WorldWideScience

Sample records for higher turbulence intensity

  1. Turbulence Intensity Scaling: A Fugue

    OpenAIRE

    Basse, Nils T.

    2018-01-01

    We study streamwise turbulence intensity definitions using smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. Scaling of turbulence intensity with the bulk (and friction) Reynolds number is provided for the definitions. The turbulence intensity is proportional to the square root of the friction factor with the same proportionality constant for smooth- and rough-wall pipe flow. Turbulence intensity definitions providing the best description of the measurements are i...

  2. Towards higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Over the past 2 weeks, commissioning of the machine protection system has advanced significantly, opening up the possibility of higher intensity collisions at 3.5 TeV. The intensity has been increased from 2 bunches of 1010 protons to 6 bunches of 2x1010 protons. Luminosities of 6x1028 cm-2s-1 have been achieved at the start of fills, a factor of 60 higher than those provided for the first collisions on 30 March.   The recent increase in LHC luminosity as recorded by the experiments. (Graph courtesy of the experiments and M. Ferro-Luzzi) To increase the luminosity further, the commissioning crews are now trying to push up the intensity of the individual proton bunches. After the successful injection of nominal intensity bunches containing 1.1x1011 protons, collisions were subsequently achieved at 450 GeV with these intensities. However, half-way through the first ramping of these nominal intensity bunches to 3.5 TeV on 15 May, a beam instability was observed, leading to partial beam loss...

  3. Forest - added Turbulence: A parametric study on Turbulence intensity in and around forests

    International Nuclear Information System (INIS)

    Pedersen, Henrik Sundgaard; Langreder, Wiebke

    2007-01-01

    The scope of the investigation is to take on-site measured wind data from a number of sites inside and close to forests. From the collected on-site data the ambient turbulence intensity is calculated and analysed depending on the distance to the forest and height above the forest. From this forest turbulence intensity database it is possible to get an overview of the general behaviour of the turbulence above and down stream from the forest. The database currently consists of 65 measurements points from around the globe, and it will be continually updated as relevant sites are made available. Using the database a number of questions can be answered. How does the ambient turbulence intensity decay with height? What does the turbulence profile look like according to wind speed? Is it the general situation that high wind speeds are creating movement in the canopy tops, resulting in higher turbulence? How does the ambient turbulence intensity decay at different height as a function of distance to the forest? From the forest turbulence database it can be seen that in general, the majority of the turbulence intensity created by the forest is visible within a radius of 5 times the forest height in vertical and 500 meters downstream from the forest edge in horizontal direction. Outside these boundaries the ambient turbulence intensity is rapidly approaching normal values

  4. Power curve report - with turbulence intensity normalization

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn; Vesth, Allan

    , additional shear and turbulence intensitity filters are applied on the measured data. Secondly, the method for normalization to a given reference turbulence intensity level (as described in Annex M of the draft of IEC 61400-12-1 Ed.2 [3]) is applied. The measurements have been performed using DTU...

  5. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    . The model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics......The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  6. Turbulence generation through intense kinetic energy sources

    Science.gov (United States)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  7. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    International Nuclear Information System (INIS)

    Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir

    2013-01-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids

  8. Turbulence generation through intense localized sources of energy

    Science.gov (United States)

    Maqui, Agustin; Donzis, Diego

    2015-11-01

    Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.

  9. Turbulence Intensity and the Friction Factor for Smooth- and Rough-Wall Pipe Flow

    OpenAIRE

    Nils T. Basse

    2017-01-01

    Turbulence intensity profiles are compared for smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. The profile development in the transition from hydraulically smooth to fully rough flow displays a propagating sequence from the pipe wall towards the pipe axis. The scaling of turbulence intensity with Reynolds number shows that the smooth- and rough wall level deviates with increasing Reynolds number. We quantify the correspondence between turbulence intensity and th...

  10. Experimental Studies of Turbulent Intensity around a Tidal Turbine Support Structure

    Directory of Open Access Journals (Sweden)

    Stuart Walker

    2017-04-01

    Full Text Available Tidal stream energy is a low-carbon energy source. Tidal stream turbines operate in a turbulent environment, and the effect of the structure between the turbine and seabed on this environment is not fully understood. An experimental study using 1:72 scale models based on a commercial turbine design was carried out to study the support structure influence on turbulent intensity around the turbine blades. The study was conducted using the wave-current tank at the Laboratory of Maritime Engineering (LABIMA, University of Florence. A realistic flow environment (ambient turbulent intensity = 11% was established. Turbulent intensity was measured upstream and downstream of a turbine mounted on two different support structures (one resembling a commercial design, the other the same with an additional vertical element, in order to quantify any variation in turbulence and performance between the support structures. Turbine drive power was used to calculate power generation. Acoustic Doppler velocimetry (ADV was used to record and calculate upstream and downstream turbulent intensity. In otherwise identical conditions, performance variation of only 4% was observed between two support structures. Turbulent intensity at 1, 3 and 5 blade diameters, both upstream and downstream, showed variation up to 21% between the two cases. The additional turbulent structures generated by the additional element of the second support structure appears to cause this effect, and the upstream propagation of turbulent intensity is believed to be permitted by surface waves. This result is significant for the prediction of turbine array performance.

  11. Intense structures of different momentum fluxes in turbulent channels

    Science.gov (United States)

    Osawa, Kosuke; Jiménez, Javier

    2018-04-01

    The effect of different definitions of the momentum flux on the properties of the coherent structures of the logarithmic region of wall-bounded turbulence is investigated by comparing the structures of intense tangential Reynolds stress with those of the alternative flux proposed in [Jimenez (2016) J. Fluid Mech. 809:585]. Despite the fairly different statistical properties of the two flux definitions, it is found that their intense structures show many similarities, such as the dominance of ‘wall-attached’ objects, and geometric self-similarity. However, the new structures are wider, although not taller, than the classical ones, and include both high- and low-momentum regions within the same object. It is concluded that they represent the same phenomenon as the classical group of a sweep, an ejection, and a roller, which should thus be considered as the fundamental coherent structure of the momentum flux. The present results suggest that the properties of these momentum structures are robust with respect to the definition of the fluxes.

  12. The role of the intense vorticity structures in the turbulent structure of the jet edge

    Science.gov (United States)

    Reis, Ricardo J. N.; da Silva, Carlos B.; Pereira, José C. F.

    In free shear flows (jets, mixing layers and wakes) there is an highly contorted interface dividing the turbulent from the non-turbulent flow: the turbulent/non-turbulent (T/NT) interface. Across this interface important exchanges of mass, momentum and heat take place, in a process known as turbulent entrainment. Recently, the classical idea of the turbulent entrainment caused by engulfing [1] have been questioned, and it has been shown that the entrainment is mainly caused by small scale eddy motions (nibbling) [2, 3]). However, it is still argued that the entrainment rate is still largely governed by the large scale motions induced by the intense vorticity structures (IVS). The goal of the present work is to assess characterize the geometry and analyze the influence of these large scales structures in shaping the turbulent/nonturbulent interface.

  13. Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2017-01-01

    Full Text Available The paper reports on hot wire turbulence intensity measurements performed in the entry of a suction-type wind tunnel, used for investigation of flow-induced vibration of airfoils and slender structures. The airfoil is elastically supported with two degrees of freedom (pitch and plunge in the test section of the wind tunnel with lateral optical access for interferometric measurements, and free to oscillate. The turbulence intensity was measured for velocities up to M = 0.3 i with the airfoil blocked, ii with the airfoil self-oscillating. Measurements were performed for a free inlet and further with two different turbulence grids generating increased turbulence intensity levels. For the free inlet and static airfoil, the turbulence intensity lies below 0.4%. The turbulence grids G1 and G2 increase the turbulence level up to 1.8% and 2.6%, respectively. When the airfoil is free to oscillate due to fluid-structure interaction, its motion disturbs the surrounding flow field and increases the measured turbulence intensity levels up to 5%.

  14. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  15. The connection of the interplanetary magnetic field turbulence and rigidity spectrum of Forbush decrease of the galactic cosmic ray intensity

    International Nuclear Information System (INIS)

    Wawrzynczak, A; Alania, M V

    2015-01-01

    We analyze the temporal changes in the rigidity spectrum of Forbush decrease (Fd) of the galactic cosmic ray (GCR) intensity observed in November 2004. We compute the rigidity spectrum in two energy ranges based on the daily data from the worldwide network of neutron monitors and Nagoya ground muon telescope. We demonstrate that the changes in the rigidity spectrum of Fd are linked to the evolution/decay of the interplanetary magnetic field (IMF) turbulence during various phases of the Fd. We analyze the time-evolution of the state of the turbulence of the IMF in various frequency ranges during the Fd. Performed analysis show that the decrease of the exponent ν of the Power Spectral Density (PSD ∝ f −ν , where f is frequency) of the IMF turbulence with decreasing frequency lead to the soft rigidity spectrum of Fd for GCR particles with relatively higher energies. (paper)

  16. Mechanism of Film Cooling with One Inlet and Double Outlet Hole Injection at Various Turbulence Intensities

    Science.gov (United States)

    Li, Guangchao; Chen, Yukai; Kou, Zhihai; Zhang, Wei; Zhang, Guochen

    2018-03-01

    The trunk-branch hole was designed as a novel film cooling concept, which aims for improving film cooling performance by producing anti-vortex. The trunk-branch hole is easily manufactured in comparison with the expanded hole since it consists of two cylindrical holes. The effect of turbulence on the film cooling effectiveness with a trunk-branch hole injection was investigated at the blowing ratios of 0.5, 1.0, 1.5 and 2.0 by numerical simulation. The turbulence intensities from 0.4 % to 20 % were considered. The realizable graphic id="j_tjj-2016-0024_ingr_001" xlink.href="graphic/j_tjj-2016-0024_inline1.png" />k-ɛ k - ɛ turbulence model and the enhanced wall function were used. The more effective anti-vortex occurs at the low blowing ratio of 0.5 %. The high turbulence intensity causes the effectiveness evenly distributed in the spanwise direction. The increase of turbulence intensity leads to a slight decrease of the spanwise averaged effectiveness at the low blowing ratio of 0.5, but a significant increase at the high blowing ratios of 1.5 and 2.0. The optimal blowing ratio of the averaged surface effectiveness is improved from 1.0 to 1.5 when the turbulence intensity increases from 0.4 % to 20 %.

  17. Design of a High Intensity Turbulent Combustion System

    Science.gov (United States)

    2015-05-01

    mixing of the reactants in chemical reactors, boilers , furnaces and mixing of fuel and air in engines take place in turbulent flow. One of the most...determining flame speed. When a tube containing combustible mixture, the flame speed is the propagation speed of the flame front towards the unburned...stress criteria is effective when the material is ductile in nature. This stress theory is developed from the 44 ’distortion energy failure theory

  18. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    International Nuclear Information System (INIS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-01-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.

  19. Mean intensity of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In the given article mean intensity of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is studied. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian beam of optical radiation. Distributions of mean intensity of a fundamental Bessel- Gaussian beam optical beam in longitudinal and transverse to a direction of propagation of optical radiation are investigated in detail. Influence of atmospheric turbulence on change of radius of the central part of a Bessel optical beam is estimated. Values of parameters at which it is possible to generate in turbulent atmosphere a nondiffracting pseudo-Bessel optical beam by means of a fundamental Bessel-Gaussian optical beam are established.

  20. Numerical Study of Correlation of Fluid Particle Acceleration and Turbulence Intensity in Swirling Flow

    Directory of Open Access Journals (Sweden)

    Nan Gui

    2015-01-01

    Full Text Available Numerical investigation of correlation between the fluid particle acceleration and the intensity of turbulence in swirling flows at a large Reynolds number is carried out via direct numerical simulation. A weak power-law form correlation ur.m.sE~C(aLφ between the Lagrangian acceleration and the Eulerian turbulence intensity is derived. It is found that the increase of the swirl level leads to the increase of the exponent φ and the trajectory-conditioned correlation coefficient ρ(aL,uE and results in a weak power-law augmentation of the acceleration intermittency. The trajectory-conditioned convection of turbulence fluctuation in the Eulerian viewpoint is generally linearly proportional to the fluctuation of Lagrangian accelerations, indicating a weak but clear relation between the Lagrangian intermittency and Eulerian intermittency effects. Moreover, except the case with vortex breakdown, the weak linear dependency is maintained when the swirl levels change, only with the coefficient of slope varied.

  1. Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    OpenAIRE

    Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi

    2016-01-01

    This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...

  2. Higher-order RANS turbulence models for separated flows

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....

  3. Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S.; Kwon, J. M. [National Fusion Research Institute, Eoeun-dong, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [National Fusion Research Institute, Eoeun-dong, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Center for Astrophysics and Space Sciences and Department of Physics, University of California San Diego, La Jolla, California 92093-0429 (United States); Hahm, T. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-09-15

    This paper studies effects of q-profile structure on turbulence spreading. It reports results of numerical experiments using global gyrokinetic simulations. We examine propagation of turbulence, triggered by an identical linear instability in a source region, into an adjacent, linearly stable region with variable q-profile. The numerical experiments are designed so as to separate the physics of turbulence spreading from that of linear stability. The strength of turbulence spreading is measured by the penetration depth of turbulence. Dynamics of spreading are elucidated by fluctuation intensity balance analysis, using a model intensity evolution equation which retains nonlinear diffusion and damping, and linear growth. It is found that turbulence spreading is strongly affected by magnetic shear s, but is hardly altered by the safety factor q itself. There is an optimal range of modest magnetic shear which maximizes turbulence spreading. For high to modest shear values, the spreading is enhanced by the increase of the mode correlation length with decreasing magnetic shear. However, the efficiency of spreading drops for sufficiently low magnetic shear even though the mode correlation length is comparable to that for the case of optimal magnetic shear. The reduction of spreading is attributed to the increase in time required for the requisite nonlinear mode-mode interactions. The effect of increased interaction time dominates that of increased mode correlation length. Our findings of the reduction of spreading and the increase in interaction time at weak magnetic shear are consistent with the well-known benefit of weak or reversed magnetic shear for core confinement enhancement. Weak shear is shown to promote locality, as well as stability.

  4. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  5. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  6. Higher-order turbulence statistics of wave–current flow over a submerged hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Krishnendu; Debnath, Koustuv; Mazumder, Bijoy S, E-mail: debnath_koustuv@yahoo.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-15

    Higher-order turbulence characteristics such as turbulence production, turbulence kinetic energy flux, third order moments and velocity spectra associated with turbulent bursting events due to the influence of a submerged hemisphere under wave–current interactions are presented. The velocity components were measured using three dimensional (3D) 16 MHz micro-acoustic Doppler velocimetry (Micro-ADV). In the wave–current interactions, the contributions of turbulent bursting events such as ejections and sweeps significantly reduce in comparison to the current-only case. The distributions of the mean time intervals of ejection and sweeping events are found to alter due to the superposition of surface waves. Results also depict that the turbulence production in the wake region of the hemisphere reduces remarkably, due to the superposition of surface waves on the current. Further, spectral and co-spectral analysis demonstrates that there is a significant reduction of power spectral peak for both longitudinal and bottom-normal velocities upon superposition of surface waves, which signifies a remarkable change in energy distribution between different frequencies of waves. (paper)

  7. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  8. Effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge

    International Nuclear Information System (INIS)

    Kim, S. M.; Kim, Youn J.; Cho, H. H.

    2001-01-01

    We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 7.1x10 4 . Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio

  9. Catalogue of European earthquakes with intensities higher than 4

    International Nuclear Information System (INIS)

    Van Gils, J.M.; Leydecker, G.

    1991-01-01

    The catalogue of European earthquakes with intensities higher than 4 contains some 20 000 seismic events that happened in member countries of the European Communities, Switzerland and Austria. It was prepared on the basis of already existing national catalogues and includes historical data as well as present-day data. All historical data are harmonized as far as possible to the same intensity scale (MSK-scale) to make them suitable for computerization. Present-day data include instrumental and macroseismic data. Instrumental data are expressed in terms of magnitude (Richter scale) while macroseismic data are given in intensities. Compilation of seismic data can provide a basis for statistically supported studies of site selection procedures and the qualitative assessment of seismic risks. Three groups of seismic maps illustrate the content of the catalogue for different time periods and different intensities

  10. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI.

    Science.gov (United States)

    Dyverfeldt, Petter; Sigfridsson, Andreas; Kvitting, John-Peder Escobar; Ebbers, Tino

    2006-10-01

    Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.

  11. Is the BLM system ready to go to higher intensities?

    CERN Document Server

    Sapinski, M; Dehning, B; Effinger, E; Emery, J; Goddard, B; Guerrero, A; Grishin, S; Holzer, E; Jackson, S; Kurfuerst, C; Lechner, A; Marsili, A; Misiowiec, M; Nebot, E; Nordt, A; Priebe, A; Roderick, C; Schmidt, R; Verweij, A; Wenninger, J; Zamantzas, C; Zimmermann, F

    2011-01-01

    The higher beam intensities will enhance the effects of the beam losses observed during 2010 run. In particular beam losses due to so called UFO events are discussed, but also other beam loss phenomena like luminosity losses, injection losses and the leakage from the collimation system are considered. The current understanding of the quench limits reflected in the BLM thresholds on the cold magnets is presented. The thresholds for possible increased beam energy are reviewed.

  12. Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-12-01

    Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.

  13. Performance analysis of subcarrier intensity modulation using rectangular QAM over Malaga turbulence channels with integer and non-integerβ

    KAUST Repository

    Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results

  14. Gross separation approaching a blunt trailing edge as the turbulence intensity increases.

    Science.gov (United States)

    Scheichl, B

    2014-07-28

    A novel rational description of incompressible two-dimensional time-mean turbulent boundary layer (BL) flow separating from a bluff body at an arbitrarily large globally formed Reynolds number, Re, is devised. Partly in contrast to and partly complementing previous approaches, it predicts a pronounced delay of massive separation as the turbulence intensity level increases. This is bounded from above by a weakly decaying Re-dependent gauge function (hence, the BL approximation stays intact locally), and thus the finite intensity level characterizing fully developed turbulence. However, it by far exceeds the moderate level found in a preceding study which copes with the associated moderate delay of separation. Thus, the present analysis bridges this self-consistent and another forerunner theory, proposing extremely retarded separation by anticipating a fully attached external potential flow. Specifically, it is shown upon formulation of a respective distinguished limit at which rate the separation point and the attached-flow trailing edge collapse as [Formula: see text] and how on a short streamwise scale the typical small velocity deficit in the core region of the incident BL evolves to a large one. Hence, at its base, the separating velocity profile varies generically with the one-third power of the wall distance, and the classical triple-deck problem describing local viscous-inviscid interaction crucial for moderately retarded separation is superseded by a Rayleigh problem, governing separation of that core layer. Its targeted solution proves vital for understanding the separation process more close to the wall. Most importantly, the analysis does not resort to any specific turbulence closure. A first comparison with the available experimentally found positions of separation for the canonical flow past a circular cylinder is encouraging. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil

    Science.gov (United States)

    Istvan, Mark S.; Yarusevych, Serhiy

    2018-03-01

    The laminar-to-turbulent transition process in a laminar separation bubble formed over a NACA 0018 airfoil is investigated experimentally. All experiments are performed for an angle of attack of 4°, chord Reynolds numbers of 80,000 and 125,000, and free-stream turbulence intensities between 0.06 and 1.99%. The results show that increasing the level of free-stream turbulence intensity leads to a decrease in separation bubble length, attributed to a downstream shift in mean separation and an upstream shift in mean reattachment, the later ascribed to an upstream shift in mean transition. Maximum spatial amplification rates of disturbances in the separated shear layer decrease with increasing free-stream turbulence intensity, implying that the larger initial amplitudes of disturbances are solely responsible for the upstream shift in mean transition and as a result mean reattachment. At the baseline level of turbulence intensity, coherent structures forming in the aft portion of the bubble are characterized by strong spanwise coherence at formation, and undergo spanwise deformations leading to localized breakup in the vicinity of mean reattachment. As the level of free-stream turbulence intensity is increased, the spanwise coherence of the shear layer rollers is reduced, and spanwise undulations in the vortex filaments start to take place at the mean location of roll-up. At the highest level of turbulence intensity investigated, streamwise streaks originating in the boundary layer upstream of the separation bubble are observed within the bubble. These streaks signify an onset of bypass transition upstream of the separation bubble, which gives rise to a highly three-dimensional shear layer roll-up. A quantitative analysis of the associated changes in salient characteristics of the coherent structures is presented, connecting the effect of elevated free-stream turbulence intensity on the time-averaged and dynamic characteristics of the separation bubble.

  16. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  17. Description of signature scales in a floating wind turbine model wake subjected to varying turbulence intensity

    Science.gov (United States)

    Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon

    2017-11-01

    The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.

  18. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  19. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  20. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  1. Higher Order Analysis of Turbulent Changes Found in the ELF Range Electric Field Plasma Before Major Earthquakes

    Science.gov (United States)

    Kosciesza, M.; Blecki, J. S.; Parrot, M.

    2014-12-01

    We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.

  2. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise.

    Directory of Open Access Journals (Sweden)

    Jacob S Thum

    Full Text Available Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT may provide an alternative to moderate intensity continuous exercise (MICT to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2 initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax with 1 min of active recovery between bouts or MICT (20 min of cycling at 45% Wmax in randomized order. During exercise, rating of perceived exertion (RPE, affect, and blood lactate concentration (BLa were measured. Additionally, the Physical Activity Enjoyment Scale (PACES was completed after exercise. Results showed higher enjoyment (p = 0.013 in response to HIIT (103.8 ± 9.4 versus MICT (84.2 ± 19.1. Eleven of 12 participants (92% preferred HIIT to MICT. However, affect was lower (p<0.05 and HR, RPE, and BLa were higher (p<0.05 in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus.NCT:02981667.

  3. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca J.; Jensen, Leo E.

    2012-01-01

    unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level...

  4. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  5. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise

    Science.gov (United States)

    Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor

    2017-01-01

    Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (pHIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352

  6. Characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    LI Gen; REN BaoHua; ZHENG JianOiu; WANG Jun

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables dataeets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-eea humidity gradient (△q') as well as mean air-eea humidity gradient (△q), while the distribution of low-frequency oscillation Intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (△T'). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of △q', low-frequency oscillation intensity of anomalous wind speed (U'), △q and mean wind speed (U), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation Intensity of △T' and U. 3) Over the tropical west Pacific and sea areas north of 20ON, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa' (Ta') and U', indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs' (Ts') also greatly influences the low-frequency oscillation of LHF (SHF).

  7. The latest from the LHC : Training for higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Three weeks of intense machine development were brought to a satisfactory conclusion on the night of 21 September with the final validation of the machine protection systems for operation with bunch trains. The machine is now ready to accept more and more trains of bunches.   On Wednesday 22 September, the first physics fill was made using bunch trains, with 3 trains of 8 bunches per beam, providing 16 pairs of colliding bunches per experiment. This fill was used to restart operation for physics both for the machine and for the experiments. On Thursday, the number of bunches was increased to 56 per beam, providing 47 colliding pairs at Points 1, 5 and 8, and a smaller number at Point 2 to meet the requirements of ALICE. This is roughly the same intensity that we had in the machine in August. The first fill made under these conditions, fill 1366, brought an unexpected bonus. Bunches of nominal intensity were injected into the LHC with a smaller than usual transverse size, which was expected to cau...

  8. Improving Boundary-layer Turbulence and Cloud Processes in CAM with a Higher-order Turbulence Closure Scheme and ASR Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kuan-Man [NASA Langley Research Center, Hampton, VA (United States); Cheng, Anning [NASA Langley Research Center, Hampton, VA (United States); Science Systems and Applications, Inc., Hampton, VA (United States)

    2015-11-24

    The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θl ), total water mixing ratio (qt), and vertical velocity (w) to represent any skewed turbulence circulation. The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and gridmean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments, i.e., the triple moments of θl, qt, and w, are predicted in IPHOC.

  9. Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers

    Science.gov (United States)

    Simoni, Daniele; Lengani, Davide; Ubaldi, Marina; Zunino, Pietro; Dellacasagrande, Matteo

    2017-06-01

    The effects of free-stream turbulence intensity (FSTI) on the transition process of a pressure-induced laminar separation bubble have been studied for different Reynolds numbers (Re) by means of time-resolved (TR) PIV. Measurements have been performed along a flat plate installed within a double-contoured test section, designed to produce an adverse pressure gradient typical of ultra-high-lift turbine blade profiles. A test matrix spanning 3 FSTI levels and 3 Reynolds numbers has been considered allowing estimation of cross effects of these parameters on the instability mechanisms driving the separated flow transition process. Boundary layer integral parameters, spatial growth rate and saturation level of velocity fluctuations are discussed for the different cases in order to characterize the base flow response as well as the time-mean properties of the Kelvin-Helmholtz instability. The inspection of the instantaneous velocity vector maps highlights the dynamics of the large-scale structures shed near the bubble maximum displacement, as well as the low-frequency motion of the fore part of the separated shear layer. Proper Orthogonal Decomposition (POD) has been implemented to reduce the large amount of data for each condition allowing a rapid evaluation of the group velocity, spatial wavelength and dominant frequency of the vortex shedding process. The dimensionless shedding wave number parameter makes evident that the modification of the shear layer thickness at separation due to Reynolds number variation mainly drives the length scale of the rollup vortices, while higher FSTI levels force the onset of the shedding phenomenon to occur upstream due to the higher velocity fluctuations penetrating into the separating boundary layer.

