or groups of patients aged 45 years or older (p=0.031); however, no significant correlation was found between other genetic alterations. There was no trend toward favorable recurrence-free survival or overall survival among patients lacking genetic alterations. In the selected high-recurrence risk PTC group, most patients had more than one genetic alteration. However, these known alterations could not entirely account for clinicopathological features of high-recurrence risk PTC.

  17. The contemporary geomorphology of the Sabie River in the Kruger National Park

    Directory of Open Access Journals (Sweden)

    G.L. Heritage

    2000-07-01

    Full Text Available The Sabie River in the Kruger National Park has been described as the most pristine in South Africa. It has remained largely free of direct alteration along its 110 km length within the reserve and as such displays a high geomorphic diversity. This physical vari- ability supports a great diversity of flora and fauna including a number of species endemic to the river. The diversity in fluvial form is the result of a high degree of bedrock influence coupled with a rapidly changing energy regime. Steeper bedrockinfluenced areas alternate with more gently sloping alluvial segments to create a series of channel types ranging from bedrock anastomosing through to alluvial single thread and braided sections. Each channel type is part of a continuum that relates to the degree of alluviation of the river on the bedrock template. Descriptions of the characteristic channel types associated with the Sabie River, together with associated morphologic units are given together with the areal extent of the changing morphology in the Kruger National Park. Each morphologic unit is characterised by size, shape, sedimentology and flow influence. Recent research into the degree and direction of morphologic change in the Sabie River is also summarised in the light of possible catchment management.

  18. Bank erosion along the dam-regulated lower Roanoke River, North Carolina

    Science.gov (United States)

    Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, Robert K.; Townsend, Phil A.

    2009-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability and erosion. Three high dams (completed between 1953 and 1963) were built along the Piedmont portion of the Roanoke River, North Carolina; just downstream the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, >700 bank-erosion pins were installed along 66 bank transects. Additionally, discrete measurements of channel bathymetry, turbidity, and presence or absence of mass wasting were documented along the entire study reach (153 km). A bank-erosion- floodplain-deposition sediment budget was estimated for the lower river. Bank toe erosion related to consistently high low-flow stages may play a large role in increased mid- and upper-bank erosion. Present bank-erosion rates are relatively high and are greatest along the middle reaches (mean 63 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates, such that erosion-rate maxima have since migrated downstream. Mass wasting and turbidity also peak along the middle reaches; floodplain sedimentation systematically increases downstream in the study reach. The lower Roanoke River isnet depositional (on floodplain) with a surplus of ??2,800,000 m3yr. Results suggest that unmeasured erosion, particularly mass wasting, may partly explain this surplus and should be part of sediment budgets downstream of dams. ?? 2009 The Geological Society of America.

  19. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  20. Effects of flow alteration on Apple-ring Acacia (Faidherbia albida) stands, Middle Zambezi floodplains, Zimbabwe

    NARCIS (Netherlands)

    Gope, E.T.; Sass-Klaassen, U.G.W.; Irvine, K.; Beevers, L.; Hes, E.M.

    2015-01-01

    The impounding of the Zambezi River by Kariba dam has regulated the river discharge of the Middle Zambezi river. This has been implicated in the failure of regeneration of Faidherbia albida in the downstream flood plain. This study aimed (1) to assess the effect of the altered flow regime of the

  1. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Directory of Open Access Journals (Sweden)

    J. F. Salazar

    2018-03-01

    Full Text Available Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land–atmosphere interactions (mainly precipitation recycling that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  2. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia

    Science.gov (United States)

    McDonald, K. C.

    2017-12-01

    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  3. The River Valleys as Biodiversity Reservoirs for Land Snails in Highly Anthropic Areas – The Case of Cisnădie River (Romania

    Directory of Open Access Journals (Sweden)

    Gheoca Voichiţa

    2016-12-01

    Full Text Available This study focuses on the snail fauna of a river valley passing through two closely located settlements. Thirty six species of terrestrial gastropods were identified. Species such as Macrogastra borealis, Alinda fallax, Alinda viridana, Bulgarica vetusta, Monachoides vicinus, Drobacia banatica, are present along the river and abundant in the sampling stations downstream of Cisnădie town. The high specific diversity and the presence of typical forest species demonstrate the presence of fragments of habitat that can preserve populations of terrestrial gastropods, underlining the importance of river valleys in conservation and dispersion of these species.

  4. Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia).

    NARCIS (Netherlands)

    Damme, P.A. van; Hamel, C.; Ayala, A.; Bervoets, L.

    2008-01-01

    Several High Andes Rivers are characterized by inorganic water pollution known as acid mine drainage (AMD). The aim of this study was to assess the relationship between metal concentrations in the sediments and the macroinvertebrate communities in two river basins affected by AMD. In general, the

  5. Histopathological alterations observed in the liver of Poecilia vivipara (Cyprinodontiformes: Poeciliidae as a tool for the environmental quality assessment of the Cachoeira River, BA

    Directory of Open Access Journals (Sweden)

    DV Paulo

    Full Text Available Histopathological alterations in liver have been widely used as a tool in studies for monitoring environmental quality. To evaluate the environmental quality in the Cachoeira river, five spots were monitored between the municipal districts of Itapé and Ilhéus, using liver histological analysis. The species chosen for analysis was Poecilia vivipara due to the fact that it is one of the most abundant in the sampling. The routine technique of inclusion and impregnation in paraffin was used, and the cuts were stained with Hematoxylin and Eosin (H & E. Histopathological alterations in the liver were evaluated semi-quantitatively and based on the severity of the lesions. The results of the histopathological alteration frequency together with the average taken from the Histopathological Alteration Index from points 1 (Vila de Itapé and 2 (Fazenda Santa Amélia showed that in this area the environment is more threatened because of some stressor agent, possibly contaminants that seem to be acting in the environment and endangering the health of fish. The statistic results demonstrated that there were no significant differences among points 1, 2 and 4, which means they are very similar to one another, and are ecologically endangered.

  6. Harvest Management and Recovery of Snake River Salmon Stocks : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 7 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Lestelle, Lawrence C.; Gilbertson, Larry G.

    1993-06-01

    Management measures to regulate salmon fishing harvest have grown increasingly complex over the past decade in response to the needs for improved protection for some salmon runs and to alter harvest sharing between fisheries. The development of management plans that adequately address both needs is an immensely complicated task, one that involves a multitude of stocks, each with its own migration patterns and capacity to sustain exploitation. The fishing industry that relies on these fish populations is also highly diverse. The management task is made especially difficult because the stocks are often intermingled on the fishing grounds, creating highly mixed aggregates of stocks and species on which the fisheries operate. This situation is the one confronting harvest managers attempting to protect Snake River salmon. This report provides an overview of some of the factors that will need to be addressed in assessing the potential for using harvest management measures in the recovery of Snake River salmon stocks. The major sections of the report include the following: perspectives on harvest impacts; ocean distribution and in-river adult migration timing; description of management processes and associated fisheries of interest; and altemative harvest strategies.

  7. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  8. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  9. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  10. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    Science.gov (United States)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  11. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2002-12-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South

  12. Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

    OpenAIRE

    Amissah Gabriel Jonathan; Kiss Timea; Fiala Károly

    2017-01-01

    The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections...

  13. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China.

    Science.gov (United States)

    Xue, Lianqing; Yang, Fan; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Chi, Yixia; Yang, Guang

    2017-08-15

    Understanding contributions of climate change and human activities to changes in streamflow is important for sustainable management of water resources in an arid area. This study presents quantitative analysis of climatic and anthropogenic factors to streamflow alteration in the Tarim River Basin (TRB) using the double mass curve method (DMC) and the Budyko methods. The time series (1960~2015) are divided into three periods: the prior impacted period (1960~1972) and the two post impacted periods, 1973~1986 and 1987~2015 with trend analysis. Our results suggest that human activities played a dominant role in deduction in the streamflow in TRB with contribution of 144.6% to 120.68% during the post impacted period I and 228.68% to 140.38% during the post impacted period II. Climatic variables accounted for 20.68%~44.6% of the decrease during the post impacted period I and 40.38% ~128.68% during the post impacted period II. Sensitivity analysis indicates that the streamflow alteration was most sensitive to changes in landscape parameters. The aridity index and all the elasticities showed an obvious increasing trend from the upstream to the downstream in the TRB. Our study suggests that it is important to take effective measures for sustainable development of eco-hydrological and socio-economic systems in the TRB.

  14. Biogeochemical alteration of dissolved organic material in the Cape Fear River Estuary as a function of freshwater discharge

    Science.gov (United States)

    Dixon, Jennifer L.; Helms, John R.; Kieber, Robert J.; Avery, G. Brooks

    2014-08-01

    This study presents the first extensive examination of the controls on optical properties of chromophoric dissolved organic matter (CDOM) within the Cape Fear River Estuary (CFRE) utilizing spectral slope ratios (SR). The application of SUVA254 values, absorption spectral slopes (S) and SR values has presented a distinct opportunity to observe compositional changes in CDOM in the CFRE that was not possible using bulk DOC and aCDOM(350) values alone. By comparing estuarine trends in CDOM spectral shape during both normal and historically low flow conditions, we found that diagenetic processing of CDOM in the CFRE is controlled primarily by riverine discharge rates. These findings suggest that the chromophoric fraction of DOM is altered during estuarine transport under low flow regimes but reaches the coastal ocean relatively unaltered under higher flow conditions. This highlights the tendency for autochthonous sources of DOC to offset photochemical losses and indicates that in situ DOC production can significantly contribute to the overall carbon load if discharge is low or sufficient biogeochemical alteration of the terrestrial DOM end-member occurs. This provides new insight into the usefulness of these optical properties into understanding the cycling, fate and transport of CDOM to the coastal ocean. SR values provide a simple but potentially powerful tool in understanding the flux, transport and impact of terrestrially derived organic material deposited in the coastal ocean.

  15. Massive accumulation of highly polluted sedimentary deposits by river damming

    Energy Technology Data Exchange (ETDEWEB)

    Palanques, Albert, E-mail: albertp@icm.csic.es [Institute of Marine Sciences (CSIC), Passeig Maritim de la Barceloneta, 37-49, Barcelona 08003 (Spain); Grimalt, Joan [Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona, 18, Barcelona 08034 (Spain); Belzunces, Marc; Estrada, Ferran; Puig, Pere; Guillén, Jorge [Institute of Marine Sciences (CSIC), Passeig Maritim de la Barceloneta, 37-49, Barcelona 08003 (Spain)

    2014-11-01

    Uncontrolled dumping of anthropogenic waste in rivers regulated by dams has created contaminated deposits in reservoirs that have remained unidentified for decades. The Flix Reservoir is located in the Ebro River, the second largest river flowing into the NW Mediterranean, has been affected by residue dumping from a chlor-alkali electrochemical plant for decades. High-resolution seismic profiles, bathymetric data, surficial sediment samples and sediment cores were obtained in the Flix Reservoir to study the characteristics of the deposit accumulated by this dumping. These data were used to reconstruct the waste deposit history. Since the construction of the Flix Dam in 1948, more than 3.6 × 10{sup 5} t of industrial waste has accumulated in the reservoir generating a delta-like deposit formed by three sediment lobes of fine-grained material highly contaminated by Hg, Cd, Zn and Cr (max: 640, 26, 420 and 750 mg kg{sup −1}, respectively). This contamination was associated with the Hg that was used for the cathode in the electrochemical plant from 1949 and with the production of phosphorite derivatives from 1973. After the construction of two large dams only a few kilometres upstream during the 1960s, the solids discharged from the industrial complex became the main sediment source to the Flix Reservoir. The deposit has remained in the reservoir forming a delta that obstructs about 50% of the river water section. Its stability only depended on the flow retention by the Flix Dam. At present, this contaminated waste deposit is being removed from the water reservoir as it is a cause of concern for the environment and for human health downriver. - Highlights: • A delta-like anthropogenic deposit prograded into the reservoir behind the Flix dam. • More than 3.6 × 10{sup 5} t of anthropogenic waste was accumulated in less than 4 decades. • A waste deposit with extreme levels of Hg and Cd was trapped in the Flix Reservoir. • The main pollution was related to

  16. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    Science.gov (United States)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  17. The effect of river fluctuation frequencies and amplitudes on the extent of the river-aquifer mixing zone and on the dilution of substances

    Science.gov (United States)

    Derx, Julia; Blaschke, Alfred Paul

    2010-05-01

    The river-aquifer mixing zone has been identified in the past by both observations in the field and by applying coupled groundwater models. Its implications are important e.g. for macrozoobenthos or fish eggs, which react sensitively to changes in flow velocities. The groundwater quality is also strongly affected due to the transport of substances from the river into the aquifer and can be altered due to these mixing processes. At a field site east of Vienna, we recently found that the Danube River surface level fluctuations induce circular flow patterns within the mixing zone and cause a greater dispersion of substances dissolved in groundwater. This has possibly important implications for river management, for example, in the case of anthropogenic river level fluctuations. In this paper, we investigate these findings more generally for groundwater-river interaction with different river fluctuation amplitudes and frequencies. We apply an unsaturated-saturated groundwater model and perform an extensive systematic model analysis to identify the effects of river fluctuation frequencies and amplitudes on the extent and location of the mixing zone. Thereby we investigate the influence of the river bank slopes, the hydraulic aquifer properties and the exchange conditions (infiltration and groundwater exfiltration). The estimated extents and locations of the mixing zone are presented for a range of river fluctuation frequencies and amplitudes, for aquifers of high to low permeabilities, for flat and steep riverbanks and for infiltration and groundwater exfiltration. These parameters demonstrate the significant correlation to the extent of the mixing zone and can help to give an estimate for management strategies. Furthermore, we give an overview of how much a non-reactive substance dissolved in groundwater is diluted, due to dispersion within the mixing zone, for the full set of scenarios performed during our systematic model analysis.

  18. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  19. Altered stream-flow regimes and invasive plant species: The Tamarix case

    Science.gov (United States)

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  20. Presence and biological effects of emerging contaminants in Llobregat River basin: A review

    International Nuclear Information System (INIS)

    González, Susana; López-Roldán, Ramón; Cortina, Jose-Luis

    2012-01-01

    Llobregat River (North-East Spain) is the most important drinking water source for Barcelona and its surrounding area. As one of the only water sources in the area the river water have been overexploited and effluents from more than 30 urban wastewater treatment plants, industries and agriculture runoffs have been discharged into the river. This article reviews the presence of emerging contaminants published during the last decades, emphasizing on the observed effects on ecosystems caused by the contamination. Pesticides, surfactants, estrogens, pharmaceuticals and personal care products and even abuse drugs are the main groups detected in different studies, reporting alterations in species composition, abundance or biomass and endocrine disruption measured by alterations in enzymatic activity or specific protein production. The information available provides an overview of the river status according to the Water Framework Directive. - The presence of different pollutants (mainly pesticides, pharmaceuticals, surfactants and estrogens) and their biological effects in the Llobregat River are reviewed.

  1. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  2. Geomorphic status of regulated rivers in the Iberian Peninsula.

    Science.gov (United States)

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation

  3. Water quality assessment of a small peri-urban river using low and high frequency monitoring.

    Science.gov (United States)

    Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G

    2016-05-18

    The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.

  4. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.

    Science.gov (United States)

    von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi

    2016-01-01

    River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.

  5. TREHS (Temporary Rivers Ecological and Hydrological Status): new software for investigating the degree of hydrologic alteration of temporary streams.

    Science.gov (United States)

    Gallart, Francesc; Llorens, Pilar; Cid, Núria; latron, Jérôme; Bonada, Núria; Prat, Narcís

    2017-04-01

    individuals, and by interpretation of aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine the natural and observed river regime, and to assess the degree of hydrological alteration. Here, given the lack of agreed standards to evaluate the ecological relevance of the observed alterations, the thresholds that define quality class boundaries are provisional and may be updated using expert knowledge. Finally, the software characterizes the differences between the natural and actual regimes, performs a diagnosis of the hydrological status (degree of hydrologic alteration) along with an assessment of the significance and robustness of the diagnosis, and recommends the best period for biological quality samplings.

  6. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  7. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    Science.gov (United States)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  8. High value of ecological information for river connectivity restoration

    Science.gov (United States)

    Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine

    2017-01-01

    ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.

  9. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  10. Applications of high transition temperature superconductors at the Savannah River Site

    International Nuclear Information System (INIS)

    Payne, J.E.; Payne, L.L.

    1993-04-01

    The first year of the research program involved evaluating the applications of high transition temperature superconducting devices at the Savannah River Site and initiating the development of high T c circuit elements that might be of use in programs at the site. Although during the course of this year there were major changes in the direction of and areas of interest at the Savannah River Site, it has been possible to accomplish the first year goals. The technology required to produce a useful nitrogen temperature SQUID for applications such as those that might be encountered at the site has developed more rapidly than was anticipated. This has made it possible to begin the initial studies with a high T c device as opposed to starting with the helium temperature SQUID. This will have an important impact on the outcome of the project by allowing for a more complete evaluation of a device that can be used in an industrial situation. The goals of the first year of the project are listed and will be addressed in this report

  11. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    Directory of Open Access Journals (Sweden)

    A. Laurent

    2012-11-01

    Full Text Available The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited in marine waters, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7-yr simulation (2001–2007 compare well with several sources of observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but slightly enhanced fluxes west of Atchafalaya Bay. Simulations with altered river phosphate concentrations (±50% show that significant variation in the spatial extent of phosphorus limitation (±40% in July results from changes in phosphate load.

  12. River basin closure: Processes, implications and responses

    NARCIS (Netherlands)

    Molle, F.; Wester, P.; Hirsch, P.

    2010-01-01

    Increasing water withdrawals for urban, industrial, and agricultural use have profoundly altered the hydrology of many major rivers worldwide. Coupled with degradation of water quality, low flows have induced severe environmental degradation and water has been rendered unusable by downstream users.

  13. Seasonal Dynamics of River Corridor Exchange Across the Continental United States

    Science.gov (United States)

    Gomez-Velez, J. D.; Harvey, J. W.; Scott, D.; Boyer, E. W.; Schmadel, N. M.

    2017-12-01

    River corridors store and convey mass and energy from landscapes to the ocean, altering water quality and ecosystem functioning at the local, reach, and watershed scales. As water moves through river corridors from headwaters streams to coastal estuaries, dynamic exchange between the river channel and its adjacent riparian, floodplain, and hyporheic zones, combined with ponded waters such as lakes and reservoirs, results in the emergence of hot spots and moments for biogeochemical transformations. In this work, we used the model Networks with EXchange and Subsurface Storage (NEXSS) to estimate seasonal variations in river corridor exchange fluxes and residence times along the continental United States. Using a simple routing scheme, we translate these estimates into a cumulative measure of river corridor connectivity at the watershed scale, differentiating the contributions of hyporheic zones, floodplains, and ponded waters. We find that the relative role of these exchange subsystems changes seasonally, driven by the intra-seasonal variability of discharge. In addition, we find that seasonal variations in discharge and the biogeochemical potential of hyporheic zones are out of phase. This behavior results in a significant reduction in hyporheic water quality functions during high flows and emphasizes the potential importance of reconnecting floodplains for managing water quality during seasonal high flows. Physical parameterizations of river corridor processes are critical to model and predict water quality and to sustainably manage water resources under present and future socio-economic and climatic conditions. Parsimonious models like NEXSS can play a key role in the design, implementation, and evaluation of sustainable management practices that target both water quantity and quality at the scale of the nation. This research is a product of the John Wesley Powell Center River Corridor Working Group.

  14. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  15. High-altitude diving in river otters: coping with combined hypoxic stresses.

    Science.gov (United States)

    Crait, Jamie R; Prange, Henry D; Marshall, Noah A; Harlow, Henry J; Cotton, Clark J; Ben-David, Merav

    2012-01-15

    River otters (Lontra canadensis) are highly active, semi-aquatic mammals indigenous to a range of elevations and represent an appropriate model for assessing the physiological responses to diving at altitude. In this study, we performed blood gas analyses and compared blood chemistry of river otters from a high-elevation (2357 m) population at Yellowstone Lake with a sea-level population along the Pacific coast. Comparisons of oxygen dissociation curves (ODC) revealed no significant difference in hemoglobin-oxygen (Hb-O(2)) binding affinity between the two populations - potentially because of demands for tissue oxygenation. Instead, high-elevation otters had greater Hb concentrations (18.7 g dl(-1)) than sea-level otters (15.6 g dl(-1)). Yellowstone otters displayed higher levels of the vasodilator nitric oxide (NO), and half the concentration of the serum protein albumin, possibly to compensate for increased blood viscosity. Despite compensation in several hematological and serological parameters, theoretical aerobic dive limits (ADL) were similar between high-elevation and sea-level otters because of the lower availability of O(2) at altitude. Our results suggest that recent disruptions to the Yellowstone Lake food web could be detrimental to otters because at this high elevation, constraints on diving may limit their ability to switch to prey in a deep-water environment.

  16. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    Science.gov (United States)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  17. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    Science.gov (United States)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  18. Assessment of flood-induced changes of phytoplankton along a river-floodplain system using the morpho-functional approach.

    Science.gov (United States)

    Mihaljević, Melita; Spoljarić, Dubravka; Stević, Filip; Zuna Pfeiffer, Tanja

    2013-10-01

    In this research, we aimed to find out how the differences in hydrological connectivity between the main river channel and adjacent floodplain influence the changes in phytoplankton community structure along a river-floodplain system. The research was performed in the River Danube floodplain (Croatian river section) in the period 2008-2009 characterised by different flooding pattern on an annual time scale. By utilising the morpho-functional approach and multivariate analyses, the flood-derived structural changes of phytoplankton were analysed. The lake stability during the isolation phase triggered the specific pattern of morpho-functional groups (MFG) which were characterised by cyanobacterial species achieving very high biomass. Adversely, the high water turbulence in the lake during the frequent and extreme flooding led to evident similarity between lake and river assemblages. Besides different diatom species (groups of small and large centrics and pennates), which are the most abundant representatives in the river phytoplankton, many other groups such as cryptophytes and colonial phytomonads appeared to indicate altered conditions in the floodplain driven by flooding. Having different functional properties, small centric diatom taxa sorted to only one MFG cannot clearly reflect environmental changes that are shown by the species-level pattern. Disadvantages in using the MFG approach highlight that it is still necessary to combine it with taxonomical approach in monitoring of phytoplankton in the river-floodplain ecosystems.

  19. Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers

    International Nuclear Information System (INIS)

    Sabater, S.; Barceló, D.; De Castro-Català, N.; Ginebreda, A.; Kuzmanovic, M.; Petrovic, M.; Picó, Y.; Ponsatí, L.; Tornés, E.; Muñoz, I.

    2016-01-01

    Land use type, physical and chemical stressors, and organic microcontaminants were investigated for their effects on the biological communities (biofilms and invertebrates) in several Mediterranean rivers. The diversity of invertebrates, and the scores of the first principal component of a PCA performed with the diatom communities were the best descriptors of the distribution patterns of the biological communities against the river stressors. These two metrics decreased according to the progressive site impairment (associated to higher area of agricultural and urban-industrial, high water conductivity, higher dissolved organic carbon and dissolved inorganic nitrogen concentrations, and higher concentration of organic microcontaminants, particularly pharmaceutical and industrial compounds). The variance partition analyses (RDAs) attributed the major share (10%) of the biological communities' response to the environmental stressors (nutrients, altered discharge, dissolved organic matter), followed by the land use occupation (6%) and of the organic microcontaminants (2%). However, the variance shared by the three groups of descriptors was very high (41%), indicating that their simultaneous occurrence determined most of the variation in the biological communities. - Highlights: • River impairment was associated to increasing agricultural and urban-industrial areas, and sites were having waters with high water conductivity and nutrient concentrations, and higher concentrations of organic microcontaminants, particularly pharmaceutical and alkylphenol compounds. • Physico-chemical stressors (high nutrients and dissolved organic matter, altered water flow) were the ones mostly affecting biodiversity. • The simultaneous occurrence of microcontaminants with physico-chemical stressors in urban-industrial areas produced a much higher effect than the simple addition of stressors. - Organic microcontaminants reinforce the effects of environmental and land use stressors on

  20. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    Science.gov (United States)

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.

    2018-06-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  2. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  3. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  4. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  5. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  6. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  7. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    Science.gov (United States)

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  8. A high-precision sampling scheme to assess persistence and transport characteristics of micropollutants in rivers.

    Science.gov (United States)

    Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter

    2016-01-01

    Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties. Copyright © 2015. Published by Elsevier B.V.

  9. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    Science.gov (United States)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have

  10. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  11. Water quality in Italy: Po River and its tributaries

    International Nuclear Information System (INIS)

    Crosa, G.; Marchetti, R.

    1993-01-01

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance; water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. The principal factors determining the water quality of the Po River and its tributaries are examined. Organic micropollutants, metals and the microbial load are the principal parameters altering the quality of the waters; dilution is the prevailing factor reducing this contamination

  12. Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river

    Science.gov (United States)

    Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz

    2014-05-01

    This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.

  13. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  14. Climatic and anthropogenic controls on Mississippi River floods: a multi-proxy palaeoflood approach

    Science.gov (United States)

    Munoz, S. E.; Therrell, M. D.; Remo, J. W.; Giosan, L.; Donnelly, J. P.

    2017-12-01

    Over the last century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation, and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment budget and channel morphology, but the influence of these modifications on flood risk is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability prior to the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood risk on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), but that artificial channelization has greatly amplified flood magnitudes over the last century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the last five hundred years that combines sedimentary, tree-ring, and instrumental records, reveal that the magnitude of the 100-year flood has increased by 20% over the period of record, with 75% of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood risk to levels that are unprecedented within the last five centuries.

