WorldWideScience

Sample records for higher temporal frequencies

  1. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.

    Science.gov (United States)

    Allison, J D; Smith, K R; Bonds, A B

    2001-01-01

    A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.

  2. Spectro-temporal modulation masking patterns reveal frequency selectivity.

    Science.gov (United States)

    Oetjen, Arne; Verhey, Jesko L

    2015-02-01

    The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.

  3. Binocular rivalry produced by temporal frequency differences

    Directory of Open Access Journals (Sweden)

    David eAlais

    2012-07-01

    Full Text Available Binocular rivalry occurs when each eye views images that are markedly different. Rather than seeing a binocular fusion of the two, each image is seen exclusively in a stochastic alternation of the monocular images. Here we examine whether temporal frequency differences will trigger binocular rivalry by presenting two random dot arrays that are spatially matched but which modulate temporally at two different rates and contained no net translation. We found that a perceptual alternation between the two temporal frequencies did indeed occur, provided the frequencies were sufficiently different, indicating that temporal information can produce binocular rivalry in the absence of spatial conflict. This finding is discussed with regard to the dependence of rivalry on conflict between spatial and temporal channels.

  4. Characteristics of spectro-temporal modulation frequency selectivity in humans.

    Science.gov (United States)

    Oetjen, Arne; Verhey, Jesko L

    2017-03-01

    There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.

  5. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes.

    Science.gov (United States)

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-09-01

    Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P light. Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.

  6. The role of temporal fine structure information for the low pitch of high-frequency complex tones

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2011-01-01

    The fused low pitch evoked by complex tones containing only unresolved high-frequency components demonstrates the ability of the human auditory system to extract pitch using a temporal mechanism in the absence of spectral cues. However, the temporal features used by such a mechanism have been...... amplitude fluctuations, or temporal fine structure (TFS), of the conveyed signal can be processed. Using a pitch-matching paradigm, the present study found that the low pitch of inharmonic transposed tones with unresolved components was consistent with the timing between the most prominent TFS maxima...... coding as such, and that TFS representation might persist at higher frequencies than previously thought....

  7. Finding flicker: Critical differences in temporal frequency capture attention

    Directory of Open Access Journals (Sweden)

    John eCass

    2011-11-01

    Full Text Available Rapid visual flicker is known to capture attention. Here we show slow flicker can also capture attention under reciprocal temporal conditions. Observers searched for a target line (vertical or horizontal among tilted distractors. Distractor lines were surrounded by luminance modulating annuli, all flickering sinusoidally at 1.3 or 12.1 Hz, while the target’s annulus flickered at frequencies within this range. Search times improved with increasing target/distractor frequency differences. For target-distractor frequency separations > 5 Hz reaction times were minimal with high frequency targets correctly identified more rapidly than low frequency targets (~400ms. Critically, however, at these optimal frequency separations search times for low and high frequency targets were unaffected by set size (slow flicker popped out from high flicker, and vice versa, indicating parallel and symmetric search performance when searching for high or low frequency targets. In a ‘cost’ experiment using 1.3 and 12.1 Hz flicker, the unique flickering annulus sometimes surrounded a distractor and, on other trials, surrounded the target. When centred on a distractor, the unique frequency produced a clear and symmetrical search cost. Together, these symmetric pop-out and search costs demonstrate that temporal frequency is a pre-attentive visual feature capable of capturing attention, and that it is relative rather than absolute frequencies that are critical. The shape of the search functions strongly suggest that early visual temporal frequency filters underlie these effects.

  8. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    International Nuclear Information System (INIS)

    Gündoğan, M; Mazzera, M; Ledingham, P M; Cristiani, M; De Riedmatten, H

    2013-01-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr 3+ :Y 2 SiO 5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light. (paper)

  9. Figure/ground segregation from temporal delay is best at high spatial frequencies.

    Science.gov (United States)

    Kojima, H

    1998-12-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.

  10. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Figure/ground segregation from temporal delay is best at high spatial frequencies

    OpenAIRE

    Kojima, Haruyuki

    1998-01-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are incons...

  12. Absolute spike frequency as a predictor of surgical outcome in temporal lobe epilepsy.

    Science.gov (United States)

    Ngo, Ly; Sperling, Michael R; Skidmore, Christopher; Mintzer, Scott; Nei, Maromi

    2017-04-01

    Frequent interictal epileptiform abnormalities may correlate with poor prognosis after temporal lobe resection for refractory epilepsy. To date, studies have focused on limited resections such as selective amygdalohippocampectomy and apical temporal lobectomy without hippocampectomy. However, it is unclear whether the frequency of spikes predicts outcome after standard anterior temporal lobectomy. Preoperative scalp video-EEG monitoring data from patients who subsequently underwent anterior temporal lobectomy over a three year period and were followed for at least one year were reviewed for the frequency of interictal epileptiform abnormalities. Surgical outcome for those patients with frequent spikes (>60/h) was compared with those with less frequent spikes. Additionally, spike frequency was evaluated as a continuous variable and correlated with outcome to determine if increased spike frequency correlated with worse outcome, as assessed by modified Engel Class outcome. Forty-seven patients (18 men, 29 women; mean age 40 years at surgery) were included. Forty-six patients had standard anterior temporal lobectomy (24 right, 22 left) and one had a modified left temporal lobectomy. There was no significant difference in seizure outcome between those with frequent (57% Class I) vs. those with less frequent (58% Class I) spikes. Increased spike frequency did not correlate with worse outcome. Greater than 20 complex partial seizures/month and generalized tonic-clonic seizures within one year of surgery correlated with worse outcome. This study suggests that absolute spike frequency does not predict seizure outcome after anterior temporal lobectomy unlike in selective procedures, and should not be used as a prognostic factor in this population. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Higher frequency network activity flow predicts lower frequency node activity in intrinsic low-frequency BOLD fluctuations.