  10. Effect of expectation on pain assessment of lower- and higher-intensity stimuli.

    Science.gov (United States)

    Ružić, Valentina; Ivanec, Dragutin; Modić Stanke, Koraljka

    2017-01-01

    Pain modulation via expectation is a well-documented phenomenon. So far it has been shown that expectations about effectiveness of a certain treatment enhance the effectiveness of different analgesics and of drug-free pain treatments. Also, studies demonstrate that people assess same-intensity stimuli differently, depending on the experimentally induced expectations regarding the characteristics of the stimuli. Prolonged effect of expectation on pain perception and possible symmetry in conditions of lower- and higher-intensity stimuli is yet to be studied. Aim of this study is to determine the effect of expectation on the perception of pain experimentally induced by the series of higher- and lower-intensity stimuli. 192 healthy participants were assigned to four experimental groups differing by expectations regarding the intensity of painful stimuli series. Expectations of two groups were congruent with actual stimuli; one group expected and received lower-intensity stimuli and the other expected and received higher-intensity stimuli. Expectations of the remaining two groups were not congruent with actual stimuli; one group expected higher-intensity stimuli, but actually received lower-intensity stimuli while the other group expected lower-intensity stimuli, but in fact received higher-intensity ones. Each group received a series of 24 varied-intensity electrical stimuli rated by the participants on a 30° intensity scale. Expectation manipulation had statistically significant effect on pain intensity assessment. When expecting lower-intensity stimuli, the participants underestimated pain intensity and when expecting higher-intensity stimuli, they overestimated pain intensity. The effect size of expectations upon pain intensity assessment was equal for both lower- and higher-intensity stimuli. The obtained results imply that expectation manipulation can achieve the desired effect of decreasing or increasing both slight and more severe pain for a longer period of

  11. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    increases with increase in distance away from tailpipe. Also indicating the cooling and dilution of the exhaust begins at close vicinity to the tailpipe. The rate of cooling and dilution are greatest in early stages of the dilution process for the areas with high turbulence intensity (TI), where strong mixing phenomena occurs, leading to the formation of a predominant nucleation mode. On the other hand, the core of the plume observes a slower cooling and dilution rate. This difference is reflected in the PM formation and evolution of these two distinct regions, as shown by the particle size distributions and number concentrations. Continuous mixing will tend to mellow those differences, but its ;final; result is related to the dilution history.

  12. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  13. Effect of Turbulence Intensity on Cross-Injection Film Cooling at a Stepped or Smooth Endwall of a Gas Turbine Vane Passage

    Directory of Open Access Journals (Sweden)

    Pey-Shey Wu

    2014-01-01

    Full Text Available This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I.=1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20×104 , 1.24×105, and  1.50×105, three blowing ratios (0.5, 1.0, and 2.0, and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step. Thermochromic liquid crystal (TLC technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  14. Accurate signal reconstruction for higher order Lagrangian–Eulerian back-coupling in multiphase turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zwick, D; Balachandar, S [Department of Mechanical and Aerospace Engineering, University of Florida, FL, United States of America (United States); Sakhaee, E; Entezari, A, E-mail: dpzwick@ufl.edu [Department of Computer and Information Science and Engineering, University of Florida, FL, United States of America (United States)

    2017-10-15

    Multiphase flow simulation serves a vital purpose in applications as diverse as engineering design, natural disaster prediction, and even study of astrophysical phenomena. In these scenarios, it can be very difficult, expensive, or even impossible to fully represent the physical system under consideration. Even still, many such real-world applications can be modeled as a two-phase flow containing both continuous and dispersed phases. Consequentially, the continuous phase is thought of as a fluid and the dispersed phase as particles. The continuous phase is typically treated in the Eulerian frame of reference and represented on a fixed grid, while the dispersed phase is treated in the Lagrangian frame and represented by a sample distribution of Lagrangian particles that approximate a cloud. Coupling between the phases requires interpolation of the continuous phase properties at the locations of the Lagrangian particles. This interpolation step is straightforward and can be performed at higher order accuracy. The reverse process of projecting the Lagrangian particle properties from the sample points to the Eulerian grid is complicated by the time-dependent non-uniform distribution of the Lagrangian particles. In this paper we numerically examine three reconstruction, or projection, methods: (i) direct summation (DS), (ii) least-squares, and (iii) sparse approximation. We choose a continuous representation of the dispersed phase property that is systematically varied from a simple single mode periodic signal to a more complex artificially constructed turbulent signal to see how each method performs in reconstruction. In these experiments, we show that there is a link between the number of dispersed Lagrangian sample points and the number of structured grid points to accurately represent the underlying functional representation to machine accuracy. The least-squares method outperforms the other methods in most cases, while the sparse approximation method is able to

  15. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    Science.gov (United States)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  16. Estimation of turbulence characteristics of the low-level eyewall and outer-core regions in intense Hurricanes Allen (1980) and Hugo (1989)

    Science.gov (United States)

    Zhang, J. A.; Marks, F. D.; Montgomery, M.; Lorsolo, S.

    2010-12-01

    Turbulent transport processes in the atmospheric boundary layer play an important role in the intensification and maintenance of a hurricane vortex. However, direct measurement of turbulence in the hurricane boundary layer has been scarce. This study analyzes the flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989) and Category 4 Hurricane Allen (1980) between 1 km and the sea surface. Momentum flux, turbulent kinetic energy (TKE) and vertical eddy diffusivity are estimated before and during the eyewall penetrations. Spatial scales of turbulent eddies are determined through spectral analysis. The turbulence parameters estimated for the eyewall penetration leg are found to be nearly an order of magnitude larger than those for the leg outside the eyewall at similar altitudes. In the low-level intense eyewall region, the horizontal length scale of dominant turbulent eddies is found to be between 500 - 3000 m and the corresponding vertical length scale is approximately 100 - 200 m. The results suggest also that it is unwise to include the eyewall vorticity maximum (EVM) in the turbulence parameter estimation, since the EVMs are likely to be quasi two-dimensional vortex structures that are embedded within the three dimensional turbulence on the inside edge of the eyewall.

  17. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity.

    Science.gov (United States)

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2017-08-01

    Systolic time intervals (STIs) provide noninvasive insights into cardiac sympathetic neural activity (cSNA). As the effect of exercise intensity on postexercise STI recovery is unclear, this study investigated the STI recovery profile after different exercise intensities. Eleven healthy males cycled for 8 min at 3 separate intensities: LOW (40%-45%), MOD (75%-80%), and HIGH (90%-95%) of heart-rate (HR) reserve. Bio-impedance cardiography was used to assess STIs - primarily pre-ejection period (PEP; inversely correlated with cSNA), as well as left ventricular ejection time (LVET) and PEP:LVET - during 10 min seated recovery immediately postexercise. Heart-rate variability (HRV), i.e., natural-logarithm of root mean square of successive differences (Ln-RMSSD), was calculated as an index of cardiac parasympathetic neural activity (cPNA). Higher preceding exercise intensity elicited a slower recovery of HR and Ln-RMSSD (p return to baseline by 10 min following any intensity (p ≤ 0.009). Recovery of STIs was also slower following higher intensity exercise (p ≤ 0.002). By 30 s postexercise, higher preceding intensity resulted in a lower PEP (98 ± 14 ms, 75 ± 6 ms, 66 ± 5 ms for LOW, MOD, and HIGH, respectively, p fashion. While exercise intensity must be considered, acute recovery may be a valuable period during which to concurrently monitor these noninvasive indices, to identify potentially abnormal cardiac autonomic responses.

  18. Numerical simulations of turbulent heat transfer in a channel at Prandtl numbers higher than 100

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2005-01-01

    During the last years, many attempts have been made to extend turbulent heat transfer at low Prandtl numbers to high Prandtl numbers in the channel based on a very accurate pseudo-spectral code of direct numerical simulation (DNS). DNS describes all the length and time scales for velocity and temperature fields, which are different when Prandtl number is not equal to 1. DNS can be used at low Reynolds (Re τ =150. Very similar approach as for Pr=5.4 was done for numerical simulations at Pr=100 and Pr=200. Comparison was made with results of temperature fields performed on 9-times finer numerical grid, however without damping of the highest Fourier coefficients. The results of mean temperature profiles show no differences larger than statistical uncertainties (∼1%), while slightly larger differences are seen for temperature fluctuations. (author)

  19. Performance analysis of subcarrier intensity modulation using rectangular QAM over Malaga turbulence channels with integer and non-integerβ

    KAUST Repository

    Alheadary, Wael G.

    2016-10-13

    In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results are derived for average bit error rate, achievable spectral efficiency, outage probability, and ergodic capacity by utilizing series expansion identity of modified Bessel function. Our asymptotic and analytical results based on series solutions with finite numbers highly matched to the numerical results. By exploiting the inherent nature of fading channel, the proposed adaptive scheme enhances the spectral efficiency without additional transmit power while satisfying the required bit error rate criterion. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. The value of Doppler LiDAR systems to monitor turbulence intensity during storm events in order to enhance aviation safety in Iceland

    Science.gov (United States)

    Yang, Shu; Nína Petersen, Guðrún; Finger, David C.

    2017-04-01

    Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.

  1. Cloud Feedbacks on Greenhouse Warming in a Multi-Scale Modeling Framework with a Higher-Order Turbulence Closure

    Science.gov (United States)

    Cheng, Anning; Xu, Kuan-Man

    2015-01-01

    Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.

  2. Continuous and high-intensity interval training: which promotes higher pleasure?

    Directory of Open Access Journals (Sweden)

    Bruno R R Oliveira

    Full Text Available OBJECTIVES: To compare the psychological responses to continuous (CT and high-intensity interval training (HIT sessions. METHODS: Fifteen men attended one CT session and one HIT session. During the first visit, the maximum heart rate, VO2Peak and respiratory compensation point (RCP were determined through a maximal cardiopulmonary exercise test. The HIT stimulus intensity corresponded to 100% of VO2Peak, and the average intensity of both sessions was maintained at 15% below the RCP. The order of the sessions was randomized. Psychological and physiological variables were recorded before, during and after each session. RESULTS: There were no significant differences between the average percentages of VO2 during the two exercise sessions (HIT: 73.3% vs. CT: 71.8%; p = 0.779. Lower responses on the feeling scale (p≤0.01 and higher responses on the felt arousal scale (p≤0.001 and the rating of perceived exertion were obtained during the HIT session. Despite the more negative feeling scale responses observed during HIT and a greater feeling of fatigue (measured by Profile of Mood States afterwards (p<0.01, the physical activity enjoyment scale was not significantly different between the two conditions (p = 0.779. CONCLUSION: Despite the same average intensity for both conditions, similar psychological responses under HIT and CT conditions were not observed, suggesting that the higher dependence on anaerobic metabolism during HIT negatively influenced the feeling scale responses.

  3. Precipitation in a boiling soup: is microphysics driving the statistical properties of intense turbulent convection?

    Science.gov (United States)

    Parodi, A.; von Hardenberg, J.; Provenzale, A.

    2012-04-01

    Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.

  4. Consistency of the directionality of partially coherent beams in turbulence expressed in terms of the angular spread and the far-field average intensity

    International Nuclear Information System (INIS)

    Xiao-Wen, Chen; Xiao-Ling, Ji

    2010-01-01

    Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence. (classical areas of phenomenology)

  5. Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane

    Directory of Open Access Journals (Sweden)

    Prasert Prapamonthon

    2017-03-01

    Full Text Available This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC with mainstream turbulence intensity (Tu on a modified vane of the real film-cooled nozzle guide vane (NGV reported by Timko (NASA CR-168289. Using a 3D conjugate heat transfer (CHT analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%. The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1 TBC on the pressure side (PS is more effective than that on the suction side (SS due to a fewer number of film holes on the SS; (2 for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3 when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20% the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE and the exits and downstream of film holes on the SS, this phenomenon is slight.

  6. Analysis of turbulent separated flows for the NREL airfoil using anisotropic two-equation models at higher angles of attack

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shijie [Tsinghua University, Beijing (China). School of Architecture; Yuan Xin; Ye Dajun [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-07-01

    Numerical simulations of the turbulent flow fields at stall conditions are presented for the NREL (National Renewable Energy Laboratory) S809 airfoil. The flow is modelled as compressible, viscous, steady/unsteady and turbulent. Four two-equation turbulence models (isotropic {kappa}-{epsilon} and q-{omega} models, anisotropic {kappa}-{epsilon} and -{omega} models), are applied to close the Reynolds-averaged Navier-Stokes equations, respectively. The governing equations are integrated in time by a new LU-type implicit scheme. To accurately model the convection terms in the mean-flow and turbulence model equations, a modified fourth-order high resolution MUSCL TVD scheme is incorporated. The large-scale separated flow fields and their losses at the stall and post-stall conditions are analyzed for the NREL S809 airfoil at various angles of attack ({alpha}) from 0 to 70 degrees. The numerical results show excellent to fairly good agreement with the experimental data. The feasibility of the present numerical method and the influence of the four turbulence models are also investigated. (author)

  7. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  8. Intensive Mode Delivery of a Neuroanatomy Unit: Lower Final Grades but Higher Student Satisfaction

    Science.gov (United States)

    Whillier, Stephney; Lystad, Reidar P.

    2013-01-01

    In 2011, Macquarie University moved to a three-session academic year which included two 13-week sessions (traditional mode) and one seven-week session (intensive mode). This study was designed to compare the intensive and traditional modes of delivery in a unit of undergraduate neuroanatomy. The new intensive mode neuroanatomy unit provided the…

  9. Study on the Influence of Velocity, Turbulence Intensity and Temperature on Ammonia Emission Rate in a Wind Tunnel

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, P V; Zhang, Guo-Qiang

    2009-01-01

    Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...

  10. An experimental study of low concentration sludge settling velocity under turbulent condition.

    Science.gov (United States)

    Guo, Lisha; Zhang, Daijun; Xu, Danyu; Chen, Yuan

    2009-05-01

    Particle Image Velocimetry (PIV) was used to study the settling of activated sludge flocs under turbulent flow conditions. Experimental results showed that a larger particle diameter led to a higher settling velocity while the higher turbulence intensity led to lower settling velocity. Based on the measurements a mathematical relation has been derived which correlates the settling velocity for individual sludge flocs under turbulent conditions through a modified Vesilind equation. Settling velocity shows a power-type relation to sludge particle diameter and an exponential-type relation with turbulence intensity and sludge concentration.

  11. Effects of sleeve blockages on axial velocity and intensity of turbulence in an unheated 7 x 7 rod bundle

    International Nuclear Information System (INIS)

    Creer, J.M.; Rowe, D.S.; Bates, J.M.; Sutey, A.M.

    1976-01-01

    An experimental study is described which was performed to investigate the turbulent flow phenomena near postulated sleeve blockages in a model nuclear fuel rod bundle. The sleeve blockages were characteristic of fuel clad ''swelling'' or ''ballooning'' which could occur during loss-of-coolant accidents (LOCA) in pressurized water reactors. The study was conducted to provide information relative to the flow phenomena near postulated blockages to support detailed safety analyses of LOCAs. The results of the study are especially useful for verification of the hydraulic treatment of reactor core computer programs such as COBRA

  12. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  13. Data-Intensive Evaluation: The Concept, Methods, and Prospects of Higher Education Monitoring Evaluation

    Science.gov (United States)

    Wang, Zhanjun; Qiao, Weifeng; Li, Jiangbo

    2016-01-01

    Higher education monitoring evaluation is a process that uses modern information technology to continually collect and deeply analyze relevant data, visually present the state of higher education, and provide an objective basis for value judgments and scientific decision making by diverse bodies Higher education monitoring evaluation is…

  14. Toward a Miami University Model for Internet-Intensive Higher Education.

    Science.gov (United States)

    Wolfe, Christopher R.; Crider, Linda; Mayer, Larry; McBride, Mark; Sherman, Richard; Vogel, Robert

    1998-01-01

    Describes principles underlying an emerging model for Internet-intensive undergraduate instruction at Miami University (Ohio) in which students learn by creating online materials themselves; faculty facilitate active learning; student intellectual exchanges are enriched; and the seminar sensibility is extended. Four applications are examined: a…

  15. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    Science.gov (United States)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  16. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    International Nuclear Information System (INIS)

    Smith, Craig M; Barthelmie, R J; Pryor, S C

    2013-01-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m. (letter)

  17. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe; Giebel, Gregor

    2016-01-01

    varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...

  18. Turbulent flows over sparse canopies

    Science.gov (United States)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  19. Stirring turbulence with turbulence

    NARCIS (Netherlands)

    Cekli, H.E.; Joosten, R.; van de Water, W.

    2015-01-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the

  20. How Difficult is it to Reduce Low-Level Cloud Biases With the Higher-Order Turbulence Closure Approach in Climate Models?

    Science.gov (United States)

    Xu, Kuan-Man

    2015-01-01

    Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC

  1. Female Intense Curricula: Fashion Merchandising in Home Economics and Associated Programs in Higher Education.

    Science.gov (United States)

    Mikitka, Kathleen Faith; Van Camp, Mary Lou

    A study was done of higher education curricula with substantial enrollment by women (such as fashion merchandising and home economics) to examine the context and substance of the curricula, to identify infrastructures that have supported these programs, and to probe issues that face administrators, faculty and students engaged in such programs.…

  2. Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Jukka; Kyroe, Riikka; Junnila, Seppo, E-mail: jukka.heinonen@aalto.fi, E-mail: riikka.kyro@aalto.fi, E-mail: seppo.junnila@aalto.fi [School of Engineering, Department of Surveying, Aalto University, PO Box 11200, 00076 Aalto (Finland)

    2011-07-15

    Hindering urban sprawl is one of the main goals for contemporary urban planning. Urban density is considered crucial in climate change mitigation since it reduces automobile dependence and decreases unit sizes, for example. This letter analyzes the effect of density in a city context. In the study the Finnish capital Helsinki is divided into two areas of different urban densities: the high density downtown area and the more scarcely populated suburbs. The study is a continuation of a recently published study on the implications of urban structure on carbon emissions, and analyzes further the main finding of the first study-that higher urban density might have negligible or even reverse effect on the per capita carbon emissions. Similarly to the previous study, a consumption based tiered hybrid life cycle assessment (LCA) approach is employed in order to produce a comprehensive assessment, free of territorial boundaries and system cutoffs typical of traditional LCAs. Based on the findings of the previous study, it is hypothesized that when assessing city level carbon dioxide emissions from a wider, consumer oriented LCA perspective, increased urban density may not necessarily reduce carbon emissions. Surprisingly, the study finds that carbon dioxide equivalent (CO{sub 2}e) emissions are substantially higher in the dense downtown area than in the surrounding suburbs, which is suggested to imply that the increased consumption due to the higher standard of living increases emissions more than the higher density is able to reduce them. The results demonstrate that, while increasing urban density can be justified from a number of ecological, social and economic viewpoints, density is not necessarily a key parameter in the particular case of climate change. In cities like Helsinki, where wealth is concentrated in the downtown area, climate policies should give higher priority to the energy consumption of buildings, to alternative energy production and distribution modes

  3. Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki

    International Nuclear Information System (INIS)

    Heinonen, Jukka; Kyroe, Riikka; Junnila, Seppo

    2011-01-01

    Hindering urban sprawl is one of the main goals for contemporary urban planning. Urban density is considered crucial in climate change mitigation since it reduces automobile dependence and decreases unit sizes, for example. This letter analyzes the effect of density in a city context. In the study the Finnish capital Helsinki is divided into two areas of different urban densities: the high density downtown area and the more scarcely populated suburbs. The study is a continuation of a recently published study on the implications of urban structure on carbon emissions, and analyzes further the main finding of the first study-that higher urban density might have negligible or even reverse effect on the per capita carbon emissions. Similarly to the previous study, a consumption based tiered hybrid life cycle assessment (LCA) approach is employed in order to produce a comprehensive assessment, free of territorial boundaries and system cutoffs typical of traditional LCAs. Based on the findings of the previous study, it is hypothesized that when assessing city level carbon dioxide emissions from a wider, consumer oriented LCA perspective, increased urban density may not necessarily reduce carbon emissions. Surprisingly, the study finds that carbon dioxide equivalent (CO 2 e) emissions are substantially higher in the dense downtown area than in the surrounding suburbs, which is suggested to imply that the increased consumption due to the higher standard of living increases emissions more than the higher density is able to reduce them. The results demonstrate that, while increasing urban density can be justified from a number of ecological, social and economic viewpoints, density is not necessarily a key parameter in the particular case of climate change. In cities like Helsinki, where wealth is concentrated in the downtown area, climate policies should give higher priority to the energy consumption of buildings, to alternative energy production and distribution modes, as

  4. Local topology via the invariants of the velocity gradient tensor within vortex clusters and intense Reynolds stress structures in turbulent channel flow

    International Nuclear Information System (INIS)

    Buchner, Abel-John; Kitsios, Vassili; Atkinson, Callum; Soria, Julio; Lozano-Durán, Adrián

    2016-01-01

    Previous works have shown that momentum transfer in the wall–normal direction within turbulent wall–bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall–attached and wall–detached structures with the latter being typically weak, small–scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed. (paper)

  5. Risk-associated health disorders occuring in junior schoolchildren who attend schools with higher stress and intensity of educational process

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2017-03-01

    Full Text Available We performed comparative sanitary-hygienic assessment of regime, stress and intensity of educational process in different educational establishments, a comprehensive secondary school and an innovative educational establishment - lyceum. We detected that studying regime tended to be tight, classes were longer and more intense than in an ordinary school, and educational process involved considerable intellectual, sensory and emotional loads for children; such loads reached "1st category intense" level. Schoolchildren attending lyceums are also busy with additional educational programs and it significantly increases length of total educational load on them. By the end of a school year 20% of lyceum pupils suffer from sympathoadrenal system overstress and it doesn't only determine emotional tonus level in children but also leads to disorders in concentration and decision-making speed, lower reading speed and articulation, slower motor reactions. 15% of lyceum pupils have higher activity of autonomous nervous system and lower adaptation of cardiovascular system to psycho emotional and physical loads. Lyceum pupils also run 2.5 times higher risk of chronic nervous system diseases evolvement than school children attending ordinary schools. Autonomous nervous system disorders, posture disorders and nutrition disorders are predominant nosologic pathology forms in lyceum pupils as they occur in them 1.6-2.9 times more frequent than in schoolchildren of the same age who attend an ordinary comprehensive school. We detected direct correlation between higher intellectual and emotional components of educational process, and total educational intensity as well, and frequency of autonomous system disorders and musculoskeletal system diseases in pupils.

  6. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2016-10-23

    It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.

  7. Destabilizing turbulence in pipe flow

    Science.gov (United States)

    Kühnen, Jakob; Song, Baofang; Scarselli, Davide; Budanur, Nazmi Burak; Riedl, Michael; Willis, Ashley P.; Avila, Marc; Hof, Björn

    2018-04-01

    Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities1-3, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism4,5 measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.

  8. Dissipative structures in magnetorotational turbulence

    Science.gov (United States)

    Ross, Johnathan; Latter, Henrik N.

    2018-03-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  9. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  10. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Science.gov (United States)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  11. Turbulence kinetic energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Directory of Open Access Journals (Sweden)

    E. Nilsson

    2016-07-01

    Full Text Available The decay of turbulence kinetic energy (TKE and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of −0.69 was found for the afternoon period. For comparison with previous results, the TKE

  12. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  13. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Fu, Rong [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles CA USA; Shaikh, Muhammad J. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Ghan, Steven [Pacific Northwest National Laboratory, Richland WA USA; Wang, Minghuai [Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, Nanjing China; Collaborative Innovation Center of Climate Change, Nanjing China; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Dickinson, Robert E. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marengo, Jose [Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, São Jose dos Campos Brazil

    2017-09-21

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with further reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.

  14. Magnetohydrodynamic turbulence

    CERN Document Server

    Biskamp, Dieter

    2003-01-01

    This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi

  15. Superfluid turbulence

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1988-01-01

    Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs

  16. Group-kinetic theory and modeling of atmospheric turbulence

    Science.gov (United States)

    Tchen, C. M.

    1989-01-01

    A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.

  17. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  18. De-trending of turbulence measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2006-01-01

    contribution to the wind speed turbulence intensity for a number of representative locations. A linear de-trending process has been implemented during indexing of the time-series. The observed de-trended turbulence intensities are reduced 3 – 15 % compared to the raw turbulence intensity. This reduction...... depends primarily on site characteristics and local mean wind speed variations. Reduced turbulence intensity will result in lower design fatigue loads. This aspect of de-trending is discussed by use of a simple heuristic load model. Finally an empirical model for de-trending wind resource data...