  15. Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River

    Directory of Open Access Journals (Sweden)

    Sojka Mariusz

    2016-09-01

    Full Text Available The purpose of the presented research is analysis and assessment of the Stare Miasto reservoir impact on the hydrological regime changes of the Powa River. The reservoir was built in 2006 and is located in the central part of Poland. The total area of inundation in normal conditions is 90.68 ha and its capacity is 2.159 mln m3. Hydrological regime alteration of the Powa River is analysed on the basis of daily flows from the Posoka gauge station observed during period 1974–2014. Assessment of hydrological regime changes is carried out on the basis of Range of Variability Approach (RVA method. All calculations are made by means of Indicators of Hydrologic Alteration (IHA software version 7.1.0.10. The analysis shows that the Stare Miasto reservoir has a moderate impact on hydrological regime of the Powa River. Construction of the reservoir has positive effect on stability of minimal flows, which are important for protection of river ecosystems. The results obtained indicate that the Stare Miasto reservoir reduces a spring peak flow and enables to moderate control of floods.

  16. Fluvial hydrology and geomorphology of Monsoon-dominated Indian rivers

    Directory of Open Access Journals (Sweden)

    Vishwas S. Kale

    2005-11-01

    Full Text Available The Indian rivers are dominantly monsoon rainfed. As a result, their regime characteristics are dictated by the spatio-temporal variations in the monsoon rainfall. Although the rivers carry out most of the geomorphic work during 4-5 months of the monsoon season, the nature and magnitude of response to variations in the discharge and sediment load varies with the basin size and relief characteristics. Large monsoon floods play a role of great importance on all the rivers. This paper describes the hydrological and geomorphological characteristics of the two major fluvial systems of the Indian region, namely the Himalayan fluvial system and the Peninsular fluvial system. Large number of studies published so far indicate that there are noteworthy differences between the two river systems, with respect to river hydrology, channel morphology, sediment load and behaviour. The nature of alterations in the fluvial system due to increased human interference is also briefly mentioned. This short review demonstrates that there is immense variety of rivers in India. This makes India one of the best places to study rivers and their forms and processes.

  17. Legacies of flood reduction on a dryland river

    Science.gov (United States)

    Stromberg, J.C.; Shafroth, P.B.; Hazelton, A.F.

    2012-01-01

    The Bill Williams (Arizona) is a regulated dryland river that is being managed, in part, for biodiversity via flow management. To inform management, we contrasted riparian plant communities between the Bill Williams and an upstream free-flowing tributary (Santa Maria). Goals of a first study (1996-1997) were to identify environmental controls on herbaceous species richness and compare richness among forest types. Analyses revealed that herbaceous species richness was negatively related to woody stem density, basal area and litter cover and positively related to light levels. Introduced Tamarix spp. was more frequent at the Bill Williams, but all three main forest types (Tamarix, Salix/Populus, Prosopis) had low understory richness, as well as high stem density and low light, on the Bill Williams as compared to the Santa Maria. The few edaphic differences between rivers (higher salinity at Bill Williams) had only weak connections with richness. A second study (2006-2007) focused on floristic richness at larger spatial scales. It revealed that during spring, and for the study cumulatively (spring and fall samplings combined), the riparian zone of the unregulated river had considerably more plant species. Annuals (vs. herbaceous perennials and woody species) showed the largest between-river difference. Relative richness of exotic (vs. native) species did not differ. We conclude that: (1) The legacy of reduced scouring frequency and extent at the Bill Williams has reduced the open space available for colonization by annuals; and (2) Change in forest biomass structure, more so than change in forest composition, is the major driver of changes in plant species richness along this flow-altered river. Our study informs dryland river management options by revealing trade-offs that exist between forest biomass structure and plant species richness. ?? 2010 John Wiley & Sons, Ltd.

  18. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    -2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi...... extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3 y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty...

  19. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  20. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  1. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-10-01

    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  2. The Relative Performance of High Resolution Quantitative Precipitation Estimates in the Russian River Basin

    Science.gov (United States)

    Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.

    2017-12-01

    The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.

  3. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Lijun, Zhou [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jifeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Li, Wang; Bin, Yang; Shan, Liu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  4. Deforestation and sedimentation in Uraba Gulf mangroves; a synthesis of the impacts on macrobenthos and fishes in the Turbo River Delta

    International Nuclear Information System (INIS)

    Blanco Libreros, Juan Felipe; Taborda Marin, Alexander; Amortegui Torres, Viviana; Arroyave Rincon, Andrea; Sandoval, Alejandro; Estrada, Edgar Andres; Leal Florez, Jenny; Vasquez Arango, Jairo Guillermo; Vivas Narvaez, Alberto

    2013-01-01

    This synthesis relates deforestation and land use change in coastal plain of the Turbo River watershed and impacts upon estuarine fauna in its delta. This watershed is shown within the context of hidroclimatological (rainfall and discharge) variability across the eastern margin of Uraba Gulf. Coastal-plain forest conversion rate to crops were quantified, as a possible explanation of increased sediment transport to the river and the near shore. Despite of the expansion of the delta, mangrove area was reduced as a consequence of conversion to crops and pastures. The dominant mangrove snail Neritina virginea was reduced in density in anthropogenic forest gaps and edges, as well as in pastures, due to altered microhabitats, and can be therefore used as a bio-indicator. The high sedimentation rates seem to be responsible for the faunistic poverty of the benthos, but do not seem responsible of deleterious effects on the dominant species. The diversity and abundance of fishes was greatly altered by high sedimentation near the river mouth. Finally, social features of the human communities were related to landscape changes. Herewith, we reported on the current ecosystem status, as the baseline for proposing management and conservation guidelines in order to prevent and restore impacts on mangroves and the coastal zone in this region.

  5. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  6. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    Science.gov (United States)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  7. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    Science.gov (United States)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  8. The influence of tides on biogeochemical dynamics at the mouth of the Amazon River

    Science.gov (United States)

    Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.

    2017-12-01

    A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.

  9. Study to compare the performance of two designs to prevent river bend erosion in Arctic environments.

    Science.gov (United States)

    2010-09-01

    Messing with Mother Nature takes knowledge and work, and she is hard to outfox, especially when it comes to redirecting rivers. To : protect infrastructure, however, sometimes river flow must be altered. This study focuses on two erosion-control proj...

  10. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    OpenAIRE

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. ...

  12. Application of the new Morphological Quality Index in the Cordevole river (BL, Italy

    Directory of Open Access Journals (Sweden)

    E. Rigon

    2013-09-01

    Full Text Available The evaluation of the morphological quality of rivers is essential to define the level of alteration and for implementing future management strategies that consider also hazards related to fluvial processes and channel dynamics. This type of evaluation is particularly significant for the Italian rivers, that, as in many other European countries, have a very high level of human pressure. Recently, in Italy, the National Institute for Environmental Protection and Research has promoted a methodology named IDRAIM for hydromorphological analysis of streams that pursues an integrated approach aimed at a harmonized implementation of both the EU Water Framework Directive (WFD, 2000/60/EC, and the EU Floods Directive (2007/60/EC. In this paper we present the application of the Morphological Quality Index (MQI protocol, which is part of IDRAIM, to determine the assessment of the morphological quality of the Cordevole River. The water network (only collectors greater than thirdorder were considered, has been divided, through GIS software, into 132 river reaches of homogeneous morphological characteristics, according to the first phase of the method. At this stage the semi-automatic calculation of lateral confinement (defined by “degree of confinement” and a “confinement index” was tried, in order to reduce the implementing time. The application of 28 indicators was made for 42 reaches representing the major river types and human pressures in the site investigation. The results showed that 48% of the analyzed reaches have a very good or good quality status, 38% have a moderate morphological quality, while only 14% have the characteristics of poor or very poor quality. The main causes that lead to a strong alteration of the terms of reference are linked to i poor connectivity between hillslopes and river corridor, that is very important for the natural supply of sediment and large wood; ii absence of vegetation in the river corridor, that is

  13. Draft algorithm for Danube River Revitalization

    Directory of Open Access Journals (Sweden)

    MIERLĂ MARIAN

    2012-09-01

    Full Text Available Nowadays more and more scientific communities, decisional factors and the most of the inhabitants had realised that there is no future without revering the nature by its all component. The most important component of the Planet Earth is water, in all its conditions and locations. The fresh water is one of the main forms of the water thathas high value for the entire humanity. Most of the fresh waters are stoked into lakes which are permanently or temporary supplied by permanent and respective temporary rivers. In the past, people did not consider water as important as it is in present days and did not take care of its quality and quantity. Therefore, there were built a lot of industrial pollutant plants on immediate proximity, hydro-technical works that changed its shapes and courses, maleficent water consumption entities (e.g. for irrigations, for residential purpose, industrial etc.. All these works did serious changes in the natural (equilibrate water bodies status in order to alter its natural functions. To win back these natural functions the affected water bodies should be restored. This paper presents an attempt to draw a set of rules to be followed in solving the problem of rivers revitalization, as a study case is about the Danube River. These rules involve scientific specialists, decisional factors and social communities. The beneficiary of the results by applying this set of rules is the entire socio-ecologic system.

  14. Geochemistry and provenance of some detrital heavy minerals of alluvial sediments from Neagra Şarului River, Eastern Carpathians, Romania

    Science.gov (United States)

    Ciortescu, Catalina; Iancu, Ovidiu Gabriel; Bulgariu, Dumitru; Popa, Ciprian

    2014-05-01

    . Manganese oxides are present only in grain fractions greater than 0.25 mm due to higher susceptibility to weathering and dissolution of the Mn aggregates in the river bed. Despite low distribution of the metamorphic units in the river's studied basin, the garnets almandine (Alm 13-88%) and spessartine (Sps 0.5-87%), specific to the medium grade metamorphic rocks, have a relative high frequency. In this study, heavy mineral assemblages generally reflect the composition of primary (augite, almandine) and accessory minerals present in source rocks. The last ones are both primary (apatite) and secondary, which are mainly derived from hydrothermal deposition (e. g. pyrite) and from supergene alterations (e. g. manganese, iron oxides/ hydroxides, and other altered product of magnetite). Therefore, the mineral analyses were not limited to only tracking the source of each mineral species, but they also revealed the characteristics of their parent rocks.

  15. River Piracy

    Indian Academy of Sciences (India)

    There was this highly venerated river Saraswati flowing through. Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the Gulf ofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and.

  16. High-resolution digital elevation model of lower Cowlitz and Toutle Rivers, adjacent to Mount St. Helens, Washington, based on an airborne lidar survey of October 2007

    Science.gov (United States)

    Mosbrucker, Adam

    2015-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at

  17. Temperature and Discharge on a Highly Altered Stream in Utah's Cache Valley

    OpenAIRE

    Pappas, Andy

    2013-01-01

    To study the River Continuum Concept (RCC) and the Serial Discontinuity Hypothesis (SDH), I looked at temperature and discharge changes along 52 km of the Little Bear River in Cache Valley, Utah. The Little Bear River is a fourth order stream with one major reservoir, a number of irrigation diversions, and one major tributary, the East Fork of the Little Bear River. Discharge data was collected at six sites on 29 September 2012 and temperature data was collected hourly at eleven sites from 1 ...

  18. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  19. Effects of heavy metals on ultrastructure and Hsp70 induction in Lemna minor L. exposed to water along the Sarno River, Italy.

    Science.gov (United States)

    Basile, A; Sorbo, S; Cardi, M; Lentini, M; Castiglia, D; Cianciullo, P; Conte, B; Loppi, S; Esposito, S

    2015-04-01

    The effects of freshwater pollution in the highly contaminated river Sarno (Campania, Southern Italy) have been evaluated using bags containing the aquatic plant Lemna minor (Lemnacee, Arales), in order to determine morpho-physiological modifications as a response to pollutants. The exposition of Lemna bags for 7 days on three different sites along the river path showed alterations in chloroplasts and vacuoles shape and organization. Moreover, some specimens were exposed in vitro at the same heavy metal (HM) concentrations measured in the polluted sites of the river, and compared with data from the bag experiment; to verify the dose and time dependent effects, samples were exposed to HM in vitro at concentrations ranging from 10(-6) to 10(-4)M up to 7 days. Transmission electron microscopy (TEM) observations on in vitro plants confirmed that ultrastructural alterations affected most of plastids and the shape of different subcellular structures, namely vacuoles; in in vitro stressed specimens, Heat Shock Proteins 70 (Hsp70) levels changed, in dependence of changing levels of HM measured in different sites along the river path. Thus L. minor exhibited a possible correlation between the levels of HM pollution and Hsp70 occurrence; interestingly, the data presented showed that copper specifically increased Hsp70 levels at concentrations detected in polluted river waters, whereas cadmium and lead did not; on the other side, the latter represent highly toxic elements when specimens were exposed to higher levels in vitro. The effects of specific elements in vitro are compared to those observed in bags exposed along the river path; thus results are examined in order to propose L. minor as an organism able to be utilized to monitor heavy metals pollution; the possibility of using Hsp70s as specific markers of HM pollution is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  1. Endangered river fish: factors hindering conservation and restoration

    Science.gov (United States)

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  2. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa

    CSIR Research Space (South Africa)

    Abia, ALK

    2015-10-01

    Full Text Available This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river...

  3. Increased river alkalinization in the Eastern U.S.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  4. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  5. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems.

    Science.gov (United States)

    Brauer, Chris J; Unmack, Peter J; Hammer, Michael P; Adams, Mark; Beheregaray, Luciano B

    2013-01-01

    Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology.

  6. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia

    Science.gov (United States)

    Arias, M. E.; Piman, T.; Lauri, H.; Cochrane, T. A.; Kummu, M.

    2014-12-01

    River tributaries have a key role in the biophysical functioning of the Mekong Basin. Of particular interest are the Sesan, Srepok, and Sekong (3S) rivers, which contribute nearly a quarter of the total Mekong discharge. Forty two dams are proposed in the 3S, and once completed they will exceed the active storage of China's large dam cascade in the Upper Mekong. Given their proximity to the Lower Mekong floodplains, the 3S dams could alter the flood-pulse hydrology driving the productivity of downstream ecosystems. Therefore, the main objective of this study was to quantify how hydropower development in the 3S, together with definite future (DF) plans for infrastructure development through the basin, would alter the hydrology of the Tonle Sap's Floodplain, the largest wetland in the Mekong and home to one of the most productive inland fisheries in the world. We coupled results from four numerical models representing the basin's surface hydrology, water resources development, and floodplain hydrodynamics. The scale of alterations caused by hydropower in the 3S was compared with the basin's DF scenario driven by the Upper Mekong dam cascade. The DF or the 3S development scenarios could independently increase Tonle Sap's 30-day minimum water levels by 30 ± 5 cm and decrease annual water level fall rates by 0.30 ± 0.05 cm day-1. When analyzed together (DF + 3S), these scenarios are likely to eliminate all baseline conditions (1986-2000) of extreme low water levels, a particularly important component of Tonle Sap's environmental flows. Given the ongoing trends and large economic incentives in the hydropower business in the region, there is a high possibility that most of the 3S hydropower potential will be exploited and that dams will be built even in locations where there is a high risk of ecological disruption. Hence, retrofitting current designs and operations to promote sustainable hydropower practices that optimize multiple river services - rather than just

  7. Salmonella Species' Persistence and Their High Level of Antimicrobial Resistance in Flooded Man-Made Rivers in China.

    Science.gov (United States)

    Song, Qifa; Zhang, Danyang; Gao, Hong; Wu, Junhua

    2018-05-11

    Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla TEM . Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla OXA and bla CTX-M-like genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.

  8. Broadening the regulated-river management paradigm: A case study of the forgotten dead zone hindering Pallid Sturgeon recovery

    Science.gov (United States)

    Guy, Christopher S.; Treanor, Hilary B.; Kappenman, Kevin M.; Scholl, Eric A.; Ilgen, Jason E.; Webb, Molly A. H.

    2015-01-01

    The global proliferation of dams within the last half century has prompted ecologists to understand the effects of regulated rivers on large-river fishes. Currently, much of the effort to mitigate the influence of dams on large-river fishes has been focused on downriver effects, and little attention has been given to upriver effects. Through a combination of field observations and laboratory experiments, we tested the hypothesis that abiotic conditions upriver of the dam are the mechanism for the lack of recruitment in Pallid Sturgeon (Scaphirhynchus albus), an iconic large-river endangered species. Here we show for the first time that anoxic upriver habitat in reservoirs (i.e., the transition zone between the river and reservoir) is responsible for the lack of recruitment in Pallid Sturgeon. The anoxic condition in the transition zone is a function of reduced river velocities and the concentration of fine particulate organic material with high microbial respiration. As predicted, the river upstream of the transition zone was oxic at all sampling locations. Our results indicate that transition zones are an ecological sink for Pallid Sturgeon. We argue that ecologists, engineers, and policy makers need to broaden the regulated-river paradigm to consider upriver and downriver effects of dams equally to comprehensively mitigate altered ecosystems for the benefit of large-river fishes, especially for the Pallid Sturgeon.

  9. The main characteristics of the high water registered in the River Basin Bega in February 1999

    International Nuclear Information System (INIS)

    Teodorescu, Niculae Iulian

    2008-01-01

    The year 1999 was characterized by high water events with a rare rate of occurrence. The events were produced in different months of the year, in different river basins in the Banat Region (area situated in the south - western part of Romania). In the River Basin Bega the most important high water appeared in mid February and was generated by both rain and the melting of the snow layer. The cold period of 1999 was characterized by relatively high quantities of precipitation (module coefficients from 1.17 to 2.15), the most part of those being liquid (rainfall). At altitudes higher than 1,000 m, the snow layer was relatively continuous. Weather warming appeared in the middle of February, in the same year, generating the melting of an important layer of snow (10-15 cm in the plain and around 20 cm in the hilly area), and the water layer generated by this had an important effect, overlaid on the water layer generated by rainfall. The high water (flood) event, which is the topic of this study, occurred between 20th - 27th February 1999 and after analyzing the data we initiated a comparative analysis between the main element of the event (specific discharge, high water duration, increasing time, shape coefficient) and the mean element of high waters from 10 gauging stations from the river basin. After the analysis we observed that some elements, like high water duration and the increasing time, are bigger than the mean values - which is a characteristic of high waters generated both by rainfall and snow melting, while other elements are smaller (a, overrun layer) - this as a consequence of river basin response to the generating elements. This analysis has enriched our database for hydrologic prognosis, as it is known that in this part of the country warm periods have a frequent occurrence in winter. They produce snow melting and, sometimes generate important high water.

  10. Riverbank filtration for the treatment of highly turbid Colombian rivers

    Science.gov (United States)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  11. River flooding and its impacts on large-scale biocontrol of Tamarix in the Colorado and Virgin River system: Moving targets and trajectories

    Science.gov (United States)

    Along riparian corridors throughout the arid and semiarid regions of the western United States, non-native shrubs and trees in the genus Tamarix have replaced native vegetation. Plant communities along rivers with altered flow regimes and flood control have become particularly vulnerable to widespre...

  12. Downstream Yangtze River Levels Impacted by Three Gorges Dam

    NARCIS (Netherlands)

    Wang, J.; Sheng, Y.; Gleason, C.J.; Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Changes in the Yangtze River level induced by large-scale human water regulation have profound implications on the inundation dynamics of surrounding lakes/wetlands and the integrity of related ecosystems. Using in situ measurements and hydrological simulation, this study reveals an altered Yangtze

  13. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  14. About the high flow regime of the rivers of Kosovo and Metohia

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2009-01-01

    Full Text Available The examples from Kosovo and Metohia attempted to point to some problems in the domain of hydrogeographic regionalization. The river water regime, especially the phase of high flows which marks this regime, has been the topic of almost all researches which treat water resources of drainage basins. However, the thing that has not been achieved till now is the unique solution by which the classification of rivers would be made according to this feature. On this example it has been shown that even some older methods, based on genetic analysis of hydrograms and of global type, as well as some recent ones, with lot of quantitative entry and regional approaches, cannot with certainty answer all the challenges which river regimes bring with themselves. This work shows that apart from climate, orographic and physiognomic features of drainage basins, the periods of data processing and the analysis of individual intra-annual series of discharges are very important as well. Discretization on time periods shorter than one month, as well as elimination of the extreme values of discharges in the longtime series is recommended for the future research.

  15. The Caloosahatchee River Estuary: a monitoring partnership between Federal, State, and local governments, 2007-13

    Science.gov (United States)

    Patino, Eduardo

    2014-01-01

    The tidal Caloosahatchee River and downstream estuaries have substantial environmental, recreational, and economic value for southwest Florida residents and visitors. Modifications to the Caloosahatchee River watershed have altered the predevelopment hydrology, thereby threatening the environmental health of estuaries in the area. Hydrologic monitoring of the freshwater contributions from tributaries to the tidal Caloosahatchee River and its estuaries is necessary to adequately describe the total freshwater inflow and constituent loads to the delicate estuarine system.

  16. Evaluation of Restoration and Flow Interactions on River Structure and Function: Channel Widening of the Thur River, Switzerland

    Directory of Open Access Journals (Sweden)

    Eduardo J. Martín

    2018-04-01

    Full Text Available Removal of lateral constraints to restore rivers has become increasingly common in river resource management, but little is known how the interaction of de-channelization with flow influences ecosystem structure and function. We evaluated the ecosystem effects of river widening to improve sediment relations in the Thur River, Switzerland, 12 years after implementation. We tested if restored and non-restored reaches differed in water physico-chemistry, hyporheic function, primary production, and macroinvertebrate density and composition in relation to the flow regime. Our results showed that (i spatio-temporal variation in sediment respiration and macroinvertebrate taxonomic richness were driven by interactions between restoration and flow; (ii riverbed conditions including substrate size, organic matter content, and groundwater–surface water exchange changed due to restoration, but (iii physico-chemistry, hydraulic conditions, and primary production were not altered by restoration. Importantly, our study revealed that abiotic conditions, except channel morphology, changed only marginally, whereas other ecosystem attributes responded markedly to changes in flow-restoration interactions. These results highlight integrating a more holistic ecosystem perspective in the design and monitoring of restoration projects such as river widening in resource management, preferably in relation to flow-sediment regimes and interactions with the biotic components of the ecosystem.

  17. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  18. VARIATIONS IN THE SPECTRAL PROPERTIES OF FRESHWATER AND ESTUARINE CDOM CAUSED BY PARTITIONING ONTO RIVER AND ESTUARINE SEDIMENTS

    Science.gov (United States)

    The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...

  19. Modeling the Effects of Connecting Side Channels to the Long Tom River, Oregon

    Science.gov (United States)

    Appleby, C.; McDowell, P. F.

    2015-12-01

    The lower Long Tom River is a heavily managed, highly modified stream in the southwestern Willamette Valley with many opportunities for habitat improvements and river restoration. In the 1940s and 1950s, the US Army Corps of Engineers dramatically altered this river system by constructing the Fern Ridge Dam and three, large drop structures, converting the River from a highly sinuous channel to a straight, channelized stream that is interrupted by these grade control structures, and removed the majority of the riparian vegetation. As a result, juvenile spring Chinook salmon are no longer found in the Watershed and the local population of coastal cutthroat trout face limited aquatic habitat. When the river was channelized, long sections of the historical channel were left abandoned on the floodplain. Reconnecting these historical channels as side channels may improve the quality and quantity of aquatic habitat and could allow fish passage around current barriers. However, such construction may also lead to undesirable threats to infrastructure and farmland. This study uses multiple HEC-RAS models to determine the impact of reconnecting two historical channels to the lower Long Tom River by quantifying the change in area of flood inundation and identifying infrastructure in jeapordy given current and post-restoration conditions for 1.5, 5, 10, and 25-year flood discharges. Bathymetric data from ADCP and RTK-GPS surveys has been combined with LiDAR-derived topographic data to create continuous elevation models. Several types of side channel connections are modeled in order to determine which type of connection will result in both the greatest quantity of accessible habitat and the fewest threats to public and private property. In the future, this study will also consider the change in the quantity of physical salmonid habitat and map the areas prone to sedimentation and erosion using CEASAR and PHABSIM tools.

  20. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  1. Transport of plutonium by the Mississippi River system and other rivers in the southern United States

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.

    1987-01-01

    The distribution of fallout Pu has been studied in the sediments and water of the Mississippi River and eight other rivers. Plutonium content of the sediments is related to grain size and Fe and Mn content. Rivers in human climates show relatively high organic carbon (3 to 4%) and high /sup 239,240)Pu content (36 to 131 dpm/kg) in their suspended sediments. Dissolved Pu is very low in all the rivers; distribution coefficients vary from 10 4 to 10 5 . The 238 Pu//sup 239,240/Pu ratios are low in all the river sediments (∼.06) except the Miami River in Ohio, where ratios as high as 99 were measured. The high ratios originate from the Mound Laboratory Pu processing plant at Miamisburg, Ohio, and can be traced downstream to the junction with the Ohio River. Mississippi River suspended sediment shows a continual decrease of /sup 239,240/Pu content over a 7 year time period. An exponential curve best-fit through the data predicts a half time of decrease equal to 4.3 years. The decrease in Pu content of river sediment results from several factors: cessation of atmospheric weapons testing; transport of Pu to deeper levels of soil profiles; storage of sediment in flood plains and behind dams; and dilution by erosion by older, prebomb soil material. The amount of fallout Pu now removed from the Mississippi River drainage basin to the ocean is 11% as a maximum estimate. Most the fallout Pu in the Mississippi drainage basin will remain on the continent unless there are major changes in erosion and sediment transport patterns in the basin itself. 56 references, 7 figures, 2 tables

  2. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring

    Directory of Open Access Journals (Sweden)

    A. J. Wade

    2012-11-01

    Full Text Available This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

  3. Human impact on the microbiological water quality of the rivers.

    Science.gov (United States)

    Páll, Emőke; Niculae, Mihaela; Kiss, Timea; Şandru, Carmen Dana; Spînu, Marina

    2013-11-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human involvement is undeniable, and subsequently, the Danube Delta Biosphere Reserve became one of the most vulnerable ecosystems. This review is an attempt to analyse the microbiological contamination and to identify the major role human activities play in altering the water quality of the rivers.

  4. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    Science.gov (United States)

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  5. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    Science.gov (United States)

    Hester, E. T.; Lin, A. Y. C.

    2017-12-01

    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  6. The new Chalk River AMS ion source, sample changer and external sample magazine

    International Nuclear Information System (INIS)

    Koslowsky, V.T.; Bray, N.; Imahori, Y.; Andrews, H.R.; Davies, W.G.