    Science.gov (United States)

    Bajaj, Sahil; Adhikari, Bhim Mani; Dhamala, Mukesh

    2013-01-01

    The brain remains electrically and metabolically active during resting conditions. The low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) coherent across distributed brain regions are known to exhibit features of this activity. However, these intrinsic oscillations may undergo dynamic changes in time scales of seconds to minutes during resting conditions. Here, using wavelet-transform based time-frequency analysis techniques, we investigated the dynamic nature of default-mode networks from intrinsic BOLD signals recorded from participants maintaining visual fixation during resting conditions. We focused on the default-mode network consisting of the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), left middle temporal cortex (LMTC) and left angular gyrus (LAG). The analysis of the spectral power and causal flow patterns revealed that the intrinsic LFO undergo significant dynamic changes over time. Dividing the frequency interval 0 to 0.25 Hz of LFO into four intervals slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz), we further observed significant positive linear relationships of slow-4 in-out flow of network activity with slow-5 node activity, and slow-3 in-out flow of network activity with slow-4 node activity. The network activity associated with respiratory related frequency (slow-2) was found to have no relationship with the node activity in any of the frequency intervals. We found that the net causal flow towards a node in slow-3 band was correlated with the number of fibers, obtained from diffusion tensor imaging (DTI) data, from the other nodes connecting to that node. These findings imply that so-called resting state is not 'entirely' at rest, the higher frequency network activity flow can predict the lower frequency node activity, and the network activity flow can reflect underlying structural

  14. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer.

    Science.gov (United States)

    Ashtiani, Matin N; Kheradpisheh, Saeed R; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the "entry" level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal

  15. Dream recall frequency and content in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Bentes, Carla; Costa, João; Peralta, Rita; Pires, Joana; Sousa, Paula; Paiva, Teresa

    2011-11-01

    To evaluate morning dream recall frequency and content in patients with temporal lobe epilepsy (TLE). Fifty-two patients with pharmacoresistant TLE submitted to a written dream diary during five consecutive days and continuous video-electroencephalographic (video-EEG) monitoring. A matched control group of 41 healthy subjects completed the same diary at home. The number of recalled dreams (including long dreams) and nonrecalled dream mentation were collected, and the Dream Recall Rate (DRR) was calculated. Hall and Van de Castle dream content analysis was performed. Greater than 70% of patients with TLE (37 of 52) recall their dreams, but DRR rate in these patients is lower than in controls (p ≤ 0.001). Dream recall does not appear to be influenced by the presence of neuropsychological deficits nor seizure frequency. In dreams descriptions, TLE patients (vs. controls) have a higher percentage of familiarity in settings and fewer dreams with at least one success. Onirical activity of patients with TLE is different from that of healthy subjects. Our results support the role of mesial and neocortical temporal structures in dream experience. The selective activation of dysfunctional mesial structures may be responsible for some of the observed variability. However, dream content changes can also mirror social and psychological comorbidities of patients with epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  16. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  17. Finding Flicker: Critical Differences in Temporal Frequency Capture Attention

    OpenAIRE

    Cass, John; Van der Burg, Erik; Alais, David

    2011-01-01

    Rapid visual flicker is known to capture attention. Here we show slow flicker can also capture attention under reciprocal temporal conditions. Observers searched for a target line (vertical or horizontal) among tilted distractors. Distractor lines were surrounded by luminance modulating annuli, all flickering sinusoidally at 1.3 or 12.1 Hz, while the target’s annulus flickered at frequencies within this range. Search times improved with increasing target/distractor frequency differences. For ...

  18. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  19. Temporal frequency probing for 5D transient analysis of global light transport

    KAUST Repository

    O'Toole, Matthew; Heide, Felix; Xiao, Lei; Hullin, Matthias B.; Heidrich, Wolfgang; Kutulakos, Kiriakos N.

    2014-01-01

    To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".

  20. Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains

    CERN Document Server

    Billings, Stephen A

    2013-01-01

    Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by

  1. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    Science.gov (United States)

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lai; Kang, Zhe; Li, Qing; Gao, Xuejian; Qin, Guanshi, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn; Qin, Weiping, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Liao, Meisong; Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2014-11-03

    We report the generation of multiple soliton self-frequency shift cancellations in a temporally tailored tellurite photonic crystal fiber (PCF). The temporally regulated group velocity dispersion (GVD) is generated in the fiber by soliton induced optical Kerr effect. Two red-shifted dispersive waves spring up when two Raman solitons meet their own second zero-dispersion-wavelengths in the PCF. These results show how, through temporally tailored GVD, nonlinearities can be harnessed to generate unexpected effects.

  3. Designing waveforms for temporal encoding using a frequency sampling method

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed......In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method...... waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-tonoise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate...

  4. Time Reversal of Arbitrary Photonic Temporal Modes via Nonlinear Optical Frequency Conversion

    OpenAIRE

    Raymer, Michael G; Reddy, Dileep V; van Enk, Steven J; McKinstrie, Colin J

    2017-01-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is blind reversal of a photon's temporal wave-packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. This scheme allows for quantum operations such as a...

  5. Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing

    Science.gov (United States)

    Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian

    2006-01-01

    Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…

  6. Temporal frequency probing for 5D transient analysis of global light transport

    KAUST Repository

    O'Toole, Matthew

    2014-07-27

    We analyze light propagation in an unknown scene using projectors and cameras that operate at transient timescales. In this new photography regime, the projector emits a spatio-temporal 3D signal and the camera receives a transformed version of it, determined by the set of all light transport paths through the scene and the time delays they induce. The underlying 3D-to-3D transformation encodes scene geometry and global transport in great detail, but individual transport components (e.g., direct reflections, inter-reflections, caustics, etc.) are coupled nontrivially in both space and time. To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".

  7. Using individual differences to test the role of temporal and place cues in coding frequency modulation.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2015-11-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.