  19. Turbulence in extended synchrotron radio sources. I. Polarization of turbulent sources. II. Power-spectral analysis

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1989-01-01

    Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs

  20. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    Science.gov (United States)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  1. 湍流强度对水平轴风力机气动性能的影响%The Influence of Turbulence Intensity on Aerodynamic Performance of Horizontal Axis Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    李仁年; 任鹏; 李德顺

    2016-01-01

    In order to study the influence of turbulence intensity on aerodynamic performance of horizontal axis wind turbine,a three-dimensionally numerical simulation of wind wheel model of 33 kW horizontal ax-is wind turbine under different working conditions of wind speed of incoming flow is conducted based on CFD software by comparing and analyzing aerodynamic performance of wind turbine when the turbulence intensity(Ⅰ)is 0.1%,14% and 25%.The results show that differential pressure on the surface of horizontal axis wind turbine blade decreases on a certain degree with the increase of turbulence intensity,which causes that torque of wind wheel of wind turbine decreases and wind power utilization efficiency of wind turbine is clearly reduced.%为了研究水平轴风力机气动性能随湍流强度的影响,基于CFD软件对不同来流风速工况下的33 kW水平轴风力机风轮模型进行三维数值模拟,对比分析风力机在湍流强度Ⅰ为0.1%、14%、25%时的气动性能.结果表明:随着来流湍流强度的增加,水平轴风力机叶片表面压差会有一定程度的减小,从而导致风力机风轮转矩减小,风力机风能利用效率明显降低.

  2. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  3. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  4. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  5. Turbulence characteristics of flow in an open channel with temporally varying mobile bedforms

    Directory of Open Access Journals (Sweden)

    Hanmaiahgari Prashanth Reddy

    2017-03-01

    Full Text Available Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV to evaluate the turbulence structure of free surface flow over a fixed (immobile bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.

  6. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  7. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  8. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  9. Magnetohydrodynamic turbulence revisited

    International Nuclear Information System (INIS)

    Goldreich, P.; Sridhar, S.

    1997-01-01

    In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society

  10. Self-Regulated Learning Skills and Online Activities between Higher and Lower Performers on a Web-Intensive Undergraduate Engineering Course

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry B.; Lawanto, Kevin N.; Goodridge, Wade

    2017-01-01

    The objective of this study was to evaluate students' self-regulated learning (SRL) skills used in a Web-intensive learning environment. The research question guiding the study was: How did the use of student SRL skills and student engagement in online activities compare between higher- and lower-performing students participating in a…

  11. Adopting an Active Learning Approach to Teaching in a Research-Intensive Higher Education Context Transformed Staff Teaching Attitudes and Behaviours

    Science.gov (United States)

    White, Paul J.; Larson, Ian; Styles, Kim; Yuriev, Elizabeth; Evans, Darrell R.; Rangachari, P. K.; Short, Jennifer L.; Exintaris, Betty; Malone, Daniel T.; Davie, Briana; Eise, Nicole; Mc Namara, Kevin; Naidu, Somaiya

    2016-01-01

    The conventional lecture has significant limitations in the higher education context, often leading to a passive learning experience for students. This paper reports a process of transforming teaching and learning with active learning strategies in a research-intensive educational context across a faculty of 45 academic staff and more than 1,000…

  12. The Research of Optical Turbulence Model in Underwater Imaging System

    Directory of Open Access Journals (Sweden)

    Liying Sun

    2014-01-01

    Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.

  13. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  14. Cryogenic turbulence

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2005-01-01

    Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.

  15. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  16. An Intense Traveling Airglow Front in the Upper Mesosphere-Lower Thermosphere with Characteristic of a Turbulent Bore Observed over Alice Springs, Australia

    Science.gov (United States)

    Walterscheid, R. L.; Hecht, J. H.; Hickey, M. P.; Gelinas, L. J.; Vincent, R. A.; Reid, I. M.; Woithe, J.

    2010-12-01

    The Aerospace Corporation’s Nightglow Imager observed a large step-function change in airglow in the form of a traveling front in the OH and O2 airglow emissions over Alice Springs Australia on February 2, 2003. The front exhibited a stepwise increase of nearly a factor two in the OH brightness and a stepwise decrease in the O2 brightness. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. The OH airglow brightness behind the front was the brightness night for 02 at Alice Springs that we have measured in seven years of observations. The OH brightness was among the five brightest. The event was associated with a strong phase-locked two-day wave (TDW).We have analyzed the stability conditions for the upper mesosphere and lower thermosphere and found that the airglow layers were found in a region of strong ducting. The thermal structure was obtained from combining data from the SABER instrument on the TIMED satellite and the NRLMSISE-00 model. The wind profile was obtained by combining the HWM07 model and MF radar winds from Buckland Park Australia. We found that the TDW-disturbed profile was significantly more effective in supporting a high degree of ducting than a profile based only on HWM07 winds. Dramatic wall events have been interpreted as manifestations of undular bores (e.g., Smith et al. [2003]). Undular bores are nonlinear high Froude number events that must generate an ever increasing train of waves to carry the excess energy away from the bore front. Only a very weak wave train behind the initial disturbance was seen for the Alice Springs event. The form of the amplitude ordering was not typical of a nonlinear wave train. Therefore a bore interpretation requires another means of energy dissipation, namely turbulent dissipation. We suggest that a reasonable interpretation of the observed event is a turbulent bore. We are unaware of any previous event having

  17. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  18. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  19. Higher Precision of Heart Rate Compared with VO2 to Predict Exercise Intensity in Endurance-Trained Runners.

    Science.gov (United States)

    Reis, Victor M; den Tillaar, Roland Van; Marques, Mario C

    2011-01-01

    The aim of the present study was to assess the precision of oxygen uptake with heart rate regression during track running in highly-trained runners. Twelve national and international level male long-distance road runners (age 30.7 ± 5.5 yrs, height 1.71 ± 0.04 m and mass 61.2 ± 5.8 kg) with a personal best on the half marathon of 62 min 37 s ± 1 min 22 s participated in the study. Each participant performed, in an all-weather synthetic track five, six min bouts at constant velocity with each bout at an increased running velocity. The starting velocity was 3.33 m·s(-1) with a 0.56 m·s(-1) increase on each subsequent bout. VO2 and heart rate were measured during the runs and blood lactate was assessed immediately after each run. Mean peak VO2 and mean peak heart rate were, respectively, 76.2 ± 9.7 mL·kg(-1)·min(-1) and 181 ± 13 beats·min(-1). The linearity of the regressions between heart rate, running velocity and VO2 were all very high (r > 0.99) with small standard errors of regression (i.e. Sy.x at the velocity associated with the 2 and 4 mmol·L(-1) lactate thresholds). The strong relationships between heart rate, running velocity and VO2 found in this study show that, in highly trained runners, it is possible to have heart rate as an accurate indicator of energy demand and of the running speed. Therefore, in this subject cohort it may be unnecessary to use VO2 to track changes in the subjects' running economy during training periods. Key pointsHeart rate is used in the control of exercise intensity in endurance sports.However, few studies have quantified the precision of its relationship with oxygen uptake in highly trained runners.We evaluated twelve elite half-marathon runners during track running at various intensities and established three regressions: oxygen uptake / heart rate; heart rate / running velocity and oxygen uptake / running velocity.The three regressions presented, respectively, imprecision of 4,2%, 2,75% and 4,5% at the velocity

  20. Cosmic turbulence

    International Nuclear Information System (INIS)

    Drury, L.O.; Stewart, J.M.

    1976-01-01

    A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)

  1. The mechanism and theoretical basis of the management of intensity of the heat transfer control through periodic influences on the turbulent boundary layer

    Science.gov (United States)

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhaleva, Larisa V.; Chukalin, Andrey V.; Bondarenko, Aleksandr A.; Kovrizhnykh, Evgeny N.

    2017-07-01

    Generalization of classical model of a displacement way on the transfer of heat exchange and mass exchange of a stream in the boundary layer, confirmed by the control action of the different nature, is undertaken. Here are given the results of numerical research which have allowed explaining the mechanism, to reveal efficiency and limits of various ways of management of intensity in exchange processes. The possibility of management of intensity in processes of a thermolysis and friction by use of the perforated surface with the damping cavities is analyzed.

  2. Turbulent deflagrations, autoignitions, and detonations

    KAUST Repository

    Bradley, Derek

    2012-09-01

    Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.

  3. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?

    International Nuclear Information System (INIS)

    Bengtsson, L.; Botzet, M.; Esch, M.

    1994-01-01

    The use of a high resolution atmospheric model at T106 resolution, for studying the influence on greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al (1994). The sea surface temperature anomalies have been taken from a previous climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms agree in their geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern hemisphere. The main reason to this is related to increased tropospheric stability, associated with increased warming at the upper troposphere and changes in the large scale circulation such as a weaker Hadley circulation and stronger upper air westerlies. The surface winds in the tropics are generally weaker and evaporation is also somewhat reduced, in spite of higher sea surface temperatures. (orig.)

  4. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    Science.gov (United States)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  5. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  6. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...

  7. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  8. Area of turbulence

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.   The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS),
Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN),
Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), 
Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...

  9. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pCDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (pCDOM samples further suggested their probable autochthonous origin. Our results have implications for the understanding of CDOM cycling in shallow aquatic ecosystems influenced by wind-induced waves, in which the enhanced turbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Turbulence and Mixing in a Shallow Shelf Sea From Underwater Gliders

    Science.gov (United States)

    Schultze, Larissa K. P.; Merckelbach, Lucas M.; Carpenter, Jeffrey R.

    2017-11-01

    The seasonal thermocline in shallow shelf seas acts as a natural barrier for boundary-generated turbulence, damping scalar transport to the upper regions of the water column and controlling primary production to a certain extent. To better understand turbulence and mixing conditions within the thermocline, two unique 12 and 17 day data sets with continuous measurements of the dissipation rate of turbulent kinetic energy (ɛ) collected by autonomous underwater gliders under stratified to well-mixed conditions are presented. A highly intermittent ɛ signal was observed in the stratified thermocline region, which was mainly characterized by quiescent flow (turbulent activity index below 7). The rate of diapycnal mixing remained relatively constant for the majority of the time with peaks of higher fluxes that were responsible for much of the increase in bottom mixed layer temperature. The water column stayed predominantly strongly stratified, with a bulk Richardson number across the thermocline well above 2. A positive relationship between the intensity of turbulence, shear, and stratification was found. The trend between turbulence levels and the bulk Richardson number was relatively weak but suggests that ɛ increases as the bulk Richardson number approaches 1. The results also highlight the interpretation difficulties in both quantifying turbulent thermocline fluxes as well as the responsible mechanisms.

  11. Measurement of beam driven hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.

    2003-01-01

    Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers

  12. Influence of atmospheric turbulence on the quantum polarization state

    Science.gov (United States)

    Yang, Ru; Xue, Yang; Li, Yunxia; Shi, Lei; Zhu, Yu; Zhu, Qiuli

    2018-03-01

    In order to study the influence of atmospheric turbulence on the polarization state of the free space quantum communication, the relationship between the refractive index and altitude, the refractive index structure constant and the turbulence dimension is deduced based on two different atmospheric refractive index structural constants models. The turbulence intensity factor κ is introduced and the equation of the variation of the quantum polarization degree with turbulence intensity is established. Through the simulation of the turbulent refractive index and the performance of four different polarization states in the low altitude turbulence environment, the results show that the atmospheric turbulence in the near ground will affect the fluctuation of the degree of polarization, and the degree of polarization varies linearly with the change of turbulence intensity. In the case of polarization |H>, the range of polarization |H> varies from 0 to 0.14 with the change of turbulence intensity. The influence of atmospheric turbulence on four different polarization states is different, and the degree of |H> and |V> depolarization is greater in the daytime and back. The depolarization degree of |-> at night is greater. The relationship between the degree of polarization and the change of turbulence intensity is analyzed by mathematical modeling, which is helpful to select the reasonable experimental scheme and compensate the change of polarization state in the aviation quantum Secure communication channel.

  13. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  14. Turbulent Premixed Flame Propagation in Microgravity

    Science.gov (United States)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The

  15. Turbulence modulation induced by bubble swarm in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Morikawa, Koichi; Urano, Shigeyuki; Saito, Takayuki

    2007-01-01

    In the present study, liquid-phase turbulence modulation induced by a bubble swarm ascending in arbitrary turbulence was experimentally investigated. Liquid-phase homogeneous isotropic turbulence was formed using an oscillating grid in a cylindrical acrylic vessel of 149 mm in inner diameter. A bubble swarm consisting of 19 bubbles of 2.8 mm in equivalent diameter was examined; the bubble size and launching time were completely controlled using a bubble launching device through audio speakers. This bubble launching device was able to repeatedly control the bubble swarm arbitrarily and precisely. The bubble swarm was launched at a frequency of 4 Hz. The liquid phase motion was measured via two LDA (Laser Doppler Anemometer) probes. The turbulence intensity, spatial correlation and integral scale were calculated from LDA data obtained by the two spatially-separate-point measurement. When the bubble swarm was added, the turbulence intensity dramatically changed. The original isotropic turbulence was modulated to the anisotropic turbulence by the mutual interference between the bubble swarm and ambient isotropic turbulence. The integral scales were calculated from the spatial correlation function. The effects of the bubble swarm on the integral scales showed the tendencies similar to those on turbulence intensity. (author)

  16. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  17. Graphic Turbulence Guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  18. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  19. Workshop on Engineering Turbulence Modeling

    Science.gov (United States)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  20. Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  1. Dissipation of Turbulence in the Wake of a Wind Turbine

    Science.gov (United States)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  2. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    framework for presenting the results of the flowfield and jet penetration length. ... A turbulent jet is a basic free shear flow and has received research attention (see, .... MBE76 identify this to be a transitional zone and for. √ .... higher return flow and also higher velocity from counterflow due to a narrower gap thus leading.

  3. An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations

    Science.gov (United States)

    Li, Chung-Gang; Tsubokura, Makoto

    2017-09-01

    The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.

  4. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame

    KAUST Repository

    Lucchesi, Marco

    2017-02-05

    A modeling framework based on Direct Simulation Monte Carlo (DSMC) is employed to simulate the evolution of the soot particle size distribution in turbulent sooting flames. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of a n-heptane turbulent nonpremixed flame. The DSMC method is validated against experimentally measured size distributions in laminar premixed flames and found to reproduce quantitatively the experimental results, including the appearance of the second mode at large aggregate sizes and the presence of a trough at mobility diameters in the range 3–8 nm. The model is then applied to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates lead to a higher peak in number density and to the size distribution attaining its second mode sooner. The ensemble-averaged PSDF in the turbulent flame is computed from individual samples of the PSDF from large sets of Lagrangian trajectories. This statistical measure is equivalent to time-averaged, scanning mobility particle size (SMPS) measurements in turbulent flames. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a long, broad tail, which implies significant polydispersity induced by turbulence. Our results agree very well with SMPS measurements available in the literature. Conditioning on key features of the trajectory, such as mixture fraction or radial locations does not reduce the scatter in the size distributions and the ensemble-averaged PSDF remains broad. The results highlight and explain the important role of turbulence in broadening the size distribution of

  5. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  6. Early lactate clearance in septic patients with elevated lactate levels admitted from the emergency department to intensive care: time to aim higher?

    Science.gov (United States)

    Walker, Craig A; Griffith, David M; Gray, Alasdair J; Datta, Deepankar; Hay, Alasdair W

    2013-10-01

    Septic patients with hyperlactatemia have increased mortality rates, irrespective of hemodynamic and oxygen-derived variables. The aims of the study are the following: (1) to ascertain whether lactate clearance (LC) (percentage change in lactate over unit time) predicts mortality in septic patients admitted to intensive care directly from the emergency department and (2) to calculate the optimal "cut-off" value for mortality prediction. Three-year retrospective observational study of consecutive patients with severe sepsis and septic shock admitted to intensive care from the emergency department of a tertiary UK hospital. We calculated 6-hour LC, performed receiver operating characteristic analyses to calculate optimal cut-off values for initial lactate and LC, dichotomized patients according to the LC cut-off, and calculated hazard ratios using a Cox proportional hazards model. One hundred six patients were identified; 78, after exclusions. Lactate clearance was independently associated with 30-day mortality (P<.04); optimal cut-off, 36%. Mortality rates were 61.1% and 10.7% for patients with 6-hour LC 36% or less and greater than 36%, respectively. Hazard ratio for death with LC 36% or less was 7.33 (95% confidence interval, 2.17-24.73; P<.001). Six-hour LC was independently associated with mortality, and the optimal cut-off value was 36%, significantly higher than previously reported. We would support further research investigating this higher LC as a distinct resuscitation end point in patients with severe sepsis and septic shock. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: A bioenergetics analysis

    Science.gov (United States)

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.

  8. Frontogenesis and turbulent mixing

    Science.gov (United States)

    Zhang, S.; Chen, F.; Shang, Q.

    2017-12-01

    A hydrological investigation was conducted in the shelf of eastern Hainan island during July 2012. With the in-situ measurements from four cross-shelf sections and satellite data, the submesoscale process of the fronts are discussed in this paper, the seasonal variation characteristics of thermal front, the three-dimensional structure, dynamic characteristics of frontal and mixed characteristics in the shelf sea of eastern Hainan island. It's obviously that the thermal front has a seasonal variation: the front is strongest in winter, and decreased gradually in spring and summer. However, it fade and disappear in fall. The core region of the front also changes with the seasons, it moved southward gradually from mainly distributed in the upwelling zone and the front center is not obvious in summer. it is a typical upwelling front in summer, the near shore is compensated with the underlying low-temperature and high-sale water , while the offshore is the high-temperature and low-salinity shelf water. The thermal front distribution is located in the 100m isobaths. The frontal intensity is reduced with increasing depth, and position goes to offshore. Subsurface temperature front is significantly higher in the surface of the sea, which may cause by the heating of nearshore sea surface water and lead to the weakening horizontal temperature gradient. Dynamic characteristics of the front has a great difference in both sides. The O(1) Rossby number is positive on the dense side and negative on the light side. The maximum of along-frontal velocity is 0.45m/s and the stretching is strengthened by strong horizontal shear, also is the potential vorticity, which can trace the cross front Ekman transport. We obtained the vertical velocity with by quasi-geostrophic omega equation and grasped the ageostrophic secondary circulation. The magnitude of frontal vertical velocity is O(10-5) and causes downwelling on the dense side and upwelling on the light side, which constitute the

  9. PDF turbulence modeling and DNS

    Science.gov (United States)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  10. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence.

    Science.gov (United States)

    Crall, J D; Chang, J J; Oppenheimer, R L; Combes, S A

    2017-02-06

    Natural environments are characterized by variable wind that can pose significant challenges for flying animals and robots. However, our understanding of the flow conditions that animals experience outdoors and how these impact flight performance remains limited. Here, we combine laboratory and field experiments to characterize wind conditions encountered by foraging bumblebees in outdoor environments and test the effects of these conditions on flight. We used radio-frequency tags to track foraging activity of uniquely identified bumblebee ( Bombus impatiens ) workers, while simultaneously recording local wind flows. Despite being subjected to a wide range of speeds and turbulence intensities, we find that bees do not avoid foraging in windy conditions. We then examined the impacts of turbulence on bumblebee flight in a wind tunnel. Rolling instabilities increased in turbulence, but only at higher wind speeds. Bees displayed higher mean wingbeat frequency and stroke amplitude in these conditions, as well as increased asymmetry in stroke amplitude-suggesting that bees employ an array of active responses to enable flight in turbulence, which may increase the energetic cost of flight. Our results provide the first direct evidence that moderate, environmentally relevant turbulence affects insect flight performance, and suggest that flying insects use diverse mechanisms to cope with these instabilities.

  11. ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.

    2014-01-01

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas

  12. Comparison of turbulence in a transitional boundary layer to turbulence in a developed boundary layer*

    Science.gov (United States)

    Park, G. I.; Wallace, J.; Wu, X.; Moin, P.

    2010-11-01

    Using a recent DNS of a flat-plate boundary layer, statistics of turbulence in transition at Reθ= 500 where spots merge (distributions of the mean velocity, rms velocity and vorticity fluctuations, Reynolds shear stress, kinetic energy production and dissipation rates and enstrophy) have been compared to these statistics for the developed boundary layer turbulence at Reθ= 1850. When the distributions in the transitional region, determined in narrow planes 0.03 Reθ wide, exclude regions and times when the flow is not turbulent, they closely resemble those in the developed turbulent state at the higher Reynolds number, especially in the buffer and sublayers. The skin friction coefficient, determined in this conditional manner in the transitional flow is, of course, much larger than that obtained by including both turbulent and non-turbulent information there, and is consistent with a value obtained by extrapolating from the developed turbulent region. We are attempting to perform this data analysis even further upstream in the transitioning flow at Reθ= 300 where the turbulent spots are individuated. These results add further evidence to support the view that the structure of a developed turbulent boundary layer is little different from its structure in its embryonic form in turbulent spots. *CTR 2010 Summer Program research.

  13. Radiation statistics in homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Da Silva, C B; Coelho, P J; Malico, I

    2009-01-01

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  14. Radiation statistics in homogeneous isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, C B; Coelho, P J [Mechanical Engineering Department, IDMEC/LAETA, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malico, I [Physics Department, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal)], E-mail: carlos.silva@ist.utl.pt, E-mail: imbm@uevora.pt, E-mail: pedro.coelho@ist.utl.pt

    2009-09-15

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  15. Prevalence of Non-responders for Glucose Control Markers after 10 Weeks of High-Intensity Interval Training in Adult Women with Higher and Lower Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Cristian Álvarez

    2017-07-01

    Full Text Available Background: Exercise training improves performance and biochemical parameters on average, but wide interindividual variability exists, with individuals classified as responders (R or non-responders (NRs, especially between populations with higher or lower levels of insulin resistance. This study assessed the effects of high-intensity interval training (HIIT and the prevalence of NRs in adult women with higher and lower levels of insulin resistance.Methods: Forty adult women were assigned to a HIIT program, and after training were analyzed in two groups; a group with higher insulin resistance (H-IR, 40 ± 6 years; BMI: 29.5 ± 3.7 kg/m2; n = 20 and a group with lower insulin resistance (L-IR, 35 ± 9 years; 27.8 ± 2.8 kg/m2; n = 20. Anthropometric, cardiovascular, metabolic, and performance variables were measured at baseline and after 10 weeks of training.Results: There were significant training-induced changes [delta percent (Δ%] in fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR scores in the H-IR group (−8.8, −26.5, −32.1%, p < 0.0001, whereas no significant changes were observed in the L-IR. Both groups showed significant pre-post changes in other anthropometric variables [waist circumference (−5.2, p < 0.010, and −3.8%, p = 0.046 and tricipital (−13.3, p < 0.010, and −13.6%, p < 0.0001, supra-iliac (−19.4, p < 0.0001, and −13.6%, p < 0.0001, and abdominal (−18.2, p < 0.0001, and −15.6%, p < 0.010 skinfold measurements]. Systolic blood pressure decreased significantly only in the L-IR group (−3.2%, p < 0.010. Both groups showed significant increases in 1RMLE (+12.9, p < 0.010, and +14.7%, p = 0.045. There were significant differences in the prevalence of NRs between the H-IR and L-IR groups for fasting glucose (25 vs. 95%, p < 0.0001 and fasting insulin (p = 0.025 but not for HOMA-IR (25 vs. 45%, p = 0.185.Conclusion: Independent of the “magnitude” of the

  16. High Reynolds Number Turbulence

    National Research Council Canada - National Science Library

    Smits, Alexander J

    2007-01-01

    The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...

  17. Visualization of a Turbulent Jet Using Wavelets

    Institute of Scientific and Technical Information of China (English)

    Hui LI

    2001-01-01

    An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N<10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.

  18. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  19. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  20. Numerical simulation of premixed turbulent methane combustion

    International Nuclear Information System (INIS)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

    2001-01-01

    In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame

  1. Turbulence in two-phase flows

    International Nuclear Information System (INIS)

    Sullivan, J.P.; Houze, R.N.; Buenger, D.E.; Theofanous, T.G.

    1981-01-01

    Hot film Anemometry and Laser Doppler Velocimetry have been employed in this work to study the turbulence characteristics of Bubbly and Stratified two-phase flows, respectively. Extensive consistency checks were made to establish the reliability and hence the utility of these experimental techniques for the measurement of turbulence in two-phase flows. Buoyancy-driven turbulence in vertical bubbly flows has been identified experimentally and correlated in terms of a shear velocity superposition approach. This approach provides a criterion for the demarcation of the buoyancy-driven turbulence region from the wall shear-generated turbulence region. Our data confirm the roughly isotropic behavior expected for buoyancy-driven turbulence. Upgrading of our experimental system will permit investigations of the wall-shear dominated regime (i.e., isotropy, superposition approach, etc.). The stratified flow data demonstrate clearly that the maximum in the mean velocity profile does not coincide with the zero shear plane, indicating the existence of a negative eddy viscosity region. Previous studies do not take into account this difference and thus they yield incorrect friction factor data in addition to certain puzzling behavior in the upper wall region. The conditioned turbulence data in the wavy region indicate interesting trends and that an appropriate normalization of intensities must take into account the shear velocity at the interfacial (wavy) region

  2. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  3. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  4. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  5. Progress in turbulence research

    International Nuclear Information System (INIS)

    Bradshaw, P.

    1990-01-01

    Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs

  6. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  7. Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model

    National Research Council Canada - National Science Library

    Calhoon, W. H; Kenzakowski, D. C

    2000-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  8. Homogeneous turbulence dynamics

    CERN Document Server

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  9. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...

  10. The Effects of Light Intensity, Casing Layers, and Layering Styles on Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) Cultivation in Turkey.

    Science.gov (United States)

    Adanacioglu, Neşe; Boztok, Kaya; Akdeniz, Ramazan Cengiz

    2015-01-01

    The aim of this research is to evaluate the effects of light intensity, casing layers, and layering styles on the production of the culinary-medicinal mushroom Agaricus brasiliensis in Turkey. The experiments were designed in split-split plots and replicated twice. Three different light intensities-I1, 350 lux; I2, 450 lux; and I3, 750 lux-were used in main plots as environmental factors. A mixture of 4 different casing layers- peat (100%), peat-perlite (75%:25%), peat-clinoptilolite (75%:25%), and peat-perlite-clinoptilolite (60%:20%:20%)-were used at split plots and at split plots. S1, a flat, 3-cm casing layer; S2, a flat, 5-cm casing layer; and S3, casing soil ridges 10 cm wide × 4 cm high, 10 cm apart, were deposited on top of 1-cm overall soil casing layers. At the end of the harvest phase, the total yield was estimated per 100 kg of substrate. Biological efficiency (percentage) was determined from the fresh weight of the mushrooms and the dry weight of the compost at the end of the harvesting period. The highest total yield (7.2 kg/100 kg compost) and biological efficiency (27.63%) were achieved from I2 × peat-perlite-clinoptilolite × S2 treatment. Influence of light intensity, casing layer, layering style, and their interaction in treatments with color values (L*, a*, b*, chroma*, and hue*) also were examined. It has been shown that within color values, chroma* (saturation) values of mushroom caps were affected by light intensity, casing layer, and layering style treatments and light intensity × casing layer treatments and the brightness of mushroom caps tended to increase as light intensity increased.

  11. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  12. De-trending of turbulence measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2007-01-01

    based on time series statistics only. The performance of the proposed de-trending algorithm is assessed using huge number of time series recorded at different types of terrain and orography. The strategy is the following: Based on the available time series information a conventional (linear) time series...... de-trending is performed and subsequently compared with the prediction from the proposed algorithm. The de-trended turbulence intensities are reduced in the range of 3 – 15 % compared to the raw turbulence intensity. The performed analysis shows that the proposed model, based on statistical...... this requires access to the basic time-series. However, including a suitable modelling of the mean wind speed time variation, it is possible to estimate an approximate (linear) trend correction based on statistical data only. This paper presents such an algorithm for de-trending of turbulence standard deviation...

  13. Investigation of the height dependency of optical turbulence in the surface layer over False Bay (South Africa)

    NARCIS (Netherlands)

    Sprung, D.; Eijk, A.M.J. van; Günter, W.; Griffith, D.; Eisele, C.; Sucher, E.; Seiffer, D.; Stein, K.

    2017-01-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the

  14. Near bed suspended sediment flux by single turbulent events

    Science.gov (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  15. Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies

    NARCIS (Netherlands)

    Keersmaecker, De Wanda; Rooijen, van Nils; Lhermitte, Stef; Tits, Laurent; Schaminée, Joop; Coppin, Pol; Honnay, Olivier; Somers, Ben

    2016-01-01

    The stable delivery of ecosystem services provided by grasslands is strongly dependent on the stability of grassland ecosystem functions such as biomass production. Biomass production is in turn strongly affected by the frequency and intensity of climate extremes. The aim of this study is to

  16. Higher glucose variability in type 1 than in type 2 diabetes patients admitted to the intensive care unit: A retrospective cohort study

    NARCIS (Netherlands)

    Sechterberger, Marjolein K.; van Steen, Sigrid C. J.; Boerboom, Esther M. N.; van der Voort, Peter H. J.; Bosman, Rob J.; Hoekstra, Joost B. L.; DeVries, J. Hans

    2017-01-01

    Purpose: Although the course of disease of type 1 and type 2 diabetes differs, the distinction is rarely made when patients are admitted to the intensive care unit (ICU). Here, we report patient- and admission-related characteristics in relation to glycemic measures of patients with type I and type

  17. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  18. Turbulence characteristics in cylindrical liquid jets

    International Nuclear Information System (INIS)

    Mansour, A.; Chigier, N.

    1994-01-01

    A study has been made of the flow patterns and turbulence characteristics in free liquid jets in order to determine the rate of decay of turbulence properties along the jet. Mean streamwise velocities and streamwise velocities and streamwise and cross-streamwise turbulence intensities were measured using laser Doppler velocimetry. The jet Reynolds number was varied between 1000 and 30 000, with the diameter of the liquid jet D=3.051 mm. Using a power law model for the time decay of turbulence kinetic energy, it was found that turbulence decays, on average with an exponent N=1, independent of the Reynolds number. A constant power for the decay implies Reynolds number similarity throughout this range. Substantial reductions in the degree of anisotropy occur downstream from the injector exit as the jet relaxes from a fully developed turbulent pipe flow profile to a flat profile. For the intermediate range of Reynolds numbers (10 000--20 000), the relaxation distance was 20D, almost independent of the Reynolds number. At high values of Reynolds number (20 000--30 000), the relaxation process was very fast, generally within three diameters from the injector exit

  19. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  20. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)

    2016-04-15

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  1. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  2. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.

    1981-01-01

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  3. Plasma Turbulence General Topics

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)

    1965-06-15

    It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.

  4. Writing in turbulent air.

    Science.gov (United States)

    Bominaar, Jeroen; Pashtrapanska, Mira; Elenbaas, Thijs; Dam, Nico; ter Meulen, Hans; van de Water, Willem

    2008-04-01

    We describe a scheme of molecular tagging velocimetry in air in which nitric oxide (NO) molecules are created out of O2 and N2 molecules in the focus of a strong laser beam. The NO molecules are visualized a while later by laser-induced fluorescence. The precision of the molecular tagging velocimetry of gas flows is affected by the gradual blurring of the written patterns through molecular diffusion. In the case of turbulent flows, molecular diffusion poses a fundamental limit on the resolution of the smallest scales in the flow. We study the diffusion of written patterns in detail for our tagging scheme which, at short (micros) delay times is slightly anomalous due to local heating by absorption of laser radiation. We show that our experiments agree with a simple convection-diffusion model that allows us to estimate the temperature rise upon writing. Molecular tagging can be a highly nonlinear process, which affects the art of writing. We find that our tagging scheme is (only) quadratic in the intensity of the writing laser.

  5. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  6. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique

    Science.gov (United States)

    Wang, Hang; Felder, Stefan; Chanson, Hubert

    2014-07-01

    Intense turbulence develops in the two-phase flow region of hydraulic jump, with a broad range of turbulent length and time scales. Detailed air-water flow measurements using intrusive phase-detection probes enabled turbulence characterisation of the bubbly flow, although the phenomenon is not a truly random process because of the existence of low-frequency, pseudo-periodic fluctuating motion in the jump roller. This paper presents new measurements of turbulent properties in hydraulic jumps, including turbulence intensity, longitudinal and transverse integral length and time scales. The results characterised very high turbulent levels and reflected a combination of both fast and slow turbulent components. The respective contributions of the fast and slow motions were quantified using a triple decomposition technique. The decomposition of air-water detection signal revealed "true" turbulent characteristics linked with the fast, microscopic velocity turbulence of hydraulic jumps. The high-frequency turbulence intensities were between 0.5 and 1.5 close to the jump toe, and maximum integral turbulent length scales were found next to the bottom. Both decreased in the flow direction with longitudinal turbulence dissipation. The results highlighted the considerable influence of hydrodynamic instabilities of the flow on the turbulence characterisation. The successful application of triple decomposition technique provided the means for the true turbulence properties of hydraulic jumps.

  7. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  8. Turbulent mass transfer in electrochemical systems: Turbulence for electrochemistry, electrochemistry for turbulence

    International Nuclear Information System (INIS)

    Vorotyntsev, M.A.

    1991-01-01

    Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs

  9. Turbulence modelling; Modelisation de la turbulence isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.

  10. Light particles in turbulence

    NARCIS (Netherlands)

    Nagendra Prakash, Vivek

    2013-01-01

    This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in

  11. Dynamic paradigm of turbulence

    International Nuclear Information System (INIS)

    Mukhamedov, Alfred M.

    2006-01-01

    In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced

  12. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  13. Turbulence Spreading into Linearly Stable Zone and Transport Scaling

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Lin, Z.; Itoh, K.; Itoh, S.-I.

    2003-01-01

    We study the simplest problem of turbulence spreading corresponding to the spatio-temporal propagation of a patch of turbulence from a region where it is locally excited to a region of weaker excitation, or even local damping. A single model equation for the local turbulence intensity I(x, t) includes the effects of local linear growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy induced by nonlinear coupling. In the absence of dissipation, the front propagation into the linearly stable zone occurs with the property of rapid progression at small t, followed by slower subdiffusive progression at late times. The turbulence radial spreading into the linearly stable zone reduces the turbulent intensity in the linearly unstable zone, and introduces an additional dependence on the rho* is always equal to rho i/a to the turbulent intensity and the transport scaling. These are in broad, semi-quantitative agreements with a number of global gyrokinetic simulation results with zonal flows and without zonal flows. The front propagation stops when the radial flux of fluctuation energy from the linearly unstable region is balanced by local dissipation in the linearly stable region

  14. Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?

    Science.gov (United States)

    Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.

    2010-11-01

    A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.

  15. Adapting relationships with place: Investigating the evolving place attachment and ‘sense of place’ of UK higher education students during a period of intense transition

    OpenAIRE

    Holton, MJW

    2015-01-01

    In recent years interest has emerged regarding the geographies of higher education students, particularly in patterns of mobility and dispersion. While anecdotal rhetoric suggests a ‘typical student’ exists within UK institutions. What resonates is the notion that students are inherently heterogeneous, experiencing University in differing ways and times according to their circumstances and year of study. This paper uses ‘walking interviews’ conducted with University of Portsmouth students as ...

  16. Characterizing Turbulent Events at a Tidal Energy Site from Acoustic Doppler Velocity Observations

    Science.gov (United States)

    McCaffrey, Katherine; Fox-Kemper, Baylor; Hamlington, Peter

    2013-11-01

    As interest in marine renewable energy increases, observations are crucial to understanding the environments encountered by energy conversion devices. Data obtained from an acoustic Doppler current profiler and an acoustic Doppler velocimeter at two locations in the Puget Sound, WA are used to perform a detailed analysis of the turbulent environment that is expected to be present at a turbine placed in a tidal strait. Metrics such as turbulence intensity, structure functions, probability density functions, intermittency, coherent turbulence kinetic energy, anisotropy invariants, and linear combinations of eigenvalues are used to characterize the turbulence. The results indicate that coherent turbulence kinetic energy and turbulence intensity can be used to identify and parameterize different turbulent events in the flow. An analysis of the anisotropy characteristics leads to a physical description of turbulent events (defined using both turbulence intensity and coherent turbulent kinetic energy) as being dominated by one component of the Reynolds stresses. During non-turbulent events, the flow is dominated by two Reynolds stress components. The importance of these results for the development of realistic models of energy conversion devices is outlined. Cooperative Institute for Research in Environmental Sciences, Department of Atmospheric and Oceanic Sciences.

  17. The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence

    Science.gov (United States)

    Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.

    2017-12-01

    In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.

  18. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  19. Intrinsic Turbulence Stabilization in a Stellarator

    Directory of Open Access Journals (Sweden)

    P. Xanthopoulos

    2016-06-01

    Full Text Available The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale, leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014].

  20. Vertical Scope, Turbulence, and the Benefits of Commitment and Flexibility

    DEFF Research Database (Denmark)

    Claussen, Jörg; Kretschmer, Tobias; Stieglitz, Nils

    2015-01-01

    We address the contested state of theory and the mixed empirical evidence on the relationship between turbulence and vertical scope by studying how turbulence affects the benefits of commitment from integrated development of components and the benefits of flexibility from sourcing components...... externally. We show that increasing turbulence first increases but then decreases the relative value of vertical integration. Moderate turbulence reduces the value of flexibility by making supplier selection more difficult and increases the value of commitment by mitigating the status quo bias of integrated...... structures. Both effects improve the value of integration. Higher levels of turbulence undermine the adaptive benefits of commitment, but have a less adverse effect on flexibility, making nonintegration more attractive. We also show how complexity and uneven rates of turbulence moderate the nonmonotonic...

  1. Flux-driven simulations of turbulence collapse

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CASS and Department of Physics, University of California, San Diego, La Jolla, California 92093-0429 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  2. Drift wave turbulence in low-β plasmas

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans

    1983-01-01

    Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...

  3. Theoretical skin-friction law in a turbulent boundary layer

    International Nuclear Information System (INIS)

    Cheskidov, A.

    2005-01-01

    We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of c f max =0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers

  4. Turbulent flow simulation of the NREL S809 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Guerri, Ouahiba; Bouhadef, Khadidja; Harhad, Ameziane

    2006-05-15

    Numerical computations are carried out for the NREL S809 airfoil. The flow is modelled using an unsteady incompressible Reynolds Averaged Navier-Stokes solver. Two turbulence models (SST {kappa}/{omega}of Menter and RNG {kappa}/{epsilon}) are applied to close the RANS equations. All computations are performed assuming fully turbulent flow. The flow field is analyzed at various angles of attack from 0 to 20 degrees. Lift and drag forces are obtained from the computations by integrating the pressure and shear stress over the blade surface. The performance of the two turbulence models is compared and the influence of the free stream turbulence intensity is checked. The results confirm the satisfactory performance of the SST {kappa}/{omega} model of Menter for modelling turbulent flow around airfoils. (author)

  5. Genital marginal failures after intensity-modulated radiation therapy (IMRT) in squamous cell anal cancer: no higher risk with IMRT when compared to 3DCRT.

    Science.gov (United States)

    Dell'Acqua, V; Kobiela, J; Kraja, F; Leonardi, M C; Surgo, A; Zerella, M A; Arculeo, S; Fodor, C; Ricotti, R; Zampino, M G; Ravenda, S; Spinoglio, G; Biffi, R; Bazani, A; Luraschi, R; Vigorito, S; Spychalski, P; Orecchia, R; Glynne-Jones, R; Jereczek-Fossa, B A

    2018-03-28

    Intensity-modulated radiotherapy (IMRT) is considered the preferred option in squamous cell canal cancer (SCAC), delivering high doses to tumor volumes while minimizing dose to surrounding normal tissues. IMRT has steep dose gradients, but the technique is more demanding as deep understanding of target structures is required. To evaluate genital marginal failure in a cohort of patients with non-metastatic SCAC treated either with IMRT or 3DCRT and concurrent chemotherapy, 117 patients with SCAC were evaluated: 64 and 53 patients were treated with IMRT and 3DCRT techniques, respectively. All patients underwent clinical and radiological examination during their follow-up. Tumor response was evaluated with response evaluation criteria in solid tumors v1.1 guideline on regular basis. All patients' data were analyzed, and patients with marginal failure were identified. Concomitant chemotherapy was administered in 97 and 77.4% of patients in the IMRT and 3DCRT groups, respectively. In the IMRT group, the median follow-up was 25 months (range 6-78). Progressive disease was registered in 15.6% of patients; infield recurrence, distant recurrence and both infield recurrence and distant recurrence were identified in 5, 4 and 1 patient, respectively. Two out of 64 patients (3.1%) had marginal failures, localized at vagina/recto-vaginal septum and left perineal region. In the 3DCRT group, the median follow-up was 71.3 months (range 6-194 months). Two out of 53 patients (3.8%) had marginal failures, localized at recto-vaginal septum and perigenital structures. The rate of marginal failures was comparable in IMRT and 3DCRT groups (χ 2 test p = 0.85). In this series, the use of IMRT for the treatment of SCAC did not increase the rate of marginal failures offering improved dose conformity to the target. Dose constraints should be applied with caution-particularly in females with involvement of the vagina or the vaginal septum.

  6. Turbulent Flame Speed Scaling for Positive Markstein Number Expanding Flames in Near Isotropic Turbulence

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung

    2012-11-01

    In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.

  7. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  8. Turbulence new approaches

    CERN Document Server

    Belotserkovskii, OM; Chechetkin, VM

    2005-01-01

    The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.

  9. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  10. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    to generate an optimized LES solver to model turbulent pipe flow for larger Reynolds numbers. The validations are carried out using experiments conducted in Cottbus Large Pipe Test Facility at BTU as a reference [3]. In the mentioned experimental research, evolution of statistical pipe flow quantities, such as turbulence intensity, skewness and flatness are investigated to clarify the development length needed to achieve fully developed turbulence. These observations take place in a relatively large pipe test facility with an inner pipe diameter of Di = 0.19 m and a total length of L = 27 m where a bulk Reynolds number of 8.5×105 can be reached. 1. CO2 pipeline Infrastructure: An analysis of global challenges and opportunities, Final Report For International Energy Agency of Greenhouse Gas Program (2010) 2. J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J.Fluid Mech. 177, 133-166, (1987) 3. F. Zimmer, E.-S. Zanoun and C. Egbers, A study on the influence of triggering pipe flow regarding mean and higher order statistics, Journal of Physics: Conference Series 318 (2011) 032039

  11. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  12. Aviation turbulence processes, detection, prediction

    CERN Document Server

    Lane, Todd

    2016-01-01

    Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.

  13. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  14. Development of Turbulence-Measuring Equipment

    Science.gov (United States)

    Kovasznay, Leslie S G

    1954-01-01

    Hot wire turbulence-measuring equipment has been developed to meet the more stringent requirements involved in the measurement of fluctuations in flow parameters at supersonic velocities. The higher mean speed necessitates the resolution of higher frequency components than at low speed, and the relatively low turbulence level present at supersonic speed makes necessary an improved noise level for the equipment. The equipment covers the frequency range from 2 to about 70,000 cycles per second. Constant-current operation is employed. Compensation for hot-wire lag is adjusted manually using square-wave testing to indicate proper setting. These and other features make the equipment adaptable to all-purpose turbulence work with improved utility and accuracy over that of older types of equipment. Sample measurements are given to demonstrate the performance.

  15. Philosophies and fallacies in turbulence modeling

    Science.gov (United States)

    Spalart, Philippe R.

    2015-04-01

    We present a set of positions, likely to be controversial, on turbulence modeling for the Reynolds-Averaged Navier Stokes (RANS) equations. The paper has three themes. First is what we call the "fundamental paradox" of turbulence modeling, between the local character of the Partial Differential Equations strongly favored by CFD methods and the nonlocal physical nature of turbulence. Second, we oppose two philosophies. The "Systematic" philosophy attempts to model the exact transport equations for the Reynolds stresses or possibly higher moments term by term, gradually relegating the Closure Problem to higher moments and invoking the "Principle of Receding Influence" (although rarely formulating it). In contrast, the "Openly Empirical" philosophy produces models which satisfy strict constraints such as Galilean invariance, but lack an explicit connection with terms in the exact turbulence equations. The prime example is the eddy-viscosity assumption. Third, we explain a series of what we perceive as fallacies, many of them widely held and by senior observers, in turbulence knowledge, leading to turbulence models. We divide them into "hard" fallacies for which a short mathematical argument demonstrates that a particular statement is wrong or meaningless, and "soft" fallacies for which approximate physical arguments can be opposed, but we contend that a clear debate is overdue and wishful thinking has been involved. Some fallacies appear to be "intermediate." An example in the hard class is the supposed isotropy of the diagonal Reynolds stresses. Examples in the soft class are the need to match the decay rate of isotropic turbulence, and the value of realizability in a model. Our hope is to help the direct effort in this field away from simplistic and hopeless lines of work, and to foster debates.

  16. Turbulent water flow over rough bed - part I

    Energy Technology Data Exchange (ETDEWEB)

    Ksiazek, Leszek; Bartnik, Wojciech; Rumian, Jacek; Zagorowski, Pawel, E-mail: rmksiaze@cyf-kr.edu.pl [Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow, Mickiewicza Avenue 24/28, 30-059 Krakow (Poland)

    2011-12-22

    Restitution of diadromic fish requires restoration of ecological continuity of watercourses, e.g. by building fish ladders. Directions for fish ladders require that ichthyofauna is granted accurate conditions of water flow. To describe them, average values are used, that do not convey e.g. turbulence intensity or its spatial differentiation. The paper presents results of research on the turbulent water flow over the rough bed. The measurements were carried out with high sampling frequency probe for three velocity components. Bed configuration, distribution of average velocities and turbulence intensity were defined. The range of bed influence for the discussed water flow conditions was ascertained to reach the maximum of about 0.25 of height and decline at 0.35. The lowest turbulence and relatively lowest velocities near the bed may promote successive stages of ichthyofauna development.

  17. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  18. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  19. Focal shift and faculae dimension of focused flat beam propagating in turbulent atmosphere

    International Nuclear Information System (INIS)

    Zhang Jianzhu; Li Youkuan; Zhang Feizhou; An Jianzhu

    2011-01-01

    Through theoretic analysis and numerical simulation,the focal shift of a focused flat beam propagating in turbulent atmosphere is studied. When a focused flat beam propagates in turbulent atmosphere, the effect of turbulence will induce the focal spot to move toward the transmitter. The turbulence is stronger and the diameter of transmitter is smaller, the measure of focal shift is larger. When adjusting the focus of transmitter and letting the focal spot of beam locate on detector, the laser intensity received by detector is not the strongest. The laser intensity will be the strongest if the focus of transmitter equals to the distance from transmitter to detector. (authors)

  20. Containerless Ripple Turbulence

    Science.gov (United States)

    Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles

    2002-11-01

    One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear

  1. Inflow Turbulence Generation Methods

    Science.gov (United States)

    Wu, Xiaohua

    2017-01-01

    Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.

  2. Containerless Ripple Turbulence

    Science.gov (United States)

    Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles

    2002-01-01

    One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear

  3. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    International Nuclear Information System (INIS)

    Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.

    2010-01-01

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  4. Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction

  5. Turbulence Generation in Combustion.

    Science.gov (United States)

    1987-07-22

    flame length . This work is summarized in this section. I1.1 Model for Turbulent Burning Velocity For a range of turbulence conditions including...Variable density effects have been added in an approximation, and an expression for the length of jet flames has been developed. The flame length expression...of jet mixing and jet flame length data using fractals, College of Engineering, Energy Report E-86-02, Comell University, Ithaca, NY, 1986. Results

  6. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  7. Electromagnetic weak turbulence theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); Ziebell, L. F. [Instituto de Fisica, UFRGS, Porto Alegre, RS (Brazil); Gaelzer, R.; Pavan, J. [Instituto de Fisica e Matematica, UFPel, Pelotas, RS (Brazil)

    2012-10-15

    The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.

  8. Air Turbulence and sensation of draught

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Melikov, Arsen Krikor; Hanzawa, H.

    1988-01-01

    the sedentary subjects were exposed to six mean air velocities ranging from 0.05 m/s to 0.40 m/s. The air temperature was kept constant at 23°C. They were asked whether and where they could feel air movement and whether or not it felt uncomfortable. The turbulence intensity had a significant impact...... on the occurence of draught sensation. A model is presented which predicts the percentage of people dissatisfied because of draught as a function of air temperature, mean velocity and turbulence intensity. The model can be a useful tool for quantifying the draught risk in spaces and for developing air distribution...... systems with a low draught risk....

  9. The influence of underwater turbulence on optical phase measurements

    Science.gov (United States)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  10. MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY

    International Nuclear Information System (INIS)

    Downes, T. P.; O'Sullivan, S.

    2011-01-01

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.

  11. Chemical Reactions in Turbulent Mixing Flows. Revision.

    Science.gov (United States)

    1983-08-02

    jet diameter F2 fluorine H2 hydrogen HF hydrogen fluoride I(y) instantaneous fluorescence intensity distribution L-s flame length measured from...virtual origin -.4 of turbulent region (L-s). flame length at high Reynolds number LIF laser induced fluorescence N2 nitrogen PI product thickness (defined...mixing is attained as a function of the equivallence ratio. For small values of the equivalence ratio f, the flame length - defined here as the

  12. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    Science.gov (United States)

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  13. Turbulence and Waves as Sources for the Solar Wind

    Science.gov (United States)

    Cranmer, S. R.

    2008-05-01

    Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.

  14. Anomalous diffusion in geophysical and laboratory turbulence

    Directory of Open Access Journals (Sweden)

    A. Tsinober

    1994-01-01

    Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  15. Numerical investigation of the effects of large particles on wall-turbulence

    International Nuclear Information System (INIS)

    Pan, Y.; Banerjee, S.

    1997-01-01

    Particle-laden turbulent flows, at average volume fraction less than 4x10 -4 , in open channels are numerically simulated by using a pseudospectral method. The motion of particles, that are large compared with the dissipative length scale, is coupled to the fluid motion by a method that generates a open-quotes virtualclose quotes no-slip boundary on the particle surface by imposition of an external force field on the grid-points enclosed by the particle. Cases for both moving and stationary particles, lying on the wall, are simulated. The investigations focus on particle-turbulence interaction. It is found that particles increase turbulence intensities and Reynolds stress. By examining higher order turbulence statistics and doing a quadrant analysis of the Reynolds stress, it is found that the ejection-sweep cycle is affected emdash primarily through suppression of sweeps by the smaller particles and enhancement of sweep activity by the larger particles. An assessment of the impact of these findings on scalar transfer is made, as enhancement of wall heat/mass transfer rates is a motivation of the overall work on this subject. In the cases considered, comparison of the calculations with an existing experiment was possible, and shows good agreement. At present, due to limitations in available computational resources, this method cannot be used when the particle diameter is smaller than the smallest turbulence scale (e.g. the Kolmogorov length scale) and the volume fraction is of the same order as studied in this paper, i.e. between 10 -3 and 10 -4 . copyright 1997 American Institute of Physics

  16. Evolution of OAM entanglement in turbulence

    CSIR Research Space (South Africa)

    Roux, FS

    2015-08-01

    Full Text Available .1) l = 3 (K=0.1) l = 5 (K=0.1) l = 1 (SPS) l = 3 (SPS) l = 5 (SPS) ⇒ no clear benefit in using higher OAM. – p. 21/22 Summary ⊲ Turbulence distorts spatial modes⇒ loss of entanglement ⊲ Investigate evolution of quantum states in turbulence — Single... stream_source_info Roux6_2015.pdf.txt stream_content_type text/plain stream_size 9760 Content-Encoding UTF-8 stream_name Roux6_2015.pdf.txt Content-Type text/plain; charset=UTF-8 TitleEvolution of OAM entanglement...

  17. Turbulence and turbulence-generated structural loading in wind turbine clusters

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs

    2007-01-01

    of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms......Turbulence - in terms of standard deviation of wind speed fluctuations - and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to “wind farm flow......”. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence...

  18. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Directory of Open Access Journals (Sweden)

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  19. Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics

    International Nuclear Information System (INIS)

    Terry, P.W.; Carreras, B.A.; Sidikman, K.

    1992-01-01

    An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity

  20. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  1. Turbulent fluxes in stably stratified boundary layers

    International Nuclear Information System (INIS)

    L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii

    2008-01-01

    We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.

  2. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  3. Tearing instabilities in turbulence

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2009-01-01

    Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial

  4. Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition

    Energy Technology Data Exchange (ETDEWEB)

    Mardani, Amir; Tabejamaat, Sadegh [Department of Aerospace engineering, Amirkabir university of technology (Tehran polytechnic), Hafez Ave., PO. Box: 15875-4413, Tehran (Iran)

    2010-10-15

    Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH{sub 4}+H{sub 2} jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154]. In general, the modelling is carried out using the EDC model, to describe turbulence-chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H{sub 2}/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H{sub 2}+95%CH{sub 4}, 10%H{sub 2}+90%CH{sub 4} and 20% H{sub 2}+80%CH{sub 4}(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release. (author)

  5. Dynamic method to study turbulence and turbulence transport

    International Nuclear Information System (INIS)

    Inagaki, S.; Itoh, S.-I.; Kasuya, N.; Sasaki, M.; Fujisawa, A.; Ida, K.; Itoh, K.; Tokuzawa, T.; Tamura, N.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Tsuchiya, H.; Nagayama, Y.; Yamada, H.; Komori, A.; Kobayashi, T.; Kosuga, Y.; Kamiya, Kensaku

    2014-10-01

    Here we developed research methods of plasma turbulence transport associated with the non-local features. The ECH modulation experiment and the higher harmonic analysis of the heat wave indicated: (1) propagation of the change of T e at the time of switch-off/on of ECH power is about 5 times faster than that of perturbation itself, (2) propagation of the higher (7th) harmonic of the T e perturbation is 5 times faster than prediction by the diffusive model. New bi-spectral analysis of fluctuations demonstrated a non-linear coupling of micro-fluctuations at different radial locations. These results are beneficial for control of plasma dynamics in future fusion reactors. (author)

  6. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  7. Multifractal characteristics of optical turbulence measured through a single beam holographic process

    OpenAIRE

    Perez, Dario G.; Barille, Regis; Morille, Yohann; Zielinska, Sonia; Ortyl, Ewelina

    2014-01-01

    We have previously shown that azopolymer thin films exposed to coherent light that has travelled through a turbulent medium produces a surface relief grating containing information about the intensity of the turbulence; for instance, a relation between the refractive index structure constant C2 as a function of the surface parameters was obtained. In this work, we show that these films capture much more information about the turbulence dynamics. Multifractal detrended fluctuation and fractal ...

  8. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  9. Implications of Navier-Stokes turbulence theory for plasma turbulence

    International Nuclear Information System (INIS)

    Montgomery, David

    1977-01-01

    A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)

  10. A mathematical model of turbulence for turbulent boundary layers

    International Nuclear Information System (INIS)

    Pereira Filho, H.D.V.

    1977-01-01

    Equations to the so called Reynolds stress-tensor (kinetic turbulent energy) and dissipation rate are developed and a turbulence flux approximation used. Our ideia here is to use those equations in order to develop an economical and fast numeircal procedure for computation of turbulent boundary layer. (author) [pt

  11. Plasma turbulence in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)

  12. Turbulence in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.

  13. Boundary layer turbulence in transitional and developed states

    Science.gov (United States)

    Park, George Ilhwan; Wallace, James M.; Wu, Xiaohua; Moin, Parviz

    2012-03-01

    Using the recent direct numerical simulations by Wu and Moin ["Transitional and turbulent boundary layer with heat transfer," Phys. Fluids 22, 85 (2010)] of a flat-plate boundary layer with a passively heated wall, statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and at Reθ ≈ 500, where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components) have been compared to these statistical properties for the developed boundary layer turbulence at Reθ = 1840. When the distributions in the transitional regions are conditionally averaged so as to exclude locations and times when the flow is not turbulent, they closely resemble the distributions in the developed turbulent state at the higher Reynolds number, especially in the buffer layer. Skin friction coefficients, determined in this conditional manner at the two Reynolds numbers in the transitional flow are, of course, much larger than when their values are obtained by including both turbulent and non-turbulent information there, and the conditional averaged values are consistent with the 1/7th power law approximation. An octant analysis based on the combinations of signs of the velocity and temperature fluctuations, u, v, and θ shows that the momentum and heat fluxes are predominantly of the mean gradient type in both the transitional and developed regions. The fluxes appear to be closely associated with vortices that transport momentum and heat toward and away from the wall in both regions of the flow. The results suggest that there may be little fundamental difference between the nonlinear processes involved in the formation of turbulent spots that appear in transition and those that sustain the turbulence when it is developed. They also support the view that the transport processes and the vortical structures that drive them in developed and transitional boundary

  14. Atmospheric turbulence temperature on the laser wavefront properties

    Science.gov (United States)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  15. Atmospheric turbulence temperature on the laser wavefront properties

    International Nuclear Information System (INIS)

    López, J C Contreras; Rojas, O J Tíjaro; Díaz, A Ballesteros; Moreno, Y Torres

    2017-01-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting. (paper)

  16. Numerical investigation on effects of induced jet on boundary layer and turbulent models around airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Shojaeefard, M.H.; Pirnia, A.; Fallahian, M.A. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Tahani, M. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); University of Tehran, Faculty of New Science and Technology, Tehran (Iran, Islamic Republic of)

    2012-06-15

    In this study the effects of induced jet at trailing edge of a two dimensional airfoil on its boundary layer shape, separation over surface and turbulent parameters behind trailing edge are numerically investigated and compared against a previous experimental data. After proving independency of results from mesh size and obtaining the required mesh size, different turbulent models are examined and RNG k-epsilon model is chosen because of good agreement with experimental data in velocity and turbulent intensity variations. A comparison between ordinary and jet induced cases, regarding numerical data, is made. The results showed that because of low number of measurement points in experimental study, turbulent intensity extremes are not captured. While in numerical study, these values and their positions are well calculated and exact variation of turbulent intensity is acquired. Also a study in effect of jet at high angles of attack is done and the results showed the ability of jet in controlling separation and reducing wake region. (orig.)

  17. Turbulence and turbulence-generated structural loading in wind turbine clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Sten

    2007-01-15

    Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)

  18. Direct numerical simulation of fractal-generated turbulence

    International Nuclear Information System (INIS)

    Suzuki, H; Hasegawa, Y; Ushijima, T; Nagata, K; Sakai, Y; Hayase, T

    2013-01-01

    We simulate fractal-generated turbulence (Hurst and Vassilicos 2007 Phys. Fluids 19 035103)) by means of a direct numerical simulation and address its fundamental characteristics. We examine whether the fractal-generated turbulence in the upstream region has a nature similar to that of a wake. We propose an equation for predicting peak values of the velocity fluctuation intensity and devise a method for formulating the functional form of the quantity of interest by focusing on the time scale of decaying turbulence, and we examine those forms for the turbulent kinetic energy and rms of pressure fluctuation through this method. By using the method, both of these functional forms are found to be power-law functions in the downstream region, even though these profiles follow exponential functions around these peaks. In addition, decay exponents of these quantities are estimated. The integral length scales of velocity fluctuations for transverse as well as streamwise directions are essentially constant in the downstream direction. Decaying turbulence having both these characteristics conflicts with decaying turbulence described by the theory predicting exponential decay. We discuss a factor causing the difference by focusing on the functional form of the transfer function of homogeneous, isotropic turbulence. (paper)

  19. Turbulent wakes of fractal objects

    NARCIS (Netherlands)

    Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.

    2003-01-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are

  20. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  1. Direct numerical simulation of turbulent, chemically reacting flows

    Science.gov (United States)

    Doom, Jeffrey Joseph

    ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates towards the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non--reacting vortex ring. We then study auto-ignition of turbulent H2/air diffusion flames using the Mueller et al. [37] mechanism. Isotropic turbulence is superimposed on an unstrained diffusion flame where diluted H 2 at ambient temperature interacts with hot air. Both, unity and non-unity Lewis number are studied. The results are contrasted to the homogeneous mixture problem and laminar diffusion flames. Results show that auto-ignition occurs in fuel lean, low vorticity, high temperature regions with low scalar dissipation around a most reactive mixture fraction, zetaMR (Mastorakos et al. [32]). However, unlike the laminar flame where auto-ignition occurs at zetaMR, the turbulent flame auto-ignites over a very broad range of zeta around zetaMR, which cannot completely predict the onset of ignition. The simulations also study the effects of three-dimensionality. Past two--dimensional simulations (Mastorakos et al. [32]) show that when flame fronts collide, extinction occurs. However, our three dimensional results show that when flame fronts collide; they can either increase in intensity, combine without any appreciable change in intensity or extinguish. This behavior is due to the three--dimensionality of the flow.

  2. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  3. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  4. Turbulent flow through a wall subchannel of a rod bundle

    International Nuclear Information System (INIS)

    Rehme, K.

    1978-04-01

    The turbulent flow through a wall subchannel of a rod bundle was investigated experimentally by means of hotwires und Pitot-tubes. The aim of this investigation was to get experimental information on the transport properties of turbulent flow especially on the momentum transport. Detailed data were measured of the distributions of the time-mean velocity, the turbulence intensities and, hence the kinetic of turbulence, of the shear stresses in the directions normal and parallel to the walls, and of the wall shear stresses. The pitch-to-diameter ratio of the rods equal to the wall-to-diameter ratio was 1.15, the Reynolds number of this investigation was Re = 1.23.10 5 . On the basis of the measurements the eddy viscosities normal and parallel to the walls were calculated. The eddy viscosities observed showed a considerable deviation from the data known up-to-now and from the assumptions introduced in the codes. (orig.) [de

  5. Interferometry and MHD turbulence measurements in toroidal pinches

    International Nuclear Information System (INIS)

    Dutt, T.L.; Evans, D.E.; Wilcock, P.D.

    1976-01-01

    A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)

  6. Turbulence-induced persistence in laser beam wandering.

    Science.gov (United States)

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  7. Turbulence assessment at potential turbine sites

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    As opposed to a fixed anemometer, the Tala kite is free to move in the air. The motion of the kite is not random, it moves with or against the speed gradient towards the center of passing turbulence events of higher or lower speeds thus allowing the kite to measure event maximum or minimum speed rather than the speed at some unknown distance from the event center like a fixed anemometer. This behavior is confirmed both by a theoretical aerodynamics analysis of the kite motion and by data from a field study where kite and hot film anemometer (HFA) events, defined by the rain flow count method, were compared with flap events on a rotating turbine blade. The HFAs simulated too few events lasting too long while the kites reproduced both the number of events and event periods remarkably close. It is concluded that the kite is the optimal tool for measuring turbulence at potential turbine sites. Kite turbulence can form the bases for economic return estimates and an example is given where less windy sites could be more economical than other more turbulent higher speed sites. 13 refs., 8 figs.

  8. Turbulent heat/mass transfer at oceanic interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Enstad, Lars Inge

    2005-07-01

    The thesis studies heat/mass transfer and uses various simulation techniques. A numerical method has been developed. 4 papers which describes the work, are included. In the first paper we look at such flow configuration where the flow is driven by a constant pressure gradient and the interface is cooled from above. Papers 2 and 3. 2: The effect of stable density stratification on turbulent vortical structures near an atmosphere-ocean interface driven by low wind shear. 3: Low shear turbulence structures beneath a gas-liquid interface under neutral and stable stratified conditions. A well known feature of the upper layer of the ocean is the presence of counter-rotating streamwise vorticity, so called Langmuir circulation. Earlier numerical investigations show that similar vortex structures appear on small scale induced by shear instability only. Short wave solar radiation may create a stable situation which affects the turbulence near the interface. In these papers we investigate such a flow situation by employing a uniform and constant shear stress at the interface together with a similar heat flux into the interface. In both articles we also use a two-point correlation to give a statistical representation of the streamwise vorticity. The spatial extent and intensity are decreased by stable stratification. In addition, in article 3, we find that the Reynolds stress is damped by stable stratification. This leads to an increased mean velocity since decreased Reynolds stress is compensated by a larger mean velocity gradient. The cospectra of the Reynolds stress in the spanwise direction show that the production of Reynolds stress is decreased at lower wave numbers and thus shifted to higher wave numbers in the presence of stable stratification. The streak structure created by the streamwise vorticity is disorganized by stable stratification. Article 4: A numerical study of a density interface using the General Ocean Turbulence Model (GOTM) coupled with a Navier Stokes

  9. Compressibility effects on turbulent mixing

    Science.gov (United States)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  10. Depth from Optical Turbulence

    Science.gov (United States)

    2012-01-01

    Dagobert, and C. Franchis . Atmospheric tur- bulence restoration by diffeomorphic image registration and blind deconvolution. In ACIVS, 2008. 1 [4] S...20] V. Tatarskii. Wave Propagation in a Turbulent Medium. McGraw-Hill Books, 1961. 2 [21] Y. Tian and S. Narasimhan. A globally optimal data-driven

  11. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  12. Turbulence and Flying Machines

    Indian Academy of Sciences (India)

    other to make the aircraft roll. For example, a downward dis- placement of the left aileron causes the airplane to roll to the right. In Figure 4 the elevators have been deflected downwards, giving rise to a 'nose-down' moment about the pitch axis. Delaying Turbulence. In the last few decades, flying machines have proliferated ...

  13. Turbulence and particle acceleration

    International Nuclear Information System (INIS)

    Scott, J.S.

    1975-01-01

    A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed

  14. Nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.

    1981-01-01

    A significant role in producing the pattern of interstellar scintillation observed in discrete radio sources may be played by the magnetoacoustic turbulence that will be generated as shock waves are propagated at velocity V/sub sh/roughly-equal 20--100 km/sec through the interstellar medium, as well as by irregularities in stellar wind emanating from type OB stars

  15. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...

  16. On the structure of acceleration in turbulence

    DEFF Research Database (Denmark)

    Liberzon, A.; Lüthi, B.; Holzner, M.

    2012-01-01

    Acceleration and spatial velocity gradients are obtained simultaneously in an isotropic turbulent flow via three dimensional particle tracking velocimetry. We observe two distinct populations of intense acceleration events: one in flow regions of strong strain and another in regions of strong...... vorticity. Geometrical alignments with respect to vorticity vector and to the strain eigenvectors, curvature of Lagrangian trajectories and of streamlines for total acceleration, and for its convective part, , are studied in detail. We discriminate the alignment features of total and convective acceleration...... statistics, which are genuine features of turbulent nature from those of kinematic nature. We find pronounced alignment of acceleration with vorticity. Similarly, and especially are predominantly aligned at 45°with the most stretching and compressing eigenvectors of the rate of the strain tensor...

  17. The turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1989-01-01

    Experimental studies have shown that the axial and azimuthal turbulence intensities in the gap regions of rod bundles increase strongly with decreasing rod spacing; the fluctuating velocities in the axial and azimuthal directions have a quasi-periodic behaviour. To determine the origin of this phenomenon, an its characteristics as a function of the geometry and the Reynolds number, an experimental investigation was performed on the turbulent in several rod bundles with different aspect ratios (P/D, W/D). Hot-wires and microsphones were used for the measurements of velocity and wall pressure fluctuations. The data were evaluated to obtain spectra as well as auto and cross correlations. Based on the results, a phenomenological model is presented to explain this phenomenon. By means of the model, the mass exchange between neighbouring subchannels is explained [pt

  18. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  19. The effect of mixing-vane arrangements in a subchannel turbulent flow

    International Nuclear Information System (INIS)

    Ikeno, Tsutomu; Murata, Tamotsu; Kajishima, Takeo

    2006-01-01

    Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30degC or 20deg; they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer, the swirling flow inside a subchannel could reach farther downstream than the cross flow. (author)

  20. On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling

    Directory of Open Access Journals (Sweden)

    Antonio García-Zambrana

    2010-01-01

    Full Text Available A new upper bound on the capacity of power- and bandwidth-constrained optical wireless links over gamma-gamma atmospheric turbulence channels with intensity modulation and direct detection is derived when on-off keying (OOK formats are used. In this free-space optical (FSO scenario, unlike previous capacity bounds derived from the classic capacity of the well-known additive white Gaussian noise (AWGN channel with uniform input distribution, a new closed-form upper bound on the capacity is found by bounding the mutual information subject to an average optical power constraint and not only to an average electrical power constraint, showing the fact that the input distribution that maximizes the mutual information varies with the turbulence strength and the signal-to-noise ratio (SNR. Additionally, it is shown that an increase of the peak-to-average optical power ratio (PAOPR provides higher capacity values. Simulation results for the mutual information are further demonstrated to confirm the analytical results under several turbulence conditions.

  1. Turbulence measurements in fusion plasmas

    International Nuclear Information System (INIS)

    Conway, G D

    2008-01-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  2. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-03

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  3. Multifractal characteristics of optical turbulence measured through a single beam holographic process.

    Science.gov (United States)

    Pérez, Darío G; Barillé, Regis; Morille, Yohann; Zielińska, Sonia; Ortyl, Ewelina

    2014-08-11

    We have previously shown that azopolymer thin films exposed to coherent light that has travelled through a turbulent medium produces a surface relief grating containing information about the intensity of the turbulence; for instance, a relation between the refractive index structure constant C(n)2 as a function of the surface parameters was obtained. In this work, we show that these films capture much more information about the turbulence dynamics. Multifractal detrended fluctuation and fractal dimension analysis from images of the surface roughness produced by the light on the azopolymer reveals scaling properties related to those of the optical turbulence.

  4. Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  5. Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  6. Electrostatic and electromagnetic turbulence associated with the Earth's bow shock

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1974-01-01

    The electric and magnetic field spectral densities of plasma waves in the earth's bow shock have been measured in the frequency range 20 Hz to 200 kHz using two 16-channel spectrum analyzers on the IMP-6 spacecraft. Electrostatic noise with a spectrum similar to the turbulence in the shock, but with lower intensities, is observed throughout the magnetosheath region, downstream of the shock. The intensity of the electrostatic component of turbulence in the bow shock increases as the upstream electron to ion temperature ratio increases, and decreases as the upstream sound velocity increases; both of these variations for the electrostatic component are consistent with ion sound wave turbulence. (U.S.)

  7. The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description

    Science.gov (United States)

    Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.

    2017-09-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar

  8. Dual-Hop FSO Transmission Systems over Gamma-Gamma Turbulence with Pointing Errors

    KAUST Repository

    Zedini, Emna; Soury, Hamza; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we analyze the end-to-end performance of dual-hop free-space optical (FSO) fixed gain relaying systems under heterodyne detection and intensity modulation with direct detection techniques in the presence of atmospheric turbulence

  9. THE EFFECTS OF ELECTRON-BEAM-INDUCED ELECTRIC FIELD ON THE GENERATION OF LANGMUIR TURBULENCE IN FLARING ATMOSPHERES

    International Nuclear Information System (INIS)

    Zharkova, Valentina V.; Siversky, Taras V.

    2011-01-01

    The precipitation of an electron beam injected into the solar atmosphere is studied for the generation of Langmuir wave turbulence in the presence of collisional and Ohmic losses. The system of quasi-linear time-dependent kinetic equations describing the evolution of beams and Langmuir waves is solved by using the summary approximation method. It is found that at upper atmospheric levels the self-induced electric field suppresses the generation of Langmuir turbulence to very small regions below injection. With further precipitation into deeper atmosphere the initial single power-law distributions of beam electrons are transformed into energy distributions with maxima at lower energies formed by collisional and Ohmic energy depletion. The electrons with lower energies (<20 keV) generate on large spatial scales intense low-hybrid and high-hybrid Langmuir waves with well-defined patterns in the corona while higher energy electrons generate moderate low-hybrid waves in the chromosphere. The maximum wave density appears at the maximum of the ambient density. The self-induced electric field reduces the level and makes the regions with low-hybrid Langmuir turbulence narrower in the corona and upper chromosphere. The higher the beam energy flux or its self-induced electric field, the narrower the regions with Langmuir turbulence. High-hybrid Langmuir waves in the form of multiple patterns in space (in the corona) and energy (below 20 keV) are found to be generated only by a very intense electron beam. The number of patterns in both dimensions is also shown to be significantly reduced by the self-induced electric field.

  10. Emission of discrete vortex rings by a vibrating grid in superfluid 3He-B: a precursor to quantum turbulence.

    Science.gov (United States)

    Bradley, D I; Clubb, D O; Fisher, S N; Guénault, A M; Haley, R P; Matthews, C J; Pickett, G R; Tsepelin, V; Zaki, K

    2005-07-15

    We report a transition in the vorticity generated by a grid moving in the B phase of superfluid 3He at Tring production at low grid velocities to quantum turbulence at higher velocities and that independent isolated vortex rings provide the precursors to the developed turbulence. Furthermore we believe that this may be a feature of all quantum turbulence arising from repetitive mechanical agitation.

  11. The structure and statistics of interstellar turbulence

    International Nuclear Information System (INIS)

    Kritsuk, A G; Norman, M L; Ustyugov, S D

    2017-01-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence. (paper)

  12. On temperature spectra in grid turbulence

    International Nuclear Information System (INIS)

    Jayesh; Tong, C.; Warhaft, Z.

    1994-01-01

    This paper reports wind tunnel measurements of passive temperature spectra in decaying grid generated turbulence both with and without a mean transverse temperature gradient. The measurements cover a turbulence Reynolds number range 60 l 3/4 l . The remarkably low Reynolds number onset (Re l ∼70) of Kolmogorov--Obukhov--Corrsin scaling in isotropic grid turbulence is contrasted to the case of scalars in (anisotropic) shear flows where KOC scaling only appears at very high-Reynolds numbers (Re l ∼10 5 ). It is also shown that when the temperature fluctuations are inserted very close to the grid in the absence of a gradient (by means of a mandoline), the temperature spectrum behaves in a similar way to the linear gradient case, i.e., a spectrum with a scaling exponent close to -5/3 is observed, a result noted earlier in heated grid experiments. However, when the scalar is inserted farther downstream of the grid (in the fully developed turbulence), the spectrum has a scaling region of -1.3 and its dilation with Re is less well defined than for the other cases. The velocity spectrum is also shown to have a scaling region, of slope -1.3, and its onset occurs at higher Reynolds number than for the case of the scalar experiments that exhibit the KOC scaling

  13. INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.

    2010-01-01

    The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.

  14. On Challenges for Hypersonic Turbulent Simulations

    International Nuclear Information System (INIS)

    Yee, H.C.; Sjogreen, B.

    2009-01-01

    This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme

  15. Experimental study of a DMD based compressive line sensing imaging system in the turbulence environment

    Science.gov (United States)

    Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.

    2016-05-01

    The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.

  16. Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE

    Energy Technology Data Exchange (ETDEWEB)

    Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)

    2016-08-15

    Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  18. Study of scattering from turbulence structure generated by propeller with FLUENT

    Science.gov (United States)

    Luo, Gen

    2017-07-01

    In this article, the turbulence structure generated by a propeller is simulated with the computational fluid dynamics (CFD) software FLUENT. With the method of moments, the backscattering radar cross sections (RCS) of the turbulence structure are calculated. The scattering results can reflect the turbulent intensity of the wave profiles. For the wake turbulence with low rotating speed, the scattering intensity of HH polarization is much smaller than VV polarization at large incident angles. When the turbulence becomes stronger with high rotating speed, the scattering intensity of HH polarization also becomes stronger at large incident angles, which is almost the same with VV polarization. And also, the bistatic scattering of the turbulence structure has the similar situation. These scattering results indicate that the turbulence structure can also give rise to an anomaly compared with traditional sea surface. The study of electromagnetic (EM) scattering from turbulence structure generated by the propeller can help in better understanding of the scattering from different kinds of waves and provide more bases to explain the anomalies of EM scattering from sea surfaces.

  19. Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales

    Science.gov (United States)

    Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei

    2017-11-01

    Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.

  20. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  1. Measurement of turbulent kinetic energy spectrum - Part 2: Convection record measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Buchhave, Preben; Hodzic, Azur

    2017-01-01

    A novel exact temporal to spatial mapping for point measurements in turbulence has been applied to various flow conditions existing in a round turbulent jet. The conditions range between equilibrium and non-equilibrium as well as mid to high turbulence intensities. The exact mapping applies to all...... flows, including high intensity non-equilibrium flows, since it is based on the instantaneous velocity magnitude, thereby incorporating all relevant aspects of the flow dynamics. Devel-opment of the jet turbulence along the stream, from non-equilibrium to equilibrium, is observed. In the developed...... region of the jet, Taylor’s hypothesis is tested and the spectra using the novel exact mapping is validated with excellent agreement against directly measured spatial spectra in a mapped similarity space using PIV. The method is observed to produce the expected results even at turbulence intensi...

  2. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  3. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  4. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  5. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  6. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  7. Turbulence and fossil turbulence lead to life in the universe

    International Nuclear Information System (INIS)

    Gibson, Carl H

    2013-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ∼10 12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life in a cosmic soup of hot-water oceans as they merged to form the first stars and chemicals. Because spontaneous life formation according to the standard cosmological model is virtually impossible, the existence of life falsifies the standard cosmological model. (paper)

  8. Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour

    International Nuclear Information System (INIS)

    Villard, L; Brunner, S; Casati, A; Aghdam, S Khosh; Lapillonne, X; McMillan, B F; Bottino, A; Dannert, T; Goerler, T; Hatzky, R; Jenko, F; Merz, F; Chowdhury, J; Ganesh, R; Garbet, X; Grandgirard, V; Latu, G; Sarazin, Y; Idomura, Y; Jolliet, S

    2010-01-01

    Important steps towards the understanding of turbulent transport have been made with the development of the gyrokinetic framework for describing turbulence and with the emergence of numerical codes able to solve the set of gyrokinetic equations. This paper presents some of the main recent advances in gyrokinetic theory and computing of turbulence. Solving 5D gyrokinetic equations for each species requires state-of-the-art high performance computing techniques involving massively parallel computers and parallel scalable algorithms. The various numerical schemes that have been explored until now, Lagrangian, Eulerian and semi-Lagrangian, each have their advantages and drawbacks. A past controversy regarding the finite size effect (finite ρ * ) in ITG turbulence has now been resolved. It has triggered an intensive benchmarking effort and careful examination of the convergence properties of the different numerical approaches. Now, both Eulerian and Lagrangian global codes are shown to agree and to converge to the flux-tube result in the ρ * → 0 limit. It is found, however, that an appropriate treatment of geometrical terms is necessary: inconsistent approximations that are sometimes used can lead to important discrepancies. Turbulent processes are characterized by a chaotic behaviour, often accompanied by bursts and avalanches. Performing ensemble averages of statistically independent simulations, starting from different initial conditions, is presented as a way to assess the intrinsic variability of turbulent fluxes and obtain reliable estimates of the standard deviation. Further developments concerning non-adiabatic electron dynamics around mode-rational surfaces and electromagnetic effects are discussed.

  9. Contribution to the study of transverse turbulent diffusion in streams

    International Nuclear Information System (INIS)

    Masson, Olivier

    1991-01-01

    In this research our objective is to study the turbulent diffusion in a water flow, in particular the transverse diffusion. According to formulae reviewed in literature the diffusion coefficients (K) may be expressed as a function of several velocity parameters. A synthetic formula depending on a macro-scale length of turbulence L x and a turbulent intensity √(u' 2 ) is proposed: K = β.L x .U-bar.(√(u' 2 /U-bar)) 2 . In order to validate this expression we performed two in situ experiments (one in a wide river and the other in an irrigation canal) with a double set of measurements: turbulent velocities and concentrations of a diffusing tracer. The first set gives us usable data in our formula. The results, compared with values available in literature, give a good agreement. Moreover it appears that it is possible to roughly divide the data in two groups according to (1) the cross section shape and (2) the bed roughness. The second set allows us to evaluate a global turbulent mixing coefficient. The coefficients calculated by the two methods are in accordance so our formula is validated. Nevertheless some problems appear because of what is called secondary currents and coherent structures as those seen above bed cracks in the Garonne river. Those phenomenon may play a major part upon turbulent diffusion in real streams. Although they were made conspicuous by an analysis of transverse velocity component, it has not been yet possible to quantify their effects. (author) [fr

  10. Inhomogeneity of optical turbulence over False Bay (South Africa)

    Science.gov (United States)

    Ullwer, Carmen; Sprung, Detlev; van Eijk, Alexander M. J.; Gunter, Willi; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 on a 2 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) in Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease of Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenarios, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.7 km path from IMT to Kalk Bay, roughly 36° to the north of the three 2 km paths. The results are related to the inhomogeneous meteorological conditions over the Bay as assessed with the numerical weather prediction tool, the Weather Forecast and Research model WRF.

  11. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  12. SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Beresnyak, Andrey

    2014-01-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096 3 , which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics

  13. Copepod behavior response to Burgers' vortex treatments mimicking turbulent eddies

    Science.gov (United States)

    Elmi, D.; Webster, D. R.; Fields, D. M.

    2017-11-01

    Copepods detect hydrodynamic cues in the water by their mechanosensory setae. We expect that copepods sense the flow structure of turbulent eddies in order to evoke behavioral responses that lead to population-scale distribution patterns. In this study, the copepods' response to the Burgers' vortex is examined. The Burgers' vortex is a steady-state solution of three-dimensional Navier-Stokes equations that allows us to mimic turbulent vortices at the appropriate scale and eliminate the stochastic nature of turbulence. We generate vortices in the laboratory oriented in the horizontal and vertical directions each with four intensity levels. The objective of including vortex orientation as a parameter in the study is to quantify directional responses that lead to vertical population distribution patterns. The four intensity levels correspond to target vortex characteristics of eddies corresponding to the typical dissipative vortices in isotropic turbulence with mean turbulent dissipation rates in the range of 0.002 to 0.25 cm2/s3. These vortices mimic the characteristics of eddies that copepods most likely encounter in coastal zones. We hypothesize that the response of copepods to hydrodynamic features depends on their sensory architecture and relative orientation with respect to gravity. Tomo-PIV is used to quantify the vortex circulation and axial strain rate for each vortex treatment. Three-dimensional trajectories of the copepod species Calanus finmarchicus are analyzed to examine their swimming kinematics in and around the vortex to quantify the hydrodynamic cues that trigger their behavior.

  14. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  15. 4th European Turbulence Conference

    CERN Document Server

    1993-01-01

    The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...

  16. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  17. Diffusive Shock Acceleration and Turbulent Reconnection

    Science.gov (United States)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  18. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  19. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    Science.gov (United States)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2018-01-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  20. A new kinetic description for turbulent collisions including mode-coupling

    International Nuclear Information System (INIS)

    Misguich, J.H.; Tchen, C.M.

    1982-07-01

    The usual introduction of higher-order mode-coupling terms in the description of turbulent collisions beyond usual Renormalized Quasi-Linear approximation (RQL) is briefly analyzed. Here new results are derived in the framework of the general kinetic theory, and the equivalence is proved with the long time limit of simple results deduced from the Vlasov equation. The correction to the RQL turbulent collision term is analyzed and a new approximation is proposed. Turbulent collisions are also described by perturbation around the Lagrangian autocorrelation of fluctuating fields. For an homogeneous turbulence, however, the asymptotic integral of this Lagrangian autocorrelation vanishes identically, similarly to what occurs in Brownian motion. For inhomogeneous turbulence this method can nevertheless be used, and higher-order mode-coupling terms can be interpreted as a shielding of elementary Lagrangian turbulent collisions

  1. Coherent structures in wall-bounded turbulence

    Science.gov (United States)

    Jiménez, Javier

    2018-05-01

    This article discusses the description of wall-bounded turbulence as a deterministic high-dimensional dynamical system of interacting coherent structures, defined as eddies with enough internal dynamics to behave relatively autonomously from any remaining incoherent part of the flow. The guiding principle is that randomness is not a property, but a methodological choice of what to ignore in the flow, and that a complete understanding of turbulence, including the possibility of control, requires that it be kept to a minimum. After briefly reviewing the underlying low-order statistics of flows at moderate Reynolds numbers, the article examines what two-point statistics imply for the decomposition of the flow into individual eddies. Intense eddies are examined next, including their temporal evolution, and shown to satisfy many of the properties required for coherence. In particular, it is shown that coherent structures larger than the Corrsin scale are a natural consequence of the shear. In wall-bounded turbulence, they can be classified into coherent dispersive waves and transient bursts. The former are found in the viscous layer near the wall and as very-large structures spanning the boundary layer thickness. Although they are shear-driven, these waves have enough internal structure to maintain a uniform advection velocity. Conversely, bursts exist at all scales, are characteristic of the logarithmic layer, and interact almost linearly with the shear. While the waves require a wall to determine their length scale, the bursts are essentially independent from it. The article concludes with a brief review of our present theoretical understanding of turbulent structures, and with a list of open problems and future perspectives.

  2. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  3. Gyrokinetic studies of turbulence in steep gradient region: Role of turbulence spreading and E x B shear

    International Nuclear Information System (INIS)

    Hahm, T.S.; Lin, Z.; Diamond, P.H.; Gurcan, O.; Rewoldt, G.; Wang, W.X.; Ethier, S.; Lee, W.W.; Lewandowski, J.L.V.; Tang, W.M.

    2005-01-01

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length. (author)

  4. The structure of turbulence in a rapid tidal flow.

    Science.gov (United States)

    Milne, I A; Sharma, R N; Flay, R G J

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  5. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  6. Regulation of ETG turbulence by TEM driven zonal flows

    Science.gov (United States)

    Asahi, Yuuichi; Ishizawa, Akihiro; Watanabe, Tomohiko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji

    2013-10-01

    Anomalous heat transport driven by electron temperature gradient (ETG) turbulence is investigated by means of gyrokinetic simulations. It is found that the ETG turbulence can be suppressed by zonal flows driven by trapped electron modes (TEMs). The TEMs appear in a statistically steady state of ETG turbulence and generate zonal flows, while its growth rate is much smaller than those of ETGs. The TEM-driven zonal flows with lower radial wave numbers are more strongly generated than those driven by ETG modes, because of the higher zonal flow response to a density source term. An ExB shearing rate of the TEM-driven zonal flows is strong enough to suppress the long-wavelength ETG modes which make the main contribution to the turbulent transport.

  7. Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear

    Directory of Open Access Journals (Sweden)

    H. Z. Baumert

    2009-03-01

    Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.

    The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E2. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E1. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.

  8. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  9. Turbulent transport in the atmospheric surface layer

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2012-04-01

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to ∼3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect of

  10. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  11. Using a balloon-borne accelerometer to improve understanding of the turbulent structure of the atmosphere for aviation.

    Science.gov (United States)

    Marlton, Graeme; Harrison, Giles; Nicoll, Keri; Williams, Paul

    2017-04-01

    the increased intensity of in-cloud processes. The accelerometer data were used to verify the skill of turbulence diagnostics, in order to assess which diagnostics are best at forecasting turbulence. It was found using a Receiver Operating Characteristics curve analysis that turbulence diagnostics calculated using ECMWF high resolution data that featured wind speed, deformation and relative vorticity advection predicted turbulence best with area under curve values of 0.7,0.66 and 0.62 respectively. This work provides a new, safe and inexpensive method to retrieve in-situ information about the turbulent structure of the atmosphere. It can inform the aviation industry through identifying turbulence generation regions and assess which predictive diagnostics are the most skilful.

  12. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.

    2012-01-01

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.

  13. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

    2012-04-20

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now

  14. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  15. Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater

    International Nuclear Information System (INIS)

    Manjunath, M.S.; Karanth, K.Vasudeva; Sharma, N.Yagnesh

    2017-01-01

    This paper presents the influence of spherical turbulence generators on thermal efficiency and thermohydraulic performance of flat plate solar air heater. The analysis is carried out for the Reynolds number range of 4000–25000. The thermal performance is investigated for various diameter (D) of sphere consisting of 5,10,15,20 and 25 mm and relative roughness pitch (P/D) of 3, 6 and 12. The simulation is carried out using solar insolation as heat input at 12 noon conditions for the global position of Manipal (74.786°E, 13.343°N) obtained through the solar load model, a feature available in the software tool used for the analysis and Discrete Ordinates radiation model is used to compute the radiation heat interactions within the computational domain. The CFD results for the base model are validated against experimental results and are found to have good agreement. The thermal efficiency is found to increase with increasing sphere diameter and reducing relative roughness pitch. The maximum average percentage increase in thermal efficiency is found to be about 23.4% as compared to the base model for D = 25 mm and P/D = 3. The highest increase in the Nusselt number is found to be 2.5 times higher as compared to the base model for D = 25 mm and P/D = 3 at Re = 23560. The analysis shows that the relative roughness pitch and size of the spherical turbulator have significant influence on the thermohydraulic performance of solar air heater. - Highlights: • Spherical turbulators used create intense turbulent mixing in the vicinity of absorber. • Nusselt number peaks on the upstream surface of spherical turbulators. • Peak thermal efficiency occurs at lower pitch and higher diameter conditions. • Higher diameter and lower pitch values also impose greater pumping power penalty. • Diameter and pitch of spherical turbulator strongly influence the effective efficiency.

  16. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  17. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  18. Large Eddy Simulation of turbulence

    International Nuclear Information System (INIS)

    Poullet, P.; Sancandi, M.

    1994-12-01

    Results of Large Eddy Simulation of 3D isotropic homogeneous turbulent flows are presented. A computer code developed on Connexion Machine (CM5) has allowed to compare two turbulent viscosity models (Smagorinsky and structure function). The numerical scheme influence on the energy density spectrum is also studied [fr

  19. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  20. Interstellar turbulence and shock waves

    International Nuclear Information System (INIS)

    Bykov, A.M.

    1982-01-01

    Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed

  1. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  2. Memory effects in turbulent diffusion

    International Nuclear Information System (INIS)

    Zagorodny, A.G.; Weiland, J.; Wilhelmsson, H.

    1993-01-01

    A non-Markovian approach is proposed for the derivation of the diffusion coefficient of saturated turbulence. A memory term accounting for nonlocal coherence effects is introduced in a new attempt to describe the transition between weak and strong turbulence. The result compares favourably with recent experiments as well as mode coupling simulations of fusion plasmas. (14 refs.)

  3. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  4. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  5. Numerical simulation of the vertical migration of Microcystis (cyanobacteria colonies based on turbulence drag

    Directory of Open Access Journals (Sweden)

    Hongru Zhao

    2016-11-01

    Full Text Available The vertical migration and accumulation of Microcystis is an important process in water blooms, and colony migration is influenced by colony size and wind-wave disturbance. The vertical migration of Microcystis colonies in turbulence can be simulated in a numerical model. In this study, we model such migration by coupling the colony size and hydrodynamics, including the gravity, colony buoyancy, and the viscous drag force of turbulence. The turbulence intensity was represented by the turbulent kinetic energy (KZ; the larger the KZ, the stronger the wind-wave disturbance. The simulated vertical distribution of Microcystis well agreed with the measured values in a laboratory experiment indicating that our model can simulate the vertical distribution of Microcystis under different hydrodynamic conditions. We also found a size-dependent critical turbulent kinetic energy (TKZ, such that if the turbulent kinetic energy of water exceeds the critical value (i.e., KZ > TKZ, the colonies sink under the drag forces of turbulence; conversely, if KZ < TKZ, the colonies can overcome the turbulent mixing and float. The TKZ of each colony was linearly related to colony diameter. The model is crucial for prediction and prevention of water blooms. The simulated threshold turbulent kinetic energy, at which water blooms disappear in Lake Taihu (a large freshwater lake in the Yangtze Delta, Jiangsu Province, China, was 55.5 cm2 s−2. 

  6. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    Science.gov (United States)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  7. Nondissipative gravitational turbulence

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Zybin, K.P.

    1988-01-01

    The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence

  8. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  9. Direct numerical simulation of turbulent channel flow with deformed bubbles

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2010-01-01

    In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)

  10. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  11. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  12. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    Science.gov (United States)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  13. Recruiting intensity

    OpenAIRE

    R. Jason Faberman

    2014-01-01

    To hire new workers, employers use a variety of recruiting methods in addition to posting a vacancy announcement. The intensity with which employers use these alternative methods can vary widely with a firm’s performance and with the business cycle. In fact, persistently low recruiting intensity helps to explain the sluggish pace of US job growth following the Great Recession.

  14. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    Science.gov (United States)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  15. Strong plasma turbulence in the earth's electron foreshock

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.

  16. Strong plasma turbulence in the earth's electron foreshock

    International Nuclear Information System (INIS)

    Robinson, P.A.; Newman, D.L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the Earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V m -1 . The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted

  17. Electron thermal transport in tokamak: ETG or TEM turbulences?

    International Nuclear Information System (INIS)

    Lin, Z.; Chen, L.; Nishimura, Y.; Qu, H.; Hahm, T.S.; Lewandowski, J.; Rewoldt, G.; Wang, W.X.; Diamond, P.H.; Holland, C.; Zonca, F.; Li, Y.

    2005-01-01

    This paper reports progress on numerical and theoretical studies of electron transport in tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode turbulence; and (3) a new finite element solver for global electromagnetic simulation. In particular, global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron temperature gradient (ETG) instability saturates via nonlinear toroidal couplings, which transfer energy successively from unstable modes to damped modes preferably with longer poloidal wavelengths. The electrostatic ETG turbulence is dominated by nonlinearly generated radial streamers. The length of streamers scales with the device size and is much longer than the distance between mode rational surfaces or electron radial excursions. Both fluctuation intensity and transport level are independent of the streamer size. These simulations with realistic plasma parameters find that the electron heat conductivity is much smaller than the experimental value and in contrast with recent findings of flux-tube simulations that ETG turbulence is responsible for the anomalous electron thermal transport in fusion plasmas. The nonlinear toroidal couplings represent a new paradigm for the spectral cascade in plasma turbulence. (author)

  18. Numerical modeling of buoyancy-driven turbulent flows in enclosures

    International Nuclear Information System (INIS)

    Hsieh, K.J.; Lien, F.S.

    2004-01-01

    Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities

  19. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. The flow over a thin airfoil subjected to elevated levels of freestream turbulence at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Sridhar [University of Tuebingen, Tuebingen (Germany); Watkins, Simon; Watmuff, Jon; Massey, Kevin; Petersen, Phred; Marino, Matthew [RMIT University, Melbourne, VIC (Australia); Ravi, Anuradha [Vellore Institute of Technology, Vellore, Tamilnadu (India)

    2012-09-15

    Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c = 1) but with significantly different intensities (Ti = 7.2 % and 12.3 %) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10 and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient. (orig.)

  1. Comparison of turbulence mitigation algorithms

    Science.gov (United States)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  2. Mean Flow and Turbulence Near a Series of Dikes

    Science.gov (United States)

    Yaeger, M. A.; Duan, J. G.

    2008-12-01

    Scour around various structures obstructing flow in an open channel is a common problem faced by river engineers. To better understand why this occurs, two questions must be answered: what are the mean flow and turbulence distributions around these structures and how do these two fields affect sediment transport? In addition, are the mean flow or turbulence properties more important in predicting the local transport rate? To answer these questions, a near-bed turbulence and shear stress study was conducted in a flat, fixed bed laboratory flume. Three dikes were placed on the left wall at right angles to the flow, extending partway into the flow, and remaining fully emerged throughout the experiment. A micro acoustic Doppler velocimeter (ADV) was used to measure velocities near the bed in the x, y, and z directions and then the turbulence intensities and Reynolds stresses were calculated from these measurements. Preliminary results showed that mean velocity has no relation to the formation of scour near the tips of the dikes but that Reynolds stresses and turbulence intensities do. It was shown that the horizontal component of the Reynolds stress near the bed contributed the most to the formation of scour. The maximum value of this component was over 200 times that of the mean bed shear stress of the incoming flow, whereas in a single dike field, the same Reynolds stress is about 60 times that of the incoming flow. The magnitudes of the other two components of the Reynolds stress were less than that of the horizontal component, with magnitudes about 20 times that of the incoming flow. This may be attributed to the very small contribution of the vertical velocity in these components. Turbulence intensity magnitudes were about 3 to 5 times that of the incoming flow, with the largest being u'. The largest values for both Reynolds stresses and turbulence intensities were seen at the tip of the second dike in the series. Better understanding of these flow processes will

  3. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  4. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  5. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  6. Transition to turbulence

    International Nuclear Information System (INIS)

    Pomeau, Y.

    1981-07-01

    In this work it is reviewed a few known types of transition to turbulence, as the cascade of period doubling and the intermittent transition. This happens in dynamical systems with a few degrees of freedom, as modelled by the iteration of non linear maps. Then it is presented specific transitions for systems with many degrees of freedom. It is condidered first the occurence of a low frequency broadband noise in large cells at the onset of Rayleigh-Benard convection; then the transition by intermittent bursts in parallel flows. In this last case, one is concerned with localized and finite amplitude perturbations. Simple geometric arguments show that these fluctuations, when they are isolated and with a well definite relative speed, exist for a single value of the Reynolds number only [fr

  7. Effects of Freestream Turbulence on Cavity Tone and Sound Source

    Directory of Open Access Journals (Sweden)

    Hiroshi Yokoyama

    2016-01-01

    Full Text Available To clarify the effects of freestream turbulence on cavity tones, flow and acoustic fields were directly predicted for cavity flows with various intensities of freestream turbulence. The freestream Mach number was 0.09 and the Reynolds number based on the cavity length was 4.0 × 104. The depth-to-length ratio of the cavity, D/L, was 0.5 and 2.5, where the acoustic resonance of a depth-mode occurs for D/L = 2.5. The incoming boundary layer was laminar. The results for the intensity of freestream turbulence of Tu = 2.3% revealed that the reduced level of cavity tones in a cavity flow with acoustic resonance (D/L=2.5 was greater than that without acoustic resonance (D/L=0.5. To clarify the reason for this, the sound source based on Lighthill’s acoustic analogy was computed, and the contributions of the intensity and spanwise coherence of the sound source to the reduction of the cavity tone were estimated. As a result, the effects of the reduction of spanwise coherence on the cavity tone were greater in the cavity flow with acoustic resonance than in that without resonance, while the effects of the intensity were comparable for both flows.

  8. Statistical properties of turbulence: An overview

    Indian Academy of Sciences (India)

    the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer ... However, it is not easy to state what would consti- tute a solution of the turbulence ...... flow with Lagrangian tracers and use a cubic spline interpolation method to calculate their ...

  9. Scale separation closure and Alfven wave turbulence

    International Nuclear Information System (INIS)

    Chen, C.Y.; Mahajan, S.M.

    1985-04-01

    Based on the concept of scale separation between coherent response function and incoherent source for renormalized turbulence theories, a closure scheme is proposed. A model problem dealing with shear-Alfven wave turbulence is numerically solved; the solution explicitly shows expected turbulence features such as frequency shift from linear modes, band-broadening, and a power law dependence for the turbulence spectrum

  10. Strong Turbulence in Low-beta Plasmas

    DEFF Research Database (Denmark)

    Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling

    1980-01-01

    An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....

  11. Group-kinetic theory of turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  12. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  13. Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows.

    Science.gov (United States)

    Novara, Matteo; Scarano, Fulvio

    The motion tracking enhancement technique (MTE) is a recently introduced method to improve the accuracy of tomographic PIV measurements at seeding density higher than currently practiced. The working principle is based on the fact that the particle field and its projections are correlated between the two exposures. Therefore, information from subsequent exposures can be shared within the tomographic reconstruction process of a single object, which largely reduces the energy lost into ghost particles . The study follows a previous work based on synthetic particle images, showing that the MTE technique has an effect similar to that of increasing the number of cameras. In the present analysis, MTE is applied to Tomographic PIV data from two time-resolved experiments on turbulent shear flows: a round jet at Re  = 5,000 ( f acq  = 1,000 Hz) and a turbulent boundary layer at the trailing edge of an airfoil ( Re c  = 370,000) measured at 12,000 Hz. The application of MTE is extended to the case of more than two recordings. The performance is assessed comparing the results from a lowered number of cameras with respect to the full tomographic imaging system. The analysis of the jet flow agrees with the findings of numerical simulations provided the results are scaled taking into account the concept of MTE efficiency based on the volume fraction where ghost - pairs (Elsinga et al. 2010a) are produced. When a large fraction of fluid has uniform motion (stagnant fluid surrounding the jet), only a moderate reduction in ghost intensity is expected by MTE. Nevertheless, a visible recovery of reconstruction quality is observed for the 3-cameras system when MTE is applied making use of 3 recordings. In the turbulent boundary layer, the objective is set to increase the seeding density beyond current practice, and the experiments are performed at approximately 200,000 particles/megapixel. The measurement robustness is monitored with the signal-to-noise ratio S/N for the cross

  14. Effects of premixed flames on turbulence and turbulent scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Lipatnikov, A.N.; Chomiak, J. [Department of Applied Mechanics, Chalmers University of Technology, 412 75 Goeteborg (Sweden)

    2010-02-15

    Experimental data and results of direct numerical simulations are reviewed in order to show that premixed combustion can change the basic characteristics of a fluctuating velocity field (the so-called flame-generated turbulence) and the direction of scalar fluxes (the so-called countergradient or pressure-driven transport) in a turbulent flow. Various approaches to modeling these phenomena are discussed and the lack of a well-elaborated and widely validated predictive approach is emphasized. Relevant basic issues (the transition from gradient to countergradient scalar transport, the role played by flame-generated turbulence in the combustion rate, the characterization of turbulence in premixed flames, etc.) are critically considered and certain widely accepted concepts are disputed. Despite the substantial progress made in understanding the discussed effects over the past decades, these basic issues strongly need further research. (author)

  15. Effect of turbulent collisions on diffusion in stationary plasma turbulence

    International Nuclear Information System (INIS)

    Xia, H.; Ishihara, O.

    1990-01-01

    Recently the velocity diffusion process was studied by the generalized Langevin equation derived by the projection operator method. The further study shows that the retarded frictional function plays an important role in suppressing particle diffusion in the velocity space in stronger turbulence as much as the resonance broadening effect. The retarded frictional effect, produced by the effective collisions due to the plasma turbulence is assumed to be a Gaussian, but non-Markovian and non-wide-sense stationary process. The relations between the proposed formulation and the extended resonance broadening theory is discussed. The authors also carry out test particle numerical experiment for Langmuir turbulence to test the theories. In a stronger turbulence a deviation of the diffusion rate from the one predicted by both the quasilinear and the extended resonance theories has been observed and is explained qualitatively by the present formulation

  16. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  17. Outer scale of atmospheric turbulence

    Science.gov (United States)

    Lukin, Vladimir P.

    2005-10-01

    In the early 70's, the scientists in Italy (A.Consortini, M.Bertolotti, L.Ronchi), USA (R.Buser, Ochs, S.Clifford) and USSR (V.Pokasov, V.Lukin) almost simultaneously discovered the phenomenon of deviation from the power law and the effect of saturation for the structure phase function. During a period of 35 years we have performed successively the investigations of the effect of low-frequency spectral range of atmospheric turbulence on the optical characteristics. The influence of the turbulence models as well as a outer scale of turbulence on the characteristics of telescopes and systems of laser beam formations has been determined too.

  18. Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer

    International Nuclear Information System (INIS)

    Jian-Hua, Liu; Nan, Jiang

    2008-01-01

    We experimentally investigate the frequency response of near-wall coherent structures to localized periodic blowing and suction through a spanwise slot in a turbulent boundary layer by changing the frequency of periodic disturbance at similar velocities of free stream. The effects of blowing and suction disturbance on energy redistribution, turbulent intensity u' rms + , over y + and waveforms of phase-averaged velocity during sweeping process are respectively discussed under three frequencies of periodic blowing and suction in near-wall region of turbulent boundary layer, compared with those in a standard turbulent boundary layer. The most effective disturbance frequency is figured out in this system. (fundamental areas of phenomenology (including applications))

  19. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  20. Quantum Turbulence ---Another da Vinci Code---

    Science.gov (United States)

    Tsubota, M.

    Quantum turbulence comprises a tangle of quantized vorticeswhich are stable topological defects created by Bose-Einstein condensation, being realized in superfluid helium and atomic Bose-Einstein condensates. In recent years there has been a growing interest in quantum turbulence. One of the important motivations is to understand the relation between quantum and classical turbulence. Quantum turbulence is expected to be much simpler than usual classical turbulence and give a prototype of turbulence. This article reviews shortly the recent research developments on quantum turbulence.

  1. Examination of Bursty Electromagnetic Waves Observed During Intervals of Turbulent Magnetosheath Reconnection

    Science.gov (United States)

    Adrian, Mark L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.

  2. Turbulence and the Stabilization Principle

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    Further results of research, reported in several previous NASA Tech Briefs articles, were obtained on a mathematical formalism for postinstability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence). To recapitulate: Fictitious control forces are introduced to couple the dynamical equations with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in ordinary perceived three-dimensional space is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. Con sequently, the postinstability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable. The previously reported findings are analyzed from the perspective of the authors Stabilization Principle, according to which (1) stability is recognized as an attribute of mathematical formalism rather than of underlying physics and (2) a dynamical system that appears unstable when modeled by differentiable functions only can be rendered stable by modifying the dynamical equations to incorporate intrinsic stochasticity.

  3. Consequences of variations in spatial turbulence characteristics for fatigue life time of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.

    1998-09-01

    The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.

  4. Heating of plasmas in tokamaks by current-driven turbulence

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1985-10-01

    Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued

  5. Numerical study of influence of inlet turbulence parameters on turbulence intensity in the flow domain

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk

    2007-01-01

    an electrochemical method. For optimization of process equipment with respect to cleaning, the levels of local fluctuations across entire surfaces are needed. Trends of fluctuations in the geometries used can be predicted using computational fluid dynamics (CFD). Two sensitivity studies were carried out......The prediction of cleaning in pipe-lines is important for equipment manufacturers, who wish to optimize designs with respect to hygienic performance. Degree of cleaning correlates with the level of fluctuations in the signal recorded in discrete points during wall shear stress measurements using...... profile trend estimated by use of CFD was found, whereas for the shortened geometry a great sensitivity in the estimated fluctuation profile trend when changing inlet conditions was seen. In the process Star-CD and Fluent (used in the present study) were compared and showed comparable predictions...

  6. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  7. Essays on marketing strategy in technology-intensive markets

    NARCIS (Netherlands)

    Stremersch, S.

    2001-01-01

    Marketing scholars have only recently started to explore the strategic marketing challenges faced by firms in technology-intensity (TI) markets. Still, technology is at the core of many contemporary markets and TI markets are unique because of their knowledge-intensity and technological turbulence.

  8. Wave-current generated turbulence over hemisphere bottom roughness

    Science.gov (United States)

    Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv

    2018-03-01

    The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.

  9. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  10. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  11. Simulating non-Kolmogorov turbulence phase screens based on equivalent structure constant and its influence on simulations of beam propagation

    Directory of Open Access Journals (Sweden)

    Ming Chen

    Full Text Available Gaussian distribution is used to describe the power law along the propagation path and phase screen of the non-Kolmogorov turbulence is proposed based on the equivalent refractive-index structure constants. Various simulations of Gaussian beam propagation in Kolmogorov and non-Kolmogorov turbulence are used for telling the difference between isotropic and anisotropic turbulence. The results imply that the non-Kolmogorov turbulence makes a great influence on the simulations via power law in spectrum and the number of phase screens. Furthermore, the influence is mainly reflected in light intensity and beam drift. Statistics suggest that when Gaussian beam propagate through single phase screen of non-Kolmogorov, maximum and uniformity of light intensity increase first and then decrease with power law, and beam drift firstly increases and then to stabilize. When Gaussian beam propagate through multiple phase screens, relative errors of beam drift decrease with the number of phase screens. And scintillation indices in non-Kolmogorov turbulence is larger than that in Kolmogorov turbulence when the number is small. When the number is big, the scintillation indices in non-Kolmogorov turbulence is smaller than that in Kolmogorov turbulence. The results shown in this paper demonstrate the effect of the non-Kolmogorov turbulence on laser atmospheric transmissions. Thus, this paper suggests a possible direction of the improvement of the laser transmission accuracy over a long distance through the atmosphere.

  12. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  13. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  14. Optimizing Stellarators for Turbulent Transport

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Xanthopoulos, P.

    2010-01-01

    Up to now, the term 'transport-optimized' stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  15. Structure and modeling of turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1995-01-01

    The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)

  16. Modeling Compressed Turbulence with BHR

    Science.gov (United States)

    Israel, Daniel

    2011-11-01

    Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.

  17. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  18. Toy models of developed turbulence

    Directory of Open Access Journals (Sweden)

    M.Hnatich

    2005-01-01

    Full Text Available We have investigated the advection of a passive scalar quantity by incompressible helical turbulent flow within the framework of extended Kraichnan model. Turbulent fluctuations of velocity field are assumed to have the Gaussian statistics with zero mean and defined noise with finite time-correlation. Actual calculations have been done up to two-loop approximation within the framework of field-theoretic renormalization group approach. It turned out that space parity violation (helicity of turbulent environment does not affect anomalous scaling which is a peculiar attribute of the corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, strongly depends on the amount of helicity. Moreover, helicity gives rise to the turbulent diffusivity, which has been calculated in one-loop approximation.

  19. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  20. A comparative study of various inflow boundary conditions and turbulence models for wind turbine wake predictions

    Science.gov (United States)

    Tian, Lin-Lin; Zhao, Ning; Song, Yi-Lei; Zhu, Chun-Ling

    2018-05-01

    This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k-𝜀 model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.

  1. Turbulent boundary layer noise : direct radiation at Mach number 0.5

    OpenAIRE

    Gloerfelt , Xavier; Berland , Julien

    2013-01-01

    International audience; Boundary layers constitute a fundamental source of aerodynamic noise. A turbulent boundary layer over a plane wall can provide an indirect contribution to the noise by exciting the structure, and a direct noise contribution. The latter part can play a significant role even if its intensity is very low, explaining why it is hardly measured unambiguously. In the present study, the aerodynamic noise generated by a spatially developing turbulent boundary layer is computed ...

  2. Turbulence in unmagnetized Vlasov plasmas

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1985-01-01

    The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)

  3. Turbulent effective absorptivity and refractivity

    International Nuclear Information System (INIS)

    Rax, J.M.

    1984-09-01

    The problem of wave propagation in a turbulent magnetized plasma is investigated. Considering small scale, low frequency density fluctuations we solve the Maxwell equations and show that the eikonal approximation remains valid with an effective refractivity and an effective absorptivity taking into account the energy diffusion due to the turbulent motion. Then the result is applied to the problem of lower hybrid waves scattering by drift waves density fluctuations in tokamaks

  4. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  5. Quantify the complexity of turbulence

    Science.gov (United States)

    Tao, Xingtian; Wu, Huixuan

    2017-11-01

    Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.

  6. An Experimental Investigation of Premixed Combustion in Extreme Turbulence

    Science.gov (United States)

    Wabel, Timothy Michael

    This work has explored various aspects of high Reynolds number combustion that have received much previous speculation. A new high-Reynolds number premixed Bunsen burner, called Hi-Pilot, was designed to produce turbulence intensities in the extreme range of turbulence. The burner was modified several times in order to prevent boundary layer separation in the nozzle, and a large co-flow was designed that was capable of maintaining reactions over the entire flame surface. Velocity and turbulence characteristics were measured using a combination of Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). Flame structure was studied using a combination of formaldehyde (CH2O), hydroxyl (OH), and the CH radical. Planar Laser Induced Fluorescence (PLIF). The spatial Overlap of formaldehyde and OH PLIF qualitatively measures the reaction rate between formaldehyde molecules and OH radicals, and is a measure of the reaction layers of the flame. CH PLIF provides an alternative measure of the reaction zone, and was measured to compare with the Overlap PLIF results. Reaction layers are the full-width at half-maximum of the Overlap or CH PLIF signal, and extinction events were defined as regions where the PLIF signal drops below this threshold. Preheat structures were measured using formaldehyde PLIF, and are defined as beginning at 35% of the local maximum PLIF signal, and continue up to the leading edge of the reaction layer. Previous predictions of regime diagram boundaries were tested at the largest values of turbulent Reynolds number to date. The Overlap and CH PLIF diagnostics allowed extensive testing of the predicted broken reaction zones boundary of Peters. Measurements indicated that all run conditions are in the Broadened Preheat - Thin Reaction layers regime, but several conditions are expected to display a broken reaction zone structure. Therefore the work shows that Peters's predicted boundary is not correct, and therefore a Karlovitz number of 100 is

  7. Modification of large-scale motions in a turbulent pipe flow

    Science.gov (United States)

    Senshu, Kohei; Shinozaki, Hiroaki; Sakakibara, Jun

    2017-11-01

    We performed experiments to modify the flow structures in a fully developed turbulent flow in a straight round pipe. The modification of the flow was achieved by installing a short coaxial inner pipe. The inner pipe has ability to add continuous suction or blowing disturbance through its outer surface. The experiments were conducted at a Reynolds number of 44,000 with seven different disturbance patterns. The wall static pressure was measured and pipe friction coefficient was evaluated. The velocity distribution was measured with PIV and very large scale motions (VLSMs) were visualized. Pipe friction coefficient was increased by installing the inner pipe, while turbulence intensities over the cross section were reduced. Slight change of the friction was observed if the disturbance was added. We decomposed fluctuating velocity field in the azimuthal direction by a Fourier series expansion. As a result, we obtained that contribution of lower azimuthal mode numbers (m = 2, 3, 4) reduced while the higher modes increased. This was consistent with the observation of visualized very large scale motions.

  8. Numerical simulation of complex turbulent Flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A.

    1991-06-01

    A statistical and topological study of a complex turbulent flow over a backward-facing step is realized by means of Direct and Large-Eddy Simulations. Direct simulations are performed in an isothermal and in a stratified two-dimensional case. In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. In a second step a thermal stratification is imposed on this flow. The coherent structures are in this case produced in the immediate vicinity of the step and disappear dowstream for increasing stratification. Afterwards, large-eddy simulations are carried out in the three-dimensional case. The subgrid-scale model is a local adaptation to the physical space of the spectral eddy-viscosity concept. The statistics of turbulence are in good agreement with the experimental data, corresponding to a small step configuration. Furthermore, calculations at higher step configuration show that the eddy structure of the flow presents striking analogies with the plane shear layers, with large billows shed behind the step, and intense longitudinal vortices strained between these billows [fr

  9. Preferential Concentration Of Solid Particles In Turbulent Horizontal Circular Pipe Flow

    Science.gov (United States)

    Kim, Jaehee; Yang, Kyung-Soo

    2017-11-01

    In particle-laden turbulent pipe flow, turbophoresis can lead to a preferential concentration of particles near the wall. To investigate this phenomenon, one-way coupled Direct Numerical Simulation (DNS) has been performed. Fully-developed turbulent pipe flow of the carrier fluid (air) is at Reτ = 200 based on the pipe radius and the mean friction velocity, whereas the Stokes numbers of the particles (solid) are St+ = 0.1 , 1 , 10 based on the mean friction velocity and the kinematic viscosity of the fluid. The computational domain for particle simulation is extended along the axial direction by duplicating the domain of the fluid simulation. By doing so, particle statistics in the spatially developing region as well as in the fully-developed region can be obtained. Accumulation of particles has been noticed at St+ = 1 and 10 mostly in the viscous sublayer, more intensive in the latter case. Compared with other authors' previous results, our results suggest that drag force on the particles should be computed by using an empirical correlation and a higher-order interpolation scheme even in a low-Re regime in order to improve the accuracy of particle simulation. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01002981).

  10. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  11. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.

    2011-01-01

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.

  12. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  13. Turbulence and sediment transport over sand dunes and ripples

    Science.gov (United States)

    Bennis, A.; Le Bot, S.; lafite, R.; Bonneton, P.; Ardhuin, F.

    2013-12-01

    Several bedforms are present near to the surfzone of natural beaches. Dunes and ripples are frequently observed. Understanding the turbulence over these forms is essential for the sediment transport. The turbulent flow and the suspended sand particles interact with each other. At the moment, the modelling strategy for turbulence is still a challenge. According to the spatial scales, some different methods to model the turbulence are employed, in particular the RANS (Reynolds Averaged Navier-Stokes) and the LES (Large Eddy Simulation). A hybrid method combining both RANS and LES is set up here. We have adapted this method, initially developed for atmospheric flow, to the oceanic flow. This new method is implemented inside the 3D hydrodynamic model, MARS 3D, which is forced by waves. LES is currently the best way to simulate turbulent flow but its higher cost prevents it from being used for large scale applications. So, here we use RANS near the bottom while LES is set elsewhere. It allows us minimize the computational cost and ensure a better accuracy of the results than with a fully RANS model. In the case of megaripples, the validation step was performed with two sets of field data (Sandy Duck'97 and Forsoms'13) but also with the data from Dune2D model which uses only RANS for turbulence. The main findings are: a) the vertical profiles of the velocity are similar throughout the data b) the turbulent kinetic energy, which was underestimated by Dune2D, is in line with the observations c) the concentration of the suspended sediment is simulated with a better accuracy than with Dune2D but this remains lower than the observations.

  14. Higher Education

    African Journals Online (AJOL)

    Kunle Amuwo: Higher Education Transformation: A Paradigm Shilt in South Africa? ... ty of such skills, especially at the middle management levels within the higher ... istics and virtues of differentiation and diversity. .... may be forced to close shop for lack of capacity to attract ..... necessarily lead to racial and gender equity,.

  15. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    Science.gov (United States)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  16. A Robust Definition for the Turbulent Langmuir Number

    Science.gov (United States)

    Christensen, K. H.; Breivik, O.; Sutherland, G.; Belcher, S. E.; Gargett, A.

    2016-02-01

    The turbulent Langmuir number combines the water side friction velocity and the surface value of the Stokes drift, and is central to parameterizations of mixing by Langmuir turbulence. Making a direct comparison between such parameterizations and observations is difficult since the surface Stokes drift is sensitive to both the spectral tail and the directional spread of the waves. We propose a new definition for the turbulent Langmuir number based on low order moments of the one-dimensional frequency spectrum, hence eliminating most of the uncertainties associated with the diagnostic spectral tail. Comparison is made between the old and the new definitions using both observed and modeled wave spectra. The new definition has a higher variation around the mean and is better at resolving typical oceanic conditions. In addition, it is backwards compatible with the old definition for monochromatic waves, which means that scalings based on large eddy simulations with monochromatic wave forcing are still valid.

  17. Large-Eddy-Simulation of turbulent magnetohydrodynamic flows

    Directory of Open Access Journals (Sweden)

    Woelck Johannes

    2017-01-01

    Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.

  18. Spatial structure of ion-scale plasma turbulence

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-03-01

    Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.

  19. Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model

    Directory of Open Access Journals (Sweden)

    Camila Braga Vieira

    2018-03-01

    Full Text Available This paper presents an in-depth numerical analysis on the hydrodynamics of a bubble column. As in previous works on the subject, the focus here is on three important parameters characterizing the flow: interfacial forces, turbulence and inlet superficial Gas Velocity (UG. The bubble size distribution is taken into account by the use of the Quadrature Method of Moments (QMOM model in a two-phase Euler-Euler approach using the open-source Computational Fluid Dynamics (CFD code OpenFOAM (Open Field Operation and Manipulation. The interfacial forces accounted for in all the simulations presented here are drag, lift and virtual mass. For the turbulence analysis in the water phase, three versions of the Reynolds Averaged Navier-Stokes (RANS k-ε turbulence model are examined: namely, the standard, modified and mixture variants. The lift force proves to be of major importance for a trustworthy prediction of the gas volume fraction profiles for all the (superficial gas velocities tested. Concerning the turbulence, the mixture k-ε model is seen to provide higher values of the turbulent kinetic energy dissipation rate in comparison to the other models, and this clearly affects the prediction of the gas volume fraction in the bulk region, and the bubble-size distribution. In general, the modified k-ε model proves to be a good compromise between modeling simplicity and accuracy in the study of bubble columns of the kind undertaken here.

  20. A High Order Accuracy Computational Tool for Unsteady Turbulent Flows and Acoustics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this research effort is to develop a higher order unsteady turbulent flow solver based on the FDV method, and to exploit its attributes of...

  1. Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Trulsen, J.

    1991-01-01

    Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...

  2. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  3. Advancements in engineering turbulence modeling

    Science.gov (United States)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  4. TRIAM-1 turbulent heating experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1983-02-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by wave-particle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated.

  5. TRIAM-1 turbulent heating experiment

    International Nuclear Information System (INIS)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro

    1983-01-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by waveparticle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated. (Kako, I.)

  6. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  7. TEM turbulence optimisation in stellarators

    Science.gov (United States)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  8. Experimental study of the phenomena of turbulent flow in the narrow gaps between subchannels of rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1989-01-01

    It was observed that the turbulent intensities in the narrow gaps between the subchannels of rod bundles are strongly anisotropic and higher than in pipes. In rod bundles, both the axial and azimuthal components of the fluctuating velocity have a quasi-periodic behaviour. The intensities increase with decreasing distance between the rods or between rod and channel wall, respectively. To determine the origin of this phenomenon, experiments were performed in rod bundles with different pitch-to-diameter (P/D) and wall-to-diameter (W/D) ratios. In these experiments, two components of the fluctuating velocity were measured with hot wires simultaneously at two different locations of a wall subchannel, together with the pressure fluctuations at the wall measured by microphones. The output signals were registered with an analog tape recorder. Afterwards they were digitized and evaluated to obtain spectra as well as auto and cross correlations. The results were analysed to determine the interdependence between pressure and velocity fluctuations. Attention was devoted to the analysis of turbulence spectra and the identification of their specific ranges. The dominant frequency of the turbulent motion, taken from the spectra, was found to be a function of the gap width and of the flow velocity. The corresponding Strouhal number is a geometrical parameter which can be expressed in terms of P/D and W/D. Based on the observation of transit time between the probes, measured with help of cross correlations, on the form and the presence of peaks on spectra, a phenomenological model was developed, to explain the studied phenomenon. The model describes the formation of large eddies near the gaps and their effect on the fluid motion through rod bundles. The relationship between the mixing process and the studied phenomenon was determined. (orig.) [de

  9. Higher Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  10. Turbulent transport in 2D collisionless guide field reconnection

    Science.gov (United States)

    Muñoz, P. A.; Büchner, J.; Kilian, P.

    2017-02-01

    Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic

  11. Characteristics of sound radiation from turbulent premixed flames

    Science.gov (United States)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  12. Collapsing vortex filaments and the spectrum of quantum turbulence

    Science.gov (United States)

    Andryushchenko, V. A.; Nemirovskii, S. K.

    2017-01-01

    The method of correlation functions and the method of quantum vortex configurations are used to calculate the energy spectrum of a three-dimensional velocity field that is induced by collapsing (immediately before reconnection) vortex filaments. The formulation of this problem is motivated by the idea of modeling classical turbulence by a set of chaotic quantized vortex filaments. Among the various arguments that support the idea of quasi-classical behavior for quantum turbulence, the most persuasive is probably the resulting Kolmogorov energy spectrum resembling E ( k ) ∝ k - 5 / 3 that was obtained in a number of numerical studies. Another goal is associated with an important and intensely studied theme that relates to the role of hydrodynamic collapse in the formation of turbulence spectra. Calculations have demonstrated that vortex filaments create a velocity field at the moment of contact, which has a singularity. This configuration of vortex filaments generates the spectrum E(k), which bears the resemblance to the Kolmogorov law. A possible cause for this observation is discussed, as well as the likely reasons behind any deviations. The obtained results are discussed from the perspective of both classical and quantum turbulence.

  13. Turbulence anisotropy and coherent structures in electromagnetically generated vortex patterns

    International Nuclear Information System (INIS)

    Kenjereš, S

    2011-01-01

    Numerical investigations addressing influence of the localised electromagnetic forcing on turbulent thermal convection of a weakly electrically conductive fluid in a wall-bounded rectangular enclosure are performed over a wide range of working parameters (10 4 ≤Ra≤5×10 5 , Pr = 7). An asymmetrical electromagnetic forcing (EMF) is applied originating from combined effects of the imposed magnetic fields (originating from an array of 5×7 permanent magnets with |b 0 | max = 1 T each, located beneath the lower thermally active wall) and electric fields (originating from two electrodes supplied with dc current of different intensities, 0≤I≤10 A). Subgrid turbulent stress is modelled by electromagnetically extended Smagorinsky model and subgrid turbulent heat flux is represented by a simple gradient diffusion hypothesis. Simulations revealed two interesting findings: the electromagnetic forcing generated significant overall heat transfer increase (more than 500% for lower values of Ra) compared to its neutral case, and, the turbulence anisotropy was reduced in the central part of the enclosure.

  14. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    Science.gov (United States)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  15. Intensive mobilities

    DEFF Research Database (Denmark)

    Vannini, Phillip; Bissell, David; Jensen, Ole B.

    with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this experience......This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... which relate to transport, housing and employment. Yet we argue that the experiential dimensions of long distance mobilities have not received the attention that they deserve within geographical research on mobilities. This paper combines ideas from mobilities research and contemporary social theory...

  16. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    subsonic (sonic Mach number M s ∼0.2) to the highly supersonic (M s ∼20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ∼3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  17. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  18. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    subsonic (sonic Mach number M{sub s}∼0.2) to the highly supersonic (M{sub s}∼20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M{sub s}∼3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  19. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  20. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  1. Resonant quasiparticles in plasma turbulence

    International Nuclear Information System (INIS)

    Mendonca, J.T.; Bingham, R.; Shukla, P.K.

    2003-01-01

    A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to describe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasiparticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma turbulence theories

  2. Turbulent breakage of ductile aggregates.

    Science.gov (United States)

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  3. Suppression of plasma turbulence during optimised shear configurations in JET

    International Nuclear Information System (INIS)

    Conway, G.D.; Borba, D.N.; Alper, B.

    1999-08-01

    Density turbulence suppression is observed in the internal transport barrier (ITB) region of JET discharges with optimised magnetic shear. The suppression occurs in two stages. First, low frequency turbulence is reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then when the ITB forms, high frequency turbulence is reduced locally within the steep pressure gradient region of the ITB, consistent with the effects of enhanced E x B poloidal shear. The turbulence suppression is correlated with reduced plasma transport and improved fusion performance. Much effort has been spent in recent years in developing alternative scenarios for operating tokamak fusion reactors. One particular scenario involves reversing or reducing the central magnetic shear to form an internal transport barrier (ITB). The result is reduced plasma core energy transport and enhanced fusion performance. It is believed that ITBs may be formed through a combination of E x B velocity shear and magnetic shear stabilisation of plasma turbulence and instabilities. In this Letter we present results from JET optimised shear discharges showing that turbulence suppression during ITB formation occurs in two stages. First low frequency turbulence is reduced across the plasma core, coinciding with a region of strong toroidal velocity shear; then high frequency turbulence is locally suppressed around the ITB region, consistent with enhanced pressure gradient driven E x B poloidal shear. The measurements were made using a system of X-mode reflectometers consisting of two, dual-channel toroidal correlation reflectometers at 75 GHz (covering plasma outboard edge) and 105 GHz (core and inboard edge), and a 92-96 GHz swept frequency radial correlation reflectometer (plasma core). Reflectometry is a powerful tool for measuring density fluctuations. The highly localised reflection of the microwave beam gives excellent spatial localisation. Measurements can be made

  4. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    International Nuclear Information System (INIS)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-01

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate

  5. Orbital-angular-momentum entanglement in turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available The turbulence-induced decay of orbital-angular-momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our resultswith previouswork,we simulate the turbulent atmosphere with a single phase screen...

  6. Particle Settling in Low Energy Turbulence

    Science.gov (United States)

    Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan

    2014-11-01

    Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.

  7. PDF methods for turbulent reactive flows

    Science.gov (United States)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  8. Numerical simulation of stratified flows with different k-ε turbulence models

    International Nuclear Information System (INIS)

    Dagestad, S.

    1991-01-01

    The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs

  9. Developments in the theory of trapped particle pressure gradient driven turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Diamond, P.H.; Biglari, H.; Gang, F.Y.

    1991-01-01

    Recent advances in the theory of trapped particle pressure gradient driven turbulence are summarized. A novel theory of trapped ion convective cell turbulence is presented. It is shown that non-linear transfer to small scales occurs, and that saturation levels are not unphysically large, as previously thought. As the virulent saturation mechanism of ion Compton scattering is shown to result in weak turbulence at higher frequencies, it is thus likely that trapped ion convective cells are the major agent of tokamak transport. Fluid like trapped electron modes at short wavelengths (k θ ρ i > 1) are shown to drive an inward particle pinch. The characteristics of convective cell turbulence in flat density discharges are described, as is the stability of dissipative trapped electron modes in stellarators, with flexible magnetic field structure. The role of cross-correlations in the dynamics of multifield models of drift wave turbulence is discussed. (author). 32 refs, 8 figs, 1 tab

  10. Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence

    Science.gov (United States)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi

    2018-05-01

    We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.

  11. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...

  12. The influence of turbulence on the aero-elastic instability of wind turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...

  13. Molecular mixing in turbulent flow

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1993-01-01

    The evolution of a diffusive scalar field subject to turbulent stirring is investigated by comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-profile representation, to results previously obtained by direct numerical simulation (DNS) and by mapping-closure analysis. The comparisons indicate that scalar field evolution is sensitive to the bandwidth of the stirring process, and they suggest that the good agreement between DNS and mapping closure reflects the narrowband character of both. The new models predict qualitatively new behaviors in the wideband stirring regime corresponding to high-Reynolds-number turbulence

  14. Plasma turbulence effects on aurorae

    International Nuclear Information System (INIS)

    Mishin, E.V.; Telegin, V.A.

    1989-01-01

    Analysis of modern state of microprocesses physics in plasma of aurorare, initiated by energetic electron flow intrusion, is presented. It is shown that there is a number of phenomena, which cannot be explained under non-collision (collective) mechanisms of interaction are applied. Effects of plasma turbulence in the area of auroral arcs are considered. Introduction of a new structural element to auroral arc - plasma-turbulence (PT) layer is substantiated. Numerical simulation of electron kinetics, changes in neutral composition, as well as generation of IR- and UV-radiation in PT layer has been realized

  15. Ion-acoustic plasma turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Silin, V.P.

    1982-01-01

    A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted

  16. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya

    1976-01-01

    The relation between the heating rate of plasma particles and the thermalization frequency is established, and the important role of plasma turbulence in the fast thermalization process is underlined. This relation can be applied not only in the case of high current turbulent heating but also when turbulent phenomena occur with other heating means. The experimental results on ion and electron heating during the Mach II experiment are presented. The role of turbulence on particle losses accross the magnetic field is analyzed

  17. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    Science.gov (United States)

    Halloran, Siobhan; Ristenpart, William

    2013-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in pathogen transmission between the animals, to date the infectious disease community has paid little attention to the effect of airspeed or turbulent intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of an axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We show that for fan-generated turbulence the plume width is invariant with the mean airspeed and, close to the point source, increases linearly with downstream position. Importantly, the turbulent dispersivity is insensitive to the presence of meshes placed downstream from the point source, indicating that the fan length scale dictates the turbulent intensity and corresponding dispersivity.

  18. Passive scalar dynamics near the turbulent/nonturbulent interface in a jet

    Science.gov (United States)

    Taveira, Rodrigo R.; da Silva, Carlos

    2011-11-01

    The present work uses several direct numerical simulations (DNS) of turbulent planar jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 and Schmidt numbers raging from Sc = 0 . 7 to 7.0 to analyze the nature and properties of the ``scalar interface'' and to investigate the dynamics of turbulent mixing of a passive scalar. Specifically, we employ conditional statistics in relation to the distance from the T/NT interface in order to eliminate the intermittency that affects common turbulence statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces and their associated turbulent scales and topology are investigated. A sharp scalar interface exists separating the Turbulent and the irrotational flow regions. The thickness of this scalar interface δθ is also of the order of the Taylor micro-scale, λ. However, the thickness of the scalar gradient variance I (where Gj = ∂ θ / ∂xj) is much smaller. Very intense scalar gradient sheet structures along regions of intense strain, in particular at the T/NT interface. The scalar gradient transport equation is analyzed in order to further investigate the physical mechanism of scalar turbulent mixing at the jet edge. Almost all mixing takes place in a confined region close to the interface, beyond which they become reduced to an almost in perfect - balance between production and dissipation of scalar variance.

  19. Large Eddy Simulation of Unstably Stratified Turbulent Flow over Urban-Like Building Arrays

    Directory of Open Access Journals (Sweden)

    Bobin Wang

    2013-01-01

    Full Text Available Thermal instability induced by solar radiation is the most common condition of urban atmosphere in daytime. Compared to researches under neutral conditions, only a few numerical works studied the unstable urban boundary layer and the effect of buoyancy force is unclear. In this paper, unstably stratified turbulent boundary layer flow over three-dimensional urban-like building arrays with ground heating is simulated. Large eddy simulation is applied to capture main turbulence structures and the effect of buoyancy force on turbulence can be investigated. Lagrangian dynamic subgrid scale model is used for complex flow together with a wall function, taking into account the large pressure gradient near buildings. The numerical model and method are verified with the results measured in wind tunnel experiment. The simulated results satisfy well with the experiment in mean velocity and temperature, as well as turbulent intensities. Mean flow structure inside canopy layer varies with thermal instability, while no large secondary vortex is observed. Turbulent intensities are enhanced, as buoyancy force contributes to the production of turbulent kinetic energy.

  20. Exploiting similarity in turbulent shear flows for turbulence modeling

    Science.gov (United States)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-01-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  1. Exploiting similarity in turbulent shear flows for turbulence modeling

    Science.gov (United States)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-12-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  2. Intrinsic non-inductive current driven by ETG turbulence in tokamaks

    Science.gov (United States)

    Singh, Rameswar; Kaw, P. K.; Singh, R.; Gürcan, Ã.-. D.

    2017-10-01

    Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k∥ symmetry breaking for their survival which can be supplied by various means like mean E × B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes.

  3. Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping

    Science.gov (United States)

    Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna

    2017-11-01

    This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.

  4. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  5. Higher Education.

    Science.gov (United States)

    Hendrickson, Robert M.

    This chapter reports 1982 cases involving aspects of higher education. Interesting cases noted dealt with the federal government's authority to regulate state employees' retirement and raised the questions of whether Title IX covers employment, whether financial aid makes a college a program under Title IX, and whether sex segregated mortality…

  6. Plasma Soliton Turbulence and Statistical Mechanics

    International Nuclear Information System (INIS)

    Treumann, R.A.; Pottelette, R.

    1999-01-01

    Collisionless kinetic plasma turbulence is described approximately in terms of a superposition of non-interacting solitary waves. We discuss the relevance of such a description under astrophysical conditions. Several types of solitary waves may be of interest in this relation as generators of turbulence and turbulent transport. A consistent theory of turbulence can be given only in a few particular cases when the description can be reduced to the Korteweg-de Vries equation or some other simple equation like the Kadomtsev-Petviashvili equation. It turns out that the soliton turbulence is usually energetically harder than the ordinary weakly turbulent plasma description. This implies that interaction of particles with such kinds of turbulence can lead to stronger acceleration than in ordinary turbulence. However, the description in our model is only classical and non-relativistic. Transport in solitary turbulence is most important for drift wave turbulence. Such waves form solitary drift wave vortices which may provide cross-field transport. A more general discussion is given on transport. In a model of Levy flight trapping of particles in solitons (or solitary turbulence) one finds that the residence time of particles in the region of turbulence may be described by a generalized Lorentzian probability distribution. It is shown that under collisionless equilibrium conditions far away from thermal equilibrium such distributions are natural equilibrium distributions. A consistent thermodynamic description of such media can be given in terms of a generalized Lorentzian statistical mechanics and thermodynamics. (author)

  7. Wall roughness induces asymptotic ultimate turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verschoof, Ruben Adriaan; Bakhuis, Dennis; Huisman, Sander Gerard; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-01-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by

  8. Analysis of chaos in plasma turbulence

    DEFF Research Database (Denmark)

    Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.

    1996-01-01

    -stationary turbulent state is reached in a finite time, independent of the initial conditions. Different regimes of the turbulent state can be obtained by varying the coupling parameter C, related to the parallel electron dynamics. The turbulence is described by using particle tracking and tools from chaos analysis...

  9. PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.

    2009-01-01

    The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.

  10. Global Turbulence Decision Support for Aviation

    Science.gov (United States)

    Williams, J.; Sharman, R.; Kessinger, C.; Feltz, W.; Wimmers, A.

    2009-09-01

    Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers, yet legacy decision support products such as SIGMETs and SIGWX charts provide relatively low spatial- and temporal-resolution assessments and forecasts of turbulence, with limited usefulness for strategic planning and tactical turbulence avoidance. A new effort is underway to develop an automated, rapid-update, gridded global turbulence diagnosis and forecast system that addresses upper-level clear-air turbulence, mountain-wave turbulence, and convectively-induced turbulence. This NASA-funded effort, modeled on the U.S. Federal Aviation Administration's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, employs NCEP Global Forecast System (GFS) model output and data from NASA and operational satellites to produce quantitative turbulence nowcasts and forecasts. A convective nowcast element based on GFS forecasts and satellite data provides a basis for diagnosing convective turbulence. An operational prototype "Global GTG” system has been running in real-time at the U.S. National Center for Atmospheric Research since the spring of 2009. Initial verification based on data from TRMM, Cloudsat and MODIS (for the convection nowcasting) and AIREPs and AMDAR data (for turbulence) are presented. This product aims to provide the "single authoritative source” for global turbulence information for the U.S. Next Generation Air Transportation System.

  11. The PDF method for turbulent combustion

    Science.gov (United States)

    Pope, S. B.

    1991-01-01

    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  12. Optical intensity scintillation in the simulated atmospherical environment

    Science.gov (United States)

    Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir

    2016-09-01

    There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.

  13. Reflectometry simulation as a tool to explore new schemes of characterizing the fusion plasma turbulence

    International Nuclear Information System (INIS)

    Heuraux, S; Silva, F da; Gusakov, E; Popov, A Yu; Kosolapova, N; Syisoeva, K V

    2013-01-01

    A first step towards the measurement of turbulence characteristics or transient events required for the understanding of turbulent transport is to build an interpretative model able to link the measurements of a given diagnostic to a wanted parameter of the turbulence, and simulation helps us to do that. To obtain density fluctuation parameters in fusion plasmas, microwaves can be used. However, the interpretation of the received signals requires generally sophisticated data processing to extract an exact evaluation of the wanted parameters. Simulations of electromagnetic wave propagation in turbulent plasmas permit to identify the main processes involved in probing wave-fluctuations interaction and the reflectometry signature of the expected events, which gives ideas to model them. It is shown here how simulations have permitted to exhibit the role of resonances of the probing wave induced by turbulence and to explain part of phase jumps seen during reflectometer measurements. The multi-scattering phenomena can be modelled by a photon diffusion equation which can be used to provide information on the turbulence at density fluctuations levels higher than allowed by usual methods. The reflectometry simulations show that at high level of turbulence a competition between the resonances generation mechanism, able to maintain the probing depth, and the Bragg backscattering exists. Its consequences on turbulence characterisation are discussed.

  14. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  15. Effect of Small-Scale Turbulence on the Physiology and Morphology of Two Bloom-Forming Cyanobacteria.

    Science.gov (United States)

    Xiao, Yan; Li, Zhe; Li, Chao; Zhang, Zhen; Guo, Jinsong

    2016-01-01

    The main goal of the present work is to test the hypothesis that small-scale turbulence affected physiological activities and the morphology of cyanobacteria in high turbulence environments. Using quantified turbulence in a stirring device, we conducted one set of experiments on cultures of two strains of cyanobacteria with different phenotypes; i.e., unicellular Microcystis flos-aquae and colonial Anabaena flos-aquae. The effect of small-scale turbulence examined varied from 0 to 8.01×10-2 m2s-3, covering the range of turbulence intensities experienced by cyanobacteria in the field. The results of photosynthesis activity and the cellular chlorophyll a in both strains did not change significantly among the turbulence levels, indicating that the potential indirect effects of a light regime under the gradient of turbulent mixing could be ignored. However, the experiments demonstrated that small-scale turbulence significantly modulated algal nutrient uptake and growth in comparison to the stagnant control. Cellular N and C of the two stains showed approximately the same responses, resulting in a similar pattern of C/N ratios. Moreover, the change in the phosphate uptake rate was similar to that of growth in two strains, which implied that growth characteristic responses to turbulence may be dependent on the P strategy, which was correlated with accumulation of polyphosphate. Additionally, our results also showed the filament length of A. flos-aquae decreased in response to high turbulence, which could favor enhancement of the nutrient uptake. These findings suggested that both M. flos-aquae and A. flos-aquae adjust their growth rates in response to turbulence levels in the ways of asynchronous cellular stoichiometry of C, N, and P, especially the phosphorus strategy, to improve the nutrient application efficiency. The fact that adaptation strategies of cyanobacteria diversely to turbulence depending on their physiological conditions presents a good example to

  16. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    Science.gov (United States)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  17. A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows

    KAUST Repository

    Cheng, Wan

    2014-03-01

    We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.

  18. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Haugstad, B.S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements

  19. Inclusion of routine wind and turbulence forecasts in the Savannah River Plant's emergency response capabilities

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Gilhousen, D.B.

    1980-01-01

    The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours

  20. STOCHASTIC PARTICLE ACCELERATION IN TURBULENCE GENERATED BY MAGNETOROTATIONAL INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shigeo S.; Toma, Kenji [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578 (Japan); Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: shigeo@astr.tohoku.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-05-10

    We investigate stochastic particle acceleration in accretion flows. It is believed that magnetorotational instability (MRI) generates turbulence inside accretion flows and that cosmic rays (CRs) are accelerated by the turbulence. We calculate equations of motion for CRs in the turbulent fields generated by MRI with the shearing box approximation and without back reaction to the field. Our results show that the CRs randomly gain or lose their energy through interaction with the turbulent fields. The CRs diffuse in the configuration space anisotropically: the diffusion coefficient in the direction of the unperturbed flow is about 20 times higher than the Bohm coefficient, while those in the other directions are only a few times higher than the Bohm. The momentum distribution is isotropic and its evolution can be described by the diffusion equation in momentum space where the diffusion coefficient is a power-law function of the CR momentum. We show that the shear acceleration works efficiently for energetic particles. We also cautiously note that in the shearing box approximation, particles that cross the simulation box many times along the radial direction undergo unphysical runaway acceleration by the Lorentz transformation, which needs to be taken into account with special care.

  1. Turbulent Diffusion in Non-Homogeneous Environments

    Science.gov (United States)

    Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.

    2012-04-01

    Many experimental studies have been devoted to the understanding of non-homogeneous turbulent dynamics. Activity in this area intensified when the basic Kolmogorov self-similar theory was extended to two-dimensional or quasi 2D turbulent flows such as those appearing in the environment, that seem to control mixing [1,2]. The statistical description and the dynamics of these geophysical flows depend strongly on the distribution of long lived organized (coherent) structures. These flows show a complex topology, but may be subdivided in terms of strongly elliptical domains (high vorticity regions), strong hyperbolic domains (deformation cells with high energy condensations) and the background turbulent field of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to investigate the different influence of these topological diverse regions. Relevant geometrical information of different areas is also given by the maximum fractal dimension, which is related to the energy spectrum of the flow. Using all the available information it is possible to investigate the spatial variability of the horizontal eddy diffusivity K(x,y). This information would be very important when trying to model numerically the behaviour in time of the oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with the Wave Reynolds number as well as with the wind stress measured as the friction velocity from wind profiles measured at the coastline. Natural sea surface oily slicks of diverse origin (plankton, algae or natural emissions and seeps of oil) form complicated structures in the sea surface due to the effects of both multiscale turbulence and Langmuir circulation. It is then possible to use the topological and scaling analysis to discriminate the different physical sea surface processes. We can relate higher orden moments of the Lagrangian velocity to effective diffusivity in spite of the need to calibrate the different regions determining the

  2. Turbulent temperature fluctuations in liquid metals

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1977-01-01

    Examination of experimental data for the spectral distribution of velocity (u and v) and temperature (theta) fluctuations in the fully turbulent region of heated pipe-flow has suggested a schematic representation which incorporates the essential features. Evidence is cited to suggest that the -vtheta correlation coefficient maintains higher values that the uv coefficient at wave-numbers in the inertial subrange. The theory of Batchelor, Howells and Townsend, and limited evidence from experiments in mercury, then suggests the form of the theta 2 spectra and -vtheta cross-spectra in liquid metals. From this information, a limiting Peclet number is deduced, above which the correlation coefficient of v and theta should be a fairly weak function of Pe alone. An attempt to check this inference from published data for the RMS level of temperature fluctuations, and for the turbulent Prandtl number, proves inconclusive, because many of the correlation coefficients so estimated have values greater than unity. It is concluded that all these results for theta tilde must therefore be in error. However, since there is no evidence of very low correlation coefficients, they almost certainly lie in the range 0.5 multiply/divide 2 over a large proportion of the radius. Thus theta tilde can be estimated for any fluid in which the fluctuations are induced by uniform heating, at least to within a factor of 2, using the analysis presented. (author)

  3. 5th European Turbulence Conference

    CERN Document Server

    1995-01-01

    Under the auspices of the Euromech Committee, the Fifth European Turbulence Conference was held in Siena on 5-8 July 1994. Following the previous ETC meeting in Lyon (1986), Berlin (1988), Stockholm (1990) and Delft (1992), the Fifth ETC was aimed at providing a review of the fundamental aspects of turbulence from a theoretical, numerical and experimental point of view. In the magnificent town of Siena, more than 250 scientists from all over the world, spent four days discussing new ideas on turbulence. As a research worker in the field of turbulence, I must say that the works presented at the Conference, on which this book is based, covered almost all areas in this field. I also think that this book provides a major opportunity to have a complete overview of the most recent research works. I am extremely grateful to Prof. C. Cercignani, Dr. M. Loffredo, and Prof. R. Piva who, as members of the local organizing committee, share the success of the Conference. I also want to thank Mrs. Liu' Catena, for her inva...

  4. Stochastic acceleration by hydromagnetic turbulence

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1979-03-01

    A general theory for particle acceleration by weak hydromagnetic turbulence with a given spectrum of waves is described. Various limiting cases, corresponding to Fermi acceleration and magnetic pumping, are discussed and two numerical examples illustrating them are given. An attempt is made to show that the expression for the rate of Fermi acceleration is valid for finite amplitudes

  5. Topology optimization of turbulent flows

    DEFF Research Database (Denmark)

    Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.

    2018-01-01

    The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...

  6. Turbulent magnetohydrodynamics in liquid metals

    International Nuclear Information System (INIS)

    Berhanu, Michael

    2008-01-01

    In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr

  7. Nonuniform quantum turbulence in superfluids

    Science.gov (United States)

    Nemirovskii, Sergey K.

    2018-04-01

    The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.

  8. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  9. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    MHD turbulence in the solar wind are described in §6, and a theory of ..... on plasmas are very difficult to perform, and so experimental verification was not forth- .... checks of self-consistency regarding the assumed weakness of the cascade.

  10. Statistical description of turbulent dispersion

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2012-01-01

    We derive a comprehensive statistical model for dispersion of passive or almost passive admixture particles such as fine particulate matter, aerosols, smoke and fumes, in turbulent flow. The model rests on the Markov limit for particle velocity. It is in accordance with the asymptotic structure of

  11. Magnetic fluctuations in turbulent flow

    International Nuclear Information System (INIS)

    Ruzmaikin, A.A.

    1990-01-01

    For dynamo excitation of the magnetic fluctuations in infinite fluid only a sufficient large magnetic Reynolds number is needed. In a infinite region an additional condition appears. Due to the diffusion of the magnetic field through the boundaries a size of the region must be large enough compare with a correlation length of the turbulence. Author)

  12. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  13. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  14. Magnetic turbulence and anomalous transport

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1990-01-01

    The self consistency conditions for magnetic turbulence are reviewed. The main features of magnetic topology involving stochastic flux lines are summarized. Two driving sources are considered: thermal effects which require large scale residual islands and electron diamagnetism which involves fluctuation scales smaller than the ion Larmor radius and a β p threshold of order one. Stability criteria and transport coefficients are given

  15. Interaction of a Boundary Layer with a Turbulent Wake

    Science.gov (United States)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low

  16. THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES

    International Nuclear Information System (INIS)

    Youdin, Andrew N.; Mitchell, Jonathan L.

    2010-01-01

    The intense irradiation received by hot Jupiters suppresses convection in the outer layers of their atmospheres and lowers their cooling rates. 'Inflated' hot Jupiters, i.e., those with anomalously large transit radii, require additional sources of heat or suppressed cooling. We consider the effect of forced turbulent mixing in the radiative layer, which could be driven by atmospheric circulation or by another mechanism. Due to stable stratification in the atmosphere, forced turbulence drives a downward flux of heat. Weak turbulent mixing slows the cooling rate by this process, as if the planet were irradiated more intensely. Stronger turbulent mixing buries heat into the convective interior, provided the turbulence extends to the radiative-convective boundary. This inflates the planet until a balance is reached between the heat buried into and radiated from the interior. We also include the direct injection of heat due to the dissipation of turbulence or other effects. Such heating is already known to slow planetary cooling. We find that dissipation also enhances heat burial from mixing by lowering the threshold for turbulent mixing to drive heat into the interior. Strong turbulent mixing of heavy molecular species such as TiO may be necessary to explain stratospheric thermal inversions. We show that the amount of mixing required to loft TiO may overinflate the planet by our mechanism. This possible refutation of the TiO hypothesis deserves further study. Our inflation mechanism requires a deep stratified layer that only exists when the absorbed stellar flux greatly exceeds the intrinsic emitted flux. Thus, it would be less effective for more luminous brown dwarfs and for longer period gas giants, including Jupiter and Saturn.

  17. Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement

    International Nuclear Information System (INIS)

    Park, Y. H.; Choi, W. C.; Koo, J. H.; Song, M. G.; Ju, E. S.

    2000-01-01

    Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement were carried out according to the angle of the ultrasonic oscillator, materials of the reflector and each section when ultrasonic is reflected several times. Angles of the ultrasonic oscillator such as 30 deg., 45 .deg., 60 .deg., 90 .deg., 120 .deg., 135 .deg. and 150 .deg. were selected, and turbulent intensities were compared at Reynolds No. 2,000 and 4,000. Materials of the reflector such as wood, acryl, iron and glass were selected, and time mean velocity vector and turbulent intensity were compared at Reynolds No. 4,000. The zone which was observed was selected from first section to fourth section when ultrasonic was reflected several times. Every data such as time mean velocity vector and time mean turbulent intensity which was obtained by PIV measurement was examined, compared and discussed at Reynolds No. 2,000 and 4,000 to know the degree of turbulence enhancement in each case

  18. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  19. A Method for Measuring Sludge Settling Characteristics in Turbulent Flows

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben

    1996-01-01

    A method for the determination of the settlilng velocity for sludge as a funktion of turbulence intensity and sludge concentration has been developed. The principle of the method is to continuously feed the top of a settling column with sludge so that a steady state and uniform concentration...... distribution occurs in the middle of the column. This eliminates time scale effects such as flocculation from the measurements, as the resulting settling velocity only can be found at steady state and uniform conditions. The method assumes that flocculated sludge settles faster than disintegratedsludge to make...... a mass balance involving concentration at the top and the middle of the column as well as the inlet sludge flow. The resulting mass balance is used to calculate a lokal settling velocity. The turbulence is introduced by an oscillating grid in the whole depth of the settling column. Settling velocities...

  20. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    Science.gov (United States)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.