    1997-01-01

    A new sample magazine, sample changer and ion source have been developed and are in routine use at Chalk River. The system features a readily accessible 40-sample magazine at ground potential that is external to the ion source and high-voltage cage. The samples are held in an inert atmosphere and can be individually examined or removed; they can be exchanged en masse as a complete magazine concurrent with an AMS measurement. On-line sample changing is done with a pneumatic rabbit transfer system employing two stages of differential pumping. At Chalk River this is routinely performed across a 200 kV potential. Sample positioning is precise, and hundreds of 36 Cl and 129 I samples have been measured over a period of several days without interruption or alteration of ion source operating conditions. (author)

  7. Estimation of erosion-accumulative processes at the Inia River's mouth near high-rise construction zones.

    Science.gov (United States)

    Sineeva, Natalya

    2018-03-01

    Our study relevance is due to the increasing man-made impact on water bodies and associated land resources within the urban areas, as a consequence, by a change in the morphology and dynamics of Rivers' canals. This leads to the need to predict the development of erosion-accumulation processes, especially within the built-up urban areas. Purpose of the study is to develop programs on the assessment of erosion-accumulation processes at a water body, a mouth area of the Inia River, in the of perspective high-rise construction zone of a residential microdistrict, the place, where floodplain-channel complex is intensively expected to develop. Results of the study: Within the velocities of the water flow comparing, full-scale measured conditions, and calculated from the model, a slight discrepancy was recorded. This allows us to say that the numerical model reliably describes the physical processes developing in the River. The carried out calculations to assess the direction and intensity of the channel re-formations, made us possible to conclude, there was an insignificant predominance of erosion processes over the accumulative ones on the undeveloped part of the Inia River (the processes activity is noticeable only in certain areas (by the coasts and the island)). Importance of the study: The study on the erosion-accumulation processes evaluation can be used in design decisions for the future high-rise construction of this territory, which will increase their economic efficiency.

  8. Charles River altered Schaedler flora (CRASF) remained stable for four years in a mouse colony housed in individually ventilated cages.

    Science.gov (United States)

    Stehr, Matthias; Greweling, Marina C; Tischer, Sabine; Singh, Mahavir; Blöcker, Helmut; Monner, David A; Müller, Werner

    2009-10-01

    As recommendations for specific pathogen-free housing change, mouse facilities need to re-derive their colonies repeatedly in order to eliminate specified bacteria or viruses. This paper describes the establishment of a new mouse facility using as starting point a small colony of CD-1 mice colonized with the Charles River altered Schaedler flora (CRASF) housed in individually ventilated cages (IVCs). The import of new strains was performed exclusively via embryo transfer using CD-1 mice as recipients. The integrity of the CRASF in caecum samples of the original CD-1 colony and of three inbred mouse lines imported into the colony was proven by a quantitative realtime polymerase chain reaction approach. Furthermore, we searched for bacterial contaminants in the gut flora using non-specific 16S rRNA primers. The bacterial sequences found were closely related to but not exclusively sequences of altered Schaedler flora (ASF) members, suggesting that the ASF is heterogeneous rather than restricted to the eight defined bacteria. Moreover, no pathogens were found, neither using the non-specific 16S rRNA primers nor in routine quarterly health monitoring. As one effect of this defined gut flora, interleukin-10 knockout mice are devoid of colitis in our facility. In conclusion, our approach building up a mouse facility using foster mothers and embryo transfer as well as a strict barrier system and IVCs is suitable to maintain a colony free from contaminating bacteria over the long term. CRASF remained stable for seven mouse generations and was efficiently transferred to the imported mouse strains.

  9. Impacts of climate change on the management of upland waters: the Rhone river case

    International Nuclear Information System (INIS)

    Bravard, J.P.

    2008-01-01

    The Rhone river watershed covers a surface of 98 000 000 km 2 , including 10 000 km 2 in Switzerland. Most of the discharge originates in the Alps, but a significant contribution is provided by the Jura Mountains and by the western Massif Central. The main river are the Rhone, the Saone, the Isere and the Durance. The total discharge at the sea 1700 m 3 .s -1 . Since 10 years, several models have detailed the General Circulation Model proposed by the IPCC (1996 and 2002) and predicted changes of the natural components of the hydrological cycle, from temperature and precipitation, to ice and snow cover and to river discharge. They anticipate on a decrease of total discharge, a marked decrease of summer discharge, an increase of winter discharges and winter storms, a decrease of ice and snow cover inducing a change in the river regime. However, one of the main characteristics of the Rhone is the high level of economic development which has triggered complex impacts on river and lake hydro systems. High altitude reservoirs have affected the river regimes since at least 50 years, to the detriment of summer discharge, altering the pristine mountain discharges. While the temperature of Geneva Lake increased during the last 20 years for climatic reasons, the temperature of the French river course of the Rhone was affected by the impact of nuclear power plants. These documented changes anticipate on the changes predicted during the 21. century and provide most interesting insights into the the future of aquatic ecosystems. At last, an attempt was made to summarize the possible impacts of climate and river changes on the future uses of water and on humans. Hydro-power and thermal power will be affected, as well as tourism and agriculture through an increase of pressures on the consumptive uses of water. Human health may be affected as well as the level of risks in valley bottoms. (author)

  10. Impacts of climate change on the management of upland waters: the Rhone river case

    Energy Technology Data Exchange (ETDEWEB)

    Bravard, J.P

    2008-07-01

    The Rhone river watershed covers a surface of 98 000 000 km{sup 2}, including 10 000 km{sup 2} in Switzerland. Most of the discharge originates in the Alps, but a significant contribution is provided by the Jura Mountains and by the western Massif Central. The main river are the Rhone, the Saone, the Isere and the Durance. The total discharge at the sea 1700 m{sup 3}.s{sup -1}. Since 10 years, several models have detailed the General Circulation Model proposed by the IPCC (1996 and 2002) and predicted changes of the natural components of the hydrological cycle, from temperature and precipitation, to ice and snow cover and to river discharge. They anticipate on a decrease of total discharge, a marked decrease of summer discharge, an increase of winter discharges and winter storms, a decrease of ice and snow cover inducing a change in the river regime. However, one of the main characteristics of the Rhone is the high level of economic development which has triggered complex impacts on river and lake hydro systems. High altitude reservoirs have affected the river regimes since at least 50 years, to the detriment of summer discharge, altering the pristine mountain discharges. While the temperature of Geneva Lake increased during the last 20 years for climatic reasons, the temperature of the French river course of the Rhone was affected by the impact of nuclear power plants. These documented changes anticipate on the changes predicted during the 21. century and provide most interesting insights into the the future of aquatic ecosystems. At last, an attempt was made to summarize the possible impacts of climate and river changes on the future uses of water and on humans. Hydro-power and thermal power will be affected, as well as tourism and agriculture through an increase of pressures on the consumptive uses of water. Human health may be affected as well as the level of risks in valley bottoms. (author)

  11. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  12. Morphological alteration of the Dráva as the result of human impact

    Directory of Open Access Journals (Sweden)

    Tímea Kiss

    2011-10-01

    Full Text Available The Croatian-Hungarian border section of the Dráva River has been undisturbed for almost a century, and it is characterised by unique fluvial morphology (braided pattern and islands supporting rich habitats and wildlife. However, during the last decades human impact became more and moreintensive. Between 1975 and 1989 three water reservoirs were built on the Croatian section of the river, just 16 km from the beginning of the border-section, altering the hydrology and the sediment characteristics of the river. On a local scale cut-offs, revetments and groynes were built. The aim of the study was to evaluate the effect of these human interventions. As the result of the alteration of the hydrology the channel pattern of the Dráva has been changing from braided to meandering, though on the upstream meandering part the territory and number of islands increased due to the drop of water stages. A cut-off and a groyne influenced only the morphology of a short section. As the result of the cut-off braided pattern became more pronounced, and the groyne caused intensive channel aggradation and gave way to lateral island development.

  13. Visualization of Flow Alternatives, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  14. High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics

    Science.gov (United States)

    Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.

    2017-12-01

    We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal

  15. Hybrid modelling of bed-discordant river confluences

    Science.gov (United States)

    Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.

    2016-12-01

    In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.

  16. Hydrologic Variability of the Cosumnes River Floodplain

    Directory of Open Access Journals (Sweden)

    Eric Booth

    2006-09-01

    Full Text Available Natural floodplain ecosystems are adapted to highly variable hydrologic regimes, which include periodic droughts, infrequent large floods, and relatively frequent periods of inundation. To more effectively manage water resources and maintain ecosystem services provided by floodplains – and associated aquatic, riparian, and wetland habitats – requires an understanding of seasonal and inter-annual hydrologic variability of floodplains. The Cosumnes River, the largest river on the west-slope Sierra Nevada mountains without a major dam, provides a pertinent test case to develop a systematic classification of hydrologic variability. By examining the dynamics of its relatively natural flow regime, and a 98-year streamflow record (1908 – 2005, we identified 12 potential flood types. We identified four duration thresholds, defined as short (S, medium (M, long (L, and very long (V. We then intersected the flood duration division by three magnitude classes, defined as small-medium (1, large (2, and very large (3. Of the 12 possible flood types created by this classification matrix, the Cosumnes River streamflow record populated 10 such classes. To assess the robustness of our classification, we employed discriminant analysis to test class fidelity based on independent measures of flood capability, such as start date. Lastly, we used hierarchical divisive clustering to classify water years by flood type composition resulting in 8 water year types. The results of this work highlight the significant seasonal and inter-annual variability in natural flood regimes in Central Valley rivers. The construction of water impoundment and flood control structures has significantly altered all aspects of the flood pulse. Restoring floodplain ecosystem services will require re-establishing key elements of these historic flood regimes in order to achieve regional restoration goals and objectives.

  17. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  18. Longitudinal patterns in flathead catfish relative abundance and length at age within a large river: Effects of an urban gradient

    Science.gov (United States)

    Paukert, C.P.; Makinster, A.S.

    2009-01-01

    We investigated the spatial variation of flathead catfish (Pylodictis olivaris) relative abundance and growth in the 274 km long Kansas River to determine if population dynamics of catfish are related to urbanization. Electrofishing was conducted at 462 random sites throughout the river in summer, 2005-2006 to collect fish. Relative abundance of age 1 fish (???200mm), subadult (>200-400mm) and adult fish (>400 mm) ranged from 0.34 to 14.67 fish h-1, mean length at age 1 was 165 (range: 128-195) mm total length (TL) and mean length at age 3 was 376 mm TL (range: 293-419mm TL). The proportion of land use within 200 m of the river edge was between 0 and 0.54 urban. River reaches with high relative abundance of age 1 flathead catfish had high relative abundance of subadult and adult catfish. River reaches with fast flathead catfish growth to age 1 had fast growth to age 3. High urban land use and riprap in the riparian area were evident in river reaches near the heavily populated Kansas City and Topeka, Kansas, USA. Reaches with increased number of log jams and islands had decreased riparian agriculture. Areas of low urbanization had faster flathead catfish growth (r = 0.67, p = 0.005). Relative abundance of flathead catfish was higher in more agricultural areas (r = -0.57, p = 0.02). Changes in land use in riverine environments may alter population dynamics of a fish species within a river. Spatial differences in population dynamics need to be considered when evaluating riverine fish populations. Published in 2008 by John Wiley & Sons Ltd.

  19. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  20. Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate

    Directory of Open Access Journals (Sweden)

    Juan M. Trujillo-González

    2017-06-01

    Full Text Available Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their potential toxicity and persistence in the environment. The Villavicencio region (Colombia is an equatorial area where rainfall (near 3000 mm/year and temperature (average 25.6 °C are high. Soil processes in tropical conditions are fast and react quickly to changing conditions. Soil properties from agricultural fields irrigated with river water polluted by a variety of sources were analysed and compared to non-irrigated control soils. In this study, no physico-chemical alterations were found that gave evidence of a change due to the constant use of river water that contained wastes. This fact may be associated with the climatic factors (temperature and precipitation, which contribute to fast degradation of organic matter and nutrient and contaminants (such as heavy metals leaching, or to dilution of wastes by the river.

  1. Processing and solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Kelley, J.A.

    1981-01-01

    The entire flowsheet for processing and solidification of Savannah River Plant (SRP) high-level wastes has been demonstrated. A new small-scale integrated pilot plant is operating with actual radioactive wastes, and large-scale equipment is being demonstrated with nonradioactive simulated wastes. Design of a full-scale waste solidification plant is in progress. Plant construction is expected to begin in 1983, and startup is anticipated in 1988. The plant will poduce about 500 cans of glass per year with each can containing about 1.5 tons of glass

  2. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  3. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  4. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  5. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Quantifying hyporheic exchange dynamics in a highly regulated large river reach.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Zhou, T; Huang, M; Hou, Z; Bao, J; Arntzen, E; Mackley, R; Harding, S; Titzler, S; Murray, C; Perkins, W; Chen, X; Stegen, J; Thorne, P; Zachara, J

    2017-03-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where river water and shallow groundwater mix and interact with each other. The direction, magnitude, and residence time of the hyporheic flux that penetrates the river bed are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Many approaches including field measurements and numerical methods have been developed to quantify the hyporheic exchanges in relatively small rivers. However, the spatial and temporal distributions of hyporheic exchanges in a large, regulated river reach remain less explored due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great pressure gradient variations at the riverbed created by dam operations.

  7. A Dreissena Risk Assessment for the Colorado River Ecosystem

    Science.gov (United States)

    Kennedy, Theodore A.

    2007-01-01

    CRE, the risks of negative ecological impacts appear low. If Dreissena are able to attain moderate densities in Lees Ferry, estimates of filtration capacity indicate they are unlikely to substantially alter the composition (e.g., nutrient concentrations, suspended organic matter concentrations) of water exported from Lees Ferry. Further, a moderate density of Dreissena within Lees Ferry may actually increase food available to fishes by increasing habitat complexity and stimulating benthic production. If Dreissena attain moderate densities in the CRE mainstem, which seems unlikely, ecological impacts will probably be comparable to Lees Ferry-an increase in benthic production. Dreissena may have ecological impacts on the CRE, if they become established in Lake Powell and substantially alter the composition of water released from Glen Canyon Dam; however, it is unclear whether changes in the composition of water released from Glen Canyon Dam will have a net positive or negative impact on food availability in the CRE mainstem. The risk of Dreissena introduction to tributaries appears low. None of the tributaries have upstream lakes or reservoirs that could actually serve as a source population for Dreissena; reservoirs on the Little Colorado River may eventually support Dreissena, but they are far up in the watershed and the segment of river connecting them with the mainstem CRE is intermittent. If the CRE mainstem is colonized by Dreissena, there are no significant vectors for transporting them upstream into the tributaries. In addition, lethally high summer water temperatures make it unlikely that Dreissena will establish in many tributaries. Lake Powell is a logical focus for management and research efforts, given that maintenance of Dreissena populations within the CRE will require an upriver source population and the uncertainty associated with the downstream impact of changes in Lake Powell water quality.

  8. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    Science.gov (United States)

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    are now largely stable in response to flow regulation and revetment construction. The upper Willamette and North Santiam Rivers retain some dynamic characteristics, and provide the greatest diversity of aquatic and riparian habitats under the current flow and sediment regime. The McKenzie River has some areas that are more dynamic, whereas other sections are stable due to geology or revetments. Historical reductions in channel dynamism also have implications for ongoing and future recruitment and succession of floodplain forests. For instance, the succession of native plants like black cottonwood is currently limited by (1) fewer low-elevation gravel bars for stand initiation; (2) altered streamflow during seed release, germination, and stand initiation; (3) competition from introduced plant species; and (4) frequent erosion of young vegetation in some locations because scouring flows are concentrated within a narrow channel corridor. Despite past alterations, the Willamette River Basin has many of the physical and ecological building blocks necessary for highly functioning rivers. Management strategies, including environmental flow programs, river and floodplain restoration, revetment modifications, and reclamation of gravel mines, are underway to mitigate some historical changes. However, there are some substantial gaps in the scientific understanding of the modern Willamette basin that is needed to efficiently integrate these blocks and to establish realistic objectives for future conditions. Unanswered questions include: 1. What is the distribution and diversity of landforms and habitats along the Willamette River and its tributaries?

  9. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  10. The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2017-03-01

    Full Text Available Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management.

  11. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value

    International Nuclear Information System (INIS)

    Pellaud, M.

    2007-05-01

    SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km 2 , a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its applicability. Four

  12. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  13. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    Science.gov (United States)

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

    The Bodie Hills is a ~40 by ~30 kilometer volcanic field that straddles the California-Nevada state boundary between Mono Lake and the East Walker River. Three precious metal mining districts and nine alteration zones are delineated in Tertiary-Quaternary volcanic and Mesozoic granitic and metamorphic rocks that comprise the volcanic field. Cumulative production from the mining districts, Bodie, Aurora, and Masonic, is 3.4 million ounces of gold and 28 million ounces of silver. Small amounts of mercury were produced from the Potato Peak, Paramount-Bald Peak, and Cinnabar Canyon-US 395 alteration zones; a native sulfur resource in the Cinnabar Canyon-US 395 alteration zone has been identified by drilling. There are no known mineral resources in the other six alteration zones, Red Wash-East Walker River, East Brawley Peak, Sawtooth Ridge, Aurora Canyon, Four Corners, and Spring Peak. The mining districts and alteration zones formed between 13.4 and 8.1 Ma in predominantly ~15–9 Ma volcanic rocks of the Bodie Hills volcanic field. Ages of hydrothermal minerals in the districts and zones are the same as, or somewhat younger than, the ages of volcanic host rocks.

  14. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  15. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  16. THE GAPS BETWEEN AN INTEGRATED UNDERSTANDING OF CHANNELIZATION, HYDROLOGY AND WATER QUALITY VERSUS HOLISTIC FUTURE MANAGEMENT: A CASE STUDY OF THE WILLAMETTE RIVER, OREGON

    Science.gov (United States)

    Over the last 150 years the main channel of the Willamette River has been drastically altered by human activity. It has changed from a generally meandering and anastamosing river with extensive reaches of broad, active and connected flood plain features to a river with 13 major ...

  17. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    Science.gov (United States)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the

  18. River piracy and drainage basin reorganization led by climate-driven glacier retreat

    Science.gov (United States)

    Shugar, Daniel H.; Clague, John J.; Best, James L.; Schoof, Christian; Willis, Michael J.; Copland, Luke; Roe, Gerard H.

    2017-04-01

    River piracy--the diversion of the headwaters of one stream into another one--can dramatically change the routing of water and sediment, with a profound effect on landscape evolution. Stream piracy has been investigated in glacial environments, but so far it has mainly been studied over Quaternary or longer timescales. Here we document how retreat of Kaskawulsh Glacier--one of Canada's largest glaciers--abruptly and radically altered the regional drainage pattern in spring 2016. We use a combination of hydrological measurements and drone-generated digital elevation models to show that in late May 2016, meltwater from the glacier was re-routed from discharge in a northward direction into the Bering Sea, to southward into the Pacific Ocean. Based on satellite image analysis and a signal-to-noise ratio as a metric of glacier retreat, we conclude that this instance of river piracy was due to post-industrial climate change. Rapid regional drainage reorganizations of this type can have profound downstream impacts on ecosystems, sediment and carbon budgets, and downstream communities that rely on a stable and sustained discharge. We suggest that the planforms of Slims and Kaskawulsh rivers will adjust in response to altered flows, and the future Kaskawulsh watershed will extend into the now-abandoned headwaters of Slims River and eventually capture the Kluane Lake drainage.

  19. Contribution of River Mouth Reach to Sediment Load of the Yangtze River

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-01-01

    Full Text Available This paper examined the sediment gain and loss in the river mouth reach of the Yangtze River by considering sediment load from the local tributaries, erosion/accretion of the river course, impacts of sand mining, and water extraction. A quantitative estimation of the contribution of the river mouth reach to the sediment load of the Yangtze River was conducted before and after impoundment of the Three Gorges Dam (TGD in 2003. The results showed that a net sediment load loss of 1.78 million ton/yr (Mt/yr occurred from 1965 to 2002 in the study area. The contribution of this reach to the sediment discharge into the sea is not as high as what was expected before the TGD. With impoundment of the TGD, channel deposition (29.90 Mt/yr and a net sediment loss of 30.89 Mt/yr occurred in the river mouth reach from 2003 to 2012. The river mouth reach has acted as a sink but not a source of sediment since impoundment of the TGD, which has exacerbated the decrease in sediment load. Technologies should be advanced to measure changes in river channel morphology, as well as in water and sediment discharges at the river mouth reach.

  20. Leaf nutrient contents and morphology of invasive tamarisk in different soil conditions in the lower Virgin River

    Science.gov (United States)

    Imada, S.; Acharya, K.; Tateno, R.; Yamanaka, N.

    2012-12-01

    Invasive plants can alter ecosystem nitrogen (N) cycling. To increase our understanding of nutrient use strategy of invasive tamarisk (Tamarix spp.) on an arid riparian ecosystem, we examined leaf nutrient contents and morphology of Tamarix ramosissima and its relationship with soil properties in the lower Virgin River floodplain, Nevada, U.S. Leaves were collected in three different locations; near the river, near the stand edge (60-70 m from the river edge) and at 30-40 m from the river edge in the summer of 2011. Leaves were analyzed for carbon (C) and N contents, and specific leaf area (SLA). Soil samples at 10-20 cm depths and under the canopy were also collected for soil water, pH, electrical conductivity (EC) and inorganic nitrogen (NO3- and NH4+) analysis. Results suggested that tree size and SLA increased with decreasing distance from the river, whereas C isotope discrimination did not differ among the samples based on distance from the river. Nitrogen content per unit mass and N isotope discrimination (δ15N) were significantly higher in the trees near the river. Soil NO3- and total inorganic N had positive relationships with δ15N in leaves, which suggests that leaf δ15N may be influenced by N concentrations on the soil surface. Negative correlations were found between soil EC and leaf N contents, suggesting that high soil salinity may decrease Tamarix leaf N and thus limit tree growth.

  1. Social System of River City High School Senior Class: Socio-economic Status (SES).

    Science.gov (United States)

    Daly, Richard F.

    The goal of this study was to investigate the relationship between an adolescent's socioeconomic status (SES) and selected variables of the sub-subsystems of the River City High School senior class social system during the 1974-75 academic year. Variables for study were selected from each of the three sub-subsystems of the senior class social…

  2. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    Science.gov (United States)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  3. Using high frequency CDOM hyperspectral absorption to fingerprint river water sources

    Science.gov (United States)

    Beckler, J. S.; Kirkpatrick, G. J.; Dixon, L. K.; Milbrandt, E. C.

    2016-12-01

    Quantifying riverine carbon transfer from land to sea is complicated by variability in dissolved organic carbon (DOC), closely-related dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) concentrations, as well as in the composition of the freshwater end members of multiple drainage basins and seasons. Discrete measurements in estuaries have difficulty resolving convoluted upstream watershed dynamics. Optical measurements, however, can provide more continuous data regarding the molecular composition and concentration of the CDOM as it relates to river flow, tidal mixing, and salinity and may be used to fingerprint source waters. For the first time, long-term, hyperspectral CDOM measurements were obtained on filtered Caloosahatchee River estuarine waters using an in situ, long-pathlength spectrophotometric instrument, the Optical Phytoplankton Discriminator (OPD). Through a collaborative monitoring effort among partners within the Gulf of Mexico Coastal Ocean Observing System (GCOOS), ancillary measurements of fluorescent DOM (FDOM) and water quality parameters were also obtained from co-located instrumentation at high frequency. Optical properties demonstrated both short-term (hourly) tidal variations and long-term (daily - weekly) variations corresponding to changes in riverine flow and salinity. The optical properties of the river waters are demonstrated to be a dilution-adjusted linear combination of the optical properties of the source waters comprising the overall composition (e.g. Lake Okeechobee, watershed drainage basins, Gulf of Mexico). Overall, these techniques are promising as a tool to more accurately constrain the carbon flux to the ocean and to predict the optical quality of coastal waters.

  4. Fish resource data from the Snare River, Northwest Territories

    International Nuclear Information System (INIS)

    Jessop, E.F.; Chang-Kue, K.T.J.; MacDonald, G.

    1994-01-01

    An extensive fish sampling and tagging program was conducted on the Snare River, Northwest Territories, in order to collect baseline data on the fish populations in sections of the river altered by hydroelectric projects. Fish populations were sampled from May to July 1977 in five sections of the river that were influenced by development of hydropower at three dams currently on line; 530 tagged fish were also released. The biweekly catch composition in experimental gill nets for each study area and the catch per gill net mesh size are presented for walleye (Stizostedion vitreum), lake trout (Salvelinus namaycush), lake whitefish (Coregonus clupeaformis), lake cisco (Coregonus artedi), northern pike (Esox lucius), white sucker (Catostomus commersoni), and longnose sucker (Catostomus catostomus). Age-specific data on length, weight, age, sex, and maturity are also included. 7 refs., 12 figs., 42 tabs

  5. Optimally managing water resources in large river basins for an uncertain future

    Science.gov (United States)

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  6. Accuracy Validation of Point Clouds of Uav Photogrammetry and its Application for River Management

    Science.gov (United States)

    Kubota, S.; Kawai, Y.; Kadotani, R.

    2017-08-01

    River administration facilities such as levees and river walls play a major role in preventing flooding due to heavy rain. The forms of such facilities must be constantly monitored for alteration due to rain and running water, and limited human resources and budgets make it necessary to efficiently maintain river administration facilities. During maintenance, inspection results are commonly recorded on paper documents. Continuous inspection and repair using information systems are an on-going challenge. This study proposes a maintenance management system for river facilities that uses three-dimensional data to solve these problems and make operation and maintenance more efficient. The system uses three-dimensional data to visualize river facility deformation and its process, and it has functions that visualize information about river management at any point in the three-dimensional data. The three-dimensional data is generated by photogrammetry using a camera on an Unmanned Aerial Vehicle.

  7. ACCURACY VALIDATION OF POINT CLOUDS OF UAV PHOTOGRAMMETRY AND ITS APPLICATION FOR RIVER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    S. Kubota

    2017-08-01

    Full Text Available River administration facilities such as levees and river walls play a major role in preventing flooding due to heavy rain. The forms of such facilities must be constantly monitored for alteration due to rain and running water, and limited human resources and budgets make it necessary to efficiently maintain river administration facilities. During maintenance, inspection results are commonly recorded on paper documents. Continuous inspection and repair using information systems are an on-going challenge. This study proposes a maintenance management system for river facilities that uses three-dimensional data to solve these problems and make operation and maintenance more efficient. The system uses three-dimensional data to visualize river facility deformation and its process, and it has functions that visualize information about river management at any point in the three-dimensional data. The three-dimensional data is generated by photogrammetry using a camera on an Unmanned Aerial Vehicle.

  8. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  9. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.

    Science.gov (United States)

    Atkinson, Carla L; Vaughn, Caryn C; Forshay, Kenneth J; Cooper, Joshua T

    2013-06-01

    Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the

  10. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  11. Creating a catchment scale perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-09-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  12. Comparative fluctuating asymmetry of spotted barb (Puntius binotatus sampled from the Rivers of Wawa and Tubay, Mindanao, Philippines

    Directory of Open Access Journals (Sweden)

    C.C. Cabuga Jr.

    2017-03-01

    Full Text Available Fluctuating Asymmetry (FA commonly uses to evaluate environmental stress and developmental variability of different biotic elements. This study aims to describe the possible effects of pollutants on the body shapes of spotted barb (Puntius binotatus with notes of physico-chemical parameters of Wawa River, Bayugan City, Agusan del Sur and Tubay River, Tubay, Agusan del Norte, Philippines. There were a total of 80 samples (40 females and 40 males collected from each sampling areas. Digital imaging was prepared and the acquired images were loaded into tpsDig2 program. Standard landmarks on fish morphometric were employed. Using thin-plate spline (TPS series, landmark analysis were completed and subjected to symmetry and asymmetry in geometric data (SAGE software. Results in Procrustes ANOVA showed high significant differences of (P<0.0001 in the three factors analyzed: the individuals; sides; and the interaction of individuals and sides; indicating high fluctuating asymmetry. In Tubay River, the level of asymmetry in females were 79.06% and in males 71.69% while in Wawa River, the level of asymmetry in females were 76.60% and in males 62.64%. Therefore, indicating high level of asymmetry denotes environmental alterations. On the other hand, physicochemical parameters were also determined in the two sampling areas. The results of One-way ANOVA showed that the mean parameters in Wawa River has significant difference of (P<0.0001, while Tubay River has no significant difference. Results of Pearson-correlation of fluctuating asymmetry between physicochemical parameters shows no correlation which suggests that water components is not directly influenced by the fluctuating asymmetry. The approach of FA and physico-chemical parameters were significant for evaluating environmental condition as well as species state of well-being.

  13. Solidification of Savannah River Plant high level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Kelley, J.A.; Zeyfang, R.W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY 83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quantity of existing high level nuclear wastes can be safely and permanently immobilized. Early demonstration will both expedite and facilitate rational decision making on this aspect of the nuclear program. Delay in providing these facilities will result in significant DOE expenditures at SRP for new tanks just for continued temporary storage of wastes, and would probably result in dissipation of the intellectual and planning momentum that has built up in developing the project

  14. Distribution and habitat use of the Missouri River and Lower Yellowstone River benthic fishes from 1996 to 1998: A baseline for fish community recovery

    Science.gov (United States)

    Wildhaber, M.L.; Gladish, D.W.; Arab, A.

    2011-01-01

    Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.

  15. Quantifying flooding regime in floodplain forests to guide river restoration

    Directory of Open Access Journals (Sweden)

    Christian O. Marks

    2014-09-01

    Full Text Available Abstract Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and channel morphology, and hydrologic regime to define conditions promoting distinct floodplain forest assemblages. Species assemblages were dominated by floodplain-associated trees on surfaces experiencing flood durations between 4.5 and 91 days/year, which were generally well below the stage of the two-year recurrence interval flood, a widely-used benchmark for floodplain restoration. These tree species rarely occurred on surfaces that flooded less than 1 day/year. By contrast abundance of most woody invasive species decreased with flooding. Such flood-prone surfaces were jointly determined by characteristics of the hydrograph (high discharges of long duration and topography (low gradient and reduced valley constraint, resulting in increased availability of floodplain habitat with increasing watershed area and/or decreasing stream gradient. Downstream mainstem reaches provided the most floodplain habitat, largely associated with low-energy features such as back swamps and point bars, and were dominated by silver maple (Acer saccharinum. However, we were able to identify a number of suitable sites in the upper part of the basin and in large tributaries, often associated with in-channel islands and bars and frequently dominated by sycamore (Platanus occidentalis and flood disturbance-dependent species. Our results imply that restoring flows by modifying dam operations to benefit floodplain forests on existing surfaces need not conflict with flood protection in some regional settings. These results underscore the need to understand how flow, geomorphology, and species traits

  16. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  17. SEDAH. Data Server for hydrologic alteration evaluation

    International Nuclear Information System (INIS)

    Martinez Romero, R.; Magdaleno Mas, F.; Ortiz Rodriguez, J.; Fernandez Yuste, J. A.; Martinez Santa-Maria, C.

    2011-01-01

    Several tasks and studies have been developed from 2008 till 2010 all around the country in order to evaluate the hydrologic alteration of water bodies. In most cases this alteraction has been evaluated through IAHRIS (Martinez and Fernandez, 2006). The necessity of creating a new toll that allowed a better performance of the National Flow-Stage Stations Network data was showed up by developing these works. The output data series should match IAHRIS and IHA. SEDAH (Data Server for Evaluating Hydrologic Alteration) Helps to solve some of these problems by supplying an easy way to select flow stations, dates, flow series typology, etc. Moreover, other useful utilities are: a preliminary appraisement of quality data, calssification of altered or reference flow series and exportation of data in different file formats. The web application works with different data bases, daily, monthly and annual series belonging to, wither actual series from flow station data or completed series by statistical procedures. Through SEDAH the user has easy access to all this huge information ready for being applied in hydrologic alteration assessment, environmental fows regime, river restoration projects, etc. Furthermore, this first phase of the application constitute the basis for future powerful functionalities related to the natural flow series obtaining. (Author) 5 refs.

  18. Modern comprehensive approach to monitor the morphodynamic evolution of restored river corridors

    NARCIS (Netherlands)

    Pasquale, N; Perona, P; Schneider, P.; Shrestha, J.; Wombacher, Andreas; Burlando, P

    2011-01-01

    River restoration has become a common measure to repair anthropogenically-induced alteration of fluvial ecosystems. The inherent complexity of ecohydrologic systems leads to limitations in understanding the response of such systems to restoration over time. Therefore, a significant effort has been

  19. Nitrogen inputs to a river course in a heavily impacted watershed: A combined hydrochemical and isotopic evaluation (Oglio River Basin, N Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Delconte, C.A., E-mail: carloandrea.delconte01@ateneopv.it [Institute of Geosciences and Earth Resources (IGG), CNR, U.O.S. Pavia, via Ferrata 1, 27100 Pavia (Italy); Department of Earth and Environmental Sciences, University of Pavia, via Ferrata 1, 27100 Pavia (Italy); Sacchi, E. [Department of Earth and Environmental Sciences, University of Pavia, via Ferrata 1, 27100 Pavia (Italy); Institute of Geosciences and Earth Resources (IGG), CNR, U.O.S. Pavia, via Ferrata 1, 27100 Pavia (Italy); Racchetti, E.; Bartoli, M. [Department of Life Sciences, University of Parma, viale G.P. Usberti 33/A, 43124 Parma (Italy); Mas-Pla, J. [Department of Environmental Sciences, University of Girona, Campus de Montilivi, 17071 Girona (Spain); Catalan Institute for Water Research, 17003 Girona (Spain); Re, V. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Dorsoduro 2137, 30123 Venezia (Italy)

    2014-01-01

    This study aims at evaluating sources and processes affecting NO{sub 3}{sup −} concentrations in the Oglio River. Five sampling campaigns considered the main watercourse, tributaries, point pollution sources, springs, and groundwater. Physico-chemical parameters, N forms, B, Sr{sup 2+}, stable isotopes (δ{sup 2}H{sub H{sub 2O}}, δ{sup 18}O{sub H{sub 2O}}, δ{sup 15}N{sub NO{sub 3}}, δ{sup 18}O{sub NO{sub 3}}, δ{sup 11}B) and discharge were measured. Hydrological modelling was performed using mass balance and End Member Mixing Analysis equations. During the irrigation period, in the upstream reach, up to 90% of the natural river flow is diverted for irrigation and industrial purposes; excess water drained from agricultural fields is returned to river in the downstream reach. Results evidenced, in the middle reach, a large input of NO{sub 3}{sup −}-rich groundwater which could be quantified using hydrological modelling. Groundwater inputs are responsible for the sharp, tenfold increase in NO{sub 3}{sup −} in the river water, from 2.2–4.4 up to 33.5 mg L{sup −1}, and are more evident in summer, when discharge is lower. Nevertheless, river water preserves its natural B isotopic composition, indicating that the two tracers do not have a common origin and are not co-migrant. In the lower plain, surface–groundwater interconnections and human disturbances in the water cycle favour the recycling of the compounds in the environment, and lead to a similarity in composition of the different water bodies (Oglio River, tributaries and groundwater). The long lasting agronomical practices have profoundly modified the surface–groundwater equilibrium and chemical characteristics, resulting in a highly buffered system. Infiltrating irrigation water leaches down NO{sub 3}{sup −} which is subsequently denitrified; when returned to the Oglio River, groundwater modifies the river water composition by dilution, in the case of NO{sub 3}{sup −}, or by addition, for

  20. [Limnetic zooplankton run-off a high-head dam and their fate in a river with high current velocity (case of the Krasnoiarsk hydroelectric power station on the Yenisei river].

    Science.gov (United States)

    Dubovskaia, O P; Gladyshev, M I; Makhutova, O N

    2004-01-01

    The vertical distribution of net zooplankton in head-water of Krasnoyarsk hydroelectric power station and its horizontal distribution in the tail-water were studied during two years in winter and summer seasons. In order to distinguish living and dead individuals the special staining was used. It was revealed that on average 77% of living plankton pass through high-head dam with deep water scoop to the tailwater. While passing through dam aggregates some individuals of the reservoir plankton are traumatized and die, that results in some increase of portion of dead individuals in the tail water near dam (from 3 to 6%). Alive zooplankton passed through the dam aggregates is eliminated under the Upper Yenisei highly turbulent conditions. There is approximately 10% of it in 32 km from the dam if compare with biomass in 20-40 m layer of reservoir, the portion of dead increases to 11%. The biomass of zooplankton suspended in the water column of the tail-water sometimes increases (till > 1 g/m3) due to large Copepoda Heteroscope borealis, which inhabits near-bottom and near-shore river zones and can be found in the central part of the river during reproductive period. Limnetic zooplankton from the reservoir cannot be considered as important food for planktivores in the tail-water.

  1. High temperature vitrification of surrogate Savannah River Site (SRS) mixed waste materials

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Schumacher, R.F.; Spatz, T.L.; Newsom, R.A.; Circeo, L.J.; Danjaji, M.B.

    1995-01-01

    The Savannah River Technology Center (SRTC) has been funded through the DOE Office of Technology Development (DOE-OTD) to investigate high-temperature vitrification technologies for the treatment of diverse low-level and mixed wastes. High temperature vitrification is a likely candidate for processing heterogeneous solid wastes containing low levels of activity. Many SRS wastes fit into this category. Plasma torch technology is one high temperature vitrification method. A trial demonstration of plasma torch processing is being performed at the Georgia Institute of Technology on surrogate SRS wastes. This effort is in cooperation with the Engineering Research and Development Association of Georgia Universities (ERDA) program. The results of phase 1 of these plasma torch trials will be presented

  2. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Michael C., E-mail: newman@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Xu Xiaoyu, E-mail: xiaoyu@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Condon, Anne, E-mail: anne_condon@fws.gov [U.S. Fish and Wildlife, 6669 Short Lane, Gloucester, VA 23061 (United States); Liang Lian, E-mail: liang@cebam.net [Cebam Analytical, Inc., 18804 North Creek Parkway, Suite 110, Bothell, WA 98011 (United States)

    2011-10-15

    Mercury biomagnification on the South River floodplain (Virginia, USA) was modeled at two locations along a river reach previously modeled for methylmercury movement through the aquatic trophic web. This provided an opportunity to compare biomagnification in adjoining trophic webs. Like the aquatic modeling results, methylmercury-based models provided better prediction than those for total mercury. Total mercury Food Web Magnification Factors (FWMF, fold per trophic level) for the two locations were 4.9 and 9.5. Methylmercury FWMF for the floodplain locations were higher (9.3 and 25.1) than that of the adjacent river (4.6). Previous speculation was not resolved regarding whether the high mercury concentrations observed in floodplain birds was materially influenced by river prey consumption by riparian spiders and subsequent spider movement into the trophic web of the adjacent floodplains. Results were consistent with a gradual methylmercury concentration increase from contaminated floodplain soil, to arthropod prey, and finally, to avian predators. - Highlights: > First comparison of methylmercury biomagnification in adjacent river/land food webs. > Methylmercury increased more rapidly in the terrestrial, than the aquatic, food web. > Methylmercury increased gradually from soil, to prey, and, to avian predators. - Higher methylmercury biomagnification on South River floodplain than the associated river likely explain high mercury in floodplain birds.

  3. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  4. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  5. Multi-timescale sediment responses across a human impacted river-estuary system

    Science.gov (United States)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  6. Quality of water in the White River and Lake Tapps, Pierce County, Washington, May-December 2010

    Science.gov (United States)

    Embrey, S.S.; Wagner, R.J.; Huffman, R.L.; Vanderpool-Kimura, A. M.; Foreman, J.R.

    2012-01-01

    The White River and Lake Tapps are part of a hydropower system completed in 1911–12. The system begins with a diversion dam on the White River that routes a portion of White River water into the southeastern end of Lake Tapps, which functioned as a storage reservoir for power generation. The stored water passed through the hydroelectric facilities at the northwestern end of the lake and returned to the White River through the powerhouse tailrace. Power generation ceased in January 2004, which altered the hydrology of the system by reducing volumes of water diverted out of the river, stored, and released through the powerhouse. This study conducted from May to December 2010 created a set of baseline data collected under a new flow regime for selected reaches of the White River, the White River Canal (Inflow), Lake Tapps Diversion (Tailrace) at the powerhouse, and Lake Tapps.

  7. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  8. Rich mineralized boulders of the Rirang River, west Kalimantan

    International Nuclear Information System (INIS)

    Tjokrokardono, S.; Sastratenaya, A.S.

    1988-01-01

    The Rirang River is a small tributary of the Kalan River. It is 1.5 km long and flows in a N60 deg. E direction. To the west it is separated from the Sampurno Valley by an asymmetric pass with a relatively gentle slope on the Rirang side and a very steep slope down to the Sampurno River. The Rirang Valley lacks outcrops because of a high degree of alteration. It is known to contain mineralized boulders, most of which are of centimetric to decimetric size, but some may exceed 1 m. The uranium content in these boulders varies between 0.6 and 6.67%. Two types of mineralized boulders exist: banded and non-banded types. The former usually have a rounded shape due to erosion on their angles. They are composed of dark centimetric fragments of breccia, roughly aligned, giving a banded aspect, and are cemented by lighter coloured materials of monazite. The mineral composition of the fragments is of fine brown monazite, molybdenite, pyrite, rutile and tourmaline. Uranium minerals are located at the edges of the dark components. Most of the non-banded type boulders are of metasiltstone containing mineralized stringers of uraninite, molybdenite, pyrite, and a little monazite and tourmaline. Some investigations have been carried out, but the geological context and the origin of the boulders are, as yet, not fully understood. (author). 2 refs, 10 figs, 2 tabs

  9. Helium isotopes in geothermal systems: Iceland, The Geysers, Raft River and Steamboat Springs

    International Nuclear Information System (INIS)

    Torgersen, T.

    1982-01-01

    Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios and in terms of the processes which can alter the isotopic ratio. Using this interpretational scheme, Iceland is found to be an area of hot-spot magmatic He implying an active volcanic source although the data are suggestive of high-temperature weathering release of crustal He incorporated in the geothermal fluids. By comparison to fumarolic gases from Hawaii and Juan De Fuca and Cayman Trench basaltic glass samples, The Geysers contains MOR type magmatic He again implying an active volcanic source possibly a 'leaky' transform related to the San Andreas Fault System. Raft River contains only crustal He indicating no active volcanic sources. Steamboat Springs He isotope ratios are distinctly less than typical plate margin volcanics but must still have a magmatic source. (author)

  10. Mass balance modelling of contaminants in river basins: a flexible matrix approach.

    Science.gov (United States)

    Warren, Christopher; Mackay, Don; Whelan, Mick; Fox, Kay

    2005-12-01

    A novel and flexible approach is described for simulating the behaviour of chemicals in river basins. A number (n) of river reaches are defined and their connectivity is described by entries in an n x n matrix. Changes in segmentation can be readily accommodated by altering the matrix entries, without the need for model revision. Two models are described. The simpler QMX-R model only considers advection and an overall loss due to the combined processes of volatilization, net transfer to sediment and degradation. The rate constant for the overall loss is derived from fugacity calculations for a single segment system. The more rigorous QMX-F model performs fugacity calculations for each segment and explicitly includes the processes of advection, evaporation, water-sediment exchange and degradation in both water and sediment. In this way chemical exposure in all compartments (including equilibrium concentrations in biota) can be estimated. Both models are designed to serve as intermediate-complexity exposure assessment tools for river basins with relatively low data requirements. By considering the spatially explicit nature of emission sources and the changes in concentration which occur with transport in the channel system, the approach offers significant advantages over simple one-segment simulations while being more readily applicable than more sophisticated, highly segmented, GIS-based models.

  11. Technical background information for the environmental and safety report, Volume 5: the 1977 Clinch River sediment survey - data presentation

    International Nuclear Information System (INIS)

    Oakes, T.W.; Ohnesorge, W.F.; Eldridge, J.S.; Scott, T.G.; Parsons, D.W.; Hubbard, H.M.; Sealand, O.M.; Shank, K.E.; Eyman, L.D.

    1982-11-01

    This study determined the fate and distribution of nuclides in the Clinch River by analyzing selected cores for transuranic radionuclide activity and examined the effect of the altered flow regime in the Clinch River on the distribution of the fission product activity. Cores were collected along the full length of the Clinch River from the WOC outfall (CRM 20.8) to locations in the Tennessee River on either side of the junction of the two rivers. The sampling was concentrated around CRM 20.8 and the proposed CRBR site. An inventory of alpha-emitting radionuclides and gamma-emitting fission products and their lateral and vertical distribution patterns in the Clinch River was established

  12. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    Science.gov (United States)

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  13. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA

    International Nuclear Information System (INIS)

    Carling, Gregory T.; Tingey, David G.; Fernandez, Diego P.; Nelson, Stephen T.; Aanderud, Zachary T.; Goodsell, Timothy H.; Chapman, Tucker R.

    2015-01-01

    lower reaches of the river with values approaching 0.709. δD and δ"1"8O changed little throughout the year in the Provo River, suggesting that the river is primarily fed by snowmelt during spring runoff and snowmelt-fed groundwater during baseflow. Based on nonmetric multidimensional scaling (NMS) water chemistry was unique across the upper, middle, and lower portions of the river, with high temporal variability above the first reservoir but minimal temporal variability below the reservoir. Thus, the results show that dams alter water chemistry by allowing for settling of particle-associated elements and also by homogenizing inflows throughout the year to minimize dilution during snowmelt runoff. Taken together, trace element concentrations and isotopic measurements can be used to evaluate the complex geochemical patterns of rivers and their variability in space and time. These measurements are critical for identifying natural and anthropogenic impacts on river systems. - Highlights: • Provo River is impacted by a number of natural and anthropogenic processes. • Trace elements, Sr, H, and O isotopes were used to identify solute sources. • Sources include weathering, geothermal groundwater, mining, and urban runoff. • Water chemistry is altered during snowmelt and rainfall runoff events. • Built infrastructure also an important factor controlling water chemistry.

  14. Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations

    Directory of Open Access Journals (Sweden)

    Chloe Boitard

    2016-11-01

    Full Text Available In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala and for the hypothalamic-pituitary-adrenal (HPA stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2014; Boitard et al., 2012; Boitard et al., 2015. Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard chow diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.

  15. Connecicut River ecological study: a synopsis

    International Nuclear Information System (INIS)

    Merriman, D.

    1976-01-01

    This paper recounts some salient features of an extensive study of the thermal effects of the Connecticut Yankee Atomic Power Company's electric generating plant on biota of the lower Connecticut River. The work includes a description of the plume, an examination of the anadromous shad population, a discussion of the affected ichthvofauna and entrainment, and an account of alterations in benthic fauna. This study has several distinctive attributes, among them that it was begun before the Water Quality Act (1965) and that it had a long-term before-and-after character, beginning in 1965 before the plant began operating and continuing during operation (1968-1973). Ecological alterations observed to date appear to be well within the limits of acceptability, and in large measure, wrought by mechanical rather than thermal factors

  16. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries.

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki S; Denslow, Nancy D; Echols, Kathy R; Gross, Timothy S; May, Tom W; Anderson, Patrick J; Coyle, James J; Tillitt, Donald E

    2007-06-01

    showed evidence of contaminant exposure as indicated by fish health indicators and reproductive biomarker results. Multiple health indicators including altered body and organ weights and high health assessment index scores may be associated with elevated Se concentrations in fish from the Colorado River at Loma, Colorado and Needles. Although grossly visible external or internal lesions were found on most fish from some sites, histopathological analysis determined many of these to be inflammatory responses associated with parasites. Edema, exophthalmos, and cataracts were noted in fish from sites with elevated Se concentrations. Intersex fish were found at seven of 14 sites and included smallmouth bass (M. dolomieu), largemouth bass (M. salmoides), catfish, and carp and may indicate exposure to endocrine disrupting compounds. A high proportion of smallmouth bass from the Yampa River at Lay (70%) was intersex but the cause of this condition is unknown. Male carp, bass, and catfish with low concentrations of vitellogenin were common in the CRB. Comparatively high vitellogenin concentrations (>0.2 mg/mL) were measured in male bass from the Green River at Ouray NWR and the Colorado River at Imperial Dam and indicate exposure to estrogenic or anti-androgenic chemicals. Anomalous reproductive biomarkers including low GSI and gonadal abnormalities (calcifications, edema, and parasites) observed in fish downstream of Phoenix are likely related to the poor water-quality of the Gila River in this area.

  17. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-08-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  18. Investigating historical changes in morphodynamic processes associated with channelization of a large Alpine river: the Etsch/Adige River, NE Italy

    Science.gov (United States)

    Zen, Simone; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Surian, Nicola; Prà, Elena Dai

    2016-04-01

    River channel management within the last centuries has largely modified fluvial processes and morphodynamic evolution of most large European rivers. Several river systems experienced extensive channelization early in the 19th century, thus strongly challenging our present ability to detect their morphodynamic functioning with contemporary photogrammetry or cartographical sources. This consequently leaves open questions about their potential future response, especially to management strategies that "give more room" to the river, aiming at partially rehabilitating their natural functioning. The Adige River (Etsch in German), the second longest Italian river, is an exemplary case where channelization occurred more than 150 years ago, and is the focus of the present work. This work aims (i) to explore changes in fundamental morphodynamic processes associated with massive channelization of the Adige River and (ii) to quantify the alteration in river bars characteristics, by using morphodynamic models of bars and meandering. To fulfil our aims we combine the analysis of historical data with morphodynamic mathematical modelling. Historical sources (recovered in a number of European archives), such as hydrotopographical maps, airborne photogrammetry and hydrological datasets were collected to investigate channel morphology before and after the channelization. Information extracted from this analysis was combined with morphodynamic linear models of free migrating and forced steady bars, to investigate river bars and bend stability properties under different hydromorphological scenarios. Moreover, a morphodynamic model for meandering channel was applied to investigate the influence of river channel planform on the evolution of the fluvial bars. Results from the application of morphodynamic models allowed to predict the type, position and geometry of bars characterizing the channelized configuration of the river, and to explain the presently observed relative paucity of bars

  19. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost

    Science.gov (United States)

    Toohey, Ryan C; Herman-Mercer, Nicole M.; Schuster, Paul F.; Mutter, Edda A.; Koch, Joshua C.

    2016-01-01

    The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.

  20. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    Science.gov (United States)

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated

  1. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value[Dissertation 3807

    Energy Technology Data Exchange (ETDEWEB)

    Pellaud, M.

    2007-05-15

    ) general SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km{sup 2}, a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its

  2. Identifying and Evaluating Options for Improving Sediment Management and Fish Passage at Hydropower Dams in the Lower Mekong River Basin

    Science.gov (United States)

    Wild, T. B.; Reed, P. M.; Loucks, D. P.

    2015-12-01

    The Mekong River basin in Southeast Asia is undergoing intensive and pervasive hydropower development to satisfy demand for increased energy and income to support its growing population of 60 million people. Just 20 years ago this river flowed freely. Today some 30 large dams exist in the basin, and over 100 more are being planned for construction. These dams will alter the river's natural water, sediment and nutrient flows, thereby impacting river morphology and ecosystems, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most valuable and productive freshwater fish habitats. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to potentially achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and fish passage. We introduce examples of such alternative SDO opportunities for Sambor Dam in Cambodia, planned to be constructed on the main stem of the Mekong River. To evaluate the performance of such alternatives, we developed a Python-based simulation tool called PySedSim. PySedSim is a daily time step mass balance model that identifies the relative tradeoffs among hydropower production, and flow and sediment regime alteration, associated with reservoir sediment management techniques such as flushing, sluicing, bypassing, density current venting and dredging. To date, there has been a very limited acknowledgement or evaluation of the significant uncertainties that impact the evaluation of SDO alternatives. This research is formalizing a model diagnostic assessment of the key assumptions and parametric uncertainties that strongly influence PySedSim SDO evaluations. Using stochastic hydrology and sediment load data, our diagnostic assessment evaluates and compares several Sambor Dam alternatives using several performance measures related to energy production, sediment trapping and regime alteration, and

  3. Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: The Sacramento-San Joaquin River Delta (California, USA)

    International Nuclear Information System (INIS)

    Canuel, Elizabeth A.; Lerberg, Elizabeth J.; Dickhut, Rebecca M.; Kuehl, Steven A.; Bianchi, Thomas S.; Wakeham, Stuart G.

    2009-01-01

    We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influence the delivery of sediment and total organic carbon (TOC) over the past 50-60 years. Sediment cores were collected from sites within the Delta representing the Sacramento River (SAC), the San Joaquin River (SJR), and Franks Tract (FT), a flooded agricultural tract. A variety of anthropogenic tracers including 137 Cs, total DDE (ΣDDE) and brominated diphenyl ether (BDE) congeners were used to quantify sediment accumulation rates. This information was combined with total organic carbon (TOC) profiles to quantify rates of TOC accumulation. Across the three sites, sediment and TOC accumulation rates were four to eight-fold higher prior to 1972. Changes in sediment and TOC accumulation were coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Radiocarbon content of TOC indicated that much of the carbon delivered to the Delta is 'pre-aged' reflecting processing in the Delta watershed or during transport to the sites rather than an input of predominantly contemporary carbon (e.g., 900-1400 years BP in surface sediments and 2200 yrs BP and 3610 yrs BP at the base of the SJR and FT cores, respectively). Together, these data suggest that human activities have altered the amount and age of TOC accumulating in the Delta since the 1940s.

  4. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    Science.gov (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control

  5. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  6. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    OpenAIRE

    A. K. Basheer; H. Lu; A. Omer; A. B. Ali; A. M. S. Abdelgader

    2016-01-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River bas...

  7. Flow intermittence and ecosystem services in rivers of the Anthropocene_Figure 4_Journal of Applied Ecology

    Data.gov (United States)

    U.S. Environmental Protection Agency — Counts of ecosystem service status (provided, altered, and lost/absent) during three hydrological phases (flowing, pool, dry) typically seen in intermittent rivers...

  8. The changing hydro-ecological dynamics of rivers and deltas of the Western Indian Ocean: Anthropogenic and environmental drivers, local adaptation and policy response

    Science.gov (United States)

    Duvail, Stéphanie; Hamerlynck, Olivier; Paron, Paolo; Hervé, Dominique; Nyingi, Wanja D.; Leone, Michele

    2017-10-01

    The rivers flowing into the Western Indian Ocean have steep headwater gradients and carry high sediment loads. In combination with strong tides and seasonal rainfall, these rivers create dynamic deltas with biodiversity-rich and productive ecosystems that, through flooding, have sustained indigenous use systems for centuries. However, river catchments are rapidly changing due to deforestation. Hydropower dams also increasingly alter flood characteristics, reduce sediment supply and contribute to coastal erosion. These impacts are compounded by climate change. Altogether, these changes affect the livelihoods of the delta users. Here, based on prior works that we and others have conducted in the region, we analyse the drivers of these hydro-ecological changes. We then provide recommendations for improved dam design and operations to sustain the underlying delta-building processes, the ecosystem values and the needs of the users.

  9. Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers.

    Science.gov (United States)

    Sabater, S; Barceló, D; De Castro-Català, N; Ginebreda, A; Kuzmanovic, M; Petrovic, M; Picó, Y; Ponsatí, L; Tornés, E; Muñoz, I

    2016-03-01

    Land use type, physical and chemical stressors, and organic microcontaminants were investigated for their effects on the biological communities (biofilms and invertebrates) in several Mediterranean rivers. The diversity of invertebrates, and the scores of the first principal component of a PCA performed with the diatom communities were the best descriptors of the distribution patterns of the biological communities against the river stressors. These two metrics decreased according to the progressive site impairment (associated to higher area of agricultural and urban-industrial, high water conductivity, higher dissolved organic carbon and dissolved inorganic nitrogen concentrations, and higher concentration of organic microcontaminants, particularly pharmaceutical and industrial compounds). The variance partition analyses (RDAs) attributed the major share (10%) of the biological communities' response to the environmental stressors (nutrients, altered discharge, dissolved organic matter), followed by the land use occupation (6%) and of the organic microcontaminants (2%). However, the variance shared by the three groups of descriptors was very high (41%), indicating that their simultaneous occurrence determined most of the variation in the biological communities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Application of MIKE21 Software in Flood Routing of Tidal Rivers: A Case Study of the Zohre River

    Directory of Open Access Journals (Sweden)

    Ali Karami Khaniki

    2007-01-01

    Full Text Available Flood routing is of special importance from different aspects of river engineering such as flood zoning, flood forecasting, etc. There are two methods employed in river flood routing, hydraulic and hydrological. Hydrological methods are used when the river is at low tide and, hence, cannot be employed to analyze floods caused by the tide. Hydraulic methods must be employed in tidal rivers when the direction of the current reverses at high tide. In this research,MIKE21 modeling software was used for the flood routing of the Zohreh tidal river. The model was calibrated by surveying the river, taking samples form the river bed, measuring sea water level and the velocity of the river flow. Analyzing the sensitivity of the model showed that the coefficient of determination, root mean square error and relative error were 0.95, 0.032, and 0.27, respectively, all indicating the efficacy of the model in simulating different parameters such as velocity, flow rate, and water surface profile. The flood routing results of the tidal currents showed that the hydrograph of the influent and effluent to the reach at high tide (when the current direction is from sea to the river was similar to the normal flood routing of the river, but at low tide (when the current direction is from the sea to the river influent and effluent hydrograph would not follow the laws of normal flood routing.

  11. Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium)

    Science.gov (United States)

    Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke

    2018-04-01

    An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.

  12. Historical Relationships Between Research and Resource Management in the Apalachicola River Estuary.

    Science.gov (United States)

    Livingston, Robert J

    1991-11-01

    A continuous field research effort has been carried out in the Apalachicola River estuary since March 1972. The information generated from this interdisciplinary study has been directly applied to the management of the Apalachicola resource by means of close associations among local, state, and federal officials and university scientists. During the early years, scientific data were instrumental in the prevention of the impoundment of the Apalachicola River. A series of regional studies was carried out to evaluate various forms of effects due to forestry activities, pesticides, and stormwater runoff from urban areas. A review was made of fisheries problems associated with dredging, overfishing, and marine pollution. Results of such studies were directly applied to local management questions. Research that linked the river wetlands with the estuary, in terms of the input of fresh water, nutrients, and organic matter, served as the basis for the purchase of extensive bottomland tracts. Other initiatives were carried out that were designed to protect the naturally high productivity of the river estuary. Further purchases of estuarine wetlands and barrier island properties were made that formed an almost continuous buffer of publicly held lands between upland developments and critical habitats and important populations of the bay system. A regional management plan was adopted that was designed to limit local municipal development in the estuarine region. Analyses of the long-term scientific data indicated that dominant, commercially important estuarine populations are associated with river flow, local salinity characteristics, and biological (predation, competition) interactions with the salinity regime and food web structure. Such interactions are not straight forward, however; they reflect complex interactions of the freshwater influxes and biological response in the estuary that are not well understood. Species-specific responses to the principal driving factors

  13. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  14. Using Hydraulic Modeling to Evaluate Lateral Connectivity Improvements under Alternative Restoration Scenarios in the Atchafalaya River Basin

    Science.gov (United States)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2017-12-01

    -rich river water and improve flushing flows through backswamp areas. Our modeling approach may provide a cost-effective framework for examining the performance of proposed restoration projects along other highly-altered, low-gradient river systems.

  15. Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment

    Science.gov (United States)

    Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.

    1988-01-01

    During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical

  16. The Charles River, Eastern Massachusetts: Scientific Information in Support of Environmental Restoration

    Science.gov (United States)

    Weiskel, Peter K.

    2007-01-01

    Human activity has profoundly altered the Charles River and its watershed over the past 375 years. Restoration of environmental quality in the watershed has become a high priority for private- and public-sector organizations across the region. The U.S. Environmental Protection Agency and the Massachusetts Executive Office of Environmental Affairs worked together to coordinate the efforts of the various organizations. One result of this initiative has been a series of scientific studies that provide critical information concerning some of the major hydrologic and ecological concerns in the watershed. These studies have focused upon: * Streamflows - Limited aquifer storage, growing water demands, and the spread of impervious surfaces are some of the factors exacerbating low summer streamflows in headwater areas of the watershed. Coordinated management of withdrawals, wastewater returns, and stormwater runoff could substantially increase low streamflows in the summer. Innovative approaches to flood control, including preservation of upstream wetland storage capacity and construction of a specially designed dam at the river mouth, have greatly reduced flooding in the lower part of the watershed in recent decades. * Water quality - Since the mid-1990s, the bacterial quality of the Charles River has improved markedly, because discharges from combined sewer overflows and the number of illicit sewer connections to municipal storm drains have been reduced. Improved management of stormwater runoff will likely be required, however, for full attainment of State and Federal water-quality standards. Phosphorus inputs from a variety of sources remain an important water-quality problem. * Fish communities and habitat quality - The Charles River watershed supports a varied fish community of about 20 resident and migratory species. Habitat conditions for fish and other aquatic species have improved in many parts of the river system in recent years. However, serious challenges remain

  17. Predictions of Bedforms in Tidal Inlets and River Mouths

    Science.gov (United States)

    2016-07-31

    including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate {0704-0188). Respondents should be aware...temporally varying roughness. 15. SUBJECT TERMS Bedforms, hydraulic roughness, tidal inlets, rivers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a...fluctuation representing local turbulence. However, once bedforms are created, the local flow around the bedforms is altered via feedback: flow is reduced in

  18. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    Science.gov (United States)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  19. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.

  20. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  1. Chicago and New Orleans: opposite ends of a great river

    Directory of Open Access Journals (Sweden)

    Craig Edward Colten

    2017-06-01

    Full Text Available This paper considers the contrasting and deliberate efforts to reshape the Tluvial futures of two important American cities which essentially re-wrote their riparian heritages. Chicago’s aggressive extension of its commercial reach through its artiTicial connection with the Mississippi has become embodied in its environmental, political, and literary history. Conversely, New Orleans crafted a defensive local culture in its environmental history, politics, and literature. The contrasting investments in river-altering infrastructure and urban relationships with the one river expose the signiTicance of each city’s position within a watershed and in shaping its respective cultural history and its identity.

  2. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    Science.gov (United States)

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  3. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  4. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Directory of Open Access Journals (Sweden)

    Mary Doherty

    2017-05-01

    Full Text Available Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm. River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May and low (December discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in

  5. Recent changes (1973-2014 versus 1903-1972) in the flow regime of the Lower Paraná River and current fluvial pollution warnings in its Delta Biosphere Reserve.

    Science.gov (United States)

    Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A

    2016-06-01

    Alterations in flow regimes of large rivers may originate or increase risks to ecosystems and humans. The Paraná River basin (South America) undergoes human pressures (e.g., heavy damming in the upper basin, deforestation, and mixed pollution) that may affect the water quantity and quality of its terminal Delta (Argentina). In this study, after applying univariate and multivariate change-point detection and trend analyses to the daily data series of flows incoming to the Delta (Paraná-Santa Fe section), flow characteristics were compared by Indicators of Hydrologic Alteration (IHA) and Environmental Flow Components (EFC). Some flood characteristics were also compared from hydrometric levels in the middle Delta (San Pedro station). Chemical and microbiological water variables in the main rivers of the "Paraná Delta" Biosphere Reserve were examined during two extreme hydrologic years (October 2008 to July 2010) to detect potential risk factors in association with hydrologic conditions. In the Lower Paraná River, a historical period (1903-1972) and two more altered periods (1973-1999 wet period and 2000-2014 dry period) were identified. Flow duration curves evidenced different changes in both altered periods, reflecting the joint effect of climatic variability and human influence. The most evident alterations in the flow regime were the lack of record of the extreme-low-flow component, the attenuation of monthly flow seasonality, and the increase in the number of reversals (dry period) and in the variability of maximum and minimum flow dates. These alterations are consistent with the monthly and daily flow regulation by upstream dams evidenced by available data from the current dry period. In the middle Delta, the marked monthly seasonality in flood days decreased only in the wet period. The proportion between the number of flood days exceeding the evacuation level and that of those exceeding the warning level doubled in the wet period but decreased only

  6. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    Science.gov (United States)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  7. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  8. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  9. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  10. A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium

    Science.gov (United States)

    Kraus, Tamara; Carpenter, Kurt; Bergamaschi, Brian; Parker, Alexander; Stumpner, Elizabeth; Downing, Bryan D.; Travis, Nicole; Wilkerson, Frances; Kendall, Carol; Mussen, Timothy

    2017-01-01

    Phytoplankton are critical component of the food web in most large rivers and estuaries, and thus identifying dominant controls on phytoplankton abundance and species composition is important to scientists, managers, and policymakers. Recent studies from a variety of systems indicate that ammonium ( NH+4) in treated wastewater effluent decreases primary production and alters phytoplankton species composition. However, these findings are based mainly on laboratory and enclosure studies, which may not adequately represent natural systems. To test effects of effluent high in ammonium on phytoplankton at the ecosystem scale, we conducted whole-river–scale experiments by halting discharges to the Sacramento River from the regional wastewater treatment plant (WWTP), and used a Lagrangian approach to compare changes in phytoplankton abundance and species composition in the presence (+EFF) and absence (−EFF) of effluent. Over 5 d of downstream travel from 20 km above to 50 km below the WWTP, chlorophyll concentrations declined from 15–25 to ∼2.5 μg L−1, irrespective of effluent addition. Benthic diatoms were dominant in most samples. We found no significant difference in phytoplankton abundance or species composition between +EFF and −EFF conditions. Moreover, greatest declines in chlorophyll occurred upstream of the WWTP where NH+4 concentrations were low. Grazing by clams and zooplankton could not account for observed losses, suggesting other factors such as hydrodynamics and light limitation were responsible for phytoplankton declines. These results highlight the advantages of conducting ecosystem-scale, Lagrangian-based experiments to understand the dynamic and complex interplay between physical, chemical, and biological factors that control phytoplankton populations.

  11. River ecosystem response to prescribed vegetation burning on Blanket Peatland.

    Science.gov (United States)

    Brown, Lee E; Johnston, Kerrylyn; Palmer, Sheila M; Aspray, Katie L; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.

  12. Rivers rapid assessment protocols and insertion of society in monitoring of water resources

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2008-12-01

    Full Text Available The degradation of water resources has been detected and changes both institutional and in the legislation have been demanded. The careless use of rivers has ecological changes as direct consequence, causing serious modifications in the landscape and fluvial regime, besides altering the availability of habitats and the trophic composition of the aquatic environment. Pressed by this scenario, scientists have been developing assessment methods that are efficient both for the evaluation itself and for supporting decision taking in the environmental management processes. In this perspective, the objective of this study is to present the Rapid River Assessment Protocols (RAPs and to emphasize how these protocols can promote the community participation in water resources monitoring. The RAPs can used to evaluate in an integrated form the characteristics of a river section according to the conservation or degradation condition of the fluvial environment and it is characterized by its economic viability and easy applicability. In regions with poor financial resources and serious problems of water quality, the RAPs can be used in environmental management programs. By using these protocols, the integration of the community in water resources monitoring generates data which represent the quality of fluvial ecosystems throughout time, without requesting high costs or specialized professionals. The RAPs in a simplified but not simplistic tool, which can be used in activities that aim at promoting a quick and reliable assessment of the “health” of a river.

  13. Kootenai River Biological Baseline Status Report : Annual Report, 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Diana [Kootenai Tribe of Idaho, Bonners Ferry, ID (United States)

    1997-02-01

    The Kootenai River ecosystem in Idaho, Montana and British Columbia (B.C.) Canada has been severely degraded during the past 50 years. This aquatic ecosystem has changed from one that was culturally eutrophic, to one that is oligotrophic due to channelization, diking, impoundment (construction and operation of Libby Dam), and pollution abatement measures in the watershed. As a result of these influences, flow regimes, temperature patterns, and water quality were altered, resulting in changes in primary production and aquatic insect and fish populations. Construction of Libby Dam (creation of Lake Koocanusa) and closure of Cominco`s fertilizer plant resulted in decreased phosphorus load to the Kootenai River to below historical levels. Dissolved orthophosphorus concentrations averaged 0.383 mg/L in 1970 as compared to 0.039 mg/L in 1979. Total phosphorus concentrations followed a similar pattern. Both total phosphorus and soluble reactive phosphorus concentrations remained below 0.05 mg/L from 1976 to 1994, characterizing the river as oligotrophic. Post Libby Dam primary productivity levels in the river represent an ultra-oligotrophic to mesotrophic system. Since the construction and operation of Libby Dam, invertebrate densities immediately downstream from the dam increased, but species diversity decreased. Insect diversity increased with increasing distance from the dam, but overall species diversity was lower than would be expected in a free-flowing river. Fish species composition and abundance has also changed as a result of the changes in the river and its watershed.

  14. Seasonal variations and resilience of bacterial communities in a sewage polluted urban river.

    Directory of Open Access Journals (Sweden)

    Tamara García-Armisen

    Full Text Available The Zenne River in Brussels (Belgium and effluents of the two wastewater treatment plants (WWTPs of Brussels were chosen to assess the impact of disturbance on bacterial community composition (BCC of an urban river. Organic matters, nutrients load and oxygen concentration fluctuated highly along the river and over time because of WWTPs discharge. Tag pyrosequencing of bacterial 16S rRNA genes revealed the significant effect of seasonality on the richness, the bacterial diversity (Shannon index and BCC. The major grouping: -winter/fall samples versus spring/summer samples- could be associated with fluctuations of in situ bacterial activities (dissolved and particulate organic carbon biodegradation associated with oxygen consumption and N transformation. BCC of the samples collected upstream from the WWTPs discharge were significantly different from BCC of downstream samples and WWTPs effluents, while no significant difference was found between BCC of WWTPs effluents and the downstream samples as revealed by ANOSIM. Analysis per season showed that allochthonous bacteria brought by WWTPs effluents triggered the changes in community composition, eventually followed by rapid post-disturbance return to the original composition as observed in April (resilience, whereas community composition remained altered after the perturbation by WWTPs effluents in the other seasons.

  15. Least Disturbed Condition for European Mediterranean rivers.

    Science.gov (United States)

    Feio, M J; Aguiar, F C; Almeida, S F P; Ferreira, J; Ferreira, M T; Elias, C; Serra, S R Q; Buffagni, A; Cambra, J; Chauvin, C; Delmas, F; Dörflinger, G; Erba, S; Flor, N; Ferréol, M; Germ, M; Mancini, L; Manolaki, P; Marcheggiani, S; Minciardi, M R; Munné, A; Papastergiadou, E; Prat, N; Puccinelli, C; Rosebery, J; Sabater, S; Ciadamidaro, S; Tornés, E; Tziortzis, I; Urbanič, G; Vieira, C

    2014-04-01

    The present report describes a three-step approach that was used to characterize and define thresholds for the Least Disturbed Condition in Mediterranean streams of four different types, regarding organic pollution and nutrients, hydrological and morphological alterations, and land use. For this purpose, a common database composed of national reference sites (929 records) from seven countries, sampled for invertebrates, diatoms and macrophytes was used. The analyses of reference sites showed that small (catchment rivers were the most affected by stressors: 25-43% of the samples showed at least slight alterations regarding channelization, connectivity, upstream dam influence, hydropeaking and degradation of riparian vegetation. Temporary streams were the least affected by hydromorphological changes, but they were nevertheless affected by alterations in riparian vegetation. There were no major differences between all permanent stream types regarding water quality, but temporary streams showed lower values for oxygenation (DO) and wider ranges for other variables, such as nitrates. A lower threshold value for DO (60%) was determined for this stream type and can be attributed to the streams' natural characteristics. For all other river types, common limits were found for the remaining variables (ammonium, nitrate, phosphate, total P, % of artificial areas, % of intensive and extensive agriculture, % of semi-natural areas in the catchment). These values were then used to select the list of reference sites. The biological communities were characterized, revealing the existence of nine groups of Mediterranean invertebrate communities, six for diatoms and five for macrophytes: each group was characterized by specific indicator taxa that highlighted the differences between groups. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  17. Preserving the Dnipro River

    International Development Research Centre (IDRC) Digital Library (Canada)

    Humanity inherited the true sense of proportion, synergy, and harmony from the natural environment. ..... In Ukraine, the middle and lower sections of the Dnipro have a drainage ... The following large cities are located in the Dnipro basin: in Russia, .... In Kherson Oblast and in river basins of some small rivers it is as high as ...

  18. Run-of-river power plants in Alpine regions: whither optimal capacity?

    Science.gov (United States)

    Lazzaro, Gianluca; Botter, Gianluca

    2015-04-01

    Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic

  19. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary

    Directory of Open Access Journals (Sweden)

    Aviaja Lyberth Hauptmann

    2016-09-01

    Full Text Available Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N. Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

  20. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    Science.gov (United States)

    Hauptmann, Aviaja L.; Markussen, Thor N.; Stibal, Marek; Olsen, Nikoline S.; Elberling, Bo; Bælum, Jacob; Sicheritz-Pontén, Thomas; Jacobsen, Carsten S.

    2016-01-01

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns. PMID:27708629

  1. Wandering gravel-bed rivers and high-constructive stable channel sandy fluvial systems in the Ross River area, Yukon Territory, Canada

    Directory of Open Access Journals (Sweden)

    Darrel G.F. Long

    2011-07-01

    Gravel-dominated strata, inter-bedded with, and overlying coal-bearing units, are interpreted as deposits of wandering gravel-bed rivers, with sinuosity approaching 1.4. In most exposures they appear to be dominated by massive and thin planar-bedded granule to small pebble conglomerates, which would traditionally be interpreted as sheet-flood or longitudinal bar deposits of a high-gradient braided stream or alluvial fan. Architectural analysis of exposures in an open-pit shows that the predominance of flat bedding is an artefact of the geometry of the roadside exposures. In the pit the conglomerates are dominated by large scale cross stratification on a scale of 1–5.5 m. These appear to have developed as downstream and lateral accretion elements on side-bars and on in-channel bars in water depths of 2–12 m. Stacking of strata on domed 3rd order surfaces suggests development of longitudinal in-channel bar complexes similar to those observed in parts of the modern Rhône River system. Mudstone preserved in some of the channels reflects intervals of channel abandonment or avulsion. Minimum channel width is from 70 to 450 m.

  2. Floodplain Condition and Water Framework Directive River Classification in England: Evidence of a Disconnect.

    Science.gov (United States)

    Bentley, S.

    2017-12-01

    The European Union Water Framework Directive came into force in October 2000 committing European Union member states to achieve Good Ecological Status for all water bodies. By 2015 29% of rivers across England had achieved this level suggesting that these watercourse units are now functioning well. This study utilises recently published land cover data for England clipped to the floodplain boundary as defined by the 100 year return period discharge to examine the state of valley bottom vegetation and function for these Good Status rivers. Agricultural use of floodplain areas is high with cereal and horticulture covering an average of 24% and pasture accounting for some 37% of the area. Maximum values increase to 77% and 92% respectively. In all cases wetland accounts for less than 2% of the floodplain and rough grassland averages 7%. Such significant and widespread alteration to floodplain vegetation character suggests that the ecological functioning of this component of the fluvial system has been severely negatively impacted calling into question the Water Framework Directive status level. This is a fault of the Water Framework Directive process which only explicitly evaluates the hydromorphological component of the fluvial system for high status rivers preferring to infer functioning from biological indicators that are focused on in-channel assessments. The fundamental omission of floodplain condition in the Water Framework Directive process will result in only partial achievement of the original goals of the Directive with the majority of Europe's floodplains remaining in a highly degraded, non-functional state.

  3. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    Science.gov (United States)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel

  4. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  5. Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution

    Energy Technology Data Exchange (ETDEWEB)

    Utton, C.A., E-mail: c.utton@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Hand, R.J.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Swanton, S.W. [AMEC, B150, Thomson Avenue, Harwell Oxford, Didcot, Oxfordshire OX11 0QB (United Kingdom); Williams, S.J. [Nuclear Decommissioning Authority, NDA Harwell Office, Building 587, Curie Avenue, Harwell Oxford, Didcot OX11 0RH (United Kingdom)

    2013-11-15

    To simulate the possible disposition of a vitrified intermediate-level waste (ILW) in a cementitious environment within a geological disposal facility (GDF), the durability of a laboratory simulant ILW vitrified in a borosilicate glass in a saturated Ca(OH){sub 2} solution (pH ∼12.5) was measured. Both a low surface area to volume (SA/V) ratio (∼10 m{sup −1}) Materials Characterisation Center test 1 (MCC-1) and a high SA/V ratio (∼10,000 m{sup −1}) product consistency test type B (PCT-B) were used at 50 °C for up to 170 days. The formation of alteration layers and products was followed. The surfaces of the monoliths were analysed using SEM/EDX and showed the formation of magnesium-rich precipitates and distinct calcium silicate hydrate (CSH) precipitates. Cross sections showed the development of a calcium-rich alteration layer, which was observed from 14 days. The altered layer was up to 5 μm thick after 170 days and showed accumulation of zirconium, iron and magnesium and to a lesser extent aluminium, along with calcium and silicon. Based on comparison of the rate data, it is suggested that the presence of this layer may offer some protection to the underlying glass. However, the high SA/V ratio experiments showed resumed alteration after 56 days, indicating that the altered layer may not be protective in the long term (under accelerated conditions). The formation of a magnesium-containing smectite clay (likely saponite) in addition to CSH(II), a jennite-like CSH phase, were identified in the high SA/V experiment by X-ray diffraction after 170 days. These results suggest that calcium and magnesium have important roles in both the long and shorter-term durability of vitrified wastes exposed to high pH.

  6. Modelling glass alteration in an altered argillaceous environment

    International Nuclear Information System (INIS)

    Bildstein, O.; Trotignon, L.; Pozo, C.; Jullien, M.

    2007-01-01

    The long term behaviour of materials such as glass, steel and clay has been investigated in the context of deep geological disposal of radioactive wastes. The interactions between vitrified wastes, canister corrosion products (CPs) and clay are studied using a modified version of the reaction-transport code Crunch, especially looking at pH changes and possible cementation at the interface with the clayey materials. These perturbations may indeed affect the lifetime of glass matrix in deep repositories, e.g., high pH enhances the rate of glass alteration. This work focuses on the argillite of Bure. The calculations were performed at 323 K with a glass alteration rate switching from a high initial rate to a residual rate according to the sorption capacity of CPs. The time at which this sorption capacity is saturated is crucial to the system in terms of wastes package lifetime. The results show that the glass alteration imposes a high pH value at the interface with CPs and clay: up to a value of 9.2, compared to 7.3 which is the initial pH value in the argillite. Experimental data show that the rate of glass alteration is much higher in such pH conditions. For a R7T7-type glass, the rate is about five times higher at pH 9 than at pH 7. This pH perturbation migrates through the clayey domain as a result of the migration of mobile elements such as boron and sodium, and despite the existence of strong pH buffers in the argillite. The cementation of porosity at the interface between glass and clay is predicted by the model due to the massive precipitation of iron corrosion products and glass alteration products. At this point of the evolution of the system, the pH starts to decrease and the alteration rate of the glass could be significantly reduced. This porosity clogging effect is difficult to confirm by experiments especially since existing data on short term experiments tend to show a pervasive precipitation of silica in the domain instead of a localized precipitation

  7. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    Science.gov (United States)

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  8. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xu Weihai; Zhang Gan; Zou Shichun; Li Xiangdong; Liu Yuchun

    2007-01-01

    Nine selected antibiotics in the Victoria Harbour of Hong Kong and the Pearl River at Guangzhou, South China, were analyzed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. The results showed that the concentrations of antibiotics were mainly below the limit of quantification (LOQ) in the marine water of Victoria Harbour. However, except for amoxicillin, all of the antibiotics were detected in the Pearl River during high and low water seasons with the median concentrations ranging from 11 to 67 ng/L, and from 66 to 460 ng/L, respectively; and the concentrations in early spring were about 2-15 times higher than that in summer with clearer diurnal variations. It was suggested that the concentrations of antibiotics in the high water season were more affected by wastewater production cycles due to quick refreshing rate, while those in the low water season may be more sensitive to the water column dynamics controlled by tidal processes in the river. - Antibiotics were found at high concentrations in an urban reach of Pearl River in southern China with contrast diurnal variations between the high and low water seasons

  9. Do riparian plant community characteristics differ between Tamarix (L.) invaded and non-invaded sites on the upper Verde River, Arizona?

    Science.gov (United States)

    Tyler D. Johnson; Thomas E. Kolb; Alvin L. Medina

    2009-01-01

    Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This...

  10. Geomorphology and river dynamics of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  11. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  12. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows.

    Science.gov (United States)

    Hardie, Scott A; Bobbi, Chris J

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  13. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows

    Science.gov (United States)

    Hardie, Scott A.; Bobbi, Chris J.

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  14. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    Science.gov (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  15. Impact modelling of water resources development and climate scenarios on Zambezi River discharge

    Directory of Open Access Journals (Sweden)

    Harald Kling

    2014-07-01

    New hydrological insights for the region: Comparisons between historical and future scenarios show that the biggest changes have already occurred. Construction of Kariba and CahoraBassa dams in the mid 1900s altered the seasonality and flow duration curves. Future irrigation development will cause decreases of a similar magnitude to those caused by current reservoir evaporation losses. The discharge is highly sensitive to small precipitation changes and the two climate models used give different signs for future precipitation change, suggestive of large uncertainty. The river basin model and database are available as anopen-online Decision Support System to facilitate impact assessments of additional climate or development scenarios.

  16. Recent Trends in the Ebro River Basin: Is It All "Just" Climate Change?

    Science.gov (United States)

    Lutz, Stefanie; Merz, Ralf

    2016-04-01

    quality. However, the correlation between air and water temperatures decreases in the presence of reservoirs upstream of the sampling points. Reservoirs can thus alter the thermal regime of rivers, which might, in turn, pose a threat to aquatic ecosystems. Apart from the water demand for irrigation, agriculture is a main cause of nitrate pollution of both surface water and groundwater in the Ebro River Basin. Nitrate concentrations in streamwater have mostly decreased for the last 15 years, which is consistent with less fertilizer consumption in Spain since the early 2000s. However, nitrate concentrations remain high in many groundwater wells. Overall, the analysis of multiple pressures on water resources suggests that recent changes in the Ebro River Basin are driven by a variety of anthropogenic influences including changing climate. This emphasizes the importance of adapted land use and water resources management to secure sufficient quantity and quality of water resources in this large river basin.

  17. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    Science.gov (United States)

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  18. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  19. Biotic Responses of Headwater Streams to Geophysical Alteration and Disturbance Related to Climate Change

    Science.gov (United States)

    Gresswell, R. E.; Sedell, E. R.; Cannon, S.; Hostetler, S. W.; Williams, J. E.; Haak, A. L.; Kershner, J. L.

    2009-12-01

    Climate change will potentially alter physical habitat availability for trout species (both native and nonnative) in the western USA, and ultimately affect population distribution and abundance in watersheds across the region. To understand the biological consequences of habitat alteration associated with climate change, we have developed models linking contemporary patterns of occurrence and abundance to geomorphic variables (e.g., aspect, elevation, and slope) and stream conditions derived from the habitat (e.g., temperature, discharge, and flood regimes). Because headwater streams may be especially susceptible to catastrophic disturbances in the form of debris flow torrents that have the potential to radically alter the physical structure of channels and sometimes extirpate local fish populations, we are focusing fine-scale spatial analyses in the high elevation systems. Risks of such disturbances increase exponentially in landscapes that have experienced recent wildfires when high-intensity precipitation or runoff events occur. Although predicting the timing, extent, and severity of future wildfires or subsequent precipitation and runoff events is difficult, it is possible to identify channels within stream networks that may be prone to debris flows. These channels can be identified using models based on characteristic storm and burn scenarios and geographic information describing topographic, soil, and vegetation characteristics. At-risk channels are being mapped throughout the stream networks within the study areas in the headwaters of the Colorado River to provide information about the potential for catastrophic population disturbance in response to variety of wildfire and post-wildfire storm scenarios.

  20. Ecohydrological index, native fish, and climate trends and relationships in the Kansas River basin

    Science.gov (United States)

    This study sought to quantify climatological and hydrological trends and their relationship to presence and distribution of two native aquatic species in the Kansas River Basin over the past half century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) ...

  1. Water-quality data for the Missouri River and Missouri River alluvium near Weldon Spring, St. Charles County, Missouri, 1991--92

    International Nuclear Information System (INIS)

    Kleeschulte, M.J.

    1993-01-01

    This report contains the water-quality data collected at two cross sections across the Missouri River and from monitoring wells in the Missouri River alluvium near Defiance, Missouri. The sampling results indicate the general water composition from the Missouri River changes with different flow conditions. During low-base flow conditions, the water generally contained about equal quantities of calcium and sodium plus potassium and similar quantities of bicarbonate and sulfate. During high-base flow conditions, water from the river predominantly was a calcium bicarbonate type. During runoff conditions, the water from the river was a calcium bicarbonate type, and sulfate concentrations were larger than during high-base flow conditions but smaller than during low-base flow conditions. The total and dissolved uranium concentrations at both the upstream and downstream cross sections, as well as from the different vertical samples across the river, were similar during each sampling event. However, sodium, sulfate, nitrate, and total and dissolved uranium concentrations varied with different flow conditions. Sodium and sulfate concentrations were larger during low-base flow conditions than during high-base flow or runoff conditions, while nitrate concentrations decreased during low-base flow conditions. Both total and dissolved uranium concentrations were slightly larger during runoff events than during low-base or high-base flow conditions

  2. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  3. Intermittent ephemeral river-breaching

    Science.gov (United States)

    Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.

    2012-12-01

    In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the

  4. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    Science.gov (United States)

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  5. Spatial patterns of water quality in Xingu River Basin (Amazonia prior to the Belo Monte dam impoundment

    Directory of Open Access Journals (Sweden)

    JL. Rodrigues-Filho

    Full Text Available Abstract The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA, and principal component analysis (PCA. The results showed a high auto-correlation between variables (> 0.7. These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the

  6. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment.

    Science.gov (United States)

    Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G

    2015-08-01

    The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself.

  7. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  8. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia

    Science.gov (United States)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don

    2017-09-01

    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  9. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  10. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  11. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  12. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico.

    Science.gov (United States)

    Elders, W. A.; Izquierdo, G.

    2014-12-01

    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  13. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    Science.gov (United States)

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  14. Fishy Business: Response of Stream Fish Assemblages to Small Hydro-power Plant Induced Flow Alteration in the Western Ghats, Karnataka

    Science.gov (United States)

    Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.

    2017-12-01

    Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for

  15. Sleep Deprivation Alters Choice Strategy Without Altering Uncertainty or Loss Aversion Preferences

    Directory of Open Access Journals (Sweden)

    O'Dhaniel A Mullette-Gillman

    2015-10-01

    Full Text Available Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.

  16. Sleep deprivation alters choice strategy without altering uncertainty or loss aversion preferences.

    Science.gov (United States)

    Mullette-Gillman, O'Dhaniel A; Kurnianingsih, Yoanna A; Liu, Jean C J

    2015-01-01

    Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD) alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.

  17. Reconstruction of a high-resolution late holocene arctic paleoclimate record from Colville River delta sediments.

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, Kathryn Melissa; Lowry, Thomas Stephen

    2013-10-01

    This work was partially supported by the Sandia National Laboratories, Laboratory Directed Research and Development (LDRD) fellowship program in conjunction with Texas A&M University (TAMU). The research described herein is the work of Kathryn M. Schreiner (Katie) and her advisor, Thomas S. Bianchi and represents a concise description of Katies dissertation that was submitted to the TAMU Office of Graduate Studies in May 2013 in partial fulfillment of her doctorate of philosophy degree. High Arctic permafrost soils contain a massive amount of organic carbon, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This project investigated long term, fine scale particulate organic carbon (POC) delivery by the high-Arctic Colville River into Simpsons Lagoon in the near-shore Beaufort Sea. Modern POC was determined to be a mixture of three sources (riverine soils, coastal erosion, and marine). Downcore POC measurements were performed in a core close to the Colville River output and a core close to intense coastal erosion. Inputs of the three major sources were found to vary throughout the last two millennia, and in the Colville River core covary significantly with Alaskan temperature reconstructions.

  18. Environmental flows and water quality objectives for the River Murray.

    Science.gov (United States)

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    from many factors acting over a long period. Also, the health of the river varies along its length, from highly degraded to reasonably healthy, so it is clear that different approaches will be needed in the various river zones, with some problems requiring reach or even point scale solutions. Environmental flow needs have been determined through two major Expert Panel reports that identified the ecological priorities for the river. The next step is to translate these needs into feasible flow management actions that will provide the necessary hydrological conditions. Several investigations are underway to recommend options for flow management. Two important investigations are described in this paper: how to enhance flows to wetlands of national and international significance, and how to physically alter or change the operation of structures (including a dam, weir, lock, regulator, barrage or causeway), to provide significant environmental benefits. Early modelling suggests that the only option which has a positive environmental effect in all zones of the River is a reduction in overall water consumption.

  19. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    Science.gov (United States)

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  20. Fiscal 1999 survey on conservation of Jozankei hot spring. Survey report of hot spring alteration; 1999 nendo jozankei onsen hozen chosa. Onsen hendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    As a part of fiscal 1999 survey on conservation of Jozankei hot spring, a survey was made on the change of water composition in hot springs and rivers for the purpose of elucidating the cause of hot spring alteration. In the survey, sampling and water quality analysis were conducted once a month at four sources and one river point on the upstream side of Tsukimibashi bridge on the Toyohira river and at two sources and one river point between Tsukimibashi bridge and Takayamabashi bridge. Also carried out were sampling and constituent analysis at five points for river water of a wide area. The survey results were as follows. The pattern of change in spring water temperature was recognized such that it tended to rise in summer when river temperature was high and to fall in winter. Spring water temperature rose greatly at the time of higher water level like the thaw in some sources but conversely fell in other sources. The fluctuation trend in PH values was such that they mostly went up in April of snow melting time and in early August of much rain and went down in winter of little rain and less snowmelt. As for electric conductivity and dissolved constituents, it was recognized that the conductivity lowered and that the constituents decreased in concentration, all concurrently at the time of snowmelt and much rain. (NEDO)

  1. : Signal Decomposition of High Resolution Time Series River data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...

  2. Multitemporal analysis of the change of earth covering; high basin Guatiquia River - Low Sector

    International Nuclear Information System (INIS)

    Prieto Gonzalez, Jose Luis

    1999-01-01

    One of the basic functions inside the environmental administration has been the record of the variables of the natural environment. The earth covering corresponds to one of the elements that to the registered being and analyzed, shows with more fidelity the evolution of the environment. At the present time, and from their creation in 1992, the project Guatiquia River - PRG that covers 90.000 approximately has. Located between the Cundinamarca and Meta Departments, it has looked for to obtain the necessary technical elements to achieve a sustainable handling in the area, for it, it intended to be ahead a study that allows to quantify and to analyze the changes of the earth covering, reason for which, it was ahead the present study: multitemporal analysis of the change of earth covering high basin of the Guatiquia River low sector, for a total surface of 13997.64 hectares (corresponding to 15.8% of the area of action of the Project Guatiquia River), and having as basic tools the remote perception and the geographical information systems, it was carried out the prosecution of the information of earth covering in the study area for the years 1993 and 1997 starting from which, were determined and analyzed the changes of earth covering, they were presented in cartographic documents to scale 1:25.000, corresponding to a detailed study

  3. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary and the Amazon River plume were studied to elucidate processes which control the flux of nuclides to the sea. Major ions (Ca, Mg, Na, Cl, Bicarbonate) and selected trace elements (Ra, Ba, Cu, Si) are introduced to the Connecticut River in proportion to the total dissolved load of various groundwaters. Si, Ra, and Ba are subject to removal from solution by seasonal diatom productivity; whereas the other groundwater-derived elements are found in proportion to TDS both time and space. These nuclides are released in the estuary when a portion of the Ra, Ba, and Si in riverine biogenic detritus is trapped in salt marshes and coves bordering the estuary where it redissolves and is exported to the main river channel at ebb tide. In the Amazon River estuary, the Ra and Ba are released in mid-salinity waters. Ra and Ba together with Si are subsequently removed by diatom productivity as reflected in increased Ra and Ba in the suspended particles and depleted dissolved nuclide concentrations in samples from the high productivity zone. In both the Connecticut River system and the Amazon River plume, Cu behaves conservatively; whereas the fates of Fe and Al are linked to soil-derived humic acids. Trace elements in Amazon plume sediments are found simply in proportion to the percentage of fine-grained size materials, despite low Th-228/Ra-228 mean residence times in the plume and the presence of Cs-137 in the sediment column. Estimates of the total flux of nuclides to the oceans can best be calculated on a mass balance basis using groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is net flux to the ocean despite the reactions which occur in both rivers and estuaries

  4. Unraveling the effects of climate change and flow abstraction on an aggrading Alpine river

    Science.gov (United States)

    Bakker, Maarten; Costa, Anna; Adriao Silva, Tiago A.; Stutenbecker, Laura; Girardclos, Stéphanie; Loizeau, Jean-Luc; Molnar, Peter; Schlunegger, Fritz; Lane, Stuart N.

    2017-04-01

    Widespread temperature increase has been observed in the Swiss Alps and is most pronounced at high elevations. Alpine rivers are very susceptible to such change where large amounts of sediments are released from melting (peri)glacial environments and potentially become available for transport. These rivers are also impacted on a large scale by hydropower exploitation, where flow is commonly abstracted and transferred to a hydropower scheme. Whilst water is diverted, sediment is trapped at the intake and intermittently flushed down the river during short duration purges. Thus, these rivers are impacted upon by both climate and human forcing. In this study we quantify their relative and combined impacts upon the morphological evolution of an aggrading Alpine river. Our study focusses on the development of a sequence of braided reaches of the Borgne River (tributary of the Rhône) in south-west Switzerland. A unique dataset forms the basis for determining sediment deposition and transfer: (1) a set of high resolution Digital Elevation Models (DEMs) of the reaches was derived through applying Structure from Motion (SfM) photogrammetry to archival aerial photographs available for the period 1959-2014; (2) flow intake management data, provided by Grande Dixence SA, allowed the reconstruction of (up- and downstream) discharge and sediment supply since 1977. Subsequently we used climate data and transport capacity calculations to assess their relative impact on the system evolution over the last 25 years. Not surprisingly, considerable aggradation of the river bed (up to 5 meters) has taken place since the onset of flow abstraction in 1963: the abstraction of flow has substantially reduced sediment transport capacity whilst the sediment supply to the river was maintained. Although there was an initial response of the system to the start of abstraction in the 1960s, it was not before the onset of glacial retreat and the dry and warm years in the late 1980s and early 1990's

  5. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  6. Aspects of the physicochemical properties of Shadawanka River ...

    African Journals Online (AJOL)

    An investigation was carried out on some physicochemical properties of Shadawanka River in Bauchi between February and September 2007. The river was characterized by high temperature (>26oC) during the dry season, high conductivity (>204 ;Scm-1) reaching its peak in the wet season, high dissolved oxygen (>9.8 ...

  7. Current status of Marsh Crocodiles Crocodylus palustris (Reptilia: Crocodylidae in Vishwamitri River, Vadodara City, Gujarat, India

    Directory of Open Access Journals (Sweden)

    R. Vyas

    2012-11-01

    Full Text Available Data presented here is based on a three year study (2008-2010 on a population of Mugger Crocodylus palustris inhabiting Vishwamitri River near Vadodara City, Gujarat State, India. In total, 155 Muggers were counted in the 25km river stretch during 2010. In all, 40 burrows were observed along the river bank, and the same were clumped in certain sections of the river. Muggers fed eight species of birds, and domestic livestock in addition to scavenging. Eight instances of human-crocodile conflicts were observed including four human causalities. A total 90 Muggers were rescued from the urban areas and the same were relocated elsewhere in the river system. Various types of threats to Mugger were also noticed including habitat loss, alteration and soil erosion and mortality due to rail traffic. The present study suggests further research to propose strategies to conserve this population.

  8. Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile.

    Science.gov (United States)

    Haas, J; Olivares, M A; Palma-Behnke, R

    2015-05-01

    Hydropeaking operations can severely degrade ecosystems. As variable renewable sources (e.g. wind power) are integrated into a power grid, fluctuations in the generation-demand balance are expected to increase. In this context, compensating technologies, notably hydropower reservoir plants, could operate in a stronger peaking scheme. This issue calls for an integrated modeling of the entire power system, including not only hydropower reservoirs, but also all other plants. A novel methodology to study the link between the short-term variability of renewable energies and the subdaily hydrologic alteration, due to hydropower reservoir operations is presented. Grid operations under selected wind power portfolios are simulated using a short-term hydro-thermal coordination tool. The resulting turbined flows by relevant reservoir plants are then compared in terms of the Richard-Baker flashiness index to both the baseline and the natural flow regime. Those are then analyzed in order to: i) detect if there is a significant change in the degree of subdaily hydrologic alteration (SDHA) due to a larger wind penetration, and ii) identify which rivers are most affected. The proposed scheme is applied to Chile's Central Interconnect System (SIC) for scenarios up to 15% of wind energy penetration. Results show a major degree of SDHA under the baseline as compared to the natural regime. As wind power increases, so does the SDHA in two important rivers. This suggests a need for further ecological studies in those rivers, along with an analysis of operational constraints to limit the SDHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sixty Years of Geomorphic Change and Restoration Challenges on Two Unchannelized Reaches of the Missouri River

    Science.gov (United States)

    Elliott, C. M.; Jacobson, R. B.; Bulliner, E. A., IV

    2016-12-01

    The Missouri National Recreational River is a National Park Service unit that includes two Missouri River segments that despite considerable alterations to hydrology, retain some aspects of channel complexity similar to conditions present in the pre-dam Missouri River. Complexity has been lost through the construction of five large reservoirs in the Missouri River system and the channelization of the lower 1,200 kilometers of river downstream from the reservoirs. These two river segments on the Nebraska and South Dakota border consist of a 63-km long inter-reservoir segment below Fort Randall Dam and a 95-km segment below Gavins Point Dam, the downstream-most dam in the Missouri River system. We present an analysis from U.S. Army Corps of Engineers cross-section data spanning 60 years. Our analysis quantifies geomorphic adjustment and resultant changes in habitat diversity since 1955, two years prior to the closure of Gavins Point Dam. In the inter-reservoir segment, sedimentation at the confluence of the Niobrara River has created a transition zone from free-flowing river, to delta, to reservoir; this transition is moving upstream as sedimentation progresses. The delta ecosystem provides wetland habitat and recreational areas for fishing and hunting, yet sedimentation threatens infrastructure and reservoir storage. In both reaches, relatively high-elevation bare sandbars are used for nesting by the endangered least tern (Sternula antillarum) and the threatened piping plover (Charadrius melodus). Two large flood events, in 1997 and 2011, created the bulk of new sandbar nesting habitat on these river segments. Sandbars erode and vegetate between flood events, and in recent decades vegetation removal and costly mechanical sandbar construction have been used to maintain bare nesting sandbar habitat. Management decisions in the segment downstream from Gavins Point Dam include evaluating tradeoffs between maintaining sandbar habitat for nesting and allowing some

  10. Abandoned floodplain plant communities along a regulated dryland river

    Science.gov (United States)

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  11. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River

    Science.gov (United States)

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3-) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3 years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems.

  12. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  13. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  14. The Eel River, northwestern California; high sediment yields from a dynamic landscape

    Science.gov (United States)

    Thomas E. Lisle

    1990-01-01

    The Eel River draining the Coast Range of northwestern California has the highest recorded average suspended sediment yield per drainage area of any river of its size or larger unaffected by volcanic eruptions or active glaciers in the conterminous United States (1,720 t/km 2 yr from 9,390 km 2 ; Brown and Ritter, 1971).

  15. Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia)

    International Nuclear Information System (INIS)

    Van Damme, Paul Andre; Hamel, Caroli; Ayala, Alfredo; Bervoets, Lieven

    2008-01-01

    Several High Andes Rivers are characterized by inorganic water pollution known as acid mine drainage (AMD). The aim of this study was to assess the relationship between metal concentrations in the sediments and the macroinvertebrate communities in two river basins affected by AMD. In general, the taxon diversity of the macroinvertebrate community at the family level was low. The concentrations of Cd, Cu, Zn, Pb and Ni at mining sites were higher than at unpolluted sites. The pH of the water was alkaline (7.0-8.5) in unpolluted sites, whereas it dropped to very low values (<3) at mining sites. Redundancy Analysis (RDA) showed that pH was the best predictor of macroinvertebrate community richness. The number of macroinvertebrate families decreased gradually with increasing acidity, both in pools and riffles, though it is suggested that riffle communities were more affected because they are in closer contact with the acid water. - Community response to AMD

  16. Preliminary synthesis and assessment of environmental flows in the middle Verde River watershed, Arizona

    Science.gov (United States)

    Paretti, Nicholas; Brasher, Anne M. D.; Pearlstein, Susanna L.; Skow, Dena M.; Gungle, Bruce W.; Garner, Bradley D.

    2018-05-15

    analysis showed native fish in greater abundance in the upper-middle reaches of the Verde River watershed and generally decreasing with downstream distance. The median relative abundance of native fish decreased by 50 percent from reach 1 to reach 5. Using the reach scheme based on degree of flow alteration, nondiverted reaches were found to have a greater abundance of native fish than diverted reaches. In heavily diverted reaches, non-native species outnumbered native species.Fish metrics and stream-flow metrics for the 30, 90, and 365-day periods before collection were computed and the results analyzed statistically. Only abundance of all fish species was associated with the 30-day flow metrics. The 90-day flow metrics were generally positively associated with fish metrics, whereas the 365-day flow metrics had more negative correlations. In particular, significant relations were found between fish metrics and the magnitude and frequency of high flows, including maximum monthly flow, median annual number of high-flow events, and median annual maximum streamflow. Native sucker (Catostomidae) populations tended to decrease in periods of extended base flow, and fish in the non-native sunfish family (Centrarchidae) decreased in periods of flashy, high magnitude flows.A pilot study surveyed fish at five locations in the upper part of the middle Verde River watershed as a means to measure microhabitat availability and quantify native and non-native fish use of that available microhabitat. Results indicated that native and non-native species exhibit some clear differences in microhabitat use. Although at least some native and non-native fish were found in each velocity, depth, and substrate category, preferential microhabitat use was common. On a percentage basis, non-native species had a strong preference for slow-moving and deeper water with silt and sand substrate, with a secondary preference for faster moving and very shallow water and a coarse gravel substrate. Native

  17. Peculiarities of hydrobiont mutagenesis in complicated ecological areas of the Nemunas river and the Kurshiu marios lagoon

    International Nuclear Information System (INIS)

    Barshiene, J.

    1992-01-01

    Cytogenetic disturbances of Viviparus contectus, Dreisena polymorpha, various bivalves, fish and trematodes species collected from the Nemunas river above Smalininkai, Tilzhe, Rusne, Kurshiu marios lagoon at Nida, Preila, Juodkrante, estuaries of Smiltele (Klaipeda), Vente have been studied. The data show that the highest level of chromosome sets changes was presented at Smalininkai, Vente, Preila and in biotopes of Klaipeda environs. It was marked that 50 % of clams from Smalininkai site were polyploidy and possessed cancer cells in their tissues. The great instability of chromosome sets in snails and unchangeable karyotypes of their parasites were detected. In fish tissues there were 12-21 % of altered cells with aneuploid or polyploid sets. The existence of polyploid, mosaic and hermaphroditic specimens of clams as well as the presence of high amount of cancer cells and mitotic suppression in their tissues, enable to state about complicated ecological zones in the Nemunas river: below Kaunas, Smalininkai, Tilzhe, in the Kurshiu marios lagoon: Vente, environs of Klaipeda and estuaries of the Shventoji river additionally. The highest level of β activity was detected in soft tissues of bivalve specimens containing 24-58 % of hypoploid cells. (author). 5 tabs., 1 fig., 4 refs

  18. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats.

    Science.gov (United States)

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

  19. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  20. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  1. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  2. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  3. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    Science.gov (United States)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  4. Star River, A Champion of High-end Residence

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Star River(or Star Bay), an elite works of Hong Yu Group, is located in Sijixinghe Road, Chaoyang District, Beijing. It is a distinguished residence area, occupying land of 300 thousand sq.meters. The north side is a forest garden with 1600 or more mu, the eastern side is a green belt with more than 2000 mu.

  5. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.

    Science.gov (United States)

    Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran

    2018-06-22

    Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.

  6. FLOOD MODELING OF THE VUKA RIVER SECTION UPSTREAM OF ITS CONFLUENCE WITH THE DANUBE RIVER

    Directory of Open Access Journals (Sweden)

    Dario Marić

    2016-12-01

    Full Text Available In this paper, a section of the Vuka River from its confluence with the Danube River in Vukovar to 3 + 630 rkm was modeled. The possibility and size of floods in the surrounding area were analyzed for different return periods (2, 5, 10, 50, and 100 yrs. Although the high-water levels of the Danube River are lower than the terrain elevation of Vukovar, they cause backwater in the Vuka River and in its tributary, the Bobotski canal. In that indirect way, the surrounding area is endangered and the efficiency of drainage systems is reduced. The existing riverbed of the analyzed Vuka River section was digitalized based on a digital terrain model using the geographic information system (GIS software ArcGIS and the HEC-GeoRAS toolbar. A mathematical model of the steady-state flow of the Vuka river section using the digitized riverbed was executed in the HEC-RAS software using different return periods. The obtained velocities and water levels were analyzed using HEC-RAS, and the sizes of the flooded areas were calculated and observed in ArcGIS.

  7. Asian river fishes in the Anthropocene: threats and conservation challenges in an era of rapid environmental change.

    Science.gov (United States)

    Dudgeon, D

    2011-12-01

    This review compares and contrasts the environmental changes that have influenced, or will influence, fishes and fisheries in the Yangtze and Mekong Rivers. These two rivers have been chosen because they differ markedly in the type and intensity of prevailing threats. The Mekong is relatively pristine, whereas the Three Gorges Dam on the Yangtze is the world's largest dam representing the apotheosis of environmental alteration of Asian rivers thus far. Moreover, it is situated at the foot of a planned cascade of at least 12 new dams on the upper Yangtze. Anthropogenic effects of dams and pollution of Yangtze fishes will be exacerbated by plans to divert water northwards along three transfer routes, in part to supplement the flow of the Yellow River. Adaptation to climate change will undoubtedly stimulate more dam construction and flow regulation, potentially causing perfect storm conditions for fishes in the Yangtze. China has already built dams along the upper course of the Mekong, and there are plans for as many as 11 mainstream dams in People's Democratic Republic (Laos) and Cambodia in the lower Mekong Basin. If built, they could have profound consequences for biodiversity, fisheries and human livelihoods, and such concerns have stalled dam construction. Potential effects of dams proposed for other rivers (such as Nujiang-Salween) are also cause for concern. Conservation or restoration measures to sustain some semblance of the rich fish biodiversity of Asian rivers can be identified, but their implementation may prove problematic in a context of increasing Anthropocene alteration of these ecosystems. © 2011 The Author. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  8. Simulated and observed 2010 floodwater elevations in selected river reaches in the Pawtuxet River Basin, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to

  9. Factors affecting the occurrence of saugers in small, high-elevation rivers near the western edge of the species' natural distribution

    Science.gov (United States)

    Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.

    2005-01-01

    Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.

  10. Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

    Directory of Open Access Journals (Sweden)

    Amissah Gabriel Jonathan

    2017-04-01

    Full Text Available The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections (VO of the Lower Tisza River for the years of 1891, 1931, 1961, 1976 and 1999. The changes in mean depth and thalweg depth were studied in detail comparing three reaches of the studied section. In general, the thalweg incised during the studied period (1891-1931: 3 cm/y; 1931-1961: 1.3 cm/y and 1976-1999: 2.3 cm/y, except from 1961-1976 which was characterized by aggradation (2 cm/y. The mean depth increased, referring to an overall deepening of the river during the whole period (1891-1931: 1.4 cm/y; 1931-1961: 1.2 cm/y; 1961-1976: 0.6 cm/y and 1976-1999: 1.6 cm/y. The thalweg shifted more in the upper reach showing less stabile channel, while the middle and lower reaches had more stable thalweg. Although the cross-sections subjected to various human interventions experienced considerable incision in the short-term, the cross-sections free from direct human impact experienced the largest incision from 1891-1999, especially along the meandering sections.

  11. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  12. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  13. Application of ecohydraulic bank protection model to improve river bank stability and biotic community in Surabaya River

    Directory of Open Access Journals (Sweden)

    Daru Setyo Rini

    2017-10-01

    Full Text Available Ecohydraulic river bank protection design was developed as ECO-RIPRAP model and has been applied along 100 meter length to restore accelerated erosion sites in Surabaya River at Wringinanom and Klubuk. The model combined re-profiled and re-vegetated bank with rock toe reinforcement and addition of log groynes at 10 meter length interval. Various native plant species were planted on bank slopes, including water plants Ipomoea aquatica and Pistia stratiotes, grasses and shrubs Ipomoea carnea, Pluchea indica, Saccharum spontaneum, Arundo donax, and native tree species Ficus glomerata, Bambusa arundinacea, Dendrocalamus asper, Bambusa vulgaris, Ficus benjamina, Dillenia indica, Psidium guajava, Arthocarpus camansi, Arthocarpus elasticus, Hibiscus mutabilis, Nauclea sp., Inocarpus edulis, and Syzygium polyanthum. The river bank morphology after ECO-RIPRAP application showed alteration from erosion to sedimentation due to rock toe enforcement, log groynes protection, and increase of plant cover on littoral banks that decreased near bank velocity. The macro-invertebrate community shown increase of taxa richness, EPT richness, %EPT and %Atyidae, but decrease of %Chironomidae at restored sites. The fish community shown increase of taxa richness, increase of abundance by 54.2%, increase of Pangasius micronemus abundance by 25.6%, and increase of Hemibragus nemurus abundance by 6.3 % at restored reach. Rare fish species thrive back at restored area, namely Oxyeleotris marmorata, Mastacembelus unicolor and Hampala macrolepidota.

  14. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    Science.gov (United States)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  15. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Directory of Open Access Journals (Sweden)

    P. V. Caldwell

    2012-08-01

    Full Text Available Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic

  16. Modelling the Impacts of Changing Land Cover/Land Use and Climate on Flooding in the Elk River Watershed, British Columbia

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; Hopkinson, C.; MacDonald, R. J.; Johnson, D. L.

    2015-12-01

    The Elk River is a mountain watershed located along the eastern border of British Columbia, Canada. The Elk River is confined by railway bridges, roads, and urban areas. Flooding has been a concern in the valley for more than a century. The most recent major flood event occurred in 2013 affecting several communities. River modifications such as riprapped dykes, channelization, and dredging have occurred in an attempt to reduce inundation, with limited success. Significant changes in land cover/land use (LCLU) such as natural state to urban, forestry practices, and mining from underground to mountaintop/valley fill have changed terrain and ground surfaces thereby altering water infiltration and runoff processes in the watershed. Future climate change in this region is expected to alter air temperature and precipitation as well as produce an earlier seasonal spring freshet potentially impacting future flood events. The objective of this research is to model historical and future hydrological conditions to identify flood frequency and risk under a range of climate and LCLU change scenarios in the Elk River watershed. Historic remote sensing data, forest management plans, and mining industry production/post-mining reclamation plans will be used to create a predictive past and future LCLU time series. A range of future air temperature and precipitation scenarios will be developed based on accepted Global Climate Modelling (GCM) research to examine how the hydrometeorological conditions may be altered under a range of future climate scenarios. The GENESYS (GENerate Earth SYstems Science input) hydrometeorological model will be used to simulate climate and LCLU to assess historic and potential future flood frequency and magnitude. Results will be used to create innovative flood mitigation, adaptation, and management strategies for the Elk River with the intent of being wildlife friendly and non-destructive to ecosystems and habitats for native species.

  17. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  18. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  19. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  20. How disturbances and management practices affect bird communities in a Carpathian river ecosystem?

    Science.gov (United States)

    Lacko, Jozef; Topercer, Ján; Súľovský, Marek

    2018-04-01

    We studied how interactions between disturbances, succession, human alterations and other habitat and landscape attributes affect bird community patterns in a lower reach of a large West Carpathian river Váh with complex disturbance and alteration histories. Breeding-bird communities, their habitats (54 variables) and surrounding landscapes (11 metrics) were sampled using standardized point counts with limited distances at 40 riparian sites divided among two transects along a 12.9 km river stretch. The most frequent and abundant birds were generalists typically associated with forest edge habitats, such as Parus major, Sylvia atricapilla, Fringilla coelebs, Oriolus oriolus, Phylloscopus collybita, Sturnus vulgaris, Turdus merula and Luscinia megarhynchos. Abundances show significant increase at the lower transect responding apparently to greater size and heterogeneity of riparian habitats and more abundant food supply linked to more diverse and intense human influences in a suburban zone. Both indirect (NMDS) and direct ordination (CCA) revealed remarkably large number of evenly important factors underlying riparian bird-habitat interactions. It suggests considerable environmental heterogeneity and complexity of these interactions as a likely outcome of long and complex disturbance and alteration histories of the area. Yet structure and relative importance of first two gradients (longitudinal and lateral linkages) remains simple and stable, complying well with predictions of river continuum concept and stream ecosystem theory. Of the nine statistically significant variables most strongly correlated with first two CCA axes, percentages of Helianthus tuberosus, footpaths, fields, Calystegia sepium and steep banks uphold our hypotheses predicting significant effects of invasive species, visitor disturbances, agricultural land use and unaltered river banks/bed on bird community composition and structure. A small but significant contribution of patch size standard

  1. Fish assemblage relationships with physical characteristics and presence of dams in three eastern Iowa rivers

    Science.gov (United States)

    Pierce, Clay; Nicholas L. Ahrens,; Anna K. Loan-Wilsey,; Gregory A. Simmons,; Gregory T. Gelwicks,

    2013-01-01

    Fish assemblages in rivers of the Midwestern United States are an important component of the region's natural resources and biodiversity. We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15 being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical characteristics along a river's course difficult to discern.

  2. Groundwater controls on river channel pattern

    Science.gov (United States)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a

  3. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  4. Mechanical alterations during interval-training treadmill runs in high-level male team-sport players.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2017-01-01

    To examine mechanical alterations during interval-training treadmill runs in high-level team-sport players. Within-participants repeated measures. Twenty high-level male field-hockey players performed six 30-s runs at 5.53±0.19ms -1 corresponding to 115% of their velocity associated with maximal oxygen uptake (vVO 2max ) with 30-s passive recovery on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were performed and values were subsequently averaged over 20s (8th-28ths) for comparison. Contact time (+1.1±4.3%; p=0.044), aerial time (+4.1±5.3%; p=0.001), step length (+2.4±2.2%; pteam-sport players modified their mechanical behaviour towards lower vertical stiffness while preserving a constant leg stiffness. Maintenance of running velocity induced longer step lengths and decreased step frequencies that were also accompanied by increased impact loading rates. These mechanical alterations occurred early during the set. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  6. Dependency of high coastal water level and river discharge at the global scale

    Science.gov (United States)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  7. Composition patterns of waterbirds from La Vieja River, Geographic Valley of Cauca River, Colombia

    International Nuclear Information System (INIS)

    Ramirez Urrea, Laura Milena; Arbelaez Cortes, Enrique; Marin Gomez, Oscar Humberto; Duque Montoya, Diego

    2014-01-01

    We compiled and analyzed data gathered from observations during the period 2001-2013 in three sectors along La Vieja River, located in the Cauca River Valley, Colombia. We describe spatial and temporal aspects of such dataset, focusing in indentify patterns of species' composition and abundance. We recorded 28 waterbird species in 33 transects, being 22 species observed in more than 50 % of these transects. The species richness among transects did not shows significant differences. However, two cluster analyses, considering both presence/absence and abundance data, showed that there is spatial structure in the species composition along the river. In contrast, although observations were conducted during more than ten years there is no evidence of temporal changes in species composition. Still, some species showed increase or decrease trends in their frequency. We present a new record for one species (Chloroceryle aenea) for the region. Despite that the landscape surrounding La Vieja River has faced a high anthropogenic impact; the river still presents a significant diversity of waterbirds, which could add value to the conservation plans in the zone.

  8. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Science.gov (United States)

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  9. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  10. Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions

    Science.gov (United States)

    Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy

    2009-01-01

    The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.

  11. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    Science.gov (United States)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how

  12. 76 FR 18669 - Safety Zone, Newport River; Morehead City, NC

    Science.gov (United States)

    2011-04-05

    ...-AA00 Safety Zone, Newport River; Morehead City, NC AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... River under the main span US 70/Morehead City--Newport River high rise bridge in Carteret County, NC... Newport River at Morehead City, North Carolina. The contract provides for cleaning, painting, and steel...

  13. 76 FR 23227 - Safety Zone, Newport River; Morehead City, NC

    Science.gov (United States)

    2011-04-26

    ...-AA00 Safety Zone, Newport River; Morehead City, NC AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... River under the main span US 70/Morehead City--Newport River high rise bridge in Carteret County, NC... Newport River at Morehead City, North Carolina. The contract provides for cleaning, painting, and steel...

  14. Development of a channel classification to evaluate potential for cottonwood restoration, lower segments of the Middle Missouri River, South Dakota and Nebraska

    Science.gov (United States)

    Jacobson, Robert B.; Elliott, Caroline M.; Huhmann, Brittany L.

    2010-01-01

    -surface elevations. Whereas hydraulically modeled water-surface elevations were available at 1.6-kilometer intervals in the Lower Missouri River, water-surface elevations in the Middle Missouri River had to be interpolated between streamflow-gaging stations spaced 3–116 kilometers. Lack of high-resolution water-surface elevation data precludes development of LCPI-like classification maps.An hierarchical river classification framework is proposed to provide structure for a multiscale river classification. The segment-scale classification presented in this report is deductive and based on presumed effects of dams, significant tributaries, and geological (and engineered) channel constraints. An inductive reach-scale classification, nested within the segment scale, is based on multivariate statistical clustering of geomorphic data collected at 500-meter intervals along the river. Cluster-based classifications delineate reaches of the river with similar channel and flood-plain geomorphology, and presumably, similar geomorphic and hydrologic processes. The dominant variables in the clustering process were channel width (Fort Randall) and valley width (Sharpe), followed by braiding index (both segments).Clusters with multithread and highly sinuous channels are likely to be associated with dynamic channel migration and deposition of fresh, bare sediment conducive to natural cottonwood germination. However, restoration potential within these reaches is likely to be mitigated by interaction of cottonwood life stages with the highly altered flow regime.

  15. Flood-inundation Maps for the Deerfield River, Franklin County, Massachusetts, from the Confluence with the Cold River Tributary to the Connecticut River

    Science.gov (United States)

    Lombard, Pamela J.; Bent, Gardner C.

    2015-09-02

    The U.S. Geological Survey developed flood elevations in cooperation with the Federal Emergency Management Agency for a 30-mile reach of the Deerfield River from the confluence of the Cold River tributary to the Connecticut River in the towns of Charlemont, Buckland, Shelburne, Conway, Deerfield, and Greenfield in Franklin County, Massachusetts to assist land owners, and emergency management workers prepare for and recover from floods. Peak flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities were computed for the reach from updated flood-frequency analyses. These peak flows were routed through a one-dimensional step-backwater hydraulic model to obtain the corresponding peak water-surface elevations and to place the tropical storm Irene flood of August 28, 2011 into historical context. The hydraulic model was calibrated by using current [2015] stage-discharge relations at two U.S. Geological Survey streamgages in the study reach—Deerfield River at Charlemont, MA (01168500) and Deerfield River near West Deerfield, MA (01170000)—and from documented high-water marks from the tropical storm Irene flood, which had between a 1- and 0.2-percent AEP.

  16. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  17. One-dimensional models for mountain-river morphology

    NARCIS (Netherlands)

    Sieben, A.

    1996-01-01

    In this report, some classical and new simplifications in mathematical and numerical models for river morphology are compared for conditions representing rivers in mountainous areas (high values of Froude numbers and relatively large values of sediment transport rates). Options for simplification

  18. Source, habitat and nutrient enrichment effects on decomposition of detritus in Lower Mississippi River Basin bayous

    Science.gov (United States)

    Potential differences in storage and processing of detritus in agricultural landscapes may alter freshwater ecosystem function. We compared decomposition rates of maize (Zea mays) and willow oak (Quercus phellos) from three bayous located within the Lower Mississippi River Basin of NW Mississippi, ...

  19. Nesting habitat use by river chubs in a hydrologically variable Appalachian tailwater

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Brandon K. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Orth, Donald J. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Frimpong, Emmanuel A. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2013-07-02

    Hydrologic alteration continues to affect aquatic biodiversity asknowledge of the spawning requirements of fishes, especially keystone or foundation species, becomes more critical for conservation and management. Our objectives are to quantify the spawning micro- and mesohabitat use of river chub Nocomis micropogon, a gravel mound nesting minnow, in a hydrologically regulated river in North Carolina, USA. At the microhabitat scale, substrate sizes on nests were compared with pebble counts in 1-m2 adjacent quadrats. Average depths and current velocities at nests were compared with measurements from paired transects. At the mesohabitat scale, generalised linear mixed models (GLMMs) were used to identify the importance of average bed slope, average depth and percentages of rock outcrops (a measure of flow heterogeneity and velocity shelters) for predicting nest presence and abundance. To relate nesting activities to hydrologic alteration from dam operation, nest dimensions were measured before and after a scheduled discharge event approximately six times that of base flow. In addition, linear regression was used to predict changes in the use of flow refugia and overhead cover with increased fluvial distance from the dam. Microhabitats in which nests were placed had, on average, slower current velocities and shallower depths. Gravel diameters of nests were significantly smaller than substrate particles adjacent to nests. GLMMs revealed that mesohabitats with nests were shallower, had more moderate slopes and greater proportions of rock outcrops than mesohabitats without nests. Finally, the scheduled discharge event significantly flattened nests. Near the dam, nests were built in close proximity ( 2 m) to velocity shelters; this relationship diminished with distance from the dam. River chubs are spawning habitat specialists. Because multiple species rely on river chub nests for reproduction and food, the needs of this species should be considered when managing instream

  20. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  1. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy's Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized

  2. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

    Science.gov (United States)

    Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott

    2011-01-01

    Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not

  3. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    Science.gov (United States)

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  4. Impacts of Land Use Change on the Natural Flow Regime: A Case Study in the Meramec River Watershed in Eastern Missouri, USA

    Science.gov (United States)

    Wu, C. L.; Knouft, J.; Chu, M.

    2017-12-01

    The natural flow regime within a watershed can be considered as the expected temporal patterns of streamflow variation in the absence of human impacts. While ecosystems have evolved to function under these conditions, the natural flow regime of most rivers has been significantly altered by human activities. Land use change, including the development of agriculture and urbanization, is a primary cause of the loss of natural flow regimes. These changes have altered discharge volume, timing, and variability, and consequently affected the structure and functioning of river ecosystems. The Meramec River watershed is located in east central Missouri and changes in land use have been the primary factor impacting flow regimes across the watershed. In this study, a watershed model, the Soil and Water Assessment Tool (SWAT), was developed to simulate a long-term time series of streamflow (1978-2014) within the watershed. Model performance was evaluated using statistical metrics and graphical technique including R-squared, Nash-Sutcliffe efficiency, cumulative error, and 1:1-ratio comparison between observed and simulated variables. The calibrated and validated SWAT model was then used to quantify the responses of the watershed when it was a forested natural landscape. An Indicator of Hydrologic Alteration (IHA) approach was applied to characterize the flow regime under the current landcover conditions as well as the simulated natural flow regime under the no land use change scenario. Differences in intra- and inter-annual ecologically relevant flow metrics were then compared using SWAT model outputs in conjunction with the IHA approach based on model outputs from current and no land use change conditions. This study provides a watershed-scale understanding of effects of land use change on a river's flow variability and provides a framework for the development of restoration plans for heavily altered watersheds.

  5. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau.

    Science.gov (United States)

    Qu, Bin; Sillanpää, Mika; Li, Chaoliu; Kang, Shichang; Stubbins, Aron; Yan, Fangping; Aho, Kelly Sue; Zhou, Feng; Raymond, Peter A

    2017-01-01

    The role played by river networks in regional and global carbon cycle is receiving increasing attention. Despite the potential of radiocarbon measurements (14C) to elucidate sources and cycling of different riverine carbon pools, there remain large regions such as the climate-sensitive Tibetan Plateau for which no data are available. Here we provide new 14C data on dissolved organic carbon (DOC) from three large Asian rivers (the Yellow, Yangtze and Yarlung Tsangpo Rivers) running on the Tibetan Plateau and present the carbon transportation pattern in rivers of the plateau versus other river system in the world. Despite higher discharge rates during the high flow season, the DOC yield of Tibetan Plateau rivers (0.41 gC m-2 yr-1) was lower than most other rivers due to lower concentrations. Radiocarbon ages of the DOC were older/more depleted (511±294 years before present, yr BP) in the Tibetan rivers than those in Arctic and tropical rivers. A positive correlation between radiocarbon age and permafrost watershed coverage was observed, indicating that 14C-deplted/old carbon is exported from permafrost regions of the Tibetan Plateau during periods of high flow. This is in sharp contrast to permafrost regions of the Arctic which export 14C-enriched carbon during high discharge periods.

  6. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Science.gov (United States)

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  7. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    Science.gov (United States)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  8. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  9. The Planform Mobility of Large River Channel Confluences

    Science.gov (United States)

    Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul

    2017-04-01

    Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock

  10. High Variability Is a Defining Component of Mediterranean-Climate Rivers and Their Biota

    Directory of Open Access Journals (Sweden)

    Núria Cid

    2017-01-01

    Full Text Available Variability in flow as a result of seasonal precipitation patterns is a defining element of streams and rivers in Mediterranean-climate regions of the world and strongly influences the biota of these unique systems. Mediterranean-climate areas include the Mediterranean Basin and parts of Australia, California, Chile, and South Africa. Mediterranean streams and rivers can experience wet winters and consequent floods to severe droughts, when intermittency in otherwise perennial systems can occur. Inter-annual variation in precipitation can include multi-year droughts or consecutive wet years. Spatial variation in patterns of precipitation (rain vs. snow combined with topographic variability lead to spatial variability in hydrologic patterns that influence populations and communities. Mediterranean streams and rivers are global biodiversity hotspots and are particularly vulnerable to human impacts. Biomonitoring, conservation efforts, and management responses to climate change require approaches that account for spatial and temporal variability (including both intra- and inter-annual. The importance of long-term data sets for understanding and managing these systems highlights the need for sustained and coordinated research efforts in Mediterranean-climate streams and rivers.

  11. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  12. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    Science.gov (United States)

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  13. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    Science.gov (United States)

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  14. Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)

    Science.gov (United States)

    Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh

    2018-03-01

    Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.

  15. Estimating abundance without recaptures of marked pallid sturgeon in the Mississippi River.

    Science.gov (United States)

    Friedenberg, Nicholas A; Hoover, Jan Jeffrey; Boysen, Krista; Killgore, K Jack

    2018-04-01

    Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark-recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12-year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model-averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5-15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6-8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0-9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil-recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure. © 2017 Society for Conservation Biology.

  16. Occurrence of polycyclic aromatic hydrocarbons in surface sediments of a highly urbanized river system with special reference to energy consumption patterns

    International Nuclear Information System (INIS)

    Zhang Kai; Wang Jizhong; Liang Bo; Zeng, Eddy Y.

    2011-01-01

    Sediment samples collected from downstream of the Dongjiang River, a highly urbanized river network within the Pearl River Delta of South China, were analyzed for 28 polycyclic aromatic hydrocarbons (PAHs). Total concentrations of 28 PAHs, 16 priority PAHs designated by the United States Environmental Protection Agency (USEPA) and the seven carcinogenic PAHs classified by the USEPA ranged from 480 to 4600, 100 to 3400 and 10 to 1700 ng/g dry weight, respectively. Principal component analysis-based stepwise multivariate linear regression showed that sediment PAHs were predominantly derived from coal combustion, refined fossil fuel combustion and oil spills, accounting for 37%, 32% and 23%, respectively, of the total loading. The levels of sediment PAHs remained steady from 2002 to 2008, during which fossil fuel consumption had doubled, probably reflecting efforts to control PAH emissions from fossil fuel combustion. Finally, use of natural gas and liquefied petroleum gas in automobiles should be encouraged to improve environmental quality. - Highlights: → PAHs in sediment showed similar input sources as those in air particles. → Combustion of fossil fuel is the predominant source for sediment PAHs. → Local efforts to control PAHs emissions from fossil fuel combustion were effective. → Promotion of natural gas and liquefied petroleum gas can reduce emissions of PAHs. - Occurrence of PAHs in surface sediments from a highly urbanized river system is assessed in relation to energy consumption patterns.

  17. Analysis of VIA and EbA in a River Bank Erosion Prone Area of Bangladesh Applying DPSIR Framework

    Directory of Open Access Journals (Sweden)

    Syed Hafizur Rahman

    2016-10-01

    Full Text Available This study aims to set up a comprehensive approach to the Vulnerability and Impact Assessment (VIA of river erosion and to suggest Ecosystem-based Adaptation (EbA practices. Based on the analysis of vulnerability using the Driver-Pressure-State-Impact-Response (DPSIR framework, this paper discusses some of the significant climatic (rainfall pattern, temperature, seasonal drift, cold wave and heat wave and non-climatic (river erosion, repetitive death of field crops and agrochemicals forces in the Kazipur Upazila (Sirajganj District—a river erosion-prone area of Bangladesh. Both primary (Key Informants Interview, Household Survey, and Focus Group Discussion and secondary (climatic, literature review data have been used in revealing the scenario of climatic stress. The analysis revealed a slightly increasing trend of mean annual temperature, and a decreasing trend of total annual rainfall from 1981 to 2015, which have been supported by people’s perception. This study found that river erosion, the increase of temperature and the late arrival of monsoon rain, excessive monsoon rainfall, high use of agrochemicals, and flow alterations are major drivers in the riverine ecosystem. These drivers are creating pressures on agricultural land, soil fertility, water availability and livelihood patterns of affected communities. Hence, floating bed cultivation, integrated pest management, use of cover crops, reforestation, the introduction of an agro-weather forecasting system, and a new variety of flood tolerant species have been suggested as potential EbA to cope with river bank erosion and to increase the capacity of the affected ecosystem.

  18. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkus, M.R.; Wein, G.R. [eds.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  19. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  20. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    Science.gov (United States)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment

  1. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks

    International Nuclear Information System (INIS)

    Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun

    2013-01-01

    Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L −1 . The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. -- Highlights: •Antibiotics were ubiquitous in the river water and costal water in the Pearl River Delta. •Antibiotics exhibited distinct temporal and spatial trends in the riverine runoff outlets. •Annual outflows of antibiotics were 193 tons from the Pearl River to coastal ocean. •Some antibiotics posed high risks to some organisms in the PRD environments. -- Antibiotics were ubiquitous in the river and coastal water in the Pearl River Delta and posed various ecological risks to the relevant aquatic organisms

  2. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Science.gov (United States)

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  3. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    Science.gov (United States)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  4. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    Science.gov (United States)

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  5. Environmental evaluation of Turkey's transboundary rivers' hydropower systems

    International Nuclear Information System (INIS)

    Berkun, M.

    2010-01-01

    The hydroelectric power and potential environmental impacts of hydroelectric projects in 2 transboundary rivers in Turkey were assessed. The southeastern Anatolia project (GAP) is expected to encompass 27 dams and 19 hydroelectric power plants. The large-scale project will increase domestic electricity production and help to provide irrigation for large agricultural schemes. The Coruh project will consist of 27 dams and hydroelectric power plants, which are expected to have serious environmental impacts in both upstream Turkey and downstream Georgia. A slowing down of each river's velocity will cause changes in sediment transport, while the storage of water in large reservoirs will alter water quality and cause changes in local micro-climates. Irrigation methods may cause soil erosion and salinization. The construction of 2 GAP dams on the Tigris and Euphrates rivers has caused protest from Syria and Iraq. Economic development in the regions caused by the proposed hydroelectric projects is expected to have significant environmental impacts on woodland and grassland areas. The projects are expected to adversely affect threatened plant, mammal, and fish species. More detailed cumulative impact and environmental impact assessments are needed to evaluate the economic, environmental, and social problems that are likely to arise as a result of the projects. 17 refs., 3 tabs., 6 figs.

  6. Proceedings of the 14. workshop of the Committee on River Ice Processes and the Environment : hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Morse, B.; Bergeron, N.; Gauthier, Y.

    2007-01-01

    Ice processes play a significant role in the hydrologic regime of Canadian rivers. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. This workshop reviewed the hydraulic aspects of river ice phenomena in an effort to clarify the effects of ice cover on river flow characteristics. Other issues of concern were also discussed, notably ice formation, ice jams, winter operation of hydroelectric power plants, environmental aspects of river ice, and climate change. The workshop featured 12 poster sessions and 40 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs

  7. Mobilisation, alteration, and redistribution of monosulfidic sediments in inland river systems.

    Science.gov (United States)

    Cheetham, M D; Wong, V N L; Bush, R T; Sullivan, L A; Ward, N J; Zawadzki, A

    2012-12-15

    The accumulation of monosulfidic sediments in inland waterways is emerging as a major environmental issue. Mobilisation and suspension of monosulfidic sediments can result in deoxygenation, acidification of the water column and mobilisation of trace metals. The controls on monosulfidic sediment mobilisation and the critical thresholds for its scour and entrainment have not been established. This study examines the effect of a minor flood event (average return interval of 5 years) on sulfidic sediment scour in the Wakool River in southern NSW, Australia. Five profiles were sampled within a small (~300 m) reach before and after a minor flood event to determine the degree of sediment scour and transport. The results indicate substantial scour of both monosulfidic sediments and underlying bed sediments (approximately 2100 m(3)). Changes in the sediment geochemistry suggest large concentrations of monosulfidic sediments had been suspended in the water column, partially-oxidised and redeposited. This is supported by (210)Pb results from one of the profiles. These results suggest that these monosulfidic sediments can move as bed load during minor flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evaluating interception of larval pallid sturgeon on the Lower Missouri River- data acquisition, interpolation, and visualization

    Science.gov (United States)

    Bulliner, E. A., IV; Erwin, S. O.; Anderson, B. J.; Wilson, H.; Jacobson, R. B.

    2016-12-01

    The transition from endogenous to exogenous feeding is an important life-stage transition for many riverine fish larvae. On the Missouri River, U.S., riverine alteration has decreased connectivity between the navigation channel and complex, food-producing and foraging areas on the channel margins, namely shallow side channels and sandbar complexes. A favored hypothesis, the interception hypothesis, for recruitment failure of pallid sturgeon is that drifting larvae are not able to exit the highly engineered navigation channel, and therefore starve. We present work exploring measures of hydraulic connectivity between the navigation channel and channel margins using multiple data-collection protocols with acoustic Doppler current profilers (ADCPs). As ADCP datasets alone often do not have high enough spatial resolution to characterize interception and connectivity sufficiently at the scale of drifting sturgeon larvae, they are often supplemented with physical and empirical models. Using boat-mounted ADCPs, we collected 3-dimensional current velocities with a variety of driving techniques (specifically, regularly spaced transects, reciprocal transects, and irregular patterns) around areas of potential larval interception. We then used toolkits based in Python to interpolate 3-dimensional velocity fields at spatial scales finer than the original measurements, and visualized resultant velocity vectors and flowlines in the software package Paraview. Using these visualizations, we investigated the necessary resolution of field measurements required to model connectivity with channel margin areas on large, highly engineered river ecosystems such as the Missouri River. We anticipate that results from this work will be used to help inform models of larval interception under current conditions. Furthermore, results from this work will be useful in developing monitoring strategies to evaluate the restoration of channel complexity to support ecological functions.

  9. Wood and Sediment Dynamics in River Corridors

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  10. Comparative Influences of Precipitation and River Stage on Groundwater Levels in Near-River Areas

    Directory of Open Access Journals (Sweden)

    Incheol Kim

    2015-12-01

    Full Text Available The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL, as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.

  11. River predisposition to ice jams: a simplified geospatial model

    Directory of Open Access Journals (Sweden)

    S. De Munck

    2017-07-01

    Full Text Available Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence. Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases. Results, limitations, and potential improvements are discussed.

  12. The Availability and Utilization of School Library Resources in Some Selected Secondary Schools (High School) in Rivers State

    Science.gov (United States)

    Owate, C. N.; Iroha, Okpa

    2013-01-01

    This study investigates the availability and utilization of school library resources by Secondary School (High School) Students. Eight Selected Secondary Schools in Rivers State, Nigeria were chosen based on their performance in external examinations and geographic locations. In carrying out the research, questionnaires were administered to both…

  13. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ...-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone during the ``NAS Patuxent River... held over certain waters of the Patuxent River adjacent to Patuxent River, Maryland from September 1...

  14. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  15. A river to ruin : why are Americans fighting so hard to protect British Columbia's Flathead River from a strip mine?

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.

    2008-06-15

    The Cline Mining Corporation has proposed an open-pit mine to extract 2 million tonnes of coal annually in the Flathead Valley of British Columbia (BC). The Flathead Valley is known internationally for the richness of its flora and fauna. After the Flathead River crosses the border into Montana, it is managed under the most restrictive environmental protection laws available in the United States. The project is expected to be the first in a series of energy projects that will ravage the valley in the near future. Major energy companies are planning to open mines at sites within the Flathead River flood plain. The low quality coal obtained from the valley will be used to supply the unregulated economies of China, India, and Brazil. The valley is situated at the convergence of several biogeoclimatic zones and is home to a rich mix of plants and animals, including the highest concentration of grizzly bears in North America. The BC government's regulatory mechanism is not able to prevent exploitation of the region. Scientists from around the world have unanimously agreed that the mine should not be opened. Tailings from other mines currently draining into the Flathead River are now beginning to alter the river's chemistry. The federal government has been unsuccessful in its bid to create a national park in the region. It was concluded that unless land use regulations for the area are changed, the valley will inevitably be developed. 13 figs.

  16. Formulation of SYNROC-D additives for Savannah River Plant high-level radioactive waste

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Burr, K.; Rozsa, R.

    1981-12-01

    SYNROC-D is a multiphase ceramic waste form consisting of nepheline, zirconolite, perovskite, and spinel. It has been formulated for the immobilization of high-level radioactive wastes now stored at Savannah River Plant (SRP) near Aiken, South Carolina. This report utilizes existing experimental data to develop a method for calculating additives to these waste products. This method calculates additions based on variations of mineral compositions as a function of sludge composition and radionuclide partitioning among the SYNROC phases. Based on these calculations, a FORTRAN program called ADSYN has been developed to determine the proper reagent proportions to be added to the SRP sludges

  17. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.

    Science.gov (United States)

    Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat

    2007-09-01

    The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).

  18. Process technology for vitrification of defense high-level waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.

    1984-01-01

    Vitrification in borosilicate glass is now the leading worldwide process for immobilizing high-level radioactive waste. Each vitrification project, however, has its unique mission and technical challenges. The Defense Waste Vitrification Facility (DWPF) now under construction at the Savannah River Plant will concentrate and vitrify a large amount of relatively low-power alkaline waste. Process research and development for the DWPF have produced significant advances in remote chemical operations, glass melting, off-gas treatment, slurry handling, decontamination, and welding. 6 references, 1 figure, 5 tables

  19. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    International Nuclear Information System (INIS)

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-01-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ 18 O-H 2 O) as well as those of nitrate (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal

  20. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER High pressure germination of Bacillus subtilis spores with W911NF-09-l-0286 alterations in levels and types of...A moderate high pressure (mHP) of 150 megaPascals (MPa) triggers germination of Bacillus subtilis spores via germinant receptors (GRs), while...germination by a very high pressure (vHP) of550 MPa is GR-independent. The mHP and vHP germination of Bacillus subtilis spores with different levels ofGRs

  1. Assessing the Global Extent of Rivers Observable by SWOT

    Science.gov (United States)

    Pavelsky, T.; Durand, M. T.; Andreadis, K.; Beighley, E.; Allen, G. H.; Miller, Z.

    2013-12-01

    Flow of water through rivers is among the key fluxes in the global hydrologic cycle and its knowledge would advance the understanding of flood hazards, water resources management, ecology, and climate. However, gauges providing publicly accessible measurements of river stage or discharge remain sparse in many regions. The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and the French Centre National d'Etudes Spatiales (CNES) that would provide the first high-resolution images of simultaneous terrestrial water surface height, inundation extent, and ocean surface elevation. Among SWOT's primary goals is the direct observation of variations in river water surface elevation and, where possible, estimation of river discharge from SWOT measurements. The mission science requirements specify that rivers wider than 100 m would be observed globally, with a goal of observing rivers wider than 50m. However, the extent of anticipated SWOT river observations remains fundamentally unknown because no high-resolution, global dataset of river widths exists. Here, we estimate the global extent of rivers wider than 50 m-100 m thresholds using established relationships among river width, discharge, and drainage area. We combine a global digital elevation model with in situ river discharge data to estimate the global extent of SWOT-observable rivers, and validate these estimates against satellite-derived measurements of river width in two large river basins (the Yukon and the Ohio). We then compare the extent of SWOT-observed rivers with the current publicly-available, global gauge network included in the Global Runoff Data Centre (GRDC) database to examine the impact of SWOT on the availability of river observation over continental and global scales. Results suggest that if SWOT observes 100 m wide rivers, river basins with areas greater than 50,000 km2 will commonly be measured. If SWOT could observe 50 m wide rivers, then most 10,000 km2 basins

  2. Effects of slope smoothing in river channel modeling

    Science.gov (United States)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  3. Managing River Resources: A Case Study Of The Damodar River, India

    Science.gov (United States)

    Bhattacharyya, K.

    2008-12-01

    The Damodar River, a subsystem of the Ganga has always been a flood-prone river. Recorded flood history of the endemic flood prone river can be traced from 1730 onwards. People as well as governments through out the centuries have dealt with the caprices of this vital water resource using different strategies. At one level, the river has been controlled using structures such as embankments, weir, dams and barrage. In the post-independent period, a high powered organization known as the Damodar Valley Corporation (DVC), modeled on the Tennessee Valley Authority (TVA) came into existence on 7th July 1948. Since the completion of the reservoirs the Lower Damodar has become a 'reservoir channel' and is now identified by control structures or cultural features or man made indicators. Man-induced hydrographs below control points during post-dam period (1959-2007) show decreased monsoon discharge, and reduced peak discharge. In pre-dam period (1933-1956) return period of floods of bankfull stage of 7080 m3/s had a recurrence interval of 2 years. In post-dam period the return period for the bankfull stage has been increased to 14 years. The Damodar River peak discharge during pre-dam period for various return periods are much greater than the post-dam flows for the same return periods. Despite flood moderation by the DVC dams, floods visited the river demonstrating that the lower valley is still vulnerable to sudden floods. Contemporary riverbed consists of series of alluvial bars or islands, locally known as mana or char lands which are used as a resource base mostly by Bengali refugees. At another level, people have shown great resourcefulness in living with and adjusting to the floods and dams while living on the alluvial bars. People previously used river resources in the form of silt only but now the semi-fluid or flexible resource has been exploited into a permanent resource in the form of productive sandbars. Valuable long-term data from multiple sources has been

  4. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    Science.gov (United States)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall

  5. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  6. Control options for river water quality improvement: a case study of ...

    African Journals Online (AJOL)

    Using a simple conceptual dynamic river water quality model, the effects of different basin-wide water quality management options on downstream water quality improvements in a semi-arid river, the Crocodile River (South Africa) were investigated. When a river is impacted by high rates of freshwater withdrawal (in its ...

  7. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Directory of Open Access Journals (Sweden)

    Frants H Jensen

    Full Text Available Toothed whales (Cetacea, odontoceti use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica and Irrawaddy dolphins (Orcaella brevirostris within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191 re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  8. Savannah River waste management program plan

    International Nuclear Information System (INIS)

    1980-04-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River contractors for the Fiscal Year 1980. In addition, the document projects activities for several years beyond 1980 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes

  9. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system

    Science.gov (United States)

    Wang, Deli; Lin, Wenfang; Yang, Xiqian; Zhai, Weidong; Dai, Minhan; Arthur Chen, Chen-Tung

    2012-12-01

    This study for the first time examined dissolved metals (Cu, Cd, and Mn) together with dissolved oxygen and carbonate system in the whole Pearl River Estuary system, from the upper rivers to the groundwater discharges until the estuarine zone, and explored their potential impacts in the adjacent northern South China Sea (SCS) during May-August 2009. This river-groundwater-estuary system was generally characterized by low dissolved metal levels as a whole, whilst subject to severe perturbations locally. In particular, higher dissolved Cu and Cd occurred in the North River (as high as 60 nmol/L of Cu and 0.99 nmol/L of Cd), as a result of an anthropogenic source from mining activities there. Dissolved Cu levels were elevated in the upper estuary near the city of Guangzhou (Cu: ˜40 nmol/L), which could be attributable to sewage and industrial effluent discharges there. Elevated dissolved metal levels (Cu: ˜20-40 nmol/L; Cd: ˜0.2-0.8 nmol/L) also occurred in the groundwaters and parts of the middle and lower estuaries, which could be attributable to a series of geochemical reactions, e.g., chloride-induced desorption from the suspended sediments, oxidation of metal sulfides, and the partial dissolution of minerals. The high river discharge during our sampling period (May-August 2009) significantly diluted anthropogenic signals in the estuarine mixing zone. Of particular note was the high river discharge (which may reach 18.5 times as high as in the dry season) that transported anthropogenic signals (as indicated by dissolved Cu and Cd) into the adjacent shelf waters of the northern SCS, and might have led to the usually high phytoplankton productivity there (chlorophyll-a value >10 μg/L).

  10. Informed Decision Making Process for Managing Environmental Flows in Small River Basins

    Science.gov (United States)

    Padikkal, S.; Rema, K. P.

    2013-03-01

    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  11. Effects of potash mining on river ecosystems: An experimental study.

    Science.gov (United States)

    Cañedo-Argüelles, Miguel; Brucet, Sandra; Carrasco, Sergi; Flor-Arnau, Núria; Ordeix, Marc; Ponsá, Sergio; Coring, Eckhard

    2017-05-01

    In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Proposal for adaptive management to conserve biotic integrity in a regulated segment of the Tallapoosa River, Alabama, U.S.A

    Science.gov (United States)

    Irwin, Elise R.; Freeman, Mary C.

    2002-01-01

    Conserving river biota will require innovative approaches that foster and utilize scientific understanding of ecosystem responses to alternative river-management scenarios. We describe ecological and societal issues involved in flow management of a section of the Tallapoosa River (Alabama, U.S.A.) in which a species-rich native fauna is adversely affected by flow alteration by an upstream hydropower dam. We hypothesize that depleted Iow flows, flow instability and thermal alteration resulting from pulsed flow releases at the hydropower dam are most responsible for changes in the Tallapoosa River biota. However, existing data are insufficient to prescribe with certainty minimum flow levels or the frequency and duration of stable flow periods that would be necessary or sufficient to protect riverine biotic integrity. Rather than negotiate a specific change in the flow regime, we propose that stakeholders--including management agencies, the power utility, and river advocates--engage in a process of adaptive-flow management. This process would require that stakeholders (1) develop and agree to management objectives; (2) model hypothesized relations between dam operations and management objectives; (3) implement a change in dam operations; and (4) evaluate biological responses and other stakeholder benefits through an externally reviewed monitoring program. Models would be updated with monitoring data and stakeholders would agree to further modify flow regimes as necessary to achieve management objectives. A primary obstacle to adaptive management will be a perceived uncertainty of future costs for the power utility and other stakeholders. However, an adaptive, iterative approach offers the best opportunity for improving flow regimes for native biota while gaining information critical to guiding management decisions in other flow-regulated rivers.

  13. Development of working hypotheses linking management of the Missouri River to population dynamics of Scaphirhynchus albus (pallid sturgeon)

    Science.gov (United States)

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2016-01-20

    This report documents a process of filtering of hypotheses that relate Missouri River Scaphirhynchus albus (pallid sturgeon) population dynamics to management actions including flow alterations, channel reconfigurations, and pallid sturgeon population augmentation. The filtering process was a partnership among U.S. Geological Survey, U.S. Army Corps of Engineers, and U.S. Fish and Wildlife Service to contribute to the Missouri River Recovery Management Plan process. The objective of the filtering process was to produce a set of hypotheses with high relevance to pallid sturgeon population dynamics and decision making on the Missouri River. The Missouri River Pallid Sturgeon Effects Analysis team filtered hundreds of potential hypotheses implicit in conceptual ecological models to develop a set of 40 candidate dominant hypotheses that were identified by experts as being important in pallid sturgeon population dynamics. Using a modified Delphi process and additional expert opinion, the team reduced this set of hypotheses to 23 working dominant hypotheses. We then matched the 23 hypotheses with management actions that could influence the biotic outcomes, resulting in as many as 176 potential effects between management actions and pallid sturgeon in the Missouri River. This number was consolidated to a candidate set of 53 working management hypotheses because some management actions applied to multiple life stages of the pallid sturgeon. We used an additional round of expert surveys to identify a set of 30 working management hypotheses. Finally, the set of working management hypotheses was filtered by the U.S. Army Corps of Engineers, Missouri River Recovery Program for actions that were within the agency’s authority and jurisdiction. This round resulted in a set of 21 hypotheses for initial modeling of linkages from management to pallid sturgeon population responses.

  14. Temporal variability of live (stained benthic foraminiferal faunas in a river-dominated shelf – Faunal response to rapid changes of the river influence (Rhône prodelta, NW Mediterranean

    Directory of Open Access Journals (Sweden)

    E. Legrand

    2012-04-01

    Full Text Available In the context of the French research project CHACCRA (Climate and Human-induced Alterations in Carbon Cycling at the River-seA connection, living (rose Bengal-stained benthic foraminifera were investigated at two stations (24 and 67 m depth in the Rhône prodelta (NW Mediterranean, Gulf of Lions. The aim of this study was to precise the response of benthic foraminiferal faunas to temporal changes of the Rhône River inputs (e.g. organic and terrigeneous material. Each site was sampled in April 2007, September 2007, May 2008 and December 2008, permitting to observe foraminiferal faunas of the 63–150 and >150 μm size fractions under a wide range of environmental conditions. Obvious variations in foraminiferal faunal composition were observed during the four investigated periods at the shallowest Station A located in the close vicinity of the Rhône River mouth. After major Rhône River flood events, different colonisation stages were observed with foraminiferal faunas responding with an opportunistic strategy few days to weeks after the creation of a peculiar sedimentary environment (Leptohalysis scottii, May 2008 or high organic matter supplies (Ammonia tepida, December 2008. Under more stable conditions, relatively diverse and equilibrated faunas grew in the sediments. Species benefited from noticeable input of riverine phytodetritus to the sediment during spring bloom conditions (April 2007; e.g. Bolivina dilatata, Nonionella stella, Stainforthia fusiformis, or high amounts of still bio-available organic matter under more oligotrophic conditions (September 2007; e.g. Ammonia tepida, Psammosphaera fusca. The reduced influence of the Rhône River input at the farther Station N led to less contrasted environmental conditions during the four sampling periods, and so to less obvious variations in foraminiferal faunal composition. During reduced riverine influence (i.e. low Rhône discharge, species able to feed on fresh phytodetritus (e

  15. Normalization of High Dimensional Genomics Data Where the Distribution of the Altered Variables Is Skewed

    Science.gov (United States)

    Landfors, Mattias; Philip, Philge; Rydén, Patrik; Stenberg, Per

    2011-01-01

    Genome-wide analysis of gene expression or protein binding patterns using different array or sequencing based technologies is now routinely performed to compare different populations, such as treatment and reference groups. It is often necessary to normalize the data obtained to remove technical variation introduced in the course of conducting experimental work, but standard normalization techniques are not capable of eliminating technical bias in cases where the distribution of the truly altered variables is skewed, i.e. when a large fraction of the variables are either positively or negatively affected by the treatment. However, several experiments are likely to generate such skewed distributions, including ChIP-chip experiments for the study of chromatin, gene expression experiments for the study of apoptosis, and SNP-studies of copy number variation in normal and tumour tissues. A preliminary study using spike-in array data established that the capacity of an experiment to identify altered variables and generate unbiased estimates of the fold change decreases as the fraction of altered variables and the skewness increases. We propose the following work-flow for analyzing high-dimensional experiments with regions of altered variables: (1) Pre-process raw data using one of the standard normalization techniques. (2) Investigate if the distribution of the altered variables is skewed. (3) If the distribution is not believed to be skewed, no additional normalization is needed. Otherwise, re-normalize the data using a novel HMM-assisted normalization procedure. (4) Perform downstream analysis. Here, ChIP-chip data and simulated data were used to evaluate the performance of the work-flow. It was found that skewed distributions can be detected by using the novel DSE-test (Detection of Skewed Experiments). Furthermore, applying the HMM-assisted normalization to experiments where the distribution of the truly altered variables is skewed results in considerably higher

  16. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    International Nuclear Information System (INIS)

    Case, J. T.; Renfro, M. L.

    1998-01-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team down-selected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their down-selection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives

  17. Role river flow for Sr 90 decontamination of polluted territories of Belarus

    International Nuclear Information System (INIS)

    Kudel'skij, A.V.; Smith, J.T.; Zhukova, O.M.; Rudaya, S.M.; Sasina, N.V.

    2002-01-01

    Sr 90 contamination of the water flow Dnepr, Pripyat', Sozh, Besed', Iput' rivers is considered. The dynamics of reducing the average year activities of Sr 90 and the variations of the levels of Sr 90 activities in river water during spring-autumn high water are shown. The results of investigation of Sr 90 activity of the sediments of Pripyat' and Braginka rivers are connected with the second effects of the contamination of the river flowing off Sr 90 during high water period. Sr 90 transfer in composition of the flowing off river during 1990-1995 (from Belarus to Ukraine) is being estimated. (authors)

  18. Fish communities and trophic metrics as measures of ecological degradation: a case study in the tributaries of the river Ganga basin, India.

    Science.gov (United States)

    Dubey, Vineet Kumar; Sarkar, Uttam Kumar; Pandey, Ajay; Lakra, Wazir Singh

    2013-09-01

    In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species) in river Ken and omnivorous (23 species) in Betwa. The trophic level score of carnivorous species was recorded similar (33.33%) in both rivers, whereas omnivorous species were mostly found in Betwa (36.51%) than Ken (28.07%). Relatively undisturbed sites of Betwa (B1, B2 and B3) and Ken (K2, K3 and K5) were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (> 0.32) as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases), and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.

  19. Fish communities and trophic metrics as measures of ecological degradation: a case study in the tributaries of the river Ganga basin, India

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Dubey

    2013-09-01

    Full Text Available In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species in river Ken and omnivorous (23 species in Betwa. The trophic level score of carnivorous species was recorded similar (33.33% in both rivers, whereas omnivorous species were mostly found in Betwa (36.51% than Ken (28.07%. Relatively undisturbed sites of Betwa (B1, B2 and B3 and Ken (K2, K3 and K5 were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (>0.32 as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases, and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.

  20. Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India

    Directory of Open Access Journals (Sweden)

    Arunkumar Shetty

    2015-02-01

    Full Text Available The fish assemblage and diversity in relation to water quality of three coastal rivers Sita, Swarna and Varahi of Udupi district, Karnataka, India was studied. 71 species representing 7 orders, 20 families and 41 genera were recorded from 21 sites along the three rivers. Species composition varied longitudinally in relation to the environmental factors of the habitat. The downstream change in the three rivers indicates that fish assemblage changed with increasing loss of riparian canopy cover and increasing agricultural land-use. The richness and abundance of fishes were correlated with land-use type, canopy cover, pH and turbidity. Diversion of water, discharge of domestic sewage and agricultural runoff were prominent among the disturbances that alter the habitat quality.