  8. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results. Part II; Cloud Coverage

    Science.gov (United States)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    This is the second part of a study on how temporal sampling frequency affects satellite retrievals in support of the Deep Space Climate Observatory (DSCOVR) mission. Continuing from Part 1, which looked at Earth's radiation budget, this paper presents the effect of sampling frequency on DSCOVR-derived cloud fraction. The output from NASA's Goddard Earth Observing System version 5 (GEOS-5) Nature Run is used as the "truth". The effect of temporal resolution on potential DSCOVR observations is assessed by subsampling the full Nature Run data. A set of metrics, including uncertainty and absolute error in the subsampled time series, correlation between the original and the subsamples, and Fourier analysis have been used for this study. Results show that, for a given sampling frequency, the uncertainties in the annual mean cloud fraction of the sunlit half of the Earth are larger over land than over ocean. Analysis of correlation coefficients between the subsamples and the original time series demonstrates that even though sampling at certain longer time intervals may not increase the uncertainty in the mean, the subsampled time series is further and further away from the "truth" as the sampling interval becomes larger and larger. Fourier analysis shows that the simulated DSCOVR cloud fraction has underlying periodical features at certain time intervals, such as 8, 12, and 24 h. If the data is subsampled at these frequencies, the uncertainties in the mean cloud fraction are higher. These results provide helpful insights for the DSCOVR temporal sampling strategy.

  9. Sex & vision I: Spatio-temporal resolution

    Directory of Open Access Journals (Sweden)

    Abramov Israel

    2012-09-01

    Full Text Available Abstract Background Cerebral cortex has a very large number of testosterone receptors, which could be a basis for sex differences in sensory functions. For example, audition has clear sex differences, which are related to serum testosterone levels. Of all major sensory systems only vision has not been examined for sex differences, which is surprising because occipital lobe (primary visual projection area may have the highest density of testosterone receptors in the cortex. We have examined a basic visual function: spatial and temporal pattern resolution and acuity. Methods We tested large groups of young adults with normal vision. They were screened with a battery of standard tests that examined acuity, color vision, and stereopsis. We sampled the visual system’s contrast-sensitivity function (CSF across the entire spatio-temporal space: 6 spatial frequencies at each of 5 temporal rates. Stimuli were gratings with sinusoidal luminance profiles generated on a special-purpose computer screen; their contrast was also sinusoidally modulated in time. We measured threshold contrasts using a criterion-free (forced-choice, adaptive psychophysical method (QUEST algorithm. Also, each individual’s acuity limit was estimated by fitting his or her data with a model and extrapolating to find the spatial frequency corresponding to 100% contrast. Results At a very low temporal rate, the spatial CSF was the canonical inverted-U; but for higher temporal rates, the maxima of the spatial CSFs shifted: Observers lost sensitivity at high spatial frequencies and gained sensitivity at low frequencies; also, all the maxima of the CSFs shifted by about the same amount in spatial frequency. Main effect: there was a significant (ANOVA sex difference. Across the entire spatio-temporal domain, males were more sensitive, especially at higher spatial frequencies; similarly males had significantly better acuity at all temporal rates. Conclusion As with other sensory systems

  10. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    Science.gov (United States)

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  11. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.

    2004-01-01

    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  12. Semicircular canal dehiscence: Frequency and distribution on temporal bone CT and its relationship with the clinical outcomes

    International Nuclear Information System (INIS)

    Elmali, Muzaffer; Polat, Ahmet Veysel; Kucuk, Harun; Atmaca, Sinan; Aksoy, Ahmet

    2013-01-01

    Purpose: In this study, we aimed to investigate the frequency of SCD and its distribution and relationship with clinical outcomes on thin-section CT of the temporal bone. Materials and methods: Digital temporal bone CT images of 850 consecutive patients (1700 temporal bone CTs, 5100 SCs) who presented with a range of complaints such as vertigo, deafness, ear pain, fullness, and discharge between January 2008 and December 2011 were re-evaluated. Axial and oblique coronal reconstruction images of the temporal bone were made with a reconstruction thickness of 0.5 mm. Additionally, superior SC was evaluated in two perpendicular planes. Results: Out of 850 patients, 70 had completely normal temporal bone CT. Ninety-three patients had at least one SCD. In the temporal bone-based evaluation, 119 (26 bilateral, 67 unilateral) of 1700 temporal bones (7%) showed dehiscence. The SC-based evaluation revealed 125 SCD (2.5%) in 5100 SCs. The total number and rates of SCD were as follows: superior 103 (82.4%), posterior 13 (10.4%), and lateral nine (7.2%). Twenty of the 93 patients with SCD (21.5%) revealed no other findings on their temporal bone CTs. We determined a significant correlation between vestibular complaints, conductive hearing loss and SCD but there was no correlation between mixed, sensorineural hearing loss and SCD. Conclusion: We determined the frequency of SCD in 11% of patients and 7% of temporal bones. With regards to the distribution, the superior SC showed the highest dehiscence rate (82.4%). We found a significant correlation between vestibular symptoms, conductive hearing loss and SCD

  13. Semicircular canal dehiscence: Frequency and distribution on temporal bone CT and its relationship with the clinical outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Elmali, Muzaffer, E-mail: muzafel@yahoo.com.tr [Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Polat, Ahmet Veysel, E-mail: veyselp@hotmail.com [Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Kucuk, Harun, E-mail: hardrmd@yahoo.com [Department of Otorhinolaryngology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Atmaca, Sinan, E-mail: sinanatmaca@yahoo.com [Department of Otorhinolaryngology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey); Aksoy, Ahmet, E-mail: toxocara47@hotmail.com [Department of Otorhinolaryngology, Ondokuz Mayis University, Faculty of Medicine, Samsun (Turkey)

    2013-10-01

    Purpose: In this study, we aimed to investigate the frequency of SCD and its distribution and relationship with clinical outcomes on thin-section CT of the temporal bone. Materials and methods: Digital temporal bone CT images of 850 consecutive patients (1700 temporal bone CTs, 5100 SCs) who presented with a range of complaints such as vertigo, deafness, ear pain, fullness, and discharge between January 2008 and December 2011 were re-evaluated. Axial and oblique coronal reconstruction images of the temporal bone were made with a reconstruction thickness of 0.5 mm. Additionally, superior SC was evaluated in two perpendicular planes. Results: Out of 850 patients, 70 had completely normal temporal bone CT. Ninety-three patients had at least one SCD. In the temporal bone-based evaluation, 119 (26 bilateral, 67 unilateral) of 1700 temporal bones (7%) showed dehiscence. The SC-based evaluation revealed 125 SCD (2.5%) in 5100 SCs. The total number and rates of SCD were as follows: superior 103 (82.4%), posterior 13 (10.4%), and lateral nine (7.2%). Twenty of the 93 patients with SCD (21.5%) revealed no other findings on their temporal bone CTs. We determined a significant correlation between vestibular complaints, conductive hearing loss and SCD but there was no correlation between mixed, sensorineural hearing loss and SCD. Conclusion: We determined the frequency of SCD in 11% of patients and 7% of temporal bones. With regards to the distribution, the superior SC showed the highest dehiscence rate (82.4%). We found a significant correlation between vestibular symptoms, conductive hearing loss and SCD.

  14. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection.

    Science.gov (United States)

    Zhang, Minliang; Chen, Qian; Tao, Tianyang; Feng, Shijie; Hu, Yan; Li, Hui; Zuo, Chao

    2017-08-21

    Temporal phase unwrapping (TPU) is an essential algorithm in fringe projection profilometry (FPP), especially when measuring complex objects with discontinuities and isolated surfaces. Among others, the multi-frequency TPU has been proven to be the most reliable algorithm in the presence of noise. For a practical FPP system, in order to achieve an accurate, efficient, and reliable measurement, one needs to make wise choices about three key experimental parameters: the highest fringe frequency, the phase-shifting steps, and the fringe pattern sequence. However, there was very little research on how to optimize these parameters quantitatively, especially considering all three aspects from a theoretical and analytical perspective simultaneously. In this work, we propose a new scheme to determine simultaneously the optimal fringe frequency, phase-shifting steps and pattern sequence under multi-frequency TPU, robustly achieving high accuracy measurement by a minimum number of fringe frames. Firstly, noise models regarding phase-shifting algorithms as well as 3-D coordinates are established under a projector defocusing condition, which leads to the optimal highest fringe frequency for a FPP system. Then, a new concept termed frequency-to-frame ratio (FFR) that evaluates the magnitude of the contribution of each frame for TPU is defined, on which an optimal phase-shifting combination scheme is proposed. Finally, a judgment criterion is established, which can be used to judge whether the ratio between adjacent fringe frequencies is conducive to stably and efficiently unwrapping the phase. The proposed method provides a simple and effective theoretical framework to improve the accuracy, efficiency, and robustness of a practical FPP system in actual measurement conditions. The correctness of the derived models as well as the validity of the proposed schemes have been verified through extensive simulations and experiments. Based on a normal monocular 3-D FPP hardware system

  15. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    Directory of Open Access Journals (Sweden)

    Huaguang eGu

    2015-08-01

    Full Text Available In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor.

  16. Effect of higher frequency on the classification of steady-state visual evoked potentials

    Science.gov (United States)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  17. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  18. Greater repertoire and temporal variability of cross-frequency coupling (CFC modes in resting-state neuromagnetic recordings among children with reading difficulties

    Directory of Open Access Journals (Sweden)

    Stavros I Dimitriadis

    2016-04-01

    Full Text Available AbstractCross-frequency, phase-to-amplitude coupling (PAC between neuronal oscillations at rest may serve as the substrate that supports information exchange between functionally specialized neuronal populations both within and between cortical regions. The study utilizes novel algorithms to identify prominent instantaneous modes of cross-frequency coupling and their temporal stability in resting state magnetoencephalography (MEG data from 23 students experiencing severe reading difficulties (RD and 27 age-matched non-impaired readers (NI.Phase coherence estimates were computed in order to identify the prominent mode of PAC interaction for each sensor, sensor pair, and pair of frequency bands (from δ to γ at successive temporal segments of the continuous MEG record. The degree of variability in the characteristic frequency-pair PACf1-f2 modes over time was also estimated. Results revealed a wider repertoire of prominent PAC interactions in RD as compared to NI students, suggesting an altered functional substrate for information exchange between neuronal assemblies in the former group. Moreover, RD students showed significant variability in PAC modes over time. This temporal instability of PAC values was particularly prominent: (a within and between right hemisphere temporal and occipitotemporal sensors and, (b between left hemisphere frontal, temporal, and occipitotemporal sensors and corresponding right hemisphere sites. Altered modes of neuronal population coupling may help account for extant data revealing reduced, task-related neurophysiological and hemodynamic activation in left hemisphere regions involved in the reading network in RD. Moreover, the spatial distribution of pronounced instability of cross-frequency coupling modes in this group may provide an explanation for previous reports suggesting the presence of inefficient compensatory mechanisms to support reading.

  19. Modulation frequency as a cue for auditory speed perception.

    Science.gov (United States)

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  20. Higher order temporal finite element methods through mixed formalisms.

    Science.gov (United States)

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

  1. Frequency filter of seed x-ray by use of x-ray laser medium. Toward the generation of the temporally coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kato, Yoshiaki; Renzhong, Tai

    2009-01-01

    We evaluate the characteristics of a higher-order harmonics light as a seed X-ray amplified through a laser-produced X-ray amplifier. The narrow spectral bandwidth of the X-ray amplifier works as the frequency filter of the seed X-ray, resulting in that only the temporally coherent X-ray is amplified. Experimental investigation using the 29th-order harmonic light of the Ti:sapphire laser at a wavelength of 26.9 nm together with a neon-like manganese X-ray laser medium shows evident spectral narrowing of the seed X-ray and amplification without serious diffraction effects on the propagation of the amplified X-ray beam. This implies that the present combination is potential to realize temporally coherent X-ray lasers, with an expected duration of approximately 400 fs. (author)

  2. Frequency modulation of neural oscillations according to visual task demands.

    Science.gov (United States)

    Wutz, Andreas; Melcher, David; Samaha, Jason

    2018-02-06

    Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.

  3. The Low Pitch of High-Frequency Complex Tones Relies on Temporal Fine Structure Information

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2010-01-01

    High-frequency complex tones containing only unresolved harmonic components with a frequency spacing Δf usually evoke a low pitch equal to Δf. However, for inharmonic components, the low pitch is often found to deviate slightly from Δf. Whether this pitch shift relies exclusively on temporal fine...... structure (TFS) cues has been a matter of debate. It is also controversial up to which frequency TFS information remains available, and to what extent envelope cues become dominant as frequency increases. Using a pitch-matching paradigm, this study investigated whether the pitch of transposed tones.......5]. All stimuli were presented at 50 dB SPL in broadband pink-noise (13.5 dB/Hz at 1 kHz), and 40 matches per condition were obtained. For fenv = fc/11.5, the results favored hypothesis A for all values of fc, indicating that TFS cues are available and used for pitch extraction, up to at least 7 k...

  4. MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-08-01

    Full Text Available Image Matching is often one of the first tasks in many Photogrammetry and Remote Sensing applications. This paper presents an efficient approach to automated multi-temporal and multi-sensor image matching based on local frequency information. Two new independent image representations, Local Average Phase (LAP and Local Weighted Amplitude (LWA, are presented to emphasize the common scene information, while suppressing the non-common illumination and sensor-dependent information. In order to get the two representations, local frequency information is firstly obtained from Log-Gabor wavelet transformation, which is similar to that of the human visual system; then the outputs of odd and even symmetric filters are used to construct the LAP and LWA. The LAP and LWA emphasize on the phase and amplitude information respectively. As these two representations are both derivative-free and threshold-free, they are robust to noise and can keep as much of the image details as possible. A new Compositional Similarity Measure (CSM is also presented to combine the LAP and LWA with the same weight for measuring the similarity of multi-temporal and multi-sensor images. The CSM can make the LAP and LWA compensate for each other and can make full use of the amplitude and phase of local frequency information. In many image matching applications, the template is usually selected without consideration of its matching robustness and accuracy. In order to overcome this problem, a local best matching point detection is presented to detect the best matching template. In the detection method, we employ self-similarity analysis to identify the template with the highest matching robustness and accuracy. Experimental results using some real images and simulation images demonstrate that the presented approach is effective for matching image pairs with significant scene and illumination changes and that it has advantages over other state-of-the-art approaches, which include: the

  5. Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications

    Science.gov (United States)

    Meseguer-Ruiz, Oliver; Osborn, Timothy J.; Sarricolea, Pablo; Jones, Philip D.; Cantos, Jorge Olcina; Serrano-Notivoli, Roberto; Martin-Vide, Javier

    2018-03-01

    Precipitation on the Spanish mainland and in the Balearic archipelago exhibits a high degree of spatial and temporal variability, regardless of the temporal resolution of the data considered. The fractal dimension indicates the property of self-similarity, and in the case of this study, wherein it is applied to the temporal behaviour of rainfall at a fine (10-min) resolution from a total of 48 observatories, it provides insights into its more or less convective nature. The methodology of Jenkinson & Collison which automatically classifies synoptic situations at the surface, as well as an adaptation of this methodology at 500 hPa, was applied in order to gain insights into the synoptic implications of extreme values of the fractal dimension. The highest fractal dimension values in the study area were observed in places with precipitation that has a more random behaviour over time with generally high totals. Four different regions in which the atmospheric mechanisms giving rise to precipitation at the surface differ from the corresponding above-ground mechanisms have been identified in the study area based on the fractal dimension. In the north of the Iberian Peninsula, high fractal dimension values are linked to a lower frequency of anticyclonic situations, whereas the opposite occurs in the central region. In the Mediterranean, higher fractal dimension values are associated with a higher frequency of the anticyclonic type and a lower frequency of the advective type from the east. In the south, lower fractal dimension values indicate higher frequency with respect to the anticyclonic type from the east and lower frequency with respect to the cyclonic type.

  6. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.

    2015-01-01

    Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst

  7. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy

    Science.gov (United States)

    Buckmaster, Paul S.; Abrams, Emily; Wen, Xiling

    2018-01-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. PMID:28425097

  8. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Buckmaster, Paul S; Abrams, Emily; Wen, Xiling

    2017-08-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. © 2017 Wiley Periodicals, Inc.

  9. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.

    Science.gov (United States)

    Birznieks, Ingvars; Vickery, Richard M

    2017-05-22

    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Microscopic mild focal cortical dysplasia in temporal lobe dual pathology: an electrocorticography study.

    Science.gov (United States)

    Morales Chacón, L; Estupiñán, B; Lorigados Pedre, L; Trápaga Quincoses, O; García Maeso, I; Sanchez, A; Bender del Busto, J; Garcia, M E; Baez Martin, M; Zaldivar, M; Gómez, A; Orozco, S; Rocha Arrieta, L

    2009-10-01

    Associations between electrophysiological and histological findings might provide an insight into the epileptogenicity of mild focal cortical dysplasia (FCD) in patients with temporal lobe epilepsy (TLE) and a dual pathology. A total of 22 patients with pharmacoresistant TLE were included in the study, 16 of them with histologically confirmed hippocampal sclerosis (HS) associated with neocortical temporal mild Palmini Type-I FCD subtypes and 6 with HS. Intraoperative electrocorticography (ECoG) recordings were analysed for epileptiform discharge frequency and morphology. Associations between histological, and electrocorticography pattern findings in these patients were analysed. Electroclinical outcomes in these patients were also evaluated. Neocortical areas with mild Palmini Type-I FCD showed a significantly higher spike frequency (SF) recorded in the inferior temporal gyrus than those neocortical areas in patients with HS. There was a tendency to higher spike frequency and lower amplitude in neocortical areas with histopathologic subtype IB FCD in relation with IA during intraoperative ECoG. Post-SF excision and amplitude were significantly lower during neocortical post-excision intraoperative ECoG than during neocortical pre-excision recording. There was no difference found in the clinical outcome between patients with and without FCD. Intraoperative electrocorticographic interictal spike frequency recorded in the neocortical inferior temporal gyrus may help to characterize the histopathologic subtypes of mild Palmini Type-I FCD in patients with temporal lobe epilepsy (TLE) and a dual pathology. Our data support the epileptogenicity of neocortical mild FCD in TLE and assessments of ECoG patterns are relevant to determine the extent of the resection in these patients which can influence the electroclinical outcome.

  11. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  12. Can temporal fine structure represent the fundamental frequency of unresolved harmonics?

    Science.gov (United States)

    Oxenham, Andrew J; Micheyl, Christophe; Keebler, Michael V

    2009-04-01

    At least two modes of pitch perception exist: in one, the fundamental frequency (F0) of harmonic complex tones is estimated using the temporal fine structure (TFS) of individual low-order resolved harmonics; in the other, F0 is derived from the temporal envelope of high-order unresolved harmonics that interact in the auditory periphery. Pitch is typically more accurate in the former than in the latter mode. Another possibility is that pitch can sometimes be coded via the TFS from unresolved harmonics. A recent study supporting this third possibility [Moore et al. (2006a). J. Acoust. Soc. Am. 119, 480-490] based its conclusion on a condition where phase interaction effects (implying unresolved harmonics) accompanied accurate F0 discrimination (implying TFS processing). The present study tests whether these results were influenced by audible distortion products. Experiment 1 replicated the original results, obtained using a low-level background noise. However, experiments 2-4 found no evidence for the use of TFS cues with unresolved harmonics when the background noise level was raised, or the stimulus level was lowered, to render distortion inaudible. Experiment 5 measured the presence and phase dependence of audible distortion products. The results provide no evidence that TFS cues are used to code the F0 of unresolved harmonics.

  13. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-05-02

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength (DW) PSA is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesis herein presented may be used for interferometric contouring of discontinuous industrial objects. Also DW-PSA may be useful for DW shop-testing of deep free-form aspheres. As shown here, using the FTF-based synthesis one may easily find explicit DW-PSA formulae optimized for high signal-to-noise and high detuning robustness. To this date, no general synthesis and analysis for temporal DW-PSAs has been given; only ad hoc DW-PSAs formulas have been reported. Consequently, no explicit formulae for their spectra, their signal-to-noise, their detuning and harmonic robustness has been given. Here for the first time a fully general procedure for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, signal-to-noise ratio and detuning robustness is given. We finally generalize DW-PSA to higher number of wavelength temporal PSAs.

  14. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  15. Temporal and spatio-temporal vibrotactile displays for voice fundamental frequency: an initial evaluation of a new vibrotactile speech perception aid with normal-hearing and hearing-impaired individuals.

    Science.gov (United States)

    Auer, E T; Bernstein, L E; Coulter, D C

    1998-10-01

    Four experiments were performed to evaluate a new wearable vibrotactile speech perception aid that extracts fundamental frequency (F0) and displays the extracted F0 as a single-channel temporal or an eight-channel spatio-temporal stimulus. Specifically, we investigated the perception of intonation (i.e., question versus statement) and emphatic stress (i.e., stress on the first, second, or third word) under Visual-Alone (VA), Visual-Tactile (VT), and Tactile-Alone (TA) conditions and compared performance using the temporal and spatio-temporal vibrotactile display. Subjects were adults with normal hearing in experiments I-III and adults with severe to profound hearing impairments in experiment IV. Both versions of the vibrotactile speech perception aid successfully conveyed intonation. Vibrotactile stress information was successfully conveyed, but vibrotactile stress information did not enhance performance in VT conditions beyond performance in VA conditions. In experiment III, which involved only intonation identification, a reliable advantage for the spatio-temporal display was obtained. Differences between subject groups were obtained for intonation identification, with more accurate VT performance by those with normal hearing. Possible effects of long-term hearing status are discussed.

  16. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  17. Low and High Frequency Hippocampal Stimulation for Drug-Resistant Mesial Temporal Lobe Epilepsy.

    Science.gov (United States)

    Lim, Siew-Na; Lee, Ching-Yi; Lee, Shih-Tseng; Tu, Po-Hsun; Chang, Bao-Luen; Lee, Chih-Hong; Cheng, Mei-Yun; Chang, Chun-Wei; Tseng, Wei-En Johnny; Hsieh, Hsiang-Yao; Chiang, Hsing-I; Wu, Tony

    2016-06-01

    Electrical stimulation of the hippocampus offers the possibility to treat patients with mesial temporal lobe epilepsy (MTLE) who are not surgical candidates. We report long-term follow-up results in five patients receiving low or high frequency hippocampal stimulation for drug-resistant MTLE. The patients underwent stereotactic implantation of quadripolar stimulating electrodes in the hippocampus. Two of the patients received unilateral electrode implantation, while the other three received bilateral implantation. Stimulation of the hippocampal electrodes was turned ON immediately after the implantation of an implantable pulse generator, with initial stimulation parameters: 1 V, 90-150 μs, 5 or 145 Hz. The frequency of seizures was monitored and compared with preimplantation baseline data. Two men and three women, aged 27-61 years were studied, with a mean follow-up period of 38.4 months (range, 30-42 months). The baseline seizure frequency was 2.0-15.3/month. The five patients had an average 45% (range 22-72%) reduction in the frequency of seizures after hippocampal stimulation over the study period. Low frequency hippocampal stimulation decreased the frequency of seizures in two patients (by 54% and 72%, respectively). No implantation- or stimulation-related side effects were reported. Electrical stimulation of the hippocampus is a minimally invasive and reversible method that can improve seizure outcomes in patients with drug-resistant MTLE. The optimal frequency of stimulation varied from patient to patient and therefore required individual setting. These experimental results warrant further controlled studies with a large patient population to evaluate the long-term effect of hippocampal stimulation with different stimulation parameters. © 2016 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.

  18. Early Prediction of Student Dropout and Performance in MOOCSs Using Higher Granularity Temporal Information

    Science.gov (United States)

    Ye, Cheng; Biswas, Gautam

    2014-01-01

    Our project is motivated by the early dropout and low completion rate problem in MOOCs. We have extended traditional features for MOOC analysis with richer and higher granularity information to make more accurate predictions of dropout and performance. The results show that finer-grained temporal information increases the predictive power in the…

  19. Generation of intensity duration frequency curves and intensity temporal variability pattern of intense rainfall for Lages/SC

    Directory of Open Access Journals (Sweden)

    Célio Orli Cardoso

    2014-04-01

    Full Text Available The objective of this work was to analyze the frequency distribution and intensity temporal variability of intense rainfall for Lages/SC from diary pluviograph data. Data on annual series of maximum rainfalls from rain gauges of the CAV-UDESC Weather Station in Lages/SC were used from 2000 to 2009. Gumbel statistic distribution was applied in order to obtain the rainfall height and intensity in the following return periods: 2, 5, 10, 15 and 20 years. Results showed intensity-duration-frequency curves (I-D-F for those return periods, as well as I-D-F equations: i=2050.Tr0,20.(t+30-0,89, where i was the intensity, Tr was the rainfall return periods and t was the rainfall duration. For the intensity of temporal variability pattern along of the rainfall duration time, the convective, or advanced pattern was the predominant, with larger precipitate rainfalls in the first half of the duration. The same pattern presented larger occurrences in the spring and summer stations.

  20. Electric fields in the sheath formed in a 300 mm, dual frequency capacitive argon discharge

    International Nuclear Information System (INIS)

    Barnat, E V; Miller, P A; Hebner, G A; Paterson, A M; Panagopoulos, T; Hammond, E; Holland, J

    2007-01-01

    The spatial structure and temporal evolution of the electric fields in a sheath formed in a dual frequency, 300 mm capacitive argon discharge are measured as functions of relative mixing between a low frequency current and a high frequency current. It is found that the overall structure of the sheath (potential across the sheath and the thickness of the sheath) are dominated by the lower frequency component while (smaller) oscillations in these quantities are dictated by the higher frequency component. Comparisons of the measured spatial and temporal profiles are made for Lieberman's and Robiche et al sheath model and with a particle in a cell calculation

  1. Atypical language representation in children with intractable temporal lobe epilepsy.

    Science.gov (United States)

    Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem

    2016-05-01

    This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    Science.gov (United States)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  3. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Gredelj, Sabina; Kumar, Sunil; Gerson, Andrea R.; Cavallaro, Giuseppe P.

    2006-01-01

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al 2 O 3 ratios than obtained at 100 W and 575 deg. C. AlN/Al 2 O 3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  4. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  5. Mean occurrence frequency and temporal risk analysis of solar particle events

    International Nuclear Information System (INIS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Wilson, John W.

    2006-01-01

    The protection of astronauts from space radiation is required on future exploratory class and long-duration missions. For the accurate projections of radiation doses, a solar cycle statistical model, which quantifies the progression level within the cycle, has been developed. The resultant future cycle projection is then applied to estimate the mean frequency of solar particle events (SPEs) in the near future using a power law function of sunspot number. Detailed temporal behaviors of the recent large event and two historically large events of the August 1972 SPE and the November 1960 SPE are analyzed for dose-rate and cumulative dose equivalent at sensitive organs. Polyethylene shielded 'storm shelters' inside spacecraft are studied to limit astronauts' total exposure at a sensitive site within 10 cSv from a large event as a potential goal that fulfills the ALARA (as low as reasonably achievable) requirement

  6. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    Directory of Open Access Journals (Sweden)

    Kim Sun Ho

    2017-01-01

    Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  7. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing

    2017-09-01

    Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (ptemporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high-frequency

  8. Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina.

    Science.gov (United States)

    van Wyk, Michiel; Taylor, W Rowland; Vaney, David I

    2006-12-20

    Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta-ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light-On or light-Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors (LEDs), which respond to spot illumination at both light-On and light-Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only approximately 15% of the ganglion cells, neighboring LEDs are separated by 30-40 microm on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive-field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.

  9. Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies.

    Science.gov (United States)

    Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi

    2004-04-01

    The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.

  10. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    Science.gov (United States)

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  11. Temporal anteroinferior encephalocele: An underrecognized etiology of temporal lobe epilepsy?

    Science.gov (United States)

    Saavalainen, Taavi; Jutila, Leena; Mervaala, Esa; Kälviäinen, Reetta; Vanninen, Ritva; Immonen, Arto

    2015-10-27

    To report the increasing frequency with which temporal anteroinferior encephalocele is a cause of adult temporal lobe epilepsy, to illustrate the clinical and imaging characteristics of this condition, and to report its surgical treatment in a series of 23 adult patients. Epilepsy patients diagnosed with temporal anteroinferior encephalocele from January 2006 to December 2013 in a national epilepsy reference center were included in this noninterventional study. Twenty-three epilepsy patients (14 female, mean age 43.8 years) were diagnosed with temporal anteroinferior encephalocele in our institute. Thirteen patients had ≥2 encephaloceles; 7 cases presented bilaterally. The estimated frequency of this condition was 0.3% among MRI examinations performed due to newly diagnosed epilepsy (n = 6) and 1.9% among drug-resistant patients referred to our center (n = 17). Nine patients with local encephalocele disconnection (n = 4) or anterior temporal lobectomy and amygdalohippocampectomy (n = 5) have become seizure-free (Engel 1) for a mean 2.8 years (range 3 months-6.2 years) of follow-up. Three patients with local encephalocele disconnection were almost seizure-free or exhibited worthwhile improvement. Histologically, all 12 surgical patients had gliosis at the base of the encephalocele; some had cortical laminar disorganization (n = 5) or mild hippocampal degeneration (n = 1). The possibility of a temporal encephalocele should be considered when interpreting MRI examinations of patients with medically intractable focal epilepsy. These patients can significantly benefit from unitemporal epilepsy surgery, even in cases with bilateral encephaloceles. © 2015 American Academy of Neurology.

  12. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  13. Process Inference from High Frequency Temporal Variations in Dissolved Organic Carbon (DOC) Dynamics Across Nested Spatial Scales

    Science.gov (United States)

    Tunaley, C.; Tetzlaff, D.; Lessels, J. S.; Soulsby, C.

    2014-12-01

    In order to understand aquatic ecosystem functioning it is critical to understand the processes that control the spatial and temporal variations in DOC. DOC concentrations are highly dynamic, however, our understanding at short, high frequency timescales is still limited. Optical sensors which act as a proxy for DOC provide the opportunity to investigate near-continuous DOC variations in order to understand the hydrological and biogeochemical processes that control concentrations at short temporal scales. Here we present inferred 15 minute stream water DOC data for a 12 month period at three nested scales (1km2, 3km2 and 31km2) for the Bruntland Burn, a headwater catchment in NE Scotland. High frequency data were measured using FDOM and CDOM probes which work by measuring the fluorescent component and coloured component, respectively, of DOC when exposed to ultraviolet light. Both FDOM and CDOM were strongly correlated (r2 >0.8) with DOC allowing high frequency estimations. Results show the close coupling of DOC with discharge throughout the sampling period at all three spatial scales. However, analysis at the event scale highlights anticlockwise hysteresis relationships between DOC and discharge due to the delay in DOC being flushed from the increasingly large areas of peaty soils as saturation zones expand and increase hydrological connectivity. Lag times vary between events dependent on antecedent conditions. During a 10 year drought period in late summer 2013 it was apparent that very small changes in discharge on a 15 minute timescale result in high increases in DOC. This suggests transport limitation during this period where DOC builds up in the soil and is not flushed regularly, therefore any subsequent increase in discharge results in large DOC peaks. The high frequency sensors also reveal diurnal variability during summer months related to the photo-oxidation, evaporative and biological influences of DOC during the day. This relationship is less

  14. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    Science.gov (United States)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  15. HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.

    2010-05-02

    The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.

  16. The effect of electric field maximum on the Rabi flopping and generated higher frequency spectra

    International Nuclear Information System (INIS)

    Niu Yueping; Cui Ni; Xiang Yang; Li Ruxin; Gong Shangqing; Xu Zhizhan

    2008-01-01

    We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.

  17. Spatio-Temporal Saliency Perception via Hypercomplex Frequency Spectral Contrast

    Directory of Open Access Journals (Sweden)

    Zhiqiang Tian

    2013-03-01

    Full Text Available Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc parameters or high-cost preprocessing, they are difficult to rapidly detect salient object or be implemented by computing parallelism in a smart sensor. In this paper, we propose a novel spatio-temporal saliency perception method based on spatio-temporal hypercomplex spectral contrast (HSC. Firstly, the proposed HSC algorithm represent the features in the HSV (hue, saturation and value color space and features of motion by a hypercomplex number. Secondly, the spatio-temporal salient objects are efficiently detected by hypercomplex Fourier spectral contrast in parallel. Finally, our saliency perception model also incorporates with the non-uniform sampling, which is a common phenomenon of human vision that directs visual attention to the logarithmic center of the image/video in natural scenes. The experimental results on the public saliency perception datasets demonstrate the effectiveness of the proposed approach compared to eleven state-of-the-art approaches. In addition, we extend the proposed model to moving object extraction in dynamic scenes, and the proposed algorithm is superior to the traditional algorithms.

  18. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    Alford, William J.; Smith, Arlee V.

    2000-01-01

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  19. Encoding of frequency-modulation (FM) rates in human auditory cortex.

    Science.gov (United States)

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-12-14

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.

  20. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation.

    Science.gov (United States)

    Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P

    2015-12-01

    The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.

  1. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function

    OpenAIRE

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-01

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength PSA (DW-PSA) is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesi...

  2. Intrinsic frequency biases and profiles across human cortex.

    Science.gov (United States)

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across

  3. Species With Greater Aerial Maneuverability Have Higher Frequency of Collisions With Aircraft: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Esteban Fernández-Juricic

    2018-03-01

    Full Text Available Antipredator responses may appear unsuccessful when animals are exposed to approaching vehicles, often resulting in mortality. Recent studies have addressed whether certain biological traits are associated with variation in collision risk with cars, but not with higher speed-vehicles like aircraft. Our goal was to establish the association between different species traits (i.e., body mass, eye size, brain size, wing loading, wing aspect ratio and the frequency of bird collisions with aircraft (hereafter, bird strikes using a comparative approach controlling for the effects of shared ancestry. We proposed directional predictions as to how each of the species traits would affect the frequency of bird strikes. Considering 39 bird species with all traits represented, the model containing wing loading had the best fit to account for the variance in bird strikes across species. In another model with 54 species exploring the fit to different polynomial models but considering only wing loading, we found that wing loading was negatively and linearly associated with the frequency of bird strikes. Counterintuitively, species with lower wing loading (hence, greater maneuverability had a higher frequency of bird strikes. We discuss potential non-mutually exclusive explanations (e.g., high wing loading species fly faster, thus gaining some extra time to avoid the aircraft flight path; high wing loading species are hazed more intensively at airports, which could lower collisions, etc.. Ultimately, our findings uncovered that species with low wing loading get struck at a higher rate at airports, which reduces the safety risk for humans because these species tend not to cause damaging strikes, but the ecological consequences of their potentially higher local mortality are unknown.

  4. Combined effects of food deprivation and food frequency on the amount and temporal distribution of schedule-induced drinking.

    Science.gov (United States)

    Castilla, José Luis; Pellón, Ricardo

    2013-11-01

    Under intermittent food schedules animals develop temporally organized behaviors throughout interfood intervals, with behaviors early in the intervals (interim) normally occurring in excess. Schedule-induced drinking (a prototype of interim, adjunctive behavior) is related to food deprivation and food frequency. This study investigated the interactions that resulted from combining different food-deprivation levels (70%, 80% or 90% free-feeding weights) with different food-occurrence frequencies (15-, 30- or 60-s interfood intervals) in a within-subjects design. Increases in food deprivation and food frequency generally led to increased licking, with greater differences due to food deprivation as interfood intