WorldWideScience

Sample records for higher-dimensional rotating black

  1. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  2. Electromagnetic field in higher-dimensional black-hole spacetimes

    International Nuclear Information System (INIS)

    Krtous, Pavel

    2007-01-01

    A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved

  3. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  4. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  5. Fermion tunneling from higher-dimensional black holes

    International Nuclear Information System (INIS)

    Lin Kai; Yang Shuzheng

    2009-01-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  6. Magnetized black holes and black rings in the higher dimensional dilaton gravity

    International Nuclear Information System (INIS)

    Yazadjiev, Stoytcho S.

    2006-01-01

    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes

  7. Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, A.N.; Frolov, Valeri P.

    2004-01-01

    In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3

  8. Thermodynamics of higher dimensional black holes

    International Nuclear Information System (INIS)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs

  9. Thermodynamics of higher dimensional black holes

    Energy Technology Data Exchange (ETDEWEB)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.

  10. Nernst Theorem and Statistical Entropy of 5-Dimensional Rotating Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun

    2003-01-01

    In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon's area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.

  11. World-volume effective theory for higher-dimensional black holes.

    Science.gov (United States)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.

  12. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  13. Hawking radiation of a high-dimensional rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ren; Zhang, Lichun; Li, Huaifan; Wu, Yueqin [Shanxi Datong University, Institute of Theoretical Physics, Department of Physics, Datong (China)

    2010-01-15

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy {omega} is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation. (orig.)

  14. Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhao, HuiHua; Li, GuangLiang; Zhang, LiChun

    2012-01-01

    Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model. -- Highlights: ► Statistics entropy of a 3-dimensional rotating acoustic black hole is studied. ► We obtain an area entropy and a correction term associated with it. ► We make λ introduced in the generalized uncertainty principle take a specific value. ► There does not exist any divergence in this method.

  15. Charged rotating black holes in four-dimensional gauged and ungauged supergravities

    International Nuclear Information System (INIS)

    Chong, Z.-W.; Cvetic, M.; Lue, H.; Pope, C.N.

    2005-01-01

    We study four-dimensional non-extremal charged rotating black holes in ungauged and gauged supergravity. In the ungauged case, we obtain rotating black holes with four independent charges, as solutions of N=2 supergravity coupled to three Abelian vector multiplets. This is done by reducing the theory along the time direction to three dimensions, where it has an O(4,4) global symmetry. Applied to the reduction of the uncharged Kerr metric, O(1,1) 4 is a subject of O(4,4) transformations generate new solutions that correspond, after lifting back to four dimensions, to the introduction of four independent electromagnetic charges. In the case where these charges are set pairwise equal, we then generalise the four-dimensional rotating black holes to solutions of gauged N=4 supergravity, with mass, angular momentum and two independent electromagnetic charges. The dilaton and axion fields are non-constant. We also find generalisations of the gauged and ungauged solutions to include the NUT parameter, and for the ungauged solutions, the acceleration parameter too. The solutions in gauged supergravity provide new gravitational backgrounds for a further study of the AdS 4 /CFT 3 correspondence at non-zero temperature

  16. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  17. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  18. Canonical Entropy and Phase Transition of Rotating Black Hole

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)

  19. Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes

    International Nuclear Information System (INIS)

    Wu Shuangqing; Peng Junjin

    2011-01-01

    We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.

  20. Geometry of higher-dimensional black hole thermodynamics

    International Nuclear Information System (INIS)

    Aaman, Jan E.; Pidokrajt, Narit

    2006-01-01

    We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstroem (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four-dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for a d=5 Kerr black hole is curved and divergent in the extremal limit. For a d≥6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For the RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d≥5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5 with double angular momenta

  1. Charged Fermions Tunneling from a Rotating Charged Black Hole in 5-Dimensional Gauged Supergravity

    International Nuclear Information System (INIS)

    Li Huiling; Lin Rong; Wang Chuanyin

    2010-01-01

    Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.

  2. Five-dimensional black hole capture cross sections

    International Nuclear Information System (INIS)

    Gooding, Cisco; Frolov, Andrei V.

    2008-01-01

    We study scattering and capture of particles by a rotating black hole in the five-dimensional spacetime described by the Myers-Perry metric. The equations of geodesic motion are integrable, and allow us to calculate capture conditions for a free particle sent towards a black hole from infinity. We introduce a three-dimensional impact parameter describing asymptotic initial conditions in the scattering problem for a given initial velocity. The capture surface in impact parameter space is a sphere for a nonrotating black hole, and is deformed for a rotating black hole. We obtain asymptotic expressions that describe such deformations for small rotational parameters, and use numerical calculations to investigate the arbitrary rotation case, which allows us to visualize the capture surface as extremal rotation is approached

  3. Euler numbers of four-dimensional rotating black holes with the Euclidean signature

    International Nuclear Information System (INIS)

    Ma Zhengze

    2003-01-01

    For a black hole's spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number to which it is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2, which is in accordance with its topology

  4. Pair creation of higher dimensional black holes on a de Sitter background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime

  5. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  6. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  7. Noncommutative geometry-inspired rotating black hole in three ...

    Indian Academy of Sciences (India)

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact ...

  8. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  9. Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes

    OpenAIRE

    Schlue, Volker

    2012-01-01

    I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...

  10. Higher-dimensional black holes: hidden symmetries and separation of variables

    International Nuclear Information System (INIS)

    Frolov, Valeri P; Kubiznak, David

    2008-01-01

    In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hidden symmetries in four dimensions and introduces Killing and Killing-Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can 'generate' the 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing-Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of variables for the Hamilton-Jacobi, Klein-Gordon and Dirac equations in the general Kerr-NUT-(A)dS metrics

  11. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jun-Jin [Guizhou Normal University, Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guiyang (China)

    2017-10-15

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)

  12. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    International Nuclear Information System (INIS)

    Peng, Jun-Jin

    2017-01-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)

  13. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    Science.gov (United States)

    Peng, Jun-Jin

    2017-10-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.

  14. Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation

    International Nuclear Information System (INIS)

    Hod, Shahar

    2011-01-01

    We study the Hawking radiation emitted into the bulk by (D + 1)-dimensional Schwarzschild black holes. It is well known that the black-hole spectrum departs from exact blackbody form due to the frequency dependence of the 'greybody' factors. For intermediate values of D (3 ≤ D ∼ > 1, the typical wavelengths in the black-hole spectrum are much shorter than the size of the black hole. In this regime, the greybody factors are well described by the geometric-optics approximation according to which they are almost frequency independent. Following this observation, we argue that for higher-dimensional black holes with D >> 1, the total power emitted into the bulk should be well approximated by the analytical formula for perfect blackbody radiation. We test the validity of this analytical prediction with numerical computations.

  15. Coalescence of rotating black holes on Eguchi-Hanson space

    International Nuclear Information System (INIS)

    Matsuno, Ken; Ishihara, Hideki; Kimura, Masashi; Tomizawa, Shinya

    2007-01-01

    We obtain new charged rotating multi-black hole solutions on the Eguchi-Hanson space in the five-dimensional Einstein-Maxwell system with a Chern-Simons term and a positive cosmological constant. In the two-black holes case, these solutions describe the coalescence of two rotating black holes with the horizon topologies of S 3 into a single rotating black hole with the horizon topology of the lens space L(2;1)=S 3 /Z 2 . We discuss the differences in the horizon areas between our solutions and the two-centered Klemm-Sabra solutions which describe the coalescence of two rotating black holes with the horizon topologies of S 3 into a single rotating black hole with the horizon topology of S 3

  16. Near-horizon of 5D rotating black holes from 2D perspective

    International Nuclear Information System (INIS)

    Soltanpanahi, Hesam

    2014-01-01

    We study the CFT dual to five-dimensional extremal rotating black holes, by investigating the two-dimensional perspective of their near-horizon geometry. From the two-dimensional point of view, we show that both gauge fields, related to the two rotations, appear in the same manner in the asymptotic symmetry and in the associated central charge. We find that our results are in perfect agreement with the generalization of the Kerr/CFT approach to five-dimensional extremal rotating black holes. (orig.)

  17. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  18. Graviton emission from a higher-dimensional black hole

    International Nuclear Information System (INIS)

    Cornell, Alan S.; Naylor, Wade; Sasaki, Misao

    2006-01-01

    We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M) 1/(n-1) ω ∼ 1, where M is the mass of the black hole and ω is the energy of the emitted gravitons in (2+n)-dimensions. To find easily tractable solutions we work in the limit l >> 1, where l is the angular momentum quantum number of the graviton

  19. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  20. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano

    2010-01-01

    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  1. Bulk Decay of (4 + n)-Dimensional Simply Rotating Black Holes: Tensor-Type Gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Nikolaos, E-mail: npappas@cc.uoi.gr [Division of Theoretical Physics, Department of Physics, University of Ioannina, Ioannina GR-45110 (Greece)

    2011-02-01

    We study the emission in the bulk of tensor-type gravitons by a simply rotating (4 + n)-dimensional black hole. The decoupling of the radial and angular part of the graviton field equation makes it possible to solve them analytically (in the limit of low-energy emitted particles and low-angular momentum of the black hole) and find the corresponding absorption probability. We also move to solve these equations numerically. The comparison between analytic and numerical results shows a very good agreement in low and intermediate energy regimes. Finally, the energy and angular momentum emission rates were calculated in order to explore their dependence on the number of additional spacelike dimensions of the spacetime background and the angular momentum of the black hole. Interesting conclusions about the significance of tensor-type gravitons as energy carriers in the context of Hawking radiation were reached.

  2. Bulk Decay of (4 + n)-Dimensional Simply Rotating Black Holes: Tensor-Type Gravitons

    International Nuclear Information System (INIS)

    Pappas, Nikolaos

    2011-01-01

    We study the emission in the bulk of tensor-type gravitons by a simply rotating (4 + n)-dimensional black hole. The decoupling of the radial and angular part of the graviton field equation makes it possible to solve them analytically (in the limit of low-energy emitted particles and low-angular momentum of the black hole) and find the corresponding absorption probability. We also move to solve these equations numerically. The comparison between analytic and numerical results shows a very good agreement in low and intermediate energy regimes. Finally, the energy and angular momentum emission rates were calculated in order to explore their dependence on the number of additional spacelike dimensions of the spacetime background and the angular momentum of the black hole. Interesting conclusions about the significance of tensor-type gravitons as energy carriers in the context of Hawking radiation were reached.

  3. Rotating black holes which saturate a Bogomol close-quote nyi bound

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Sen, A.

    1996-01-01

    We construct and study the electrically charged, rotating black hole solution in heterotic string theory compactified on a (10-D)-dimensional torus. This black hole is characterized by its mass, angular momentum, and a (36-2D)-dimensional electric charge vector. One of the features of this solution is that for D>5 its extremal limit saturates the Bogomol close-quote nyi bound. This is in contrast with the D=4 case where the rotating black hole solution develops a naked singularity before the Bogomol close-quote nyi bound is reached. The extremal black holes can be superposed, and by taking a periodic array in D>5, one obtains effectively four-dimensional solutions without naked singularities. copyright 1996 The American Physical Society

  4. Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes

    Science.gov (United States)

    McNutt, David D.

    2017-11-01

    We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.

  5. Hawking temperatures of Myers-Perry black holes from tunneling

    International Nuclear Information System (INIS)

    Ma Zhengze

    2009-01-01

    Using the tunneling method of Parikh and Wilczek, we derive the Hawking temperature of a general higher-dimensional rotating black hole which is equal to its surface gravity on the horizon divided by 2π. In order to eliminate the motion on the rotating degrees of freedom of a tunneling particle from a higher-dimensional rotating black hole, we choose a reference system that is co-rotating with the black hole horizon. Then, we apply the obtained result to the Myers-Perry higher-dimensional asymptotically flat black holes and reproduce their Hawking temperatures using the tunneling approach.

  6. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    International Nuclear Information System (INIS)

    Zou, De-Cheng; Yue, Ruihong; Zhang, Ming

    2017-01-01

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c_im"2 of massive potential satisfy some certain conditions. (orig.)

  7. Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Directory of Open Access Journals (Sweden)

    ShuZheng Yang

    2016-01-01

    Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.

  8. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Peng Junjin; Wu Shuangqing

    2008-01-01

    Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one (√(-g)≠1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant

  9. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)

    2017-04-15

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)

  10. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  11. Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Lowe, D.A.; Maldacena, J.M.

    1996-01-01

    We identify the states in string theory which are responsible for the entropy of near-extremal rotating four-dimensional black holes in N=8 supergravity. For black holes far from extremality (with no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invariant extension of the formulas derived for near-extremal black holes states. copyright 1996 The American Physical Society

  12. Higher order corrections to holographic black hole chemistry

    Science.gov (United States)

    Sinamuli, Musema; Mann, Robert B.

    2017-10-01

    We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.

  13. Thermodynamics of higher spin black holes in AdS3

    Science.gov (United States)

    de Boer, Jan; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.

  14. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-01-01

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account

  15. A Cardy-like formula for rotating black holes with planar horizon

    Energy Technology Data Exchange (ETDEWEB)

    Gaete, Moisés Bravo [Facultad de Ciencias Básicas, Universidad Católica del Maule,Casilla 617, Talca (Chile); Guajardo, Luis; Hassaïne, Mokhtar [Instituto de Matemática y Fisica, Universidad de Talca,Casilla 747, Talca (Chile)

    2017-04-18

    We show that the semiclassical entropy of D−dimensional rotating (an)isotropic black holes with planar horizon can be successfully computed according to a Cardy-like formula. This formula does not refer to any central charges but instead involves the vacuum energy which is identified with a gravitational bulk soliton. The soliton is obtained from the non-rotating black hole solution by means of a double analytic continuation. The robustness of the Cardy-like formula is tested with numerous and varied examples, including AdS, Lifshitz and hyperscaling violation planar black holes.

  16. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2014-01-01

    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  17. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  18. Thermodynamics of higher spin black holes in AdS3

    International Nuclear Information System (INIS)

    Boer, Jan de; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,ℝ)×SL(N,ℝ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges

  19. Four-dimensional anti-de Sitter toroidal black holes from a three-dimensional perspective: Full complexity

    International Nuclear Information System (INIS)

    Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.

    2002-01-01

    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed

  20. THREE-DIMENSIONAL SIMULATIONS OF VERTICAL MAGNETIC FLUX IN THE IMMEDIATE VICINITY OF BLACK HOLES

    International Nuclear Information System (INIS)

    Punsly, Brian; Igumenshchev, Igor V.; Hirose, Shigenobu

    2009-01-01

    This article reports on three-dimensional MHD simulations of non-rotating and rapidly rotating black holes and the adjacent black hole accretion disk magnetospheres. A particular emphasis is placed on the vertical magnetic flux that is advected inward from large radii and threads the equatorial plane near the event horizon. In both cases of non-rotating and rotating black holes, the existence of a significant vertical magnetic field in this region is like a switch that creates powerful jets. There are many similarities in the vertical flux dynamics in these two cases in spite of the tremendous enhancement of azimuthal twisting of the field lines and enhancement of the jet power because of an 'ergospheric disk' in the Kerr metric. A three-dimensional approach is essential because two-dimensional axisymmetric flows are incapable of revealing the nature of the vertical flux near a black hole. Poloidal field lines from the ergospheric accretion region have been visualized in three dimensions and much of the article is devoted to a formal classification of the different manifestations of the vertical flux in the Kerr case.

  1. First law of black ring thermodynamics in higher dimensional Chern-Simons gravity

    International Nuclear Information System (INIS)

    Rogatko, Marek

    2007-01-01

    The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface

  2. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  3. Hawking fluxes and anomalies in rotating regular black holes with a time-delay

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2016-01-01

    Based on the anomaly cancellation method we compute the Hawking fluxes (the Hawking thermal flux and the total flux of energy-momentum tensor) from a four-dimensional rotating regular black hole with a time-delay. To this purpose, in the three metrics proposed in [1], we try to perform the dimensional reduction in which the anomaly cancellation method is feasible at the near-horizon region in a general scalar field theory. As a result we can demonstrate that the dimensional reduction is possible in two of those metrics. Hence we perform the anomaly cancellation method and compute the Hawking fluxes in those two metrics. Our Hawking fluxes involve three effects: (1) quantum gravity effect regularizing the core of the black holes, (2) rotation of the black hole, (3) time-delay. Further in this paper toward the metric in which the dimensional could not be performed, we argue that it would be some problematic metric, and mention its cause. The Hawking fluxes we compute in this study could be considered to correspond to more realistic Hawking fluxes. Further what Hawking fluxes can be obtained from the anomaly cancellation method would be interesting in terms of the relation between a consistency of quantum field theories and black hole thermodynamics. (paper)

  4. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  5. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  6. Spinning higher dimensional Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Papnoi, Uma

    2014-01-01

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  7. Spinning higher dimensional Einstein-Yang-Mills black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Papnoi, Uma [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)

    2014-08-15

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  8. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  9. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  10. Rotating circular strings, and infinite non-uniqueness of black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto

    2004-01-01

    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)

  11. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    OpenAIRE

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...

  12. A rotating hairy AdS3 black hole with the metric having only one Killing vector field

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2015-01-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ϵ of the scalar field, up to O(ϵ 4 ). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.

  13. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  14. Hawking and Unruh Effects of a 5-Dimensional Minimal Gauged Supergravity Black Hole by a Global Embedding Approach

    Directory of Open Access Journals (Sweden)

    Li-Chun Zhang

    2013-03-01

    Full Text Available Using the new global embedding approach we investigate Unruh/Hawking temperature of the 5-dimensional minimal gauged supergravity black hole with double rotating parameters in a general (1 + 1 space-time. Our results verify that views of Banerjee and Majhi, and extend this approach to a higher dimension situation.

  15. Black Hole Hair in Higher Dimensions

    International Nuclear Information System (INIS)

    Cao Chao; Chen Yixin; Li Jianlong

    2010-01-01

    We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires that this kind of matter has an equation of state ω = p r /ρ = -n/(n + 2k), k, n epsilon N (where n > 1 corresponds to a mixture of vacuum matter and 'hair' matter), which seems to be independent of D. However, when we associate this result with specific models, we find that these hairy black holes can live only in some special dimensional spacetime: (i) D = 2 + 2k/n while the black hole is surrounded by cosmic strings, which requires D is even or D epsilon N, depending on the value of n, this is consistent with some important results in superstring theory, it might reveal the relation between cosmic string and superstring in another aspect; (ii) the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D = 4 is special. We also present some examples of such hairy black holes in higher dimensions, including a toy model with negative energy density. (general)

  16. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    Science.gov (United States)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  17. Extreme black hole with an electric dipole moment

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tada, T.

    1996-01-01

    We construct a new extreme black hole solution in a toroidally compactified heterotic string theory. The black hole saturates the Bogomol close-quote nyi bound, has zero angular momentum, but a nonzero electric dipole moment. It is obtained by starting with a higher-dimensional rotating charged black hole, and compactifying one direction in the plane of rotation. copyright 1996 The American Physical Society

  18. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  19. Spherical and planar three-dimensional anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Zanchin, Vilson T; Miranda, Alex S

    2004-01-01

    The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein-Maxwell-dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstroem-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail

  20. Ultraspinning instability of rotating black holes

    International Nuclear Information System (INIS)

    Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.

    2010-01-01

    Rapidly rotating Myers-Perry black holes in d≥6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.

  1. Rotating dilaton black holes with hair

    International Nuclear Information System (INIS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lerida, Francisco

    2004-01-01

    We consider stationary rotating black holes in SU(2) Einstein-Yang-Mills theory, coupled to a dilaton. The black holes possess nontrivial non-Abelian electric and magnetic fields outside their regular event horizon. While generic solutions carry no non-Abelian magnetic charge, but non-Abelian electric charge, the presence of the dilaton field allows also for rotating solutions with no non-Abelian charge at all. As a consequence, these special solutions do not exhibit the generic asymptotic noninteger power falloff of the non-Abelian gauge field functions. The rotating black hole solutions form sequences, characterized by the winding number n and the node number k of their gauge field functions, tending to embedded Abelian black holes. The stationary non-Abelian black hole solutions satisfy a mass formula, similar to the Smarr formula, where the dilaton charge enters instead of the magnetic charge. Introducing a topological charge, we conjecture that black hole solutions in SU(2) Einstein-Yang-Mills-dilaton theory are uniquely characterized by their mass, their angular momentum, their dilaton charge, their non-Abelian electric charge, and their topological charge

  2. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  3. Unified approach to the entropy of an extremal rotating BTZ black hole: Thin shells and horizon limits

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-10-01

    Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.

  4. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  5. On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra(~n)aga

    2008-01-01

    In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.

  6. Instability of ultra-spinning black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Myers, Robert C.

    2003-01-01

    It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)

  7. Quasinormal modes of brane-localized standard model fields. II. Kerr black holes

    International Nuclear Information System (INIS)

    Kanti, P.; Konoplya, R. A.; Zhidenko, A.

    2006-01-01

    This paper presents a comprehensive study of the fundamental quasinormal modes of all standard model fields propagating on a brane embedded in a higher-dimensional rotating black-hole spacetime. The equations of motion for fields with spin s=0, 1/2 and 1 propagating in the induced-on-the-brane background are solved numerically, and the dependence of their QN spectra on the black-hole angular momentum and dimensionality of spacetime is investigated. It is found that the brane-localized field perturbations are longer-lived when the higher-dimensional black hole rotates faster, while an increase in the number of transverse-to-the-brane dimensions reduces their lifetime. Finally, the quality factor Q, that determines the best oscillator among the different field perturbations, is investigated and found to depend on properties of both the particular field studied (spin, multipole numbers) and the gravitational background (dimensionality, black-hole angular momentum parameter)

  8. Rotating hairy black holes in arbitrary dimensions

    Science.gov (United States)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  9. The rotating dyonic black holes of Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Rasheed, D.

    1995-01-01

    The most general electrically and magnetically charged rotating black hole solutions of 5 dimensional Kaluza-Klein theory are given in an explicit form. Various classical quantities associated with the black holes are derived. In particular, one finds the very surprising result that the gyromagnetic and gyroelectric ratios can become arbitrarily large. The thermodynamic quantities of the black holes are calculated and a Smarr-type formula is obtained leading to a generalized first law of black hole thermodynamics. The properties of the extreme solutions are investigated and it is shown how they naturally separate into two classes. The extreme solutions in one class are found to have two unusual properties: (i) Their event horizons have zero angular velocity and yet they have non-zero ADM angular momentum. (ii) In certain circumstances it is possible to add angular momentum to these extreme solutions without changing the mass or charges and yet still maintain an extreme solution. Regarding the extreme black holes as elementary particles, their stability is discussed and it is found that they are stable provided they have sufficient angular momentum. (orig.)

  10. QPOs from Random X-ray Bursts around Rotating Black Holes

    Science.gov (United States)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  11. Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat; Atamurotov, Farruh; Dadhich, Naresh; Stuchlik, Zdenek

    2015-01-01

    We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)

  12. Planck absolute entropy of a rotating BTZ black hole

    Science.gov (United States)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  13. A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    International Nuclear Information System (INIS)

    Davis, Paul

    2006-01-01

    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable

  14. Entropy of non-extreme rotating black holes in string theories

    International Nuclear Information System (INIS)

    Youm, D.

    1998-01-01

    We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)

  15. Rotating elastic string loops in flat and black hole spacetimes: stability, cosmic censorship and the Penrose process

    Science.gov (United States)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2018-04-01

    We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).

  16. Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bardoux, Yannis [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Caldarelli, Marco M. [Mathematical Sciences and STAG research centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Charmousis, Christos [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Laboratoire de Mathématiques et Physique Théorique (LMPT), Université Tours, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2014-05-09

    We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.

  17. Hidden conformal symmetry of a rotating black hole with four charges

    International Nuclear Information System (INIS)

    Shao Kainan; Zhang Zhibai

    2011-01-01

    Kerr/CFT correspondence exhibits many remarkable connections between the near-horizon Kerr black hole and a conformal field theory (CFT). Recently, Castro, Maloney, and Strominger showed that a hidden conformal symmetry exists in the solution space of a Kerr black hole. In this paper we investigate a rotating black hole with four independent U(1) charges derived from string theory which is known as the four-dimensional Cvetic-Youm solution, and we prove that the same hidden conformal symmetry also holds. We obtain the exact black hole entropy using the temperatures derived. The entropy and absorption cross section agree with the previous results [M. Cvetic and F. Larsen, Nucl. Phys. B506, 107 (1997).] and [M. Cvetic and F. Larsen, J. High Energy Phys. 09 (2009) 088.]. In addition, we clarify a previous explanation on the temperatures of the Cvetic-Youm solution's dual CFT. This work provides more robust derivation of the hidden conformal symmetry of Kerr-like black holes and as well as Kerr/CFT correspondence.

  18. Charged rotating black holes on a 3-brane

    International Nuclear Information System (INIS)

    Aliev, A.N.; Guemruekcueoglu, A.E.

    2005-01-01

    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles

  19. Spatial infinity in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Shiromizu, Tetsuya; Tomizawa, Shinya

    2004-01-01

    Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes (n≥4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor (n-1) C abcd in general. We also address static spacetime and its multipole moments P a 1 a 2 ···a s . Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of the static vacuum solution we need some additional information, at least the Weyl tensor (n-2) C abcd at spatial infinity

  20. Black Holes at the LHC: Progress since 2002

    International Nuclear Information System (INIS)

    Park, Seong Chan

    2008-01-01

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  1. Black holes in brane worlds

    Indian Academy of Sciences (India)

    Abstract. A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  2. 3-D collapse of rotating stars to Kerr black holes

    International Nuclear Information System (INIS)

    Baiotti, L; Hawke, I; Montero, P J; Loeffler, F L; Rezzolla, L; Stergioulas, N; Font, J A; Seidel, E

    2005-01-01

    We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation

  3. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  4. Higher spin black holes with soft hair

    Energy Technology Data Exchange (ETDEWEB)

    Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-10-21

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  5. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  6. Near horizon geometry of rotating black holes in five dimensions

    International Nuclear Information System (INIS)

    Cvetic, M.; Larsen, F.

    1998-01-01

    We interpret the general rotating black holes in five dimensions as rotating black strings in six dimensions. In the near-horizon limit the geometry is locally AdS 3 x S 3 , as in the non-rotating case. However, the global structure couples the AdS 3 and the S 3 , giving angular velocity to the S 3 . The asymptotic geometry is exploited to count the microstates and recover the precise value of the Bekenstein-Hawking entropy, with rotation taken properly into account. We discuss the perturbation spectrum of the rotating black hole, and its relation to the underlying conformal field theory. (orig.)

  7. Time-dependent perturbations in two-dimensional string black holes

    CERN Document Server

    Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E

    1992-01-01

    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}

  8. A comparative study of Dirac quasinormal modes of charged black holes in higher dimensions

    International Nuclear Information System (INIS)

    Chakrabarti, Sayan K.

    2009-01-01

    In this work we study the Dirac quasinormal modes of higher dimensional charged black holes. Higher dimensional Reissner-Nordstroem type black holes as well as charged black holes in Einstein-Gauss-Bonnet theories are studied for fermionic perturbations using WKB method. A comparative study of the quasinormal modes in the two different theories of gravity has been performed. The behavior of the frequencies with the variation of black hole parameters as well as with the variation of space-time dimensions is studied. We also study the large multipole number limit of the black hole potential in order to look for an analytic expression for the frequencies. (orig.)

  9. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  10. Surface geometry of 5D black holes and black rings

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Goswami, Rituparno

    2007-01-01

    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector ('electromagnetic') fields. The properties of the reduced black hole horizon and its embedding in E 3 are briefly discussed

  11. Black holes in higher dimensional gravity theory with corrections quadratic in curvature

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Shapiro, Ilya L.

    2009-01-01

    Static spherically symmetric black holes are discussed in the framework of higher dimensional gravity with quadratic in curvature terms. Such terms naturally arise as a result of quantum corrections induced by quantum fields propagating in the gravitational background. We focus our attention on the correction of the form C 2 =C αβγδ C αβγδ . The Gauss-Bonnet equation in four-dimensional spacetime enables one to reduce this term in the action to the terms quadratic in the Ricci tensor and scalar curvature. As a result the Schwarzschild solution which is Ricci flat will be also a solution of the theory with the Weyl scalar C 2 correction. An important new feature of the spaces with dimension D>4 is that in the presence of the Weyl curvature-squared term a necessary solution differs from the corresponding 'classical' vacuum Tangherlini metric. This difference is related to the presence of secondary or induced hair. We explore how the Tangherlini solution is modified by 'quantum corrections', assuming that the gravitational radius r 0 is much larger than the scale of the quantum corrections. We also demonstrated that finding a general solution beyond the perturbation method can be reduced to solving a single third order ordinary differential equation (master equation).

  12. Extremal vacuum black holes in higher dimensions

    International Nuclear Information System (INIS)

    Figueras, Pau; Lucietti, James; Rangamani, Mukund; Kunduri, Hari K.

    2008-01-01

    We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater than five. We prove that the near-horizon geometry of any such black hole must possess an SO(2,1) symmetry in a special case where one has an enhanced rotational symmetry group. We construct examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd spacetime dimensions have the correct number of rotational symmetries to describe an asymptotically flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically flat extremal black rings. Using this identification we provide a conjecture for the exact 'phase diagram' of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than five.

  13. Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity

    International Nuclear Information System (INIS)

    Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo

    2009-01-01

    Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent 'gravitational hair' parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger's holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy's formula, in exact agreement with the semiclassical result.

  14. Spherical null geodesics of rotating Kerr black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2013-01-01

    The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.

  15. Horizon structure of rotating Bardeen black hole and particle acceleration

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Amir, Muhammed

    2015-01-01

    We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E it describes a non-extremal black hole with two horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter g, and so is the ergosphere. While the value of a E remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E CM ) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E CM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)

  16. Thermodynamics of Higher Spin Black Holes in AdS3

    NARCIS (Netherlands)

    de Boer, J.; Jottar, J.I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N, R) × SL(N, R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN

  17. Gyromagnetic ratio of charged Kerr-anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Aliev, Alikram N

    2007-01-01

    We examine the gyromagnetic ratios of rotating and charged AdS black holes in four and higher spacetime dimensions. We compute the gyromagnetic ratio for Kerr-AdS black holes with an arbitrary electric charge in four dimensions and show that it corresponds to g = 2 irrespective of the AdS nature of the spacetime. We also compute the gyromagnetic ratio for Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it exhibits a striking feature leading to g 2 regardless of the spacetime dimension. Next, we extend our consideration to include the exact metric for five-dimensional rotating charged black holes in minimal gauged supergravity. We show that the value of the gyromagnetic ratio found in the 'test-charge' approach remains unchanged for these black holes

  18. Observables and Microcospic Entropy of Higher Spin Black Holes

    NARCIS (Netherlands)

    Compère, G.; Jottar, J.I.; Song, W.

    2013-01-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with W symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical

  19. Chern–Simons dilaton black holes in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Moussa, Karim Ait; Clément, Gérard; Guennoune, Hakim

    2016-01-01

    We construct rotating magnetic solutions to the three-dimensional Einstein–Maxwell–Chern–Simons-dilaton theory with a Liouville potential. These include a class of black hole solutions which generalize the warped AdS black holes. The regular black holes belong to two disjointed sectors. The first sector includes black holes which have a positive mass and are co-rotating, while the black holes of the second sector have a negative mass and are counter-rotating. We also show that a particular, non-black hole, subfamily of our three-dimensional solutions may be uplifted to new regular non-asymptotically flat solutions of five-dimensional Einstein–Maxwell–Chern–Simons theory. (paper)

  20. Black objects and hoop conjecture in five-dimensional space-time

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuta; Shinkai, Hisa-aki, E-mail: m1m08a26@info.oit.ac.j, E-mail: shinkai@is.oit.ac.j [Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka 573-0196 (Japan)

    2010-02-21

    We numerically investigated the sequences of initial data of a thin spindle and a thin ring in five-dimensional space-time in the context of the cosmic censorship conjecture. We modeled the matter in non-rotating homogeneous spheroidal or toroidal configurations under the momentarily static assumption, solved the Hamiltonian constraint equation and searched the apparent horizons. We discussed when S{sup 3} (black-hole) or S{sup 1} x S{sup 2} (black-ring) horizons ('black objects') are formed. By monitoring the location of the maximum Kretchmann invariant, an appearance of 'naked singularity' or 'naked ring' under special situations is suggested. We also discuss the validity of the hyper-hoop conjecture using a minimum area around the object, and show that the appearance of the ring horizon does not match with this hoop.

  1. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  2. Rotating Hayward’s regular black hole as particle accelerator

    International Nuclear Information System (INIS)

    Amir, Muhammed; Ghosh, Sushant G.

    2015-01-01

    Recently, Bañados, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy (E CM ) when the collision takes place near the horizon. The rotating Hayward’s regular black hole, apart from Mass (M) and angular momentum (a), has a new parameter g (g>0 is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each g, with M=1, there exist critical a E and r H E , which corresponds to a regular extremal black hole with degenerate horizons, and a E decreases whereas r H E increases with increase in g. While ablack hole with outer and inner horizons. We apply the BSW process to the rotating Hayward’s regular black hole, for different g, and demonstrate numerically that the E CM diverges in the vicinity of the horizon for the extremal cases thereby suggesting that a rotating regular black hole can also act as a particle accelerator and thus in turn provide a suitable framework for Plank-scale physics. For a non-extremal case, there always exist a finite upper bound for the E CM , which increases with the deviation parameter g.

  3. Hawking radiation via anomaly cancellation for the black holes of five-dimensional minimal gauged supergravity

    International Nuclear Information System (INIS)

    Porfyriadis, Achilleas P.

    2009-01-01

    The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes, and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.

  4. Inner mechanics of three-dimensional black holes.

    Science.gov (United States)

    Detournay, Stéphane

    2012-07-20

    We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.

  5. Quantum Statistical Entropy of Non-extreme and Nearly Extreme Black Holes in Higher-Dimensional Space-Time

    Institute of Scientific and Technical Information of China (English)

    XU Dian-Yan

    2003-01-01

    The free energy and entropy of Reissner-Nordstrom black holes in higher-dimensional space-time are calculated by the quantum statistic method with a brick wall model. The space-time of the black holes is divided into three regions: region 1, (r > r0); region 2, (r0 > r > n); and region 3, (T-J > r > 0), where r0 is the radius of the outer event horizon, and r, is the radius of the inner event horizon. Detailed calculation shows that the entropy contributed by region 2 is zero, the entropy contributed by region 1 is positive and proportional to the outer event horizon area, the entropy contributed by region 3 is negative and proportional to the inner event horizon area. The total entropy contributed by all the three regions is positive and proportional to the area difference between the outer and inner event horizons. As rt approaches r0 in the nearly extreme case, the total quantum statistical entropy approaches zero.

  6. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)

    2009-10-12

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  7. Hawking radiation of five-dimensional charged black holes with scalar fields

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-09-01

    Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  8. Renormalized thermodynamic entropy of black holes in higher dimensions

    International Nuclear Information System (INIS)

    Kim, S.P.; Kim, S.K.; Soh, K.; Yee, J.H.

    1997-01-01

    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstroem black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. copyright 1997 The American Physical Society

  9. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-10-01

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes less cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.

  10. Quantum tunneling from rotating black holes with scalar hair in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Gursel, H. [Eastern Mediterranean University, Department of Physics, Mersin-10 (Turkey)

    2016-06-15

    We study the Hawking radiation of scalar and Dirac particles (fermions) emitted from a rotating scalar hair black hole (RSHBH) within the context of three dimensional (3D) Einstein gravity using non-minimally coupled scalar field theory. Amalgamating the quantum tunneling approach with the Wentzel-Kramers-Brillouin approximation, we obtain the tunneling rates of the outgoing particles across the event horizon. Inserting the resultant tunneling rates into the Boltzmann formula, we then obtain the Hawking temperature (T{sub H}) of the 3D RSHBH. (orig.)

  11. Near-horizon symmetries of extremal black holes

    International Nuclear Information System (INIS)

    Kunduri, Hari K; Lucietti, James; Reall, Harvey S

    2007-01-01

    Recent work has demonstrated an attractor mechanism for extremal rotating black holes subject to the assumption of a near-horizon SO(2, 1) symmetry. We prove the existence of this symmetry for any extremal black hole with the same number of rotational symmetries as known four- and five-dimensional solutions (including black rings). The result is valid for a general two-derivative theory of gravity coupled to Abelian vectors and uncharged scalars, allowing for a non-trivial scalar potential. We prove that it remains valid in the presence of higher-derivative corrections. We show that SO(2, 1)-symmetric near-horizon solutions can be analytically continued to give SU(2)-symmetric black hole solutions. For example, the near-horizon limit of an extremal 5D Myers-Perry black hole is related by analytic continuation to a non-extremal cohomogeneity-1 Myers-Perry solution

  12. Surface geometry of a rotating black hole in a magnetic field

    International Nuclear Information System (INIS)

    Kulkarni, R.; Dadhich, N.

    1986-01-01

    We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum

  13. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  14. Interior structure of rotating black holes. I. Concise derivation

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.; Polhemus, Gavin

    2011-01-01

    This paper presents a concise derivation of a new set of solutions for the interior structure of accreting, rotating black holes. The solutions are conformally stationary, axisymmetric, and conformally separable. Hyper-relativistic counter-streaming between freely-falling collisionless ingoing and outgoing streams leads to mass inflation at the inner horizon, followed by collapse. The solutions fail at an exponentially tiny radius, where the rotational motion of the streams becomes comparable to their radial motion. The papers provide a fully nonlinear, dynamical solution for the interior structure of a rotating black hole from just above the inner horizon inward, down to a tiny scale.

  15. D-brane propagation in two-dimensional black hole geometries

    International Nuclear Information System (INIS)

    Nakayama, Yu; Rey, Soo-Jong; Sugawara, Yuji

    2005-01-01

    We study propagation of D0-brane in two-dimensional lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the lorentzian D0-brane is formally constructible via Wick rotation from that of the euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k = 1 (k = 3 for the bosonic case), exposing the 'string - black hole transition' therein

  16. Direct imaging rapidly-rotating non-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: Cosimo.Bambi@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich (Germany); Caravelli, Francesco, E-mail: fcaravelli@perimeterinstitute.ca [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm (Germany); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Modesto, Leonardo, E-mail: lmodesto@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)

    2012-05-01

    Recently, two of us have argued that non-Kerr black holes in gravity theories different from General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr space-time, while it would change above a critical value of the spin parameter. When the topology of the horizon changes, the black hole central singularity shows up. The accretion process from a thin disk can potentially overspin these black holes and induce the topology transition, violating the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the black holes predicted by General Relativity, we might have the quite unique opportunity to see their central region, where classical physics breaks down and quantum gravity effects should appear. Even if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the size of its apparent image would be finite and potentially observable with future facilities.

  17. Scale-Invariant Rotating Black Holes in Quadratic Gravity

    Directory of Open Access Journals (Sweden)

    Guido Cognola

    2015-07-01

    Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.

  18. Rotating black string and the effective Teukolsky equation in the braneworld

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2004-01-01

    In the Randall-Sundrum two-brane (RS1) model, a large Kerr black hole on the brane can be naturally identified with a section of a rotating black string. To estimate Kaluza-Klein (KK) corrections on gravitational waves emitted by perturbed rotating black strings, we give the effective Teukolsky equation on the brane, which is a separable equation and hence numerically manageable. In this process, we derive the master equation for the electric part of the Weyl tensor, E μν , which is also useful in discussing the transition from black strings to localized black holes triggered by Gregory-Laflamme instability

  19. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  20. Scattering of particles by deformed non-rotating black holes

    International Nuclear Information System (INIS)

    Pei, Guancheng; Bambi, Cosimo

    2015-01-01

    We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)

  1. Thin accretion disk signatures of slowly rotating black holes in Horava gravity

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N

    2011-01-01

    In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  2. Thin accretion disk signatures of slowly rotating black holes in Horava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu; Kovacs, Zoltan [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N, E-mail: harko@hkucc.hku.hk, E-mail: zkovacs@hku.hk, E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal)

    2011-08-21

    In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  3. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes

    Science.gov (United States)

    Tsukamoto, Naoki

    2018-03-01

    The shadow of a black hole can be one of the strong observational evidences for stationary black holes. If we see shadows at the center of galaxies, we would say whether the observed compact objects are black holes. In this paper, we consider a formula for the contour of a shadow in an asymptotically-flat, stationary, and axisymmetric black hole spacetime. We show that the formula is useful for obtaining the contour of the shadow of several black holes such as the Kerr-Newman black hole and rotating regular black holes. Using the formula, we can obtain new examples of the contour of the shadow of rotating black holes if assumptions are satisfied.

  4. Collision of two rotating Hayward black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)

    2017-07-15

    We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)

  5. Fermionic greybody factors of two and five-dimensional dilatonic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-08-15

    We study fermionic perturbations in the background of a two and five-dimensional dilatonic black holes. Then, we compute the reflection and transmission coefficients and the absorption cross section for fermionic fields, and we show numerically that the absorption cross section vanishes in the low and high frequency limit. Also we find that beyond a certain value of the horizon radius r{sub 0} the absorption cross section for five-dimensional dilatonic black hole is constant. Besides, we have find that the absorption cross section decreases for higher angular momentum, and it decreases when the mass of the fermionic field increases. (orig.)

  6. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  7. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  8. Cosmic censorship of rotating Anti-de Sitter black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun; Lee, Bum-Hoon, E-mail: rasenis@sogang.ac.kr, E-mail: bhl@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 04107 (Korea, Republic of)

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  9. Cosmic censorship of rotating Anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-01-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid

  10. Floating and sinking: the imprint of massive scalars around rotating black holes.

    Science.gov (United States)

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-09

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.

  11. Analytic continuation of the rotating black hole state counting

    Energy Technology Data Exchange (ETDEWEB)

    Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)

    2016-08-24

    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.

  12. Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole

    Science.gov (United States)

    Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro

    2018-04-01

    Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.

  13. Novel CFT duals for extreme black holes

    International Nuclear Information System (INIS)

    Chen Bin; Zhang Jiaju

    2012-01-01

    In this paper, we study the CFT duals for extreme black holes in the stretched horizon formalism. We consider the extremal RN, Kerr-Newman-AdS-dS, as well as the higher dimensional Kerr-AdS-dS black holes. In all these cases, we reproduce the well-established CFT duals. Actually we show that for stationary extreme black holes, the stretched horizon formalism always gives rise to the same dual CFT pictures as the ones suggested by ASG of corresponding near horizon geometries. Furthermore, we propose new CFT duals for 4D Kerr-Newman-AdS-dS and higher dimensional Kerr-AdS-dS black holes. We find that every dual CFT is defined with respect to a rotation in certain angular direction, along which the translation defines a U(1) Killing symmetry. In the presence of two sets of U(1) symmetry, the novel CFT duals are generated by the modular group SL(2,Z), and for n sets of U(1) symmetry there are general CFT duals generated by T-duality group SL(n,Z).

  14. Criteria for retrograde rotation of accreting black holes

    Science.gov (United States)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  15. Bifurcation of plasma balls and black holes to Lobed configurations

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.

    2009-01-01

    At high energy densities any quantum field theory is expected to have an effective hydrodynamic description. When combined with the gravity/gauge duality an unified picture emerges, where gravity itself can have a formal holographic hydrodynamic description. This provides a powerful tool to study black holes in a hydrodynamic setup. We study the stability of plasma balls, holographic duals of Scherck-Schwarz (SS) AdS black holes. We find that rotating plasma balls are unstable against m-lobed perturbations for rotation rates higher than a critical value. This unstable mode signals a bifurcation to a new branch of non-axisymmetric stationary solutions which resemble a 'peanut-like' rotating plasma. The gravitational dual of the rotating plasma ball must then be unstable and possibly decay to a non-axisymmetric long-lived SS AdS black hole. This instability provides therefore a mechanism that bounds the rotation of SS black holes. Our results are strictly valid for the SS AdS gravity theory dual to a SS gauge theory. The latter is particularly important because it shares common features with QCD, namely it is non-conformal, non-supersymmetric and has a confinement/deconfinement phase transition. We focus our analysis in 3-dimensional plasmas dual to SS AdS 5 black holes, but many of our results should extend to higher dimensions and to other gauge theory/gravity dualities with confined/deconfined phases and admitting a fluid description.

  16. General rotating black holes in string theory: Greybody factors and event horizons

    International Nuclear Information System (INIS)

    Cvetic, M.; Larsen, F.

    1997-01-01

    We derive the wave equation for a minimally coupled scalar field in the background of a general rotating five-dimensional black hole. It is written in a form that involves two types of thermodynamic variables, defined at the inner and outer event horizon, respectively. We model the microscopic structure as an effective string theory, with the thermodynamic properties of the left- and right-moving excitations related to those of the horizons. Previously known solutions to the wave equation are generalized to the rotating case, and their regime of validity is sharpened. We calculate the greybody factors and interpret the resulting Hawking emission spectrum microscopically in several limits. We find a U-duality-invariant expression for the effective string length that does not assume a hierarchy between the charges. It accounts for the universal low-energy absorption cross section in the general nonextremal case. copyright 1997 The American Physical Society

  17. Six-dimensional localized black holes: Numerical solutions

    International Nuclear Information System (INIS)

    Kudoh, Hideaki

    2004-01-01

    To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes

  18. Chaotic cold accretion on to black holes in rotating atmospheres

    Science.gov (United States)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  19. Supersymmetry of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed

  20. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    CERN Document Server

    Miao, Yan-Gang

    2016-01-01

    Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.

  1. Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Wu Shuangqing

    2007-01-01

    Robinson-Wilczek's recent work, which treats Hawking radiation as a compensating flux to cancel gravitational anomaly at the horizon of a Schwarzschild-type black hole, is extended to study Hawking radiation of rotating black holes in anti-de Sitter spaces, especially that in dragging coordinate system, via gauge and gravitational anomalies. The results show that in order to restore gauge invariance and general coordinate covariance at the quantum level in the effective field theory, the charge and energy flux by requiring to cancel gauge and gravitational anomalies at the horizon, must have a form equivalent to that of a (1+1)-dimensional blackbody radiation at Hawking temperature with an appropriate chemical potential

  2. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    Science.gov (United States)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  3. Hawking Radiation from a (4+n)-dimensional Black Hole Exact Results for the Schwarzschild Phase

    CERN Document Server

    Harris, C M; Harris, Chris M.; Kanti, Panagiota

    2003-01-01

    We start our analysis by deriving a master equation that describes the motion of a field with arbitrary spin $s$ on a 3-brane embedded in a non-rotating, uncharged (4+n)-dimensional black hole background. By numerical analysis, we derive exact results for the greybody factors and emission rates for scalars, fermions and gauge bosons emitted directly on the brane, for all energy regimes and for an arbitrary number $n$ of extra dimensions. The relative emissivities on the brane for different types of particles are computed and their dependence on the dimensionality of spacetime is demonstrated -- we therefore conclude that both the amount and the type of radiation emitted can be used for the determination of $n$ if the Hawking radiation from these black holes is observed. The emission of scalar modes in the bulk from the same black holes is also studied and the relative bulk-to-brane energy emissivity is accurately computed. We demonstrate that this quantity varies considerably with $n$ but always remains small...

  4. Quantum Mechanics and Black Holes in Four-Dimensional String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the $\\frac{SU(1,1)}{U(1)}$ coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string qua...

  5. Horizon quantum mechanics of rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)

    2017-05-15

    The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)

  6. A Lifshitz black hole in four dimensional R2 gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Liu Yan; Sun Yawen

    2009-01-01

    We consider a higher derivative gravity theory in four dimensions with a negative cosmological constant and show that vacuum solutions of both Lifshitz type and Schroedinger type with arbitrary dynamical exponent z exist in this system. Then we find an analytic black hole solution which asymptotes to the vacuum Lifshitz solution with z = 3/2 at a specific value of the coupling constant. We analyze the thermodynamic behavior of this black hole and find that the black hole has zero entropy while non-zero temperature, which is very similar to the case of BTZ black holes in new massive gravity at a specific coupling. In addition, we find that the three dimensional Lifshitz black hole recently found by E. Ayon-Beato et al. has a negative entropy and mass when the Newton constant is taken to be positive.

  7. (2+1-dimensional regular black holes with nonlinear electrodynamics sources

    Directory of Open Access Journals (Sweden)

    Yun He

    2017-11-01

    Full Text Available On the basis of two requirements: the avoidance of the curvature singularity and the Maxwell theory as the weak field limit of the nonlinear electrodynamics, we find two restricted conditions on the metric function of (2+1-dimensional regular black hole in general relativity coupled with nonlinear electrodynamics sources. By the use of the two conditions, we obtain a general approach to construct (2+1-dimensional regular black holes. In this manner, we construct four (2+1-dimensional regular black holes as examples. We also study the thermodynamic properties of the regular black holes and verify the first law of black hole thermodynamics.

  8. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  9. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-04-15

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)

  10. Late-time dynamics of rapidly rotating black holes

    International Nuclear Information System (INIS)

    Glampedakis, K.; Andersson, N.

    2001-01-01

    We study the late-time behaviour of a dynamically perturbed rapidly rotating black hole. Considering an extreme Kerr black hole, we show that the large number of virtually undamped quasinormal modes (that exist for nonzero values of the azimuthal eigenvalue m) combine in such a way that the field (as observed at infinity) oscillates with an amplitude that decays as 1/t at late times. For a near extreme black hole, these modes, collectively, give rise to an exponentially decaying field which, however, is considerably 'long-lived'. Our analytic results are verified using numerical time-evolutions of the Teukolsky equation. Moreover, we argue that the physical mechanism behind the observed behaviour is the presence of a 'superradiance resonance cavity' immediately outside the black hole. We present this new feature in detail, and discuss whether it may be relevant for astrophysical black holes. (author)

  11. Properties of a thin accretion disk around a rotating non-Kerr black hole

    International Nuclear Information System (INIS)

    Chen Songbai; Jing Jiliang

    2012-01-01

    We study the accretion process in the thin disk around a rotating non-Kerr black hole with a deformed parameter and an unbound rotation parameter. Our results show that the presence of the deformed parameter ε modifies the standard properties of the disk. For the case in which the black hole is more oblate than a Kerr black hole, the larger deviation leads to the smaller energy flux, the lower radiation temperature and the fainter spectra luminosity in the disk. For the black hole with positive deformed parameter, we find that the effect of the deformed parameter on the disk becomes more complicated. It depends not only on the rotation direction of the black hole and the orbit particles, but also on the sign of the difference between the deformed parameter ε and a certain critical value ε c . These significant features in the mass accretion process may provide a possibility to test the no-hair theorem in the strong-field regime in future astronomical observations.

  12. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  13. Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes: Matching between Hawking temperature and Unruh temperature

    International Nuclear Information System (INIS)

    Santos, Nuno Loureiro; Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We study the matching between the Hawking temperature of a large class of static D-dimensional black holes and the Unruh temperature of the corresponding higher dimensional Rindler spacetime. In order to accomplish this task we find the global embedding of the D-dimensional black holes into a higher dimensional Minkowskian spacetime, called the global embedding Minkowskian spacetime procedure (GEMS procedure). These global embedding transformations are important on their own, since they provide a powerful tool that simplifies the study of black hole physics by working instead, but equivalently, in an accelerated Rindler frame in a flat background geometry. We discuss neutral and charged Tangherlini black holes with and without cosmological constant, and in the negative cosmological constant case, we consider the three allowed topologies for the horizons (spherical, cylindrical/toroidal, and hyperbolic)

  14. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    Energy Technology Data Exchange (ETDEWEB)

    Atamurotov, Farruh [Institute of Nuclear Physics, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Ahmedov, Bobomurat [Institute of Nuclear Physics, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan)

    2016-05-15

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a{sub E} and r{sub H}{sup E}, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a{sub E} decreases and r{sub H}{sup E} increases with increase of the Born-Infeld parameter β, while a < a{sub E} describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)

  15. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    International Nuclear Information System (INIS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-01-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a E and r H E , which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a E decreases and r H E increases with increase of the Born-Infeld parameter β, while a < a E describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)

  16. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    International Nuclear Information System (INIS)

    Koide, Shinji; Baba, Tamon

    2014-01-01

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  17. Three-dimensional massive gravity and the bigravity black hole

    International Nuclear Information System (INIS)

    Banados, Maximo; Theisen, Stefan

    2009-01-01

    We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.

  18. Aspects of noncommutative (1+1)-dimensional black holes

    International Nuclear Information System (INIS)

    Mureika, Jonas R.; Nicolini, Piero

    2011-01-01

    We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length √(θ) cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.

  19. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    International Nuclear Information System (INIS)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-01-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  20. Extremal black hole/CFT correspondence in (gauged) supergravities

    International Nuclear Information System (INIS)

    Chow, David D. K.; Cvetic, M.; Lue, H.; Pope, C. N.

    2009-01-01

    We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are [(D-1)/2] commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D-1)/2] central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in D=4 and three charges in D=5, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

  1. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  2. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, Alikram N.

    2008-01-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4

  3. Stress-energy tensor near a charged, rotating, evaporating black hole

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The recently developed two-dimensional stress-energy regularization techniques are applied to the two-dimensional analog of the Reissner-Nordstroem family of black-hole metrics. The calculated stress-energy tensor in all cases contains the thermal radiation discovered by Hawking. Implications for the evolution of the interior of a charged black hole are considered. The calculated stress-energy tensor is found to diverge on the inner, Cauchy, horizon. Thus the effect of quantum mechanics is to cause the Cauchy horizon to become singular. The stress-energy tensor is also calculated for the ''most reasonable'' two-dimensional analog of the Kerr-Newman family of black-hole metrics. Although the analysis is not as rigorous as in the Reissner-Nordstroem case, it appears that the correct value for the Hawking radiation also appears in this model

  4. Scalar QNMs for higher dimensional black holes surrounded by quintessence in Rastall gravity

    Energy Technology Data Exchange (ETDEWEB)

    Graca, J.P.M.; Lobo, Iarley P. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2018-02-15

    The spacetime solution for a black hole, surrounded by an exotic matter field, in Rastall gravity, is calculated in an arbitrary d-dimensional spacetime. After this, we calculate the scalar quasinormal modes of such solution, and study the shift on the modes caused by the modification of the theory of gravity, i.e., by the introduction of a new term due to Rastall. We conclude that the shift strongly depends on the kind of exotic field one is studying, but for a low density matter that supposedly pervades the universe, it is unlikely that Rastall gravity will cause an instability for the probe field. (orig.)

  5. Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    A. Sheykhi

    2016-01-01

    Full Text Available We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-de Sitter [(AdS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant.

  6. CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE

    International Nuclear Information System (INIS)

    Takahashi, Masaaki; Koyama, Hiroko

    2009-01-01

    The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large-scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be revealed by magnetic phenomena near the black hole. We will start investigating the motion of a charged test particle which depends on the initial parameter setting in the black hole dipole magnetic field, which is a test field on the Kerr spacetime. Particularly, we study the spin effects of a rotating black hole on the motion of the charged test particle trapped in magnetic field lines. We make detailed analysis for the particle's trajectories by using the Poincare map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.

  7. Quasinormal modes and classical wave propagation in analogue black holes

    International Nuclear Information System (INIS)

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-01-01

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow

  8. Imaging a non-singular rotating black hole at the center of the Galaxy

    Science.gov (United States)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  9. Restoration of three-dimensional MR images degraded by rotational movements

    International Nuclear Information System (INIS)

    Wood, M.L.

    1990-01-01

    This paper describes a method to restore three-dimensional (3D) magnetic resonance (MR) images that have been degraded by rotational movements, such as head nodding by a restless patient. The technique for acquiring the 3D MR images includes additional MR signals, which provide one-dimensional (1D) and two-dimensional (2D) projections of anatomy. The 1D projections detect gross movements, and the 2D projections resolve displacements in one plane. The 2D projections are transformed from Cartesian coordinates to polar coordinates to identify rotation. A spatial transformation to reverse the rotation is applied to the imaging data after they have been Fourier transformed to resolve structures in the plane of rotation, but before the Fourier transform for the third direction

  10. A rotating charged black hole solution in f (R) gravity

    Indian Academy of Sciences (India)

    Abstract. In the context of f (R) theories of gravity, we address the problem of finding a rotating charged black hole solution in the case of constant curvature. A new metric is obtained by solving the field equations and we show that its behaviour is typical of a rotating charged source. In addition, we analyse the ...

  11. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  12. Ineffective higher derivative black hole hair

    Science.gov (United States)

    Goldstein, Kevin; Mashiyane, James Junior

    2018-01-01

    Inspired by the possibility that the Schwarzschild black hole may not be the unique spherically symmetric vacuum solution to generalizations of general relativity, we consider black holes in pure fourth order higher derivative gravity treated as an effective theory. Such solutions may be of interest in addressing the issue of higher derivative hair or during the later stages of black hole evaporation. Non-Schwarzschild solutions have been studied but we have put earlier results on a firmer footing by finding a systematic asymptotic expansion for the black holes and matching them with known numerical solutions obtained by integrating out from the near-horizon region. These asymptotic expansions can be cast in the form of trans-series expansions which we conjecture will be a generic feature of non-Schwarzschild higher derivative black holes. Excitingly we find a new branch of solutions with lower free energy than the Schwarzschild solution, but as found in earlier work, solutions only seem to exist for black holes with large curvatures, meaning that one should not generically neglect even higher derivative corrections. This suggests that one effectively recovers the nonhair theorems in this context.

  13. Black hole accretion: the quasar powerhouse

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A program is described which calculates the effects of material falling into the curved space-time surrounding a rotation black hole. The authors have developed a two-dimensional, general-relativistic hydrodynamics code to simulate fluid flow in the gravitational field of a rotating black hole. Such calculations represent models that have been proposed for the energy sources of both quasars and jets from radiogalaxies. In each case, the black hole that powers the quasar or jet would have a mass of about 100 million times the mass of the sun. The black hole would be located in the center of a galaxy whose total mass is 1000 time greater than the black hole mass. (SC)

  14. Energy extraction from a Konoplya–Zhidenko rotating non-Kerr black hole

    Directory of Open Access Journals (Sweden)

    Fen Long

    2018-01-01

    Full Text Available We have investigated the properties of the ergosphere and the energy extraction by Penrose process in a Konoplya–Zhidenko rotating non-Kerr black hole spacetime. We find that the ergosphere becomes thin and the maximum efficiency of energy extraction decreases as the deformation parameter increases. For the case with aM, we find that the maximum efficiency can reach so high that it is almost unlimited as the positive deformation parameter is close to zero, which is a new feature of energy extraction in such kind of rotating non-Kerr black hole spacetime.

  15. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2016-01-01

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  16. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Ujjal, E-mail: ujjaldebnath@yahoo.com

    2016-09-15

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  17. Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations

    OpenAIRE

    Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir

    2012-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...

  18. Non-linear Q-clouds around Kerr black holes

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi

    2014-01-01

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family

  19. Black holes with gravitational hair in higher dimensions

    International Nuclear Information System (INIS)

    Anabalon, Andres; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2011-01-01

    A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Banados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.

  20. Observables and microscopic entropy of higher spin black holes

    Science.gov (United States)

    Compère, Geoffrey; Jottar, Juan I.; Song, Wei

    2013-11-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[ λ] algebra, and on the sl( N,[InlineMediaObject not available: see fulltext.]) algebra for any choice of sl(2 ,[InlineMediaObject not available: see fulltext.]) embedding.

  1. Black Student Retention in Higher Education.

    Science.gov (United States)

    Lang, Marvel, Ed.; Ford, Clinita A., Ed.

    This collection focuses on problems in the recruitment, enrollment and retention of Blacks in higher education in America. The following chapters are provided: "The Black Student Retention Problem in Higher Education: Some Introductory Perspectives" (Marvel Lang); "Early Acceptance and Institutional Linkages in a Model Program of Recruitment,…

  2. Charges in nonlinear higher-spin theory

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)

    2017-03-30

    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS{sub 4} Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.

  3. Charges in nonlinear higher-spin theory

    International Nuclear Information System (INIS)

    Didenko, V.E.; Misuna, N.G.; Vasiliev, M.A.

    2017-01-01

    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS 4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.

  4. Rotating black string with nonlinear source

    International Nuclear Information System (INIS)

    Hendi, S. H.

    2010-01-01

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  5. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ gap /τ emission = O(1), where τ gap is the average time gap between the emissions of successive Hawking quanta and τ emission is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  6. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-07-15

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  7. Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheykhi

    2014-01-01

    Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.

  8. Massive vector particles tunneling from black holes influenced by the generalized uncertainty principle

    Directory of Open Access Journals (Sweden)

    Xiang-Qian Li

    2016-12-01

    Full Text Available This study considers the generalized uncertainty principle, which incorporates the central idea of large extra dimensions, to investigate the processes involved when massive spin-1 particles tunnel from Reissner–Nordstrom and Kerr black holes under the effects of quantum gravity. For the black hole, the quantum gravity correction decelerates the increase in temperature. Up to O(1Mf2, the corrected temperatures are affected by the mass and angular momentum of the emitted vector bosons. In addition, the temperature of the Kerr black hole becomes uneven due to rotation. When the mass of the black hole approaches the order of the higher dimensional Planck mass Mf, it stops radiating and yields a black hole remnant.

  9. Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field

    International Nuclear Information System (INIS)

    Zangeneh, M.K.; Sheykhi, A.; Dehghani, M.H.

    2015-01-01

    In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)

  10. Black holes of dimensionally continued gravity coupled to Born-Infeld electromagnetic field

    Science.gov (United States)

    Meng, Kun; Yang, Da-Bao

    2018-05-01

    In this paper, for dimensionally continued gravity coupled to Born-Infeld electromagnetic field, we construct topological black holes in diverse dimensions and construct dyonic black holes in general even dimensions. We study thermodynamics of the black holes and obtain first laws. We study thermal phase transitions of the black holes in T-S plane and find van der Waals-like phase transitions for even-dimensional spherical black holes, such phase transitions are not found for other types of black holes constructed in this paper.

  11. Quantum anomalies at horizon and Hawking radiations in Myers-Perry black holes

    International Nuclear Information System (INIS)

    Iso, Satoshi; Morita, Takeshi; Umetsu, Hiroshi

    2007-01-01

    A new method has been developed recently to derive Hawking radiations from black holes based on considerations of gravitational and gauge anomalies at the horizon. In this paper, we apply the method to Myers-Perry black holes with multiple angular momenta in various dimensions by using the dimensional reduction technique adopted in the case of four-dimensional rotating black holes

  12. Exploring Higher Dimensional Black Holes at the Large Hadron Collider

    CERN Document Server

    Harris, C M; Parker, M A; Richardson, P; Sabetfakhri, A; Webber, Bryan R

    2005-01-01

    In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20\\%, determine the Planck mass to 15\\% and the number of extra dimensions to $\\pm$0.75.

  13. Exploring higher dimensional black holes at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Harris, Christopher M.; Palmer, Matthew J.; Parker, Michael A.; Richardson, Peter; Sabetfakhri, Ali; Webber, Bryan R.

    2005-01-01

    In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20%, determine the Planck mass to 15% and the number of extra dimensions to ±0.75

  14. Interior design of a two-dimensional semiclassical black hole

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2009-10-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  15. Interior design of a two-dimensional semiclassical black hole

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  16. Eternal higher spin black holes: a thermofield Interpretation

    International Nuclear Information System (INIS)

    Castro, Alejandra; Iqbal, Nabil; Llabrés, Eva

    2016-01-01

    We study Lorentzian eternal black holes in the Chern-Simons sector of AdS 3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT 2 . We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS 2 region in the extremal limit.

  17. New black holes in five dimensions

    International Nuclear Information System (INIS)

    Lue, H.; Mei Jianwei; Pope, C.N.

    2009-01-01

    We construct new stationary Ricci-flat metrics of cohomogeneity 2 in five dimensions, which generalise the Myers-Perry rotating black hole metrics by adding a further non-trivial parameter. We obtain them via a construction that is analogous to the construction by Plebanski and Demianski in four dimensions of the most general type D metrics. Limiting cases of the new metrics contain not only the general Myers-Perry black hole with independent angular momenta, but also the single rotation black ring of Emparan and Reall. In another limit, we obtain new static metrics that describe black holes whose horizons are distorted lens spaces L(n;m)=S 3 /Γ(n;m), where m≥n+2≥3. They are asymptotic to Minkowski spacetime factored by Γ(m;n). In the general stationary case, by contrast, the new metrics describe spacetimes with a horizon and with a periodicity condition on the time coordinate; these examples can be thought of as five-dimensional analogues of the four-dimensional Taub-NUT metrics

  18. Higher-dimensional puncture initial data

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Ansorg, Marcus; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich; Witek, Helvi

    2011-01-01

    We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [M. Ansorg, B. Bruegmann, and W. Tichy, Phys. Rev. D 70, 064011 (2004).] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions.

  19. All or nothing: On the small fluctuations of two-dimensional string theoretic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Gerald [Univ. of Maryland, College Park, MD (United States); Raiten, Eric [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    1992-10-01

    A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.

  20. Bumpy black holes

    OpenAIRE

    Emparan, Roberto; Figueras, Pau; Martinez, Marina

    2014-01-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...

  1. Thermalization with chemical potentials, and higher spin black holes

    International Nuclear Information System (INIS)

    Mandal, Gautam; Sinha, Ritam; Sorokhaibam, Nilakash

    2015-01-01

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of local observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green’s functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[λ]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

  2. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  3. Featured Image: Making a Rapidly Rotating Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  4. Tachyon hair on two-dimensional black holes

    International Nuclear Information System (INIS)

    Peet, A.; Susskind, L.; Thorlacius, L.

    1993-01-01

    Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type

  5. Painleve-gullstrand-type Coordinates for the Five-dimensional Myers-Perry Black Hole

    Science.gov (United States)

    Finch, Tehani Kahi

    2013-01-01

    The Painleve-Gullstrand coordinates provide a convenient framework for presenting the Schwarzschild geometry because of their flat constant-time hypersurfaces, and the fact that they are free of coordinate singularities outside r=0. Generalizations of Painlev´e-Gullstrand coordinates suitable for the Kerr geometry have been presented by Doran and Nat´ario. These coordinate systems feature a time coordinate identical to the proper time of zero-angular-momentum observers that are dropped from infinity. Here, the methods of Doran and Nat´ario are extended to the five-dimensional rotating black hole found by Myers and Perry. The result is a new formulation of the Myers-Perry metric. The properties and physical significance of these new coordinates are discussed.

  6. Numerical relativity for D dimensional space-times: Head-on collisions of black holes and gravitational wave extraction

    International Nuclear Information System (INIS)

    Witek, Helvi; Nerozzi, Andrea; Zilhao, Miguel; Herdeiro, Carlos; Gualtieri, Leonardo; Cardoso, Vitor; Sperhake, Ulrich

    2010-01-01

    Higher dimensional black holes play an exciting role in fundamental physics, such as high energy physics. In this paper, we use the formalism and numerical code reported in [1] to study the head-on collision of two black holes. For this purpose we provide a detailed treatment of gravitational wave extraction in generic D dimensional space-times, which uses the Kodama-Ishibashi formalism. For the first time, we present the results of numerical simulations of the head-on collision in five space-time dimensions, together with the relevant physical quantities. We show that the total radiated energy, when two black holes collide from rest at infinity, is approximately (0.089±0.006)% of the center of mass energy, slightly larger than the 0.055% obtained in the four-dimensional case, and that the ringdown signal at late time is in very good agreement with perturbative calculations.

  7. Black dimensional stones: Geology, technical properties and deposit characterization of the dolerites from Uruguay

    Science.gov (United States)

    Morales Demarco, M.; Oyhantçabal, P.; Stein, K.-J.; Siegesmund, S.

    2012-04-01

    Dimensional stones with a black color occupy a prominent place on the international market. Uruguayan dolerite dikes of andesitic and andesitic-basaltic composition are mined for commercial blocks of black dimensional stones. A total of 16 dikes of both compositions were studied and samples collected for geochemical and petrographical analysis. Color measurements were performed on different black dimensional stones in order to compare them with the Uruguayan dolerites. Samples of the two commercial varieties (Absolute Black and Moderate Black) were obtained for petrophysical analysis (e.g. density, porosity, uniaxial compressive strength, tensile strength, etc.). Detailed structural analyses were performed in several quarries. Geochemistry and petrography determines the intensity of the black color. When compared with commercial samples from China, Brazil, India and South Africa, among others, the Uruguayan dolerite Absolute Black is the darkest black dimensional stone analyzed. In addition, the petrophysical properties of the Uruguayan dolerites make them one of the highest quality black dimensional stones. Structural analyses show that five joint sets have been recognized: two sub-vertical joints, one horizontal and two diagonal. These joint sets are one of the most important factors that control the deposits, since they control the block size distribution and the amount of waste material.

  8. Shadow cast by rotating braneworld black holes with a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2018-02-15

    In this article, we study the shadow produced by rotating black holes having a tidal charge in a Randall-Sundrum braneworld model, with a cosmological constant. We obtain the apparent shape and the corresponding observables for different values of the tidal charge and the rotation parameter, and we analyze the influence of the presence of the cosmological constant. We also discuss the observational prospects for this optical effect. (orig.)

  9. On the generalized second law for rotating black holes

    International Nuclear Information System (INIS)

    Curir, A.

    1986-01-01

    The generalized second law of thermodynamics for rotating black holes is reexamined in the superradiant range in order to take account of the contribution to the production of entropy coming from the semiclassical non-thermal emission. After including this new contribution, the validity of the law is proved by using statistical thermodynamics arguments. (orig.)

  10. Five-dimensional Myers-Perry black holes cannot be overspun in gedanken experiments

    Science.gov (United States)

    An, Jincheng; Shan, Jieru; Zhang, Hongbao; Zhao, Suting

    2018-05-01

    We apply the new version of a gedanken experiment designed recently by Sorce and Wald to overspin the five-dimensional Myers-Perry black holes. As a result, the extremal black holes cannot be overspun at the linear order. On the other hand, although the nearly extremal black holes could be overspun at the linear order, this process is shown to be prohibited by the quadratic order correction. Thus, no violation of the weak cosmic censorship conjecture occurs around the five-dimensional Myers-Perry black holes.

  11. Low-scale gravity black holes at LHC

    CERN Document Server

    Regos, E; Gamsizkan, H; Trocsanyi, Z

    2009-01-01

    We search for extra dimensions by looking for black holes at LHC. Theoretical investigations provide the basis for the collider experiments. We use black hole generators to simulate the experimental signatures (colour, charge, spectrum of emitted particles, missing transverse energy) of black holes at LHC in models with TeV scale quantum gravity, rotation, fermion splitting, brane tension and Hawking radiation. We implement the extra-dimensional simulations at the CMS data analysis and test further beyond standard models of black holes too.

  12. Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra

    Directory of Open Access Journals (Sweden)

    G. Compère

    2015-10-01

    Full Text Available We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R×U(1d−3 isometries which has vanishing SL(2,R and constant U(1 charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d−3 angular variables associated with the U(1 isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.

  13. Bulk-boundary thermodynamic equivalence, and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Perry, M.J.; Pope, C.N.

    2005-01-01

    We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant

  14. Analytic rotating black-hole solutions in N-dimensional f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Nashed, G.G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Ain Shams University, Faculty of Science, Mathematics Department, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt); El Hanafy, W. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt)

    2017-02-15

    A non-diagonal vielbein ansatz is applied to the N-dimension field equations of f(T) gravity. An analytical vacuum solution is derived for the quadratic polynomial f(T)=T+εT{sup 2} and an inverse relation between the coupling constant ε and the cosmological constant Λ. Since the induced metric has off-diagonal components, it cannot be removed by a mere coordinate transformation, the solution has a rotating parameter. The curvature and torsion scalars invariants are calculated to study the singularities and horizons of the solution. In contrast to general relativity, the Cauchy horizon differs from the horizon which shows the effect of the higher order torsion. The general expression of the energy-momentum vector of f(T) gravity is used to calculate the energy of the system. Finally, we have shown that this kind of solution satisfies the first law of thermodynamics in the framework of f(T) gravitational theories. (orig.)

  15. Higher Dimensional Charged Black Hole Solutions in f(R Gravitational Theories

    Directory of Open Access Journals (Sweden)

    G. G. L. Nashed

    2018-01-01

    Full Text Available We present, without any assumption, a class of electric and magnetic flat horizon D-dimension solutions for a specific class of f(R=R+αR2, all of which behave asymptotically as Anti-de-Sitter spacetime. The most interesting property of these solutions is that the higher dimensions black holes, D>4, always have constant electric and magnetic charges in contrast to what is known in the literature. For D=4, we show that the magnetic field participates in the metric on equal foot as the electric field participates. Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that the first law of thermodynamics is always satisfied.

  16. Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution

    Science.gov (United States)

    Kotlařík, P.; Semerák, O.; Čížek, P.

    2018-04-01

    Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.

  17. Quantum Statistical Entropy of Five-Dimensional Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  18. Quantum Statistical Entropy of Five-Dimensional Black Hole

    International Nuclear Information System (INIS)

    Zhao Ren; Zhang Shengli; Wu Yueqin

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  19. Thermodynamical aspect of black hole solutions in heteric string theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Thermodynamical properties of charged rotating dilatonic black holes are discussed on the basis of the general solution of Sen in the heterotic string theory compactified on a six dimensional torus. The most probable microcanonical configuration of black holes is then described in the single-massive-mode dominance scenario.

  20. Global geometry of two-dimensional charged black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2006-01-01

    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation

  1. Three-dimensional analysis of otolith-ocular reflex during eccentric rotation in humans.

    Science.gov (United States)

    Takimoto, Yasumitsu; Imai, Takao; Okumura, Tomoko; Takeda, Noriaki; Inohara, Hidenori

    2016-10-01

    When a participant is rotated while displaced from the axis of rotation (eccentric rotation, ER), both rotational stimulation and linear acceleration are applied to the participant. As linear acceleration stimulates the otolith, the vestibulo-ocular reflex (VOR) caused by the otolith (linear VOR; lVOR) would be induced during ER. Ten participants were rotated sinusoidally at a maximum angular velocity of 50°/s and at frequencies of 0.1, 0.3, 0.5, and 0.7Hz. The radius of rotation during ER was 90cm. The participants sat on a chair at three different positions: on the axis (center rotation, CR), at 90cm backward from the axis (nose-in ER, NI-ER) and at 90cm forward from the axis (nose-out ER, NO-ER). Their eye movements during rotation were recorded and analyzed three-dimensionally. The VOR gain during NI-ER was lower at 0.5 and 0.7Hz, and that during NO-ER was higher at 0.3, 0.5, and 0.7Hz than during CR. These results indicate that lVOR actually worked at 0.5 and 0.7Hz during ER and that the enhancement and decline of the VOR gain relative to the VOR gain during CR was seen in humans. Thus, we suggest that otolith function can be assessed via rotational testing of NI-ER and NO-ER. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. Dirac particle tunneling from black rings

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2008-01-01

    Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.

  3. Extremal static AdS black hole/CFT correspondence in gauged supergravities

    International Nuclear Information System (INIS)

    Lue, H.; Mei Jianwei; Pope, C.N.; Vazquez-Poritz, Justin F.

    2009-01-01

    A recently proposed holographic duality allows the Bekenstein-Hawking entropy of extremal rotating black holes to be calculated microscopically, by applying the Cardy formula to the two-dimensional chiral CFTs associated with certain reparameterisations of azimuthal angular coordinates in the solutions. The central charges are proportional to the angular momenta of the black hole, and so the method degenerates in the case of static (non-rotating) black holes. We show that the method can be extended to encompass such charged static extremal AdS black holes by using consistent Kaluza-Klein sphere reduction ansatze to lift them to exact solutions in the low-energy limits of string theory or M-theory, where the electric charges become reinterpreted as angular momenta associated with internal rotations in the reduction sphere. We illustrate the procedure for the examples of extremal charged static AdS black holes in four, five, six and seven dimensions

  4. Hawking radiation from four-dimensional Schwarzschild black holes in M theory

    International Nuclear Information System (INIS)

    Das, S.R.; Mathur, S.D.; Ramadevi, P.

    1999-01-01

    Recently a method has been developed for relating four dimensional Schwarzschild black holes in M theory to near-extremal black holes in string theory with four charges, using suitably defined open-quotes boostsclose quotes and T dualities. We show that this method can be extended to obtain the emission rate of low energy massless scalars for the four dimensional Schwarzschild hole from the microscopic picture of radiation from the near extremal hole. copyright 1999 The American Physical Society

  5. Entropy of a rotating and charged black string to all orders in the Planck length

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2009-01-01

    By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates

  6. Pattern formation and three-dimensional instability in rotating flows

    Science.gov (United States)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  7. Analyticity of event horizons of five-dimensional multi-black holes with nontrivial asymptotic structure

    International Nuclear Information System (INIS)

    Kimura, Masashi

    2008-01-01

    We show that there exist five-dimensional multi-black hole solutions which have analytic event horizons when the space-time has nontrivial asymptotic structure, unlike the case of five-dimensional multi-black hole solutions in asymptotically flat space-time.

  8. Fast plunges into Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2015-07-15

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.

  9. Instability in near-horizon geometries of even-dimensional Myers–Perry black holes

    International Nuclear Information System (INIS)

    Tanahashi, Norihiro; Murata, Keiju

    2012-01-01

    We study the gravitational, electromagnetic and scalar field perturbations on the near-horizon geometries of the even-dimensional extremal Myers–Perry black holes. By dimensional reduction, the perturbation equations are reduced to effective equations of motion in AdS 2 . We find that some modes in the gravitational perturbations violate the Breitenlöhner–Freedman bound in AdS 2 . This result suggests that the even-dimensional (near-)extremal Myers–Perry black holes are unstable against gravitational perturbations. We also discuss implications of our results to the Kerr–CFT correspondence. (paper)

  10. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.

    Science.gov (United States)

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2011-04-15

    We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.

  11. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  12. Statistical Entropy of Four-Dimensional Extremal Black Holes

    International Nuclear Information System (INIS)

    Maldacena, J.M.; Strominger, A.

    1996-01-01

    String theory is used to count microstates of four-dimensional extremal black holes in compactifications with N=4 and N=8 supersymmetry. The result agrees for large charges with the Bekenstein-Hawking entropy. copyright 1996 The American Physical Society

  13. A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures

    Science.gov (United States)

    Sauls, Barbara Lynn

    Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to

  14. Hairy planar black holes in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aceña, Andrés [Instituto de Ciencias Básicas, Universidad Nacional de Cuyo,Mendoza (Argentina); Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias,Universidad Adolfo Ibáñez, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique,UMR 5672, CNRS, École Normale Supérieure de Lyon,46 allé d’Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Mann, Robert [Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute,31 Caroline Street North Waterloo, Ontario N2L 2Y5 (Canada)

    2014-01-28

    We construct exact hairy planar black holes in D-dimensional AdS gravity. These solutions are regular except at the singularity and have stress-energy that satisfies the null energy condition. We present a detailed analysis of their thermodynamical properties and show that the first law is satisfied. We also discuss these solutions in the context of AdS/CFT duality and construct the associated c-function.

  15. Thermodynamics of rotating black branes in gravity with first order string corrections

    Directory of Open Access Journals (Sweden)

    M. H. Dehghani

    2005-09-01

    Full Text Available   In this paper, the rotating black brane solutions with zero curvature horizon of classical gravity with first order string corrections are introduced. Although these solutions are not asymptotically anti de Sitter, one can use the counterterm method in order to compute the conserved quantities of these solutions. Here, by reviewing the counterterm method for asymptotically anti de Sitter spacetimes, the conserved quantities of these rotating solutions are computed. Also a Smarr-type formula for the mass as a function of the entropy and the angular momenta is obtained, and it is shown that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, a stability analysis in the canonical ensemble is performed, and it is shown that the system is thermally stable. This is in commensurable with the fact that there is no Hawking-Page phase transition for black object with zero curvature horizon.

  16. Cosmic censorship principle in two-dimensional charged extreme black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bin; Ru Keng Su [Fudan Univ., Shanghai (China). Dept. of Physics; Cheung, T. [Hong Kong City Univ., Hong Kong (China). Dept. of Physics

    1999-10-01

    By constructing a gedanken experiment, the authors prove that the event horizon of a two-dimensional charged extreme black hole cannot be removed. Singularities are found to be formed on the horizon through analyzing the fate of Hawking partner and application of Helliwell-Konkowski conjecture. The cosmic censorship principle is well protected in this black hole.

  17. Faraday rotation near charged black holes and other electrovacuum geometries

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1975-01-01

    In space permeated by a steady background electromagnetic field a gravitational wave and an electromagnetic wave not only undergo beat frequency oscillations, but the linear polarizations of these waves undergo Faraday rotations as well. The beating and the Faraday rotations are inextricably related. The classification of these phenomena requires three parameters, the three Euler parameters of SU(2). They specify in a more general sense the ''polarization'' of an electrograviton mode. The evolution of the beat frequency oscillations and the Faraday rotations along a propagating wave front is described as a moving point in SU(2). Consequently, a charged black hole serves not only as a catalyst for converting suitably directed electromagnetic radiation into gravitational radiation, but also as an agent that randomized the linear polarizations of radiation emerging from it. An assessment of these phenomena in relation to the origin of Weber's signals is given

  18. Einstein-Gauss-Bonnet metrics: black holes, black strings and a staticity theorem

    International Nuclear Information System (INIS)

    Bogdanos, C.; Charmousis, C.; Gouteraux, B.; Zegers, R.

    2009-01-01

    We find the general solution of the 6-dimensional Einstein-Gauss-Bonnet equations in a large class of space and time-dependent warped geometries. Several distinct families of solutions are found, some of which include black string metrics, space and time-dependent solutions and black holes with exotic horizons. Among these, some are shown to verify a Birkhoff type staticity theorem, although here, the usual assumption of maximal symmetry on the horizon is relaxed, allowing exotic horizon geometries. We provide explicit examples of such static exotic black holes, including ones whose horizon geometry is that of a Bergman space. We find that the situation is very different from higher-dimensional general relativity, where Einstein spaces are admissible black hole horizons and the associated black hole potential is not even affected. In Einstein-Gauss-Bonnet theory, on the contrary, the non-trivial Weyl tensor of such exotic horizons is exposed to the bulk dynamics through the higher order Gauss-Bonnet term, severely constraining the allowed horizon geometries and adding a novel charge-like parameter to the black hole potential. The latter is related to the Euler characteristic of the four-dimensional horizon and provides, in some cases, additional black hole horizons.

  19. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  20. Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling, E-mail: LHL51759@126.com [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034 (China); Yang, Shu-Zheng, E-mail: szyangcwnu@126.com [Institute of Theoretical Physics, China West Normal University, Nanchong 637002 (China); Zu, Xiao-Tao, E-mail: xtzu@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-01-10

    In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.

  1. The spectrum of the two-dimensional black hole or does the two-dimensional black hole have tachyonic or W-hair?

    International Nuclear Information System (INIS)

    Marcus, N.; Oz, Y.

    1993-01-01

    We solve the equations of motion of the tachyon and the discrete states in the background of Witten's semiclassical black hole and in the exact two-dimensional dilaton-graviton background of Dijkgraaf et al. We find the exact solutions for weak fields, leading to conclusions in disagreement with previous studies of tachyons in the black hole. Demanding that a state in the black hole be well behaved at the horizon implies that it must tend asymptotically to a combination of a Seiberg and an anti-Seiberg c=1 state. For such a state to be well behaved asymptotically, it must satisfy the condition that neither its Seiberg nor its anti-Seiberg Liouville momentum is positive. Thus, although the free-field BRST cohomologies of the underlying SL(2, R) theory is the same as that of a c=1 theory, the black-hole spectrum is drastically truncated: There are no W ∞ states, and only tachyons with x-momenta vertical stroke p tach ≤m tach vertical stroke are allowed. In the Minkowski case only the static tachyon is allowed. The black hole is stable to the back reaction of these remaining tachyons, so they are good perturbations of the black hole, or 'hair'. However, this leaves only three tachyonic hairs in the black hole and seven in the exact solution. Such sparse hair is clearly irrelevant to the maintenance of coherence during black-hole evaporation. (orig.)

  2. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    International Nuclear Information System (INIS)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-01-01

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.

  3. Matter-antimatter separation in the early universe by rotating black holes

    Science.gov (United States)

    Leahy, D. A.

    1981-01-01

    Consideration of the effect of rotating black holes evaporating early in the universe shows that they would have produced oppositely directed neutrino and antineutrino currents, which push matter and antimatter apart. This separation mechanism is, however, too feeble to account for a present baryon-to-photon ratio of 10 to the -9th, and has no significant observational consequences.

  4. Counter-rotational effects on stability of 2 + 1-dimensional thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2014-09-15

    The role of angular momentum in a 2 + 1-dimensional rotating thin-shell wormhole (TSW) is considered. Particular emphasis is given to stability when the shells (rings) are counter-rotating. We find that counter-rotating halves make the TSW supported by the equation of state of a linear gas more stable. Under a small velocity dependent perturbation, however, it becomes unstable. (orig.)

  5. Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

    2017-09-01

    Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.

  6. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  7. Serial Changes in 3-Dimensional Supraspinatus Muscle Volume After Rotator Cuff Repair.

    Science.gov (United States)

    Chung, Seok Won; Oh, Kyung-Soo; Moon, Sung Gyu; Kim, Na Ra; Lee, Ji Whan; Shim, Eungjune; Park, Sehyung; Kim, Youngjun

    2017-08-01

    There is considerable debate on the recovery of rotator cuff muscle atrophy after rotator cuff repair. To evaluate the serial changes in supraspinatus muscle volume after rotator cuff repair by using semiautomatic segmentation software and to determine the relationship with functional outcomes. Case series; Level of evidence, 4. Seventy-four patients (mean age, 62.8 ± 8.8 years) who underwent arthroscopic rotator cuff repair and obtained 3 consecutive (preoperatively, immediately postoperatively, and later postoperatively [≥1 year postoperatively]) magnetic resonance imaging (MRI) scans having complete Y-views were included. We generated a 3-dimensional (3D) reconstructed model of the supraspinatus muscle by using in-house semiautomatic segmentation software (ITK-SNAP) and calculated both the 2-dimensional (2D) cross-sectional area and 3D volume of the muscle in 3 different views (Y-view, 1 cm medial to the Y-view [Y+1 view], and 2 cm medial to the Y-view [Y+2 view]) at the 3 time points. The area and volume changes at each time point were evaluated according to repair integrity. Later postoperative volumes were compared with immediately postoperative volumes, and their relationship with various clinical factors and the effect of higher volume increases on range of motion, muscle power, and visual analog scale pain and American Shoulder and Elbow Surgeons scores were evaluated. The interrater reliabilities were excellent for all measurements. Areas and volumes increased immediately postoperatively as compared with preoperatively; however, only volumes on the Y+1 view and Y+2 view significantly increased later postoperatively as compared with immediately postoperatively ( P < .05). There were 9 patients with healing failure, and area and volume changes were significantly less later postoperatively compared with immediately postoperatively at all measurement points in these patients ( P < .05). After omitting the patients with healing failure, volume increases

  8. On the absence of scalar hair for charged rotating black holes in non ...

    Indian Academy of Sciences (India)

    black holes with exterior non-abelian gauge field or Skyrmion field [8–10] have put ... solutions for charged rotating space-time with a minimally coupled scalar field from the ...... 125, 2163 (1962). [26] G Magnano and L M Sokolowski, Phys.

  9. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  10. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  11. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    Science.gov (United States)

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  12. Type Synthesis of Parallel Mechanisms with the First Class GF Sets and Two-Dimensional Rotations

    Directory of Open Access Journals (Sweden)

    Jialun Yang

    2012-09-01

    Full Text Available The novel design of parallel mechanisms plays a key role in the potential application of parallel mechanisms. In this paper, the type synthesis of parallel mechanisms with the first class GF sets and two-dimensional rotations is studied. The rule of two-dimensional rotations is given, which lays the theoretical foundation for the intersection operations of specific GF sets. Next, kinematic limbs with specific characteristics are designed according to the 2-D and 3-D axes movement theorems. Finally, several synthesized parallel mechanisms with the first class GF sets and two-dimensional rotations are illustrated to show the effectiveness of the proposed methodology.

  13. New geometries for black hole horizons

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-10

    We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D≥6.

  14. Near horizon extremal Myers–Perry black holes and integrability of associated conformal mechanics

    Directory of Open Access Journals (Sweden)

    Tigran Hakobyan

    2017-09-01

    Full Text Available We investigate dynamics of probe particles moving in the near-horizon limit of (2N+1-dimensional extremal Myers–Perry black hole with arbitrary rotation parameters. We observe that in the most general case with non-equal non-vanishing rotational parameters the system admits separation of variables in N-dimensional ellipsoidal coordinates. This allows us to find solution of the corresponding Hamilton–Jacobi equation and write down the explicit expressions of Liouville constants of motion.

  15. Generalized Gödel universes in higher dimensions and pure Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Molina, Alfred; Pons, Josep M.

    2017-10-01

    The Gödel universe is a homogeneous rotating dust with negative Λ which is a direct product of a three-dimensional pure rotation metric with a line. We would generalize it to higher dimensions for Einstein and pure Lovelock gravity with only one N th-order term. For higher-dimensional generalization, we have to include more rotations in the metric, and hence we shall begin with the corresponding pure rotation odd (d =2 n +1 )-dimensional metric involving n rotations, which eventually can be extended by a direct product with a line or a space of constant curvature for yielding a higher-dimensional Gödel universe. The considerations of n rotations and also of constant curvature spaces is a new line of generalization and is being considered for the first time.

  16. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  17. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    Science.gov (United States)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  18. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  19. Six-dimensional Yang black holes in dilaton gravity

    International Nuclear Information System (INIS)

    Abbott, Michael C.; Lowe, David A.

    2008-01-01

    We study the six-dimensional dilaton gravity Yang black holes of Bergshoeff, Gibbons and Townsend, which carry (1,-1) charge in SU(2)xSU(2) gauge group. We find what values of the asymptotic parameters (mass and scalar charge) lead to a regular horizon, and show that there are no regular solutions with an extremal horizon

  20. Scanning the parameter space of collapsing rotating thin shells

    Science.gov (United States)

    Rocha, Jorge V.; Santarelli, Raphael

    2018-06-01

    We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.

  1. Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials

    Science.gov (United States)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-05-01

    We predict nonlinear optical polarization rotation in two-dimensional massless Dirac systems including graphene and 8-P m m n borophene. When illuminated, a continuous-wave optical field leads to a nonlinear steady state of photoexcited carriers in the medium. The photoexcited population inversion and the interband coherence give rise to a finite transverse optical conductivity σx y(ω ) . This in turn leads to definitive signatures in associated Kerr and Faraday polarization rotation, which are measurable in a realistic experimental scenario.

  2. Black holes in higher derivative gravity.

    Science.gov (United States)

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.

  3. Late-time tails of wave propagation in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Yoshida, Shijun; Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic, and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t -(2l+D-2) at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd; it does not depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t -(2l+3D-8) , and this time there is no contribution from the flat background. This power law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, t -(2l+3) behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late-time behavior of any field if the large extra dimensions are large enough

  4. Vacuum polarization of the electromagnetic field near a rotating black hole

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-01-01

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor gives a result which coincides at the event horizon with the exact value of /sup ren/. .AE

  5. Sectors of solutions in three-dimensional gravity and black holes

    International Nuclear Information System (INIS)

    Fjelstad, Jens; Hwang, Stephen

    2002-01-01

    We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression

  6. Sectors of solutions in three-dimensional gravity and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se

    2002-04-29

    We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression.

  7. Faster Black-Box Algorithms Through Higher Arity Operators

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Johannsen, Daniel; Kötzing, Timo

    2011-01-01

    We extend the work of Lehre and Witt (GECCO 2010) on the unbiased black-box model by considering higher arity variation operators. In particular, we show that already for binary operators the black-box complexity of LeadingOnes drops from (n2) for unary operators to O(n log n). For OneMax, the (n...

  8. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)

    tribpo

    Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...

  9. Superradiance and black hole bomb in five-dimensional minimal ungauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Alikram N., E-mail: alikram.n.aliev@gmail.com [Faculty of Engineering and Architecture, Yeni Yüzyıl University, Cevizlibağ-Topkapı, Istanbul, 34010 Turkey (Turkey)

    2014-11-01

    We examine the black hole bomb model which consists of a rotating black hole of five-dimenensional minimal ungauged supergravity and a reflecting mirror around it. For low-frequency scalar perturbations, we find solutions to the Klein-Gordon equation in the near-horizon and far regions of the black hole spacetime. To avoid solutions with logarithmic terms, we assume that the orbital quantum number l takes on nearly, but not exactly, integer values and perform the matching of these solutions in an intermediate region. This allows us to calculate analytically the frequency spectrum of quasinormal modes, taking the limits as l approaches even or odd integers separately. We find that all l modes of scalar perturbations undergo negative damping in the regime of superradiance, resulting in exponential growth of their amplitudes. Thus, the model under consideration would exhibit the superradiant instability, eventually behaving as a black hole bomb in five dimensions.

  10. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  11. Black phosphorus-based one-dimensional photonic crystals and microcavities.

    Science.gov (United States)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-10

    The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.

  12. Angular momentum in general relativity. II. Perturbations of a rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1977-06-30

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state.

  13. Three-dimensional rotational angiography in children with an aortic coarctation

    NARCIS (Netherlands)

    Starmans, N L P; Krings, G J; Molenschot, M M C; van der Stelt, Femke; Breur, J M P J

    2016-01-01

    BACKGROUND: Children with aortic coarctations (CoA) are increasingly percutaneously treated. Good visualisation of the CoA is mandatory and can be obtained with three-dimensional rotational angiography (3DRA). This study aims to compare the diagnostic and therapeutic additional value of 3DRA with

  14. Fermion emission in a two-dimensional black hole space-time

    International Nuclear Information System (INIS)

    Wanders, G.

    1994-01-01

    We investigate massless fermion production by a two-dimensional dilatonic black hole. Our analysis is based on the Bogoliubov transformation relating the outgoing fermion field observed outside the black hole horizon to the incoming field present before the black hole creation. It takes full account of the fact that the transformation is neither invertible nor unitarily implementable. The particle content of the outgoing radiation is specified by means of inclusive probabilities for the detection of sets of outgoing fermions and antifermions in given states. For states localized near the horizon these probabilities characterize a thermal equilibrium state. The way the probabilities become thermal as one approaches the horizon is discussed in detail

  15. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  16. Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation.

    Science.gov (United States)

    Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich

    2013-01-01

    The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double

  17. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  18. Bulk and brane decay of a (4+n)-dimensional Schwarzschild-de Sitter black hole: Scalar radiation

    International Nuclear Information System (INIS)

    Kanti, P.; Grain, J.; Barrau, A.

    2005-01-01

    In this paper, we extend the idea that the spectrum of Hawking radiation can reveal valuable information on a number of parameters that characterize a particular black hole background--such as the dimensionality of spacetime and the value of coupling constants--to gain information on another important aspect: the curvature of spacetime. We investigate the emission of Hawking radiation from a D-dimensional Schwarzschild-de Sitter black hole emitted in the form of scalar fields, and employ both analytical and numerical techniques to calculate greybody factors and differential energy emission rates on the brane and in the bulk. The energy emission rate of the black hole is significantly enhanced in the high-energy regime with the number of spacelike dimensions. On the other hand, in the low-energy part of the spectrum, it is the cosmological constant that leaves a clear footprint, through a characteristic, constant emission rate of ultrasoft quanta determined by the values of black hole and cosmological horizons. Our results are applicable to 'small' black holes arising in theories with an arbitrary number and size of extra dimensions, as well as to pure 4-dimensional primordial black holes, embedded in a de Sitter spacetime

  19. Pressure and volume in the first law of black hole thermodynamics

    Science.gov (United States)

    Dolan, Brian P.

    2011-12-01

    The mass of a black hole is interpreted, in terms of thermodynamic potentials, as being the enthalpy, with the pressure given by the cosmological constant. The volume is then defined as being the Legendre transform of the pressure, and the resulting relation between volume and pressure is explored in the case of positive pressure. A virial expansion is developed and a van der Waals like critical point determined. The first law of black hole thermodynamics includes a PdV term which modifies the maximal efficiency of a Penrose process. It is shown that, in four-dimensional spacetime with a negative cosmological constant, an extremal charged rotating black hole can have an efficiency of up to 75%, while for an electrically neutral rotating black hole this figure is reduced to 52%, compared to the corresponding values of 50% and 29% respectively when the cosmological constant is zero.

  20. Pressure and volume in the first law of black hole thermodynamics

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2011-01-01

    The mass of a black hole is interpreted, in terms of thermodynamic potentials, as being the enthalpy, with the pressure given by the cosmological constant. The volume is then defined as being the Legendre transform of the pressure, and the resulting relation between volume and pressure is explored in the case of positive pressure. A virial expansion is developed and a van der Waals like critical point determined. The first law of black hole thermodynamics includes a PdV term which modifies the maximal efficiency of a Penrose process. It is shown that, in four-dimensional spacetime with a negative cosmological constant, an extremal charged rotating black hole can have an efficiency of up to 75%, while for an electrically neutral rotating black hole this figure is reduced to 52%, compared to the corresponding values of 50% and 29% respectively when the cosmological constant is zero. (paper)

  1. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  2. Nariai, Bertotti-Robinson, and anti-Nariai solutions in higher dimensions

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We find all higher dimensional solutions of Einstein-Maxwell theory that are the topological product of two manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and anti-Nariai solutions and the anti-de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit results for any dimension D≥4. These solutions are generated from the appropriate extremal limits of the higher dimensional near-extreme black holes in de Sitter and anti-de Sitter backgrounds. Thus, we also find the mass and charge parameters of higher dimensional extreme black holes as a function of the radius of the degenerate horizon

  3. Critical Phenomena in Higher Curvature Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Arindam Lala

    2013-01-01

    Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

  4. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  5. Higher-dimensional Bianchi type-VIh cosmologies

    Science.gov (United States)

    Lorenz-Petzold, D.

    1985-09-01

    The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.

  6. Dynamics of toroidal spiral strings around five-dimensional black holes

    International Nuclear Information System (INIS)

    Igata, Takahisa; Ishihara, Hideki

    2010-01-01

    We examine the separability of the Nambu-Goto equation for test strings in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a 'Hopf loop' string which is a special class of the toroidal spiral strings, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.

  7. Two-dimensional character of internal rotation of furfural and other five-member heterocyclic aromatic aldehydes

    Science.gov (United States)

    Bataev, Vadim A.; Pupyshev, Vladimir I.; Godunov, Igor A.

    2016-05-01

    The features of nuclear motion corresponding to the rotation of the formyl group (CHO) are studied for the molecules of furfural and some other five-member heterocyclic aromatic aldehydes by the use of MP2/6-311G** quantum chemical approximation. It is demonstrated that the traditional one-dimensional models of internal rotation for the molecules studied have only limited applicability. The reason is the strong kinematic interaction of the rotation of the CHO group and out-of-plane CHO deformation that is realized for the molecules under consideration. The computational procedure based on the two-dimensional approximation is considered for low lying vibrational states as more adequate to the problem.

  8. Charged gravastars in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S., E-mail: shnkghosh122@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Rahaman, F., E-mail: rahaman@associates.iucaa.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Guha, B.K., E-mail: bkguhaphys@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Ray, Saibal, E-mail: saibal@associates.iucaa.in [Department of Physics, Government College of Engineering and Ceramic Technology, 73 A.C.B. Lane, Kolkata 700010, West Bengal (India)

    2017-04-10

    We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein–Maxwell space–time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar have been observed as a competent alternative to D-dimensional versions of the Schwarzschild–Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher dimensional Reissner–Nordström black hole. In connection to this junction conditions, therefore we have formulated mass and the related Equation of State of the gravastar. It has been shown that the model satisfies all the requirements of the physical features. However, overall observational survey of the results also provide probable indication of non-applicability of higher dimensional approach for construction of a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is concerned.

  9. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    International Nuclear Information System (INIS)

    Adamovich, Igor V.

    2014-01-01

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

  10. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  11. Higher dimensional discrete Cheeger inequalities

    Directory of Open Access Journals (Sweden)

    Anna Gundert

    2015-01-01

    Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.

  12. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    Science.gov (United States)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(

  13. Decolonizing Higher Education: Black Feminism and the Intersectionality of Race and Gender

    Directory of Open Access Journals (Sweden)

    Heidi Safia Mirza

    2015-05-01

    Full Text Available Drawing on black feminist theory, this paper examines the professional experiences of postcolonial diasporic black and ethnicized female academics in higher education. The paper explores the embodiment of gendered and racialized difference and reflects on the power of whiteness to shape everyday experiences in such places of privilege. The powerful yet hidden histories of women of color in higher education, such as the Indian women suffragettes and Cornelia Sorabji in late nineteenth century, are symbolic of the erasure of an ethnicized black feminist/womanist presence in mainstream (white educational establishments. The paper concludes that an understanding of black and ethnicized female agency and desire for education and learning is at the heart of a black feminist analysis that reclaims higher education as a radical site of resistance and refutation.

  14. Low-diffusion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler flows

    NARCIS (Netherlands)

    Koren, B.; Hackbusch, W.; Trottenberg, U.

    1991-01-01

    Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the emphasis Iying on bath a good accuracy and a good solvability. The multi-dimensional upwinding consists of applying a one-dimensional Riemann solver with a locally rotated left and right state,

  15. Probing the universality of synchronised hair around rotating black holes with Q-clouds

    Science.gov (United States)

    Herdeiro, Carlos; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro

    2018-04-01

    Recently, various families of black holes (BHs) with synchronised hair have been constructed. These are rotating BHs surrounded, as fully non-linear solutions of the appropriate Einstein-matter model, by a non-trivial bosonic field in synchronised rotation with the BH horizon. Some families bifurcate globally from a bald BH (e.g. the Kerr BH), whereas others bifurcate only locally from a bald BH (e.g. the D = 5 Myers-Perry BH). It would be desirable to understand how generically synchronisation allows hairy BHs to bifurcate from bald ones. However, the construction and scanning of the domain of existence of the former families of BHs can be a difficult and time consuming (numerical) task. Here, we first provide a simple perturbative argument to understand the generality of the synchronisation condition. Then, we observe that the study of Q-clouds is a generic tool to establish the existence of BHs with synchronised hair bifurcating (globally or locally) from a given bald BH without having to solve the fully non-linear coupled system of Einstein-matter equations. As examples, we apply this tool to establish the existence of synchronised hair around D = 6 Myers-Perry BHs, D = 5 black rings and D = 4 Kerr-AdS BHs, where D is the spacetime dimension. The black rings case provides an example of BHs with synchronised hair beyond spherical horizon topology, further establishing the generality of the mechanism.

  16. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  17. THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS

    International Nuclear Information System (INIS)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D.

    2012-01-01

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity—objects that are proposed as likely progenitors of long-duration γ-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.

  18. THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Dessart, Luc [Laboratoire d' Astrophysique de Marseille, Universite Aix-Marseille and CNRS, UMR7326, 38 rue Frederic Joliot-Curie, 13388 Marseille (France); O' Connor, Evan; Ott, Christian D., E-mail: Luc.Dessart@oamp.fr, E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity-objects that are proposed as likely progenitors of long-duration {gamma}-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.

  19. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    Science.gov (United States)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  20. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  1. Observational test for the existence of a rotating black hole in Cyg X-1. [Gravitatinal effects, polarization properties

    Energy Technology Data Exchange (ETDEWEB)

    Stark, R F; Connors, P A [Oxford Univ. (UK). Dept. of Astrophysics

    1977-03-31

    It is stated that the degree and plane of linear polarisation of the radiation from Cyg X-1 are being investigated by X-ray satellite experiments. This radiation can be explained as coming from an accretion disk around a black hole, the polarisation of the X-rays being due to electron scattering in the hotter inner regions of the disk. Existing predictions of the polarisation properties, as a function of energy, have been based on a Newtonian approximation, thus neglecting gravitational effects on the rays as they propagate from the surface of the disk to an observer at infinity. Preliminary results are here given of a full general relativistic calculation that shows that gravitational effects completely alter the polarisation properties, and provide a sensitive test of the existence of a black hole. It is found that for a rapidly rotating black hole the general relativistic effects on the polarisation properties are an order of magnitude greater than for a slowly rotating black hole, or for a neutron star. The degree of linear polarisation of the rays as they leave the disk will also differ from the Newtonian value, and gravitational bending of the light will alter the angle at which a ray leaves the surface of the disk. The large general relativistic variation of the polarisation plane with energy is illustrated graphically. The very large general relativistic rotations in the plane of polarisation provide an opportunity for testing the black hole hypothesis for Cyg X-1. In order to observe these effects X-ray satellite experiments will be required with more sensitive polarimetry across a wider energy range than is available at present.

  2. Charged vector particle tunneling from a pair of accelerating and rotating and 5D gauged super-gravity black holes

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Wajiha; Ali, Riasat [University of Education, Division of Science and Technology, Lahore (Pakistan); Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-05-15

    The aim of this paper is to study the quantum tunneling process for charged vector particles through the horizons of more generalized black holes by using the Proca equation. For this purpose, we consider a pair of charged accelerating and rotating black holes with Newman-Unti-Tamburino parameter and a black hole in 5D gauged super-gravity theory, respectively. Further, we study the tunneling probability and corresponding Hawking temperature for both black holes by using the WKB approximation. We find that our analysis is independent of the particles species whether or not the background black hole geometries are more generalized. (orig.)

  3. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    Science.gov (United States)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  4. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  5. Black holes, hidden symmetries, and complete integrability.

    Science.gov (United States)

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David

    2017-01-01

    The study of higher-dimensional black holes is a subject which has recently attracted vast interest. Perhaps one of the most surprising discoveries is a realization that the properties of higher-dimensional black holes with the spherical horizon topology and described by the Kerr-NUT-(A)dS metrics are very similar to the properties of the well known four-dimensional Kerr metric. This remarkable result stems from the existence of a single object called the principal tensor. In our review we discuss explicit and hidden symmetries of higher-dimensional Kerr-NUT-(A)dS black hole spacetimes. We start with discussion of the Killing and Killing-Yano objects representing explicit and hidden symmetries. We demonstrate that the principal tensor can be used as a "seed object" which generates all these symmetries. It determines the form of the geometry, as well as guarantees its remarkable properties, such as special algebraic type of the spacetime, complete integrability of geodesic motion, and separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations. The review also contains a discussion of different applications of the developed formalism and its possible generalizations.

  6. Two-dimensional character of internal rotation of furfural and other five-member heterocyclic aromatic aldehydes.

    Science.gov (United States)

    Bataev, Vadim A; Pupyshev, Vladimir I; Godunov, Igor A

    2016-05-15

    The features of nuclear motion corresponding to the rotation of the formyl group (CHO) are studied for the molecules of furfural and some other five-member heterocyclic aromatic aldehydes by the use of MP2/6-311G** quantum chemical approximation. It is demonstrated that the traditional one-dimensional models of internal rotation for the molecules studied have only limited applicability. The reason is the strong kinematic interaction of the rotation of the CHO group and out-of-plane CHO deformation that is realized for the molecules under consideration. The computational procedure based on the two-dimensional approximation is considered for low lying vibrational states as more adequate to the problem. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Area spectra of near extremal black holes

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2010-01-01

    Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)

  8. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  9. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    Science.gov (United States)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  10. The 2-dimensional O(4) symmetric Heisenberg ferromagnet in terms of rotation invariant variables

    International Nuclear Information System (INIS)

    Holtkamp, A.

    1981-09-01

    After introduction of rotation invariant auxiliary variables, the integration over all rotation variant variables (spins) in the 0(4) symmetric two-dimensional Heisenberg ferromagnet can be performed. The resulting new Hamiltonian involves a sum over closed loops. It is complex and invariant under U(1) gauge transformations. Ruehl's boson representation is used to derive the result. (orig.)

  11. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  12. Instabilities of higher dimensional compactifications

    International Nuclear Information System (INIS)

    Accetta, F.S.

    1987-02-01

    Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs

  13. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.

    Science.gov (United States)

    Muzikant, A L; Henriquez, C S

    1998-04-01

    A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.

  14. EVH black hole solutions with higher derivative corrections

    International Nuclear Information System (INIS)

    Yavartanoo, Hossein

    2012-01-01

    We analyze the effect of higher derivative corrections to the near horizon geometry of the extremal vanishing horizon (EVH) black hole solutions in four dimensions. We restrict ourselves to a Gauss-Bonnet correction with a dilation dependent coupling in an Einstein-Maxwell-dilaton theory. This action may represent the effective action as it arises in tree level heterotic string theory compactified to four dimensions or the K3 compactification of type II string theory. We show that EVH black holes, in this theory, develop an AdS 3 throat in their near horizon geometry. (orig.)

  15. Black hole phase transitions and the chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Reevu, E-mail: reevum@iitk.ac.in; Roy, Pratim, E-mail: proy@iitk.ac.in; Sarkar, Tapobrata, E-mail: tapo@iitk.ac.in

    2017-02-10

    In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  16. Black hole phase transitions and the chemical potential

    Directory of Open Access Journals (Sweden)

    Reevu Maity

    2017-02-01

    Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  17. Hawking radiation in a d-dimensional static spherically symmetric black hole surrounded by quintessence

    International Nuclear Information System (INIS)

    Chen Songbai; Wang Bin; Su Rukeng

    2008-01-01

    We present a solution of Einstein equations with quintessential matter surrounding a d-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole and find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole, we learn that the influences by the state parameter of the quintessence on Hawking radiation are different

  18. Rotational Angiography Based Three-Dimensional Left Atrial Reconstruction: A New Approach for Transseptal Puncture.

    Science.gov (United States)

    Koektuerk, Buelent; Yorgun, Hikmet; Koektuerk, Oezlem; Turan, Cem H; Gorr, Eduard; Horlitz, Marc; Turan, Ramazan G

    2016-02-01

    Rotational angiography is a well-known method for the three-dimensional (3-D) reconstruction of left atrium and pulmonary veins during left-sided atrial arrhythmia ablation procedures. In our study, we aimed to review our experience in transseptal puncture (TSP) using 3-D rotational angiography. We included a total of 271 patients who underwent atrial fibrillation ablation using cryoballoon. Rotational angiography was performed to get the three-dimensional left atrial and pulmonary vein reconstructions using cardiac C-arm computed tomography. The image reconstruction was made using the DynaCT Cardiac software (Siemens, Erlangen, Germany). The mean age of the study population was 61 ± 10 years. The indications for left atrial arrhythmia ablation were paroxysmal AF in 140 patients (52%) and persistent AF patients in 131 (48%) patients. The success rate of TSP using only rotational guidance was (264/271 patients, 97.4%). In the remaining seven patients, transesophageal guidance was used after the initial attempt due to thick interatrial septum in five patients and difficult TSP due to abnormal anatomy and mild pericardial effusion in the remaining two patients. Mean fluoroscopy dosage of the rotational angiography was 4896.4 ± 825.3 μGym(2). The mean time beginning from femoral vein puncture to TSP was 12.3 ± 5.5 min. TSP guided by rotational angiography is a safe and effective method. Our results indicate that integration of rotational angiographic images into the real-time fluoroscopy can guide the TSP during the procedure. © 2015 John Wiley & Sons Ltd.

  19. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

    Science.gov (United States)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2016-09-01

    We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.

  20. Ultrafast internal rotational dynamics of the azido group in (4S)-azidoproline: Chemical exchange 2DIR spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Koo; Park, Kwang-Hee; Joo, Cheonik; Kwon, Hyeok-Jun; Han, Hogyu [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Ha, Jeong-Hyon [Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Park, Sungnam, E-mail: spark8@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Research Institute for Natural Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-03-02

    Graphical abstract: Internal rotational dynamics of the azido group in SA (Ac-(4S)-Azp-NHMe) was studied in real time by using ultrafast 2DIR spectroscopic method. The time constant of the internal rotation around the C{sup {gamma}}-N{sup {delta}} bond in SA was determined to be {tau}{sub ir} = 5.1 ps, which is found to be much faster than that around the C-C bond in ethane. Highlights: Black-Right-Pointing-Pointer Femtosecond two-dimensional IR spectroscopy of internal rotational dynamics. Black-Right-Pointing-Pointer Stereo-electronic effects of azido group in azido-derivatized proline peptide. Black-Right-Pointing-Pointer The timescale of the azido group internal rotation is about 5.1 ps. - Abstract: The azido group in 4-azidoproline (Azp) derivative, SA (Ac-(4S)-Azp-NHMe), can form an intramolecular electrostatic interaction with the backbone peptide in the s-trans and C{sup {gamma}}-endo conformations of SA. As a result, the azido group exists as two forms, bound and free, which are defined by the presence and absence of such interaction, respectively. The bound and free azido forms are spectrally resolved in the azido IR spectrum of SA in CHCl{sub 3}. Using the two-dimensional infrared (2DIR) and polarization-controlled IR pump-probe methods, we investigated the internal rotational and orientational relaxation dynamics of the azido group and determined the internal rotational time constant of the azido group to be 5.1 ps. The internal rotational motion is found to be responsible for the early part of the orientational relaxation of the azido group in SA. Thus, the femtosecond 2DIR spectroscopy is shown to be an ideal tool for studying ultrafast conformational dynamics of SA.

  1. Spherical dust collapse in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse

  2. Standing shocks in adiabatic black hole accretion of rotating matter

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Chakrabarti, S.K.

    1988-08-01

    We present all the solutions for stationary, axially symmetric, transonic, adiabatic flows with polytropic, rotating fluid configurations of small transverse thickness, in an arbitrarily chosen potential. Special attention is paid to the formation of the standing shocks in the case of black hole accretion and winds. We point out the possibility of three types of shocks depending upon three extreme physical conditions at the shocks. These are: Rankine-Hugoniot shocks, isentropic compression waves, and isothermal shocks. We write down the shock conditions for these three cases and discuss briefly the physical situations under which these shocks may form. A complete discussion on the properties of these shocks will be presented elsewhere. (author). 21 refs, 4 figs

  3. The comparison of aneurysmal necks measured on three dimensional reconstruction images of rotational DSA and those of traditional DSA

    International Nuclear Information System (INIS)

    Wu Chunhong; Chen Zuoquan; Gu Binxian; Zhang Guiyun

    2006-01-01

    Objective: To evaluate the value of three dimensional reconstruction images of rotational DSA on measuring aneurysmal necks and make a comparison with traditional DSA so as to provide more abundant and accurate information for the embolization of aneurysm. Methods: A comparison was made between the measurement of aneurismal necks from 14 cases with traditional DSA examination and a measurement made on three dimensional reconstruction images of the same patients. Results: There was a difference shown in the measurement of the aneurysmal necks between three dimensional reconstruction images of rotational DSA and those of traditional DSA, outcoming with more angles and data on three dimensional reconstruction images. Conclusions: There are more angles of aneurysmal neck can be shown on rotational 3D DSA especially for the demonstration of the largest aneurysmal neck with a directional value for the intervention. (authors)

  4. Catastrophic Instability of Small Lovelock Black Holes

    OpenAIRE

    Takahashi, Tomohiro; Soda, Jiro

    2010-01-01

    We study the stability of static black holes in Lovelock theory which is a natural higher dimensional generalization of Einstein theory. We show that Lovelock black holes are stable under vector perturbations in all dimensions. However, we prove that small Lovelock black holes are unstable under tensor perturbations in even-dimensions and under scalar perturbations in odd-dimensions. Therefore, we can conclude that small Lovelock black holes are unstable in any dimensions. The instability is ...

  5. The Nernst theorem and statistical entropy in a (1+1)-dimensional charged black hole

    International Nuclear Information System (INIS)

    Ren, Z.; Junfang, Z.; Lichun, Z.

    2001-01-01

    It was derived that the bosonic and fermionic entropies in (1+1)-dimensional charged black hole directly by using the quantum statistical method. The result is the same as the integral expression obtained by solving the wave equation approximately. Then it is obtained the statistical entropy of the black hole by integration via the improved brick-wall method, membrane model. The derived entropy satisfies the thermodynamic relation. When the radiation temperature of the black hole tends to zero, so does the entropy. It obeys Nernst theorem. So it can be taken as Planck absolute entropy

  6. Stationary black holes with stringy hair

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  7. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Weber, F.J.; Briels, W.J.; Boom, R.M.; Rinzema, A.

    2002-01-01

    A previously published two-dimensional discrete particle simulation model for radial mixing behavior of various slowly rotating drums for solid-state fermentation (SSF) has been extended to a three-dimensional model that also predicts axial mixing. Radial and axial mixing characteristics were

  8. Extended inflation from higher-dimensional theories

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We consider the possibility that higher-dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. We analyze two separate models. One is a very simple toy model consisting of higher-dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of nontrivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a nontrivial potential for the radius of the internal space. We find that extended inflation does not occur in these models. We also find that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

  9. Thermodynamics of (2 +1 )-dimensional black holes in Einstein-Maxwell-dilaton gravity

    Science.gov (United States)

    Dehghani, M.

    2017-08-01

    In this paper, the linearly charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered. It has been shown that the dilatonic potential must be considered in a form of generalized Liouville-type potential. Two new classes of charged dilatonic black hole solutions, as the exact solutions to the Einstein-Maxwell-dilaton (EMd) gravity, have been obtained and their properties have been studied. The conserved charge and mass related to both of the new EMd black holes have been calculated. Through comparison of the thermodynamical extensive quantities (i.e., temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of first law of black hole thermodynamics has been investigated for both of the new black holes we just obtained. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new black hole solutions have been analyzed. It has been shown that there is a specific range for the horizon radius in such a way that the black holes with the horizon radius in that range are locally stable. Otherwise, they are unstable and may undergo type one or type two phase transitions to be stabilized.

  10. Conservation laws and two-dimensional black holes in dilaton gravity

    Science.gov (United States)

    Mann, R. B.

    1993-05-01

    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of two-dimensional (2D) black-hole solutions is obtained for one particular member within this class of Lagrangians, which couples a Liouville field to 2D gravity in a novel way. One solution of this theory bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.

  11. Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2016-02-15

    We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)

  12. TeV-scale black hole lifetimes in extra-dimensional Lovelock gravity

    International Nuclear Information System (INIS)

    Rizzo, Thomas G

    2006-01-01

    We examine the mass loss rates and lifetimes of TeV-scale extra-dimensional black holes (BH) in Arkani-Hamed, Dimopoulos and Dvali-like models with Lovelock higher-curvature terms present in the action. In particular, we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that result in the decay of these BH. In even numbers of extra dimensions, the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in the case of the Einstein-Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders

  13. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    International Nuclear Information System (INIS)

    Kuang, Xiao-Mei; Saavedra, Joel; Oevguen, Ali

    2017-01-01

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing. (orig.)

  14. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Xiao-Mei [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Oevguen, Ali [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Country Unknown)

    2017-09-15

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing. (orig.)

  15. Dynamic behavior of a black phosphorus and carbon nanotube composite system

    International Nuclear Information System (INIS)

    Shi, Jiao; Cai, Haifang; Cai, Kun; Qin, Qing-Hua

    2017-01-01

    A double walled nanotube composite is constructed by placing a black-phosphorene-based nanotube (BPNT) in a carbon nanotube (CNT). When driving the CNT to rotate by stators in a thermal driven rotary nanomotor, the BPNT behaves differently from the CNT. For instance, the BPNT can be actuated to rotate by the CNT, but its rotational acceleration differs from that of the CNT. The BPNT oscillates along the tube axis when it is longer than the CNT. The results obtained indicate that the BPNT functions with high structural stability when acting as a rotor with rotational frequency of ∼20 GHz at 250 K. If at a higher temperature than 250 K, say 300 K, the rotating BPNT shows weaker structural stability than its status at 250 K. When the two tubes in the rotor are of equal length, the rotational frequency of the BPNT drops rapidly after the BPNT is collapsed, owing to more broken P–P bonds. When the black-phosphorene nanotube is longer than the CNT, it rotates synchronously with the CNT even if it is collapsed. Hence, in the design of a nanomotor with a rotor from BPNT, the working rotational frequency should be lower than a certain threshold at a higher temperature. (paper)

  16. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  17. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-01-01

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets

  18. String propagation in an exact four-dimensional black hole background

    International Nuclear Information System (INIS)

    Mahapatra, S.

    1997-01-01

    We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact solutions in terms of elliptic functions describing string configurations in the J=0 limit are obtained by solving the string equations of motion and constraints. By using the covariant formalism, we also investigate the propagation of physical perturbations along the string in the given curved background. copyright 1997 The American Physical Society

  19. How to create a two-dimensional black hole

    International Nuclear Information System (INIS)

    Frolov, V.; Hendy, S.; Larsen, A.L.

    1996-01-01

    The interaction of a cosmic string with a four-dimensional stationary black hole is considered. If a part of an infinitely long string passes close to a black hole it can be captured. The final stationary configurations of such captured strings are investigated. It is shown that the minimal 2D surface Σ describing a captured stationary string coincides with a principal Killing surface, i.e., a surface formed by Killing trajectories passing through a principal null ray of the Kerr-Newman geometry. A uniqueness theorem is proved, namely, it is shown that the principal Killing surfaces are the only stationary solutions of the string equations which enter the ergosphere and remain timelike and regular at the static limit surface. Geometrical properties of principal Killing surfaces are investigated and it is shown that the internal geometry of Σ coincides with the geometry of a 2D black or white hole (string hole). The equations for propagation of string perturbations are shown to be identical with the equations for a coupled pair of scalar fields open-quote open-quote living close-quote close-quote in the spacetime of a 2D string hole. Some interesting features of the physics of 2D string holes are described. In particular, it is shown that the existence of the extra dimensions of the surrounding spacetime makes interaction possible between the interior and exterior of a string black hole; from the point of view of the 2D geometry this interaction is acausal. Possible application of this result to the information loss puzzle is briefly discussed. copyright 1996 The American Physical Society

  20. On the localization of four-dimensional brane-world black holes

    International Nuclear Information System (INIS)

    Kanti, P; Pappas, N; Zuleta, K

    2013-01-01

    In the context of brane-world models, we pursue the question of the existence of five-dimensional solutions describing regular black holes localized close to the brane. Employing a perturbed Vaidya-type line-element embedded in a warped fifth dimension, we attempt to localize the extended black-string singularity, and to restore the regularity of the AdS spacetime at a finite distance from the brane by introducing an appropriate bulk energy–momentum tensor. As a source for this bulk matter, we are considering a variety of non-ordinary field-theory models of scalar fields either minimally coupled to gravity, but including non-canonical kinetic terms, mixing terms, derivative interactions and ghosts, or non-minimally coupled to gravity through a general coupling to the Ricci scalar. In all models considered, even in those characterized by a high degree of flexibility, a negative result was reached. Our analysis demonstrates how difficult the analytic construction of a localized brane-world black hole may be in the context of a well-defined field-theory model. Finally, with regard to the question of the existence or not of a static classical black-hole solution on the brane, our analysis suggests that such solutions could in principle exist; however, the associated field configuration itself has to be dynamic. (paper)

  1. Extended inflation from higher dimensional theories

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Yun.

    1990-04-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

  2. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Lomonosov, Alexey M. [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); General Physics Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  3. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-01-01

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω→±∞), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0), and a theory representing a class of theories (ω=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P M ;Q,P Q ), where M is the mass parameter, which for ω M is the conjugate momenta of M, Q is the charge parameter, and P Q is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field φ. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.

  4. Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole

    International Nuclear Information System (INIS)

    Ma, Meng-Sen; Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2014-01-01

    We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole

  5. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    Science.gov (United States)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  6. Higher cardiovascular disease prevalence and mortality among younger blacks compared to whites.

    Science.gov (United States)

    Jolly, Stacey; Vittinghoff, Eric; Chattopadhyay, Arpita; Bibbins-Domingo, Kirsten

    2010-09-01

    Blacks have higher rates of cardiovascular disease than whites. The age at which these differential rates emerge has not been fully examined. We examined cardiovascular disease prevalence and mortality among black and white adults across the adult age spectrum and explored potential mediators of these differential disease prevalence rates. We conducted a cross-sectional analysis of National Health and Nutrition Examination Survey data from 1999-2006. We estimated age-adjusted and age-specific prevalence ratios (PR) for cardiovascular disease (heart failure, stroke, or myocardial infarction) for blacks versus whites in adults aged 35 years and older and examined potential explanatory factors. From the National Compressed Mortality File 5-year aggregate file of 1999-2003, we determined age-specific cardiovascular disease mortality rates. In young adulthood, cardiovascular disease prevalence was higher in blacks than whites (35-44 years PR 1.9; 95% confidence interval [CI], 1.1-3.4). The black-white PR decreased with each decade of advancing age (P for trend=.04), leading to a narrowing of the racial gap at older ages (65-74 years PR 1.2; 95% CI, 0.8-1.6; > or =75 years PR 1.0; 95% CI, 0.7-1.4). Clinical and socioeconomic factors mediated some, but not all, of the excess cardiovascular disease prevalence among young to middle-aged blacks. Over a quarter (28%) of all cardiovascular disease deaths among blacks occurred in those aged <65 years, compared with 13% among whites. Reducing black/white disparities in cardiovascular disease will require a focus on young and middle-aged blacks.

  7. Mental rotation of letters, pictures, and three-dimensional objects in German dyslexic children.

    Science.gov (United States)

    Rüsseler, Jascha; Scholz, Janka; Jordan, Kirsten; Quaiser-Pohl, Claudia

    2005-12-01

    This study examines mental rotation ability in children with developmental dyslexia. Prior investigations have yielded equivocal results that might be due to differences in stimulus material and testing formats employed. Whereas some investigators found dyslexic readers to be impaired in mental rotation, others did not report any performance differences or even superior spatial performance for dyslexia. Here, we report a comparison of mental rotation for letters, three-dimensional figures sensu Shepard and Metzler, and colored pictures of animals or humans in second-grade German dyslexic readers. Findings indicate that dyslexic readers are impaired in mental rotation for all three kinds of stimuli. Effects of general intelligence were controlled. Furthermore, dyslexic children were deficient in other spatial abilities like identifying letters or forms among distracters. These results are discussed with respect to the hypotheses of a developmental dysfunction of the parietal cortex or a subtle anomaly in cerebellar function in dyslexic readers.

  8. Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals

    International Nuclear Information System (INIS)

    Liang Hong; Zhang Qiang; Liu Huan; Fu Shu-Fang; Zhou Sheng; Wang Xuan-Zhang

    2015-01-01

    Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto–optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ < 750 nm all of the reflection are over 10% for the arbitrary filling ratio f 1 , in addition, the enhancement of Kerr rotation angles are at least one order of magnitude. (paper)

  9. Configurational entropy of charged AdS black holes

    Directory of Open Access Journals (Sweden)

    Chong Oh Lee

    2017-09-01

    Full Text Available When we consider charged AdS black holes in higher dimensional spacetime and a molecule number density along coexistence curves is numerically extended to higher dimensional cases. It is found that a number density difference of a small and large black holes decrease as a total dimension grows up. In particular, we find that a configurational entropy is a concave function of a reduced temperature and reaches a maximum value at a critical (second-order phase transition point. Furthermore, the bigger a total dimension becomes, the more concave function in a configurational entropy while the more convex function in a reduced pressure.

  10. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  11. Mapping Violence, Naming Life: A History of Anti-Black Oppression in the Higher Education System

    Science.gov (United States)

    Mustaffa, Jalil Bishop

    2017-01-01

    The article will provide a historical overview of anti-Black violence in the higher education system across three time periods: Colonial Era, Post-Civil War, and the mid-to-late twentieth century. Mapping violence demands a focus on how higher education historically has practiced anti-Black oppression coupled with how Black people have practiced…

  12. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    2012-01-01

    Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowa......Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions...

  13. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    Science.gov (United States)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  14. Production of spinning black holes at colliders

    International Nuclear Information System (INIS)

    Park, S. C.; Song, H. S.

    2003-01-01

    When the Planck scale is as low as TeV, there will be chances to produce Black holes at future colliders. Generally, black holes produced via particle collisions can have non-zero angular momenta. We estimate the production cross-section of rotating Black holes in the context of low energy gravitation theories by taking the effects of rotation into account. The production cross section is shown to be enhanced by a factor of 2 - 3 over the naive estimate σ = π ∼ R S 2 , where R S denotes the Schwarzschild radius of black hole for a given energy. We also point out that the decay spectrum may have a distinguishable angular dependence through the grey-body factor of a rotating black hole. The angular dependence of decaying particles may give a clear signature for the effect of rotating black holes.

  15. Hawking radiation from dilatonic black holes via anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Cai Xu; Wu Shuangqing

    2007-01-01

    Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes with arbitrary coupling constant α, and that from the rotating Kaluza-Klein (α=√(3)) as well as the Kerr-Sen (α=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed

  16. An approach to higher dimensional theories based on lattice gauge theory

    International Nuclear Information System (INIS)

    Murata, M.; So, H.

    2004-01-01

    A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram

  17. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Porfyriadis, Achilleas P. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: apporfyr@mit.edu

    2009-05-11

    The anomaly cancellation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancellation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  18. Merger transitions in brane-black-hole systems: Criticality, scaling, and self-similarity

    International Nuclear Information System (INIS)

    Frolov, Valeri P.

    2006-01-01

    We propose a toy model for studying merger transitions in a curved spacetime with an arbitrary number of dimensions. This model includes a bulk N-dimensional static spherically symmetric black hole and a test D-dimensional brane (D≤N-1) interacting with the black hole. The brane is asymptotically flat and allows a O(D-1) group of symmetry. Such a brane-black-hole (BBH) system has two different phases. The first one is formed by solutions describing a brane crossing the horizon of the bulk black hole. In this case the internal induced geometry of the brane describes a D-dimensional black hole. The other phase consists of solutions for branes which do not intersect the horizon, and the induced geometry does not have a horizon. We study a critical solution at the threshold of the brane-black-hole formation, and the solutions which are close to it. In particular, we demonstrate that there exists a striking similarity of the merger transition, during which the phase of the BBH system is changed, both with the Choptuik critical collapse and with the merger transitions in the higher dimensional caged black-hole-black-string system

  19. Self-gravitating axially symmetric disks in general-relativistic rotation

    Science.gov (United States)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.

  20. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  1. Higher spins tunneling from a time dependent and spherically symmetric black hole

    International Nuclear Information System (INIS)

    Siahaan, Haryanto M.

    2016-01-01

    The discussions of Hawking radiation via tunneling method have been performed extensively in the case of scalar particles. Moreover, there are also several works in discussing the tunneling method for Hawking radiation by using higher spins, e.g. neutrino, photon, and gravitino, in the background of static black holes. Interestingly, it is found that the Hawking temperature for static black holes using the higher spins particles has no difference compared to the one computed using scalars. In this paper, we study the Hawking radiation for a spherically symmetric and time dependent black holes using the tunneling of Dirac particles, photon, and gravitino. We find that the obtained Hawking temperature is similar to the one derived in the tunneling method by using scalars. (orig.)

  2. Higher spins tunneling from a time dependent and spherically symmetric black hole

    Energy Technology Data Exchange (ETDEWEB)

    Siahaan, Haryanto M. [Parahyangan Catholic University, Physics Department, Bandung (Indonesia)

    2016-03-15

    The discussions of Hawking radiation via tunneling method have been performed extensively in the case of scalar particles. Moreover, there are also several works in discussing the tunneling method for Hawking radiation by using higher spins, e.g. neutrino, photon, and gravitino, in the background of static black holes. Interestingly, it is found that the Hawking temperature for static black holes using the higher spins particles has no difference compared to the one computed using scalars. In this paper, we study the Hawking radiation for a spherically symmetric and time dependent black holes using the tunneling of Dirac particles, photon, and gravitino. We find that the obtained Hawking temperature is similar to the one derived in the tunneling method by using scalars. (orig.)

  3. Higher-order Skyrme hair of black holes

    Science.gov (United States)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2018-05-01

    Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.

  4. Lovelock black holes surrounded by quintessence

    Science.gov (United States)

    Ghosh, Sushant G.; Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun

    2018-02-01

    Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r_hblack hole to become thermodynamically stable.

  5. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  6. Ruppeiner theory of black hole thermodynamics

    International Nuclear Information System (INIS)

    Aman, Jan E; Bedford, James; Grumiller, Daniel; Pidokrajt, Narit; Ward, John

    2007-01-01

    The Ruppeiner metric as determined by the Hessian of the Gibbs surface provides a geometric description of thermodynamic systems in equilibrium. An interesting example is a black hole in equilibrium with its own Hawking radiation. In this article, we present results from the Ruppeiner study of various black hole families from different gravity theories e.g. 2D dilaton gravity, BTZ, general relativity and higher-dimensional Einstein-Maxwell gravity

  7. Off-Shell ADT charges of five-dimensional Myers-Perry black holes%五维Myers-Perry黑洞的离壳ADT荷

    Institute of Scientific and Technical Information of China (English)

    安旭强; 景艺德; 彭俊金

    2018-01-01

    In this work,we have calculated the conserved charges,such as mass and angular momentum,of five-dimensional rotating Myers-Perry black holes via the off-shell generalized Abbott-DeserTekin (ADT) method.These conserved charges strictly satisfy the differential and integral forms of the first law for black holes.Moreover,we compare the off-shell ADT conserved charges with those via both the formalisms of the well-known ADM and Komar integral,finding that all the results are correspondingly identified with each other.%基于离壳推广的Abbott-Deser-Tekin (ADT)定义,给出了五维时空中双转动的Myers-Perry黑洞的离壳ADT质量与角动量等守恒荷.在此基础上,验证了这些守恒荷严格满足黑洞热力学第一定律的微分与积分形式.此外,通过离壳推广的ADT方法与ADM定义以及Komar公式的比较,我们发现,对于五维Myers-Perry黑洞来说,此3种方法给出的守恒荷完全一致.

  8. The entropy function for the black holes of Nariai class

    International Nuclear Information System (INIS)

    Cho, Jin-Ho; Nam, Soonkeon

    2008-01-01

    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the 'Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as minus 'Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes

  9. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1993-01-01

    The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

  10. Research on a Rotating Machinery Fault Prognosis Method Using Three-Dimensional Spatial Representations

    Directory of Open Access Journals (Sweden)

    Xiaoni Dong

    2016-01-01

    Full Text Available Process models and parameters are two critical steps for fault prognosis in the operation of rotating machinery. Due to the requirement for a short and rapid response, it is important to study robust sensor data representation schemes. However, the conventional holospectrum defined by one-dimensional or two-dimensional methods does not sufficiently present this information in both the frequency and time domains. To supply a complete holospectrum model, a new three-dimensional spatial representation method is proposed. This method integrates improved three-dimensional (3D holospectra and 3D filtered orbits, leading to the integration of radial and axial vibration features in one bearing section. The results from simulation and experimental analysis on a complex compressor show that the proposed method can present the real operational status and clearly reveal early faults, thus demonstrating great potential for condition-based maintenance prediction in industrial machinery.

  11. Charged black rings at large D

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Li, Peng-Cheng; Wang, Zi-zhi [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2017-04-28

    We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions (D). By using the 1/D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.

  12. Lovelock black holes surrounded by quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa); Centre for Theoretical Physics, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2018-02-15

    Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r{sub h} < r{sub c} allowing the black hole to become thermodynamically stable. (orig.)

  13. Static and radiating p-form black holes in the higher dimensional Robinson-Trautman class

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Podolský, J.; Žofka, M.

    2015-01-01

    Roč. 2015, č. 2 (2015), 045 ISSN 1029-8479 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : Einstein-Maxwell spacetimes * classical theories of gravity * black holes Subject RIV: BA - General Mathematics Impact factor: 6.023, year: 2015 http://link.springer.com/article/10.1007/JHEP02%282015%29045

  14. Study of spatial resolution in three-dimensional rotational angiography

    International Nuclear Information System (INIS)

    Enoki, Takuya; Nasada, Toshiya; Matsumoto, Kazuma; Umehara, Takayoshi

    2006-01-01

    In interventional radiology (IVR) of cerebral aneurysms, it is important to understand the form and physical relationships between the cerebral aneurysm and the surrounding vessels. However, because the vessels in the head area are highly complex, it can be difficult to comprehend the structure using conventional angiography. Therefore, three-dimensional rotational angiography (3D-RA) has been used in recent years. This article discusses studies of the spatial resolution of 3D-RA. We reconstructed 3D-RA of an acrylic slit phantom (slit widths: 0.5, 0.75, 1.0, 1.5 mm) and examined spatial resolution by visual evaluation and profile curves. When the slit phantom was arranged to avoid the effect of beam hardening, the spatial resolution of 3D-RA was found to be as high as 0.75 mm. When the slit phantom was placed orthogonal to the rotational axis of the C-arm, the spatial resolution of 3D-RA was decreased because of the cone angle effect of X-rays. However, it was considered within the allowable range for clinical study. Consequently, 3D-RA is valuable in IVR. (author)

  15. On the entropy of four-dimensional near-extremal N = 2 black holes with R2-terms

    International Nuclear Information System (INIS)

    Gruss, Eyal; Oz, Yaron

    2007-01-01

    We consider the entropy of four-dimensional near-extremal N = 2 black holes. The Bekenstein-Hawking entropy formula has the structure of the extremal black holes entropy with a shift of the charges depending on the non-extremality parameter and the moduli at infinity. We construct a class of near-extremal horizon solutions with R 2 -terms, and show that the generalized Wald entropy formula exhibits the same property

  16. Possibility of higher-dimensional anisotropic compact star

    International Nuclear Information System (INIS)

    Bhar, Piyali; Rahaman, Farook; Ray, Saibal; Chatterjee, Vikram

    2015-01-01

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M s un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  17. Possibility of higher-dimensional anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chatterjee, Vikram [Central Footwear Training Centre, Department of Physics, Parganas, West Bengal (India)

    2015-05-15

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M{sub s}un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  18. Log corrections to entropy of three dimensional black holes with soft hair

    Science.gov (United States)

    Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2017-08-01

    We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.

  19. Logarithmic corrections to the Bekenstein-Hawking entropy for five-dimensional black holes and de Sitter spaces

    International Nuclear Information System (INIS)

    Myung, Y.S.

    2003-01-01

    We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by -k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences

  20. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    Science.gov (United States)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  1. Black-hole creation in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)

    1997-11-01

    It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.

  2. Higher dimensional global monopole in Brans–Dicke theory

    Indian Academy of Sciences (India)

    Keywords. Global monopole; Brans–Dicke theory; higher dimension. PACS Nos 04.20.Jb; 98.80.Bp; 04.50.+h. 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity the- ories to unify gravity with other fundamental forces in nature. Solutions of Einstein field equations in higher ...

  3. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    Science.gov (United States)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  4. Structural study of disordered SiC nanowires by three-dimensional rotation electron diffraction

    International Nuclear Information System (INIS)

    Li, Duan; Guo, Peng; Wan, Wei; Zou, Ji; Shen, Zhijian; Guzi de Moraes, Elisângela; Colombo, Paolo

    2014-01-01

    The structure of disordered SiC nanowires was studied by using the three-dimensional rotation electron diffraction (RED) technique. The streaks shown in the RED images indicated the stacking faults of the nanowire. High-resolution transmission electron microscopy imaging was employed to support the results from the RED data. It suggested that a 2H polytype is most possible for the nanowires. (paper)

  5. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  6. Instability of small Lovelock black holes in even dimensions

    International Nuclear Information System (INIS)

    Takahashi, Tomohiro; Soda, Jiro

    2009-01-01

    We study the stability of static black holes in Lovelock theory, which is a natural higher dimensional generalization of Einstein theory. We derive a master equation for tensor perturbations in general Lovelock theory. It turns out that the resultant equation is characterized by one functional which determines the background black hole solutions. Thus, the stability issue of static black holes under tensor perturbations in general dimensions is reduced to an algebraic problem. We show that small Lovelock black holes in even-dimensions are unstable.

  7. Kinetic-contact-driven gigantic energy transfer in a two-dimensional Lennard-Jones fluid confined to a rotating pore

    Science.gov (United States)

    Karbowniczek, Paweł; Chrzanowska, Agnieszka

    2017-11-01

    A two-dimensional Lennard-Jones system in a circular and rotating container has been studied by means of molecular dynamics technique. A nonequilibrium transition to the rotating stage has been detected in a delayed time since an instant switching of the frame rotation. This transition is attributed to the increase of the density at the wall because of the centrifugal force. At the same time the phase transition occurs, the inner system changes its configuration of the solid-state type into the liquid type. Impact of angular frequency and molecular roughness on the transport properties of the nonrotating and rotating systems is analyzed.

  8. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  9. Higher dimensional homogeneous cosmology in Lyra geometry

    Indian Academy of Sciences (India)

    1Department of Mathematics, Jadavpur University, Kolkata 700 032, India. 2Khodar ... 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity .... Equation (7) can easily be integrated to obtain.

  10. Black ringoids: spinning balanced black objects in d≥5 dimensions — the codimension-two case

    International Nuclear Information System (INIS)

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2015-01-01

    We propose a general framework for the study of asymptotically flat black objects with k+1 equal magnitude angular momenta in d≥5 spacetime dimensions (with 0≤k≤[((d−5)/2)]). In this approach, the dependence on all angular coordinates but one is factorized, which leads to a codimension-two problem. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of Myers-Perry black holes. A different set of solutions describes balanced black objects with S"n"+"1×S"2"k"+"1 horizon topology. The simplest members of this family are the black rings (k=0). The solutions with k>0 are dubbed black ringoids. Based on the nonperturbative numerical results found for several values of (n,k), we propose a general picture for the properties and the phase diagram of these solutions and the associated black holes with spherical horizon topology: n=1 black ringoids repeat the k=0 pattern of black rings and Myers-Perry black holes in 5 dimensions, whereas n>1 black ringoids follow the pattern of higher dimensional black rings associated with ‘pinched’ black holes and Myers-Perry black holes.

  11. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  12. Reversed sense of the ''outward'' direction for dynamical effects of rotation close to a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Prasanna, A.R.

    1988-10-01

    Anderson and Lemos (1988) noticed that the direction in which viscous torque transports angular momentum changes, close to a black hole, from outwards to inwards. We find here that close to a black hole the centrifugal force attracts particles towards the hole. We argue that these are particular examples of a general reversal in sense of the inward and outward directions for all dynamical effects of rotation close to the hole. Using results from the recent paper by Abramowicz, Carter and Lasota (1988) we explain that the reversal is not connected with dragging of inertial frames or with the difference between the angular velocities of the hole and of the surrounding matter but rather, it is an effect of curvature. For a Schwarzschild black hole the reversal takes place at the circular photon orbit (r=3M-tilde) because the geodesic curvature, R-tilde=r(1-3M-tilde/r), of the circles r = const. changes its sign there. (author). 13 refs, 7 figs, 1 tab

  13. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    International Nuclear Information System (INIS)

    Zaslavskii, Oleg B

    2012-01-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, E c.m. ∼ κ −n where for the ISCO, n= 1/3 in case (i) or n= 1/2 in case (ii). For the MBO and PhCO, n= 1/2 in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon. (paper)

  14. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    Science.gov (United States)

    Zaslavskii, Oleg B.

    2012-10-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, Ec.m. ˜ κ-n where for the ISCO, n=\\frac{1}{3} in case (i) or n=\\frac{1}{2} in case (ii). For the MBO and PhCO, n=\\frac{1}{2} in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon.

  15. Noncommutative geometry inspired Einstein–Gauss–Bonnet black holes

    Science.gov (United States)

    Ghosh, Sushant G.

    2018-04-01

    Low energy limits of a string theory suggests that the gravity action should include quadratic and higher-order curvature terms, in the form of dimensionally continued Gauss–Bonnet densities. Einstein–Gauss–Bonnet is a natural extension of the general relativity to higher dimensions in which the first and second-order terms correspond, respectively, to general relativity and Einstein–Gauss–Bonnet gravity. We obtain five-dimensional (5D) black hole solutions, inspired by a noncommutative geometry, with a static spherically symmetric, Gaussian mass distribution as a source both in the general relativity and Einstein–Gauss–Bonnet gravity cases, and we also analyzes their thermodynamical properties. Owing the noncommutative corrected black hole, the thermodynamic quantities have also been modified, and phase transition is shown to be achievable. The phase transitions for the thermodynamic stability, in both the theories, are characterized by a discontinuity in the specific heat at r_+=rC , with the stable (unstable) branch for r ) rC . The metric of the noncommutative inspired black holes smoothly goes over to the Boulware–Deser solution at large distance. The paper has been appended with a calculation of black hole mass using holographic renormalization.

  16. Hydrodynamics and Elasticity of Charged Black Branes

    DEFF Research Database (Denmark)

    Gath, Jakob

    We consider long-wavelength perturbations of charged black branes to first order in a uidelastic derivative expansion. At first order the perturbations decouple and we treat the hydrodynamic and elastic perturbations separately. To put the results in a broader perspective, we present the rst...... as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton theory. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D...

  17. The one-parameter subgroup of rotations generated by spin transformations in three-dimensional real space

    International Nuclear Information System (INIS)

    Gazoya, E.D.K.; Prempeh, E.; Banini, G.K.

    2015-01-01

    The relationship between the spin transformations of the special linear group of order 2, SL (2, C) and the aggregate SO(3) of the three-dimensional pure rotations when considered as a group in itself (and not as a subgroup of the Lorentz group), is investigated. It is shown, by the spinor map X - → AXA ct which is all action of SL(2. C) on the space of Hermitian matrices, that the one- parameter subgroup of rotations generated are precisely those of angles which are multiples 2π. (au)

  18. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    Science.gov (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  19. Bianchi's Bäcklund transformation for higher dimensional quadrics

    Science.gov (United States)

    Dincă, Ion I.

    2016-12-01

    We provide a generalization of Bianchi's Bäcklund transformation from 2-dimensional quadrics to higher dimensional quadrics (which is also a generalization of Tenenblat-Terng's Bäcklund transformation of isometric deformations of Hn(R) in R 2 n - 1 to general quadrics). Our investigation is the higher dimensional version of Bianchi's main three theorems on the theory of isometric deformations of quadrics and Bianchi's treatment of the Bäcklund transformation for diagonal paraboloids via conjugate systems. It became the driving force which led to the flourishing of the classical differential geometry in the second half of the XIX th century and its profound study by illustrious geometers led to interesting results. Today it is still an open problem in its full generality, but basic familiar results like the Gauß-Bonnet fundamental theorem of surfaces and the Codazzi-Mainardi equations (independently discovered also by Peterson) were first communicated to the French Academy of Sciences. A list (most likely incomplete) of the winners of the prize includes Bianchi, Bonnet, Guichard, Weingarten.Up to 1899 isometric deformations of the (pseudo-)sphere and isotropic quadrics without center (from a metric point of view they can be considered as metrically degenerate quadrics without center) together with their Bäcklund transformation and the complementary transformation of isometric deformations of surfaces of revolution were investigated by geometers such as Bäcklund, Bianchi, Bonnet, Darboux, Goursat, Hazzidakis, Lie, Weingarten, etc.In 1899 Guichard discovered that when quadrics with(out) center and of revolution around the focal axis roll on their isometric deformations their foci describe constant mean curvature (minimal) surfaces (and Bianchi proved the converse: all constant mean curvature (minimal) surfaces can be realized in this way).With Guichard's result the race to find the isometric deformations of general quadrics was on; it ended with Bianchi

  20. CFT duals for extreme black holes

    International Nuclear Information System (INIS)

    Hartman, Thomas; Strominger, Andrew; Murata, Keiju; Nishioka, Tatsuma

    2009-01-01

    It is argued that the general four-dimensional extremal Kerr-Newman-AdS-dS black hole is holographically dual to a (chiral half of a) two-dimensional CFT, generalizing an argument given recently for the special case of extremal Kerr. Specifically, the asymptotic symmetries of the near-horizon region of the general extremal black hole are shown to be generated by a Virasoro algebra. Semiclassical formulae are derived for the central charge and temperature of the dual CFT as functions of the cosmological constant, Newton's constant and the black hole charges and spin. We then show, assuming the Cardy formula, that the microscopic entropy of the dual CFT precisely reproduces the macroscopic Bekenstein-Hawking area law. This CFT description becomes singular in the extreme Reissner-Nordstrom limit where the black hole has no spin. At this point a second dual CFT description is proposed in which the global part of the U(1) gauge symmetry is promoted to a Virasoro algebra. This second description is also found to reproduce the area law. Various further generalizations including higher dimensions are discussed.

  1. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston

    2010-01-01

    The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.

  2. Higher-dimensional analogues of Donaldson-Witten theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Spence, B.

    1997-01-01

    We present a Donaldson-Witten-type field theory in eight dimensions on manifolds with Spin(7) holonomy. We prove that the stress tensor is BRST exact for metric variations preserving the holonomy and we give the invariants for this class of variations. In six and seven dimensions we propose similar theories on Calabi-Yau threefolds and manifolds of G 2 holonomy, respectively. We point out that these theories arise by considering supersymmetric Yang-Mills theory defined on such manifolds. The theories are invariant under metric variations preserving the holonomy structure without the need for twisting. This statement is a higher-dimensional analogue of the fact that Donaldson-Witten field theory on hyper-Kaehler 4-manifolds is topological without twisting. Higher-dimensional analogues of Floer cohomology are briefly outlined. All of these theories arise naturally within the context of string theory. (orig.)

  3. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  4. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  5. THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, 100190, Beijing (China); Zhang, Lei; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Wang, Xin [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Zhang, Shaohua, E-mail: jshept@gmail.com [Center of Spacecraft Assembly Integration and Test, China Academy of Space Technology, Beijing 100094 (China)

    2015-08-20

    Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDs to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.

  6. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.

    Science.gov (United States)

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E

    2018-06-08

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  7. Three-dimensional solutions of the magnetohydrostatic equations for rigidly rotating magnetospheres in cylindrical coordinates

    Science.gov (United States)

    Wilson, F.; Neukirch, T.

    2018-01-01

    We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the "pseudo-potential" (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a "fractional multipole" nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.

  8. Yield Responses of Black Spruce to Forest Vegetation Management Treatments: Initial Responses and Rotational Projections

    Directory of Open Access Journals (Sweden)

    Peter F. Newton

    2012-01-01

    Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.

  9. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    Science.gov (United States)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  10. Conformal symmetry for rotating D-branes

    International Nuclear Information System (INIS)

    Cao Liming; Matsuo, Yoshinori; Tsukioka, Takuya; Yoo, Chul-Moon

    2009-01-01

    We apply the Kerr/CFT correspondence to the rotating black p-brane solutions. These solutions give the simplest examples from string theory point of view. Their near horizon geometries have structures of AdS, even though black p-brane solutions do not have AdS-like structures in the non-rotating case. The microscopic entropy which can be calculated via the Cardy formula exactly agrees with Bekenstein-Hawking entropy.

  11. Ultraspinning limits and super-entropic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Kubizňák, David [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Musoke, Nathan [Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-06-16

    By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermodynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer possible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

  12. Ultraspinning limits and super-entropic black holes

    Science.gov (United States)

    Hennigar, Robie A.; Kubizňák, David; Mann, Robert B.; Musoke, Nathan

    2015-06-01

    By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermo-dynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer pos-sible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

  13. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    International Nuclear Information System (INIS)

    Pani, Paolo; Cardoso, Vitor

    2009-01-01

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  14. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Directory of Open Access Journals (Sweden)

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  15. Hawking temperature of constant curvature black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Myung, Yun Soo

    2011-01-01

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  16. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    Science.gov (United States)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  17. Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)

    2012-12-15

    Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.

  18. Greybody factors for d-dimensional black holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Natário, José; Schiappa, Ricardo

    2010-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission)....

  19. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    International Nuclear Information System (INIS)

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  20. Hawking radiation from a rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhang Lichun; Li Huaifan; Zhao Ren

    2011-01-01

    Using the new global embedding approach and analytical continuation method of wave function we discuss Hawking radiation of acoustic black holes. Unruh-Hawking temperature of the acoustic black hole is derived. The corresponding relation between these methods calculating Hawking radiation of acoustic black hole is established. The calculation result shows that the contributions of chemical potential to the ingoing wave and the outgoing wave are the same.

  1. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    Higher Dimensional Automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek [26]. For a topologist, they are attractive since they can be modeled as cubical complexes - with an inbuilt restriction for directions´of allowable (d-)paths. In Raussen [25], we...

  2. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics.

    Science.gov (United States)

    Chen, Che; Youngblood, Nathan; Peng, Ruoming; Yoo, Daehan; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Li, Mo

    2017-02-08

    We demonstrate the integration of a black phosphorus photodetector in a hybrid, three-dimensional architecture of silicon photonics and metallic nanoplasmonics structures. This integration approach combines the advantages of the low propagation loss of silicon waveguides, high-field confinement of a plasmonic nanogap, and the narrow bandgap of black phosphorus to achieve high responsivity for detection of telecom-band, near-infrared light. Benefiting from an ultrashort channel (∼60 nm) and near-field enhancement enabled by the nanogap structure, the photodetector shows an intrinsic responsivity as high as 10 A/W afforded by internal gain mechanisms, and a 3 dB roll-off frequency of 150 MHz. This device demonstrates a promising approach for on-chip integration of three distinctive photonic systems, which, as a generic platform, may lead to future nanophotonic applications for biosensing, nonlinear optics, and optical signal processing.

  3. Black+Brown: Institutions of Higher Education

    Science.gov (United States)

    Frederick D. Patterson Research Institute, UNCF, 2014

    2014-01-01

    Historically Black Colleges and Universities (HBCUs) and Hispanic-Serving Institutions (HSIs) represent a small percentage of all institutions in the U.S. but educate a large portion of all black and Latino students, many of whom are low-income and first-generation college attendees. Given the population growth of these students overall, both HSIs…

  4. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  5. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  6. Quantum Gravity Effect on the Tunneling Particles from 2 + 1-Dimensional New-Type Black Hole

    Directory of Open Access Journals (Sweden)

    Ganim Gecim

    2018-01-01

    Full Text Available We investigate the generalized uncertainty principle (GUP effect on the Hawking temperature for the 2 + 1-dimensional new-type black hole by using the quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar particles. In computation of the GUP correction for the Hawking temperature of the black hole, we modified Dirac and Klein-Gordon equations. We observed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the graviton mass and the intrinsic properties of the tunneling particle, such as total angular momentum, energy, and mass. Also, we see that the Hawking temperature was found to be probed by these particles in different manners. The modified Hawking temperature for the scalar particle seems low compared with its standard Hawking temperature. Also, we find that the modified Hawking temperature of the black hole caused by Dirac particle’s tunneling is raised by the total angular momentum of the particle. It is diminishable by the energy and mass of the particle and graviton mass as well. These intrinsic properties of the particle, except total angular momentum for the Dirac particle, and graviton mass may cause screening for the black hole radiation.

  7. Correlation between rheological and mechanical properties of black PE100 compounds – Effect of carbon black masterbatch

    Directory of Open Access Journals (Sweden)

    G. Pircheraghi

    2017-08-01

    Full Text Available Black PE100 compounds were prepared using a co-rotating twin screw extruder by addition of carbon black masterbatches containing 35–40 wt% carbon black and different polymer carriers to a pipe grade PE100 material with bimodal molecular weight distribution. Different properties of carbon black masterbatches and PE100 black compounds were evaluated using thermal, rheological and mechanical tests. Rheological results indicated an inverse correlation between melt flow index (MFI of masterbatch samples and storage modulus, complex viscosity and shear viscosity of black compounds, while flow instabilities of compounds were also postponed to higher shear rates. TGA indicated that masterbatch with highest value of MFI contained highest amount of low molecular weight lubricants which resulted in inhibition of strain hardening behavior in tensile test of its respective black compound unlike all other samples, reflecting possible suppressing of its long term resistance to slow crack growth. This behavior is attributable to facilitated crystallization and chain folding of longer chains in the presence of low molecular weight lubricants in this sample and consequently formation of thicker lamellas as confirmed by DSC, hence lowering density of entanglements in amorphous area and inhibition of strain hardening.

  8. Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms

    Science.gov (United States)

    David Froning, H.; Meholic, Gregory V.

    2010-01-01

    This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.

  9. Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations.

    Science.gov (United States)

    Schure, Mark R; Davis, Joe M

    2017-11-10

    Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions

  10. A mystery of black-hole gravitational resonances

    International Nuclear Information System (INIS)

    Hod, Shahar

    2016-01-01

    More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T_B_H≫1 (here ω and T_B_H are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).

  11. A mystery of black-hole gravitational resonances

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2016-08-30

    More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T{sub BH}≫1 (here ω and T{sub BH} are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).

  12. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  13. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  14. Braneworld black holes and entropy bounds

    Directory of Open Access Journals (Sweden)

    Y. Heydarzade

    2018-01-01

    Full Text Available The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.

  15. Intrinsic and Extrinsic Factors That Influence Black Males to Attend Institutions of Higher Education

    Science.gov (United States)

    Etheridge, Robert

    2013-01-01

    The purpose of this qualitative, narrative study was to explore the intrinsic and extrinsic factors that motivated Black males to attend institutions of higher education. The Self-determination theory and the Integrated Model for Educational Choice formed the theoretical framework for this study. Eight Black males who were between the ages of 18…

  16. Maximal slicing of D-dimensional spherically symmetric vacuum spacetime

    International Nuclear Information System (INIS)

    Nakao, Ken-ichi; Abe, Hiroyuki; Yoshino, Hirotaka; Shibata, Masaru

    2009-01-01

    We study the foliation of a D-dimensional spherically symmetric black-hole spacetime with D≥5 by two kinds of one-parameter families of maximal hypersurfaces: a reflection-symmetric foliation with respect to the wormhole slot and a stationary foliation that has an infinitely long trumpetlike shape. As in the four-dimensional case, the foliations by the maximal hypersurfaces avoid the singularity irrespective of the dimensionality. This indicates that the maximal slicing condition will be useful for simulating higher-dimensional black-hole spacetimes in numerical relativity. For the case of D=5, we present analytic solutions of the intrinsic metric, the extrinsic curvature, the lapse function, and the shift vector for the foliation by the stationary maximal hypersurfaces. These data will be useful for checking five-dimensional numerical-relativity codes based on the moving puncture approach.

  17. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  18. Quantum gravity effects in Myers-Perry space-times

    International Nuclear Information System (INIS)

    Litim, Daniel F.; Nikolakopoulos, Konstantinos

    2014-01-01

    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions

  19. Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications

    International Nuclear Information System (INIS)

    Khandelwal, Apratim; Mani, Karthick; Karigerasi, Manohar Harsha; Lahiri, Indranil

    2017-01-01

    Highlights: • Reviews recent progress in phosphorene research, a new 2D material. • Anisotropic properties are reviewed and compared with other 2D materials. • Synthesis methods of black phosphorus and phosphorene are discussed. • Prospective applications inspired from the intrinsic properties are also discussed. • Challenges and future scope for this promising material is included. - Abstract: Black phosphorus (BP) is known to human beings for almost a century. It started receiving more attention of scientists and researchers worldwide in last three years, with its ability to exist in two-dimensional (2D) form, popularly known as phosphorene. In the post-graphene-discovery period, phosphorene is probably receiving most attention, owing to its excellent properties and hence, high potential for practical applications in the field of electronics, energy and infrastructure. In this article, attractive properties of phosphorene, which makes it unique and comparable with graphene or transition metal dichalcogenides (TMDs), are highlighted. As the question of its environmental instability remains critical, a comprehensive overview of synthesis methods of phosphorene and black phosphorus are presented, to inspire in-situ methods of phosphorene synthesis and fabrication towards improving further investigation into this wonder material. In addition, the article also focuses on opportunities in nano-electronics, optoelectronics, energy conversion/storage, sensors etc arising from phosphorene’s remarkable properties.

  20. Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, Apratim; Mani, Karthick; Karigerasi, Manohar Harsha; Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in

    2017-07-15

    Highlights: • Reviews recent progress in phosphorene research, a new 2D material. • Anisotropic properties are reviewed and compared with other 2D materials. • Synthesis methods of black phosphorus and phosphorene are discussed. • Prospective applications inspired from the intrinsic properties are also discussed. • Challenges and future scope for this promising material is included. - Abstract: Black phosphorus (BP) is known to human beings for almost a century. It started receiving more attention of scientists and researchers worldwide in last three years, with its ability to exist in two-dimensional (2D) form, popularly known as phosphorene. In the post-graphene-discovery period, phosphorene is probably receiving most attention, owing to its excellent properties and hence, high potential for practical applications in the field of electronics, energy and infrastructure. In this article, attractive properties of phosphorene, which makes it unique and comparable with graphene or transition metal dichalcogenides (TMDs), are highlighted. As the question of its environmental instability remains critical, a comprehensive overview of synthesis methods of phosphorene and black phosphorus are presented, to inspire in-situ methods of phosphorene synthesis and fabrication towards improving further investigation into this wonder material. In addition, the article also focuses on opportunities in nano-electronics, optoelectronics, energy conversion/storage, sensors etc arising from phosphorene’s remarkable properties.

  1. Hawking radiation and propagation of massive charged scalar field on a three-dimensional Gödel black hole

    Science.gov (United States)

    González, P. A.; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko

    2018-06-01

    In this paper we consider the three-dimensional Gödel black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.

  2. New class of accelerating black hole solutions

    International Nuclear Information System (INIS)

    Camps, Joan; Emparan, Roberto

    2010-01-01

    We construct several new families of vacuum solutions that describe black holes in uniformly accelerated motion. They generalize the C metric to the case where the energy density and tension of the strings that pull (or push) on the black holes are independent parameters. These strings create large curvatures near their axis and when they have infinite length they modify the asymptotic properties of the spacetime, but we discuss how these features can be dealt with physically, in particular, in terms of 'wiggly cosmic strings'. We comment on possible extensions and extract lessons for the problem of finding higher-dimensional accelerating black hole solutions.

  3. Fully three dimensional simulations of rotating convection at low Prandtl number

    Science.gov (United States)

    Kaplan, E.; Schaeffer, N.; Cardin, P.

    2016-12-01

    Rotating thermal convection in spheres or spherical shells has been extensively studied for Prandtl number unity.However, planetary cores are made of liquid metals which have low Prandtl numbers Pr ≤ 0.1. Recently, using a quasi-geostrophic approximation, Guervilly & Cardin (2016) have studied nonlinear convection in rotating full sphere with internal heating at low Prandtl (0.01 ≤ Pr ≤ 0.1) and Ekman (10-8 ≤ Ek ≤ 10-5 ) numbers. They have found a bifurcation between a weak branch characterized by thermal Rossby waves and a strong branch characterized by a strong zonal flow with multiple jets. In these quasi-geostrophic simulations, where vorticity is defined to be constant along the axis of rotation, these bifurcations could be super- or sub-critical or exhibit hysteresis depending on the Ek and Prnumbers of the simulations. Here we present fully three dimensional simulations carried out over a portion of the parameter space (down to Ek = 10-6, Pr = 0.01) that confirm the scaling and bifurcations of the weak and strong branches found in the QG models. Additionally, by modeling the full flow we get information about the full meridional circulation of the convective fluid. The vigorous flows of the sub-critical strong branch may help to generate powerful dynamos before an inner-core has been formed, with a heat flux extracted from the mantle very close to the adiabatic flux.

  4. Evolution of perturbations of squashed Kaluza-Klein black holes: Escape from instability

    International Nuclear Information System (INIS)

    Ishihara, Hideki; Kimura, Masashi; Konoplya, Roman A.; Murata, Keiju; Soda, Jiro; Zhidenko, Alexander

    2008-01-01

    The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK black holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.

  5. Semiclassical Approach to Black Hole Evaporation

    OpenAIRE

    Lowe, David A.

    1992-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are fou...

  6. Holographic duals of Kaluza-Klein black holes

    International Nuclear Information System (INIS)

    Azeyanagi, Tatsuo; Ogawa, Noriaki; Terashima, Seiji

    2009-01-01

    We apply Brown-Henneaux's method to the 5D extremal rotating Kaluza-Klein black holes essentially following the calculation of the Kerr/CFT correspondence, which is not based on supersymmetry nor string theory. We find that there are two completely different Virasoro algebras that can be obtained as the asymptotic symmetry algebras according to appropriate boundary conditions. The microscopic entropies are calculated by using the Cardy formula for both boundary conditions and they perfectly agree with the Bekenstein-Hawking entropy. The rotating Kaluza-Klein black holes contain a 4D dyonic Reissner-Nordstroem black hole and Myers-Perry black hole. Since the D-brane configurations corresponding to these black holes are known, we expect that our analysis will shed some light on deeper understanding of chiral CFT 2 's dual to extremal black holes.

  7. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    Energy Technology Data Exchange (ETDEWEB)

    Gracia-Linares, M.; Guzmán, F. S. [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)

    2015-10-10

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methods used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.

  8. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Renyi statistics

    Energy Technology Data Exchange (ETDEWEB)

    Czinner, Viktor G. [University of Lisbon, Multidisciplinary Center for Astrophysics and Department of Physics, Instituto Superior Tecnico, Lisboa (Portugal); HAS Wigner Research Centre for Physics, Budapest (Hungary); Iguchi, Hideo [Nihon University, Laboratory of Physics, College of Science and Technology, Funabashi, Chiba (Japan)

    2017-12-15

    Thermodynamics of rotating black holes described by the Renyi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Renyi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Renyi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence. (orig.)

  9. Fermionic field perturbations of a three-dimensional Lifshitz black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Facultad de Ingenieria y Ciencias, Universidad Diego Portales, Santiago (Chile); Vasquez, Yerko; Villalobos, Ruth Noemi [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)

    2017-09-15

    We study the propagation of massless fermionic fields in the background of a three-dimensional Lifshitz black hole, which is a solution of conformal gravity. The black-hole solution is characterized by a vanishing dynamical exponent. Then we compute analytically the quasinormal modes, the area spectrum, and the absorption cross section for fermionic fields. The analysis of the quasinormal modes shows that the fermionic perturbations are stable in this background. The area and entropy spectrum are evenly spaced. In the low frequency limit, it is observed that there is a range of values of the angular momentum of the mode that contributes to the absorption cross section, whereas it vanishes in the high frequency limit. In addition, by a suitable change of variables a gravitational soliton can also be obtained and the stability of the quasinormal modes are studied and ensured. (orig.)

  10. Scale-dependent three-dimensional charged black holes in linear and non-linear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Angel; Koch, Benjamin [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile); Contreras, Ernesto; Bargueno, Pedro; Hernandez-Arboleda, Alejandro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia); Panotopoulos, Grigorios [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisboa (Portugal)

    2017-07-15

    In the present work we study the scale dependence at the level of the effective action of charged black holes in Einstein-Maxwell as well as in Einstein-power-Maxwell theories in (2 + 1)-dimensional spacetimes without a cosmological constant. We allow for scale dependence of the gravitational and electromagnetic couplings, and we solve the corresponding generalized field equations imposing the null energy condition. Certain properties, such as horizon structure and thermodynamics, are discussed in detail. (orig.)

  11. Spacetime Junctions and the Collapse to Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Filipe C. Mena

    2012-01-01

    Full Text Available We review recent results about the modelling of gravitational collapse to black holes in higher dimensions. The models are constructed through the junction of two exact solutions of the Einstein field equations: an interior collapsing fluid solution and a vacuum exterior solution. The vacuum exterior solutions are either static or containing gravitational waves. We then review the global geometrical properties of the matched solutions which, besides black holes, may include the existence of naked singularities and wormholes. In the case of radiating exteriors, we show that the data at the boundary can be chosen to be, in some sense, arbitrarily close to the data for the Schwarzschild-Tangherlini solution.

  12. Gravitational collapse with rotating thin shells and cosmic censorship

    International Nuclear Information System (INIS)

    Delsate, Térence; Rocha, Jorge V; Santarelli, Raphael

    2015-01-01

    The study of gravitational collapse is a subject of great importance, both from an astrophysical and a holographic point of view. In this respect, exact solutions can be very helpful but known solutions are very scarce, especially when considering dynamical processes with rotation. We describe a setup in which gravitational collapse of rotating matter shells can be addressed with analytic tools, at the expense of going to higher dimensions and considering equal angular momenta spacetimes. The framework for an exact treatment of the dynamics, relying on a thin shell approximation, is developed. Our analysis allows the inclusion of a non-vanishing cosmological constant. Finally, we discuss applications of this machinery to the construction of stationary solutions describing matter around rotating black holes and to the cosmic censorship conjecture. (paper)

  13. Q-Φ criticality in the extended phase space of (n + 1)-dimensional RN-AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yu-Bo [Beijing Normal University, Department of Astronomy, Beijing (China); Shanxi Datong University, School of Physics, Datong (China); Zhao, Ren [Shanxi Datong University, School of Physics, Datong (China); Cao, Shuo [Beijing Normal University, Department of Astronomy, Beijing (China)

    2016-12-15

    In order to achieve a deeper understanding of gravity theories, i.e., the quantum properties of gravity theories and the statistical explanation of gravitational entropy, it is important to further investigate the thermodynamic properties of a black hole at the critical point, besides the phase transition and critical behaviors. In this paper, by using Maxwell's equal area law, we choose T, Q, Φ as the state parameters and study the phase equilibrium problem of a general (n + 1)-dimensional RN-AdS black holes thermodynamic system. The boundary of the two-phase coexistence region and its isotherm and isopotential lines are presented, which may provide a theoretical foundation for studying the phase transition and phase structure of black hole systems. (orig.)

  14. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)

    2014-05-15

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  15. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    International Nuclear Information System (INIS)

    Azreg-Ainou, Mustapha

    2014-01-01

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  16. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  17. Black hole formation and space-time fluctuations in two dimensional dilaton gravity and complementarity

    International Nuclear Information System (INIS)

    Das, S.R.; Mukherji, S.

    1994-01-01

    We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs

  18. Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Katmadas, Stefanos [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy); Lodato, Ivano [Department of Physics, IISER Pune,Homi Bhaba Road, Pashan, Pune (India)

    2016-05-30

    We analyze BPS black hole attractors in 4d gauged supergravity in the presence of higher derivative supersymmetric terms, including a Weyl-squared-type action, and determine the resulting corrections to the Bekenstein-Hawking entropy. The near-horizon geometry AdS{sub 2}×S{sup 2} (or other Riemann surface) preserves half of the supercharges in N=2 supergravity with Fayet-Iliopoulos gauging. We derive a relation between the entropy and the black hole charges that suggests via AdS/CFT how subleading corrections contribute to the supersymmetric index in the dual microscopic picture. Depending on the model, the attractors are part of full black hole solutions with different asymptotics, such as Minkowski, AdS{sub 4}, and hvLif{sub 4}. We give explicit examples for each of the asymptotic cases and comment on the implications. Among other results, we find that the Weyl-squared terms spoil the exact two-derivative relation to non-BPS asymptotically flat black holes in ungauged supergravity.

  19. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  20. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    Science.gov (United States)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  1. Nonlinear evolutions of bosonic clouds around black holes

    International Nuclear Information System (INIS)

    Okawa, Hirotada

    2015-01-01

    Black holes are a laboratory not only for testing the theory of gravity but also for exploring the properties of fundamental fields. Fundamental fields around a supermassive black hole give rise to extremely long-lived quasi-bound states which can in principle extract the energy and angular momentum from the black hole. To investigate the final state of such a system, the backreaction onto the spacetime becomes important because of the nonlinearity of the Einstein equation. In this paper, we review the numerical method to trace the evolution of massive scalar fields in the vicinity of black holes, how such a system originates from scalar clouds initially in the absence of black holes or from the capture of scalar clouds by a black hole, and the evolution of quasi-bound states around both a non-rotating black hole and a rotating black hole including the backreaction. (paper)

  2. Perturbation of a slowly rotating black hole by a stationary axisymmetric ring of matter. II. Penrose processes, circular orbits, and differential mass formulae

    International Nuclear Information System (INIS)

    Will, C.M.

    1975-01-01

    We present a detailed description of the phenomenon of energy extraction (''Penrose'') from a slowly rotating black hole perturbed by a stationary axisymmetric ring of matter, and show that the gravitational interaction between the ring and the particles used in the Penrose process must be taken into account. For the case of a black-hole-ring configuration of ''minimum enregy'' we show that a Penrose process can extract further energy, but that by measns of their gravitational forces, the particles used in the process cause the radius of the ring to change, releasing precisely sufficient gravitational potential energy to make up for that extracted. By analyzing the properties of circular test-particle orbits in black-hole-ring spacetimes, we show quantitatively how this change in radius is produced. A ''differential mass formula'' relating the total masses of neighboring black-hole-ring configurations is also derived

  3. Kerr black holes are not fragile

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)

    2012-04-21

    Certain AdS black holes are 'fragile', in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be 'fragile', which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.

  4. TeV mini black hole decay at future colliders

    International Nuclear Information System (INIS)

    Casanova, Alex; Spallucci, Euro

    2006-01-01

    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear

  5. Multifractal and higher-dimensional zeta functions

    International Nuclear Information System (INIS)

    Véhel, Jacques Lévy; Mendivil, Franklin

    2011-01-01

    In this paper, we generalize the zeta function for a fractal string (as in Lapidus and Frankenhuijsen 2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (New York: Springer)) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function ζ(q, s) yield the usual multifractal spectrum of the measure. The presence of complex poles for ζ(q, s) indicates oscillations in the continuous partition function of the measure, and thus gives more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R n , the modified zeta function yields asymptotic information about both the 'box' counting function of the set and the n-dimensional volume of the ε-dilation of the set

  6. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    International Nuclear Information System (INIS)

    Yu Zhang; Zhang Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings

  7. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  8. Strongly anisotropic RKKY interaction in monolayer black phosphorus

    Science.gov (United States)

    Zare, Moslem; Parhizgar, Fariborz; Asgari, Reza

    2018-06-01

    We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in two-dimensional black phosphorus, phosphorene. The RKKY interaction enhances significantly for the low levels of hole doping owing to the nearly valence flat band. Remarkably, for the hole-doped phosphorene, the highest RKKY interaction occurs when two impurities located along the zigzag direction and it tends to a minimum value with changing the direction from the zigzag to the armchair direction. We show that the interaction is highly anisotropic and the magnetic ground-state of two magnetic adatoms can be tuned by changing the rotational configuration of impurities. Owing to the anisotropic band dispersion, the oscillatory behavior with respect to the angle of the rotation and the distance of two magnetic impurities, R is well-described by sin (2kF R) , where the Fermi wavelength kF changes in different directions. We also find that the tail of the RKKY oscillations falls off as 1 /R2 at large distances.

  9. Remnant for all black objects due to gravity's rainbow

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Farag, E-mail: afarag@zewailcity.edu.eg [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)

    2015-05-15

    We argue that a remnant is formed for all black objects in gravity's rainbow. This will be based on the observation that a remnant depends critically on the structure of the rainbow functions, and this dependence is a model independent phenomena. We thus propose general relations for the modified temperature and entropy of all black objects in gravity's rainbow. We explicitly check this to be the case for Kerr, Kerr–Newman-dS, charged-AdS, and higher dimensional Kerr–AdS black holes. We also try to argue that a remnant should form for black saturn in gravity's rainbow. This work extends our previous results on remnants of Schwarzschild black holes and black rings.

  10. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    International Nuclear Information System (INIS)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e − Å −2 ), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins

  11. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.

    2013-01-29

    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study \\'full-ring\\' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013

  12. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.; Wilson, S. K.; Duffy, B. R.

    2013-01-01

    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study 'full-ring' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013 Cambridge

  13. Hawking radiation of black rings from anomalies

    International Nuclear Information System (INIS)

    Chen Bin; He Wei

    2008-01-01

    We derive Hawking radiation of five-dimensional black rings from gauge and gravitational anomalies using the method proposed by Robinson and Wilczek. We find, as in the black hole case, that the problem could reduce to a (1+1)-dimensional field theory and the anomalies result in correct Hawking temperature for neutral, dipole and charged black rings

  14. Iron Kα line of Kerr black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, Carrera 9 Bis No. 62-43, 110231 Bogotá (Colombia); Herdeiro, Carlos A R; Radu, Eugen, E-mail: yyni13@fudan.edu.cn, E-mail: mlzhou13@fudan.edu.cn, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: bambi@fudan.edu.cn, E-mail: herdeiro@ua.pt, E-mail: eugen.radu@ua.pt [Departamento de Física da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-07-01

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.

  15. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  16. Magnetohydrodynamics near a black hole

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)

  17. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  18. Thermodynamic and classical instability of AdS black holes in fourth-order gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Moon, Taeyoon

    2014-01-01

    We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity

  19. arXiv Hawking radiation and propagation of massive charged scalar field on a three-dimensional G\\"odel black hole

    CERN Document Server

    González, P.A.; Saavedra, Joel; Vásquez, Yerko

    2018-05-18

    In this paper we consider the three-dimensional G\\"{o}del black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional G\\"{o}del black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.

  20. Discovery Reach for Black Hole Production

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    Models with extra space dimensions, in which our Universe exists on a 4-dimensional brane embedded in a higher dimensional bulk space-time, offer a new way to address outstanding problems in and beyond the Standard Model. In such models the Planck scale in the bulk can be of the order of the electroweak symmetry breaking scale. This allows the coupling strength of gravity to increase to a size similar to the other interactions, opening the way to the unification of gravity and the gauge interactions. The increased strength of gravity in the bulk space-time means that quantum gravity effects would be observable in the TeV energy range reachable by the LHC. The most spectacular phenomenon would be the production of black holes, which would decay semi-classically by Hawking radiation emitting high energy particles. In this note, we discuss the potential for the ATLAS experiment to discover such black holes in the early data (1--1000 pb$^{-1}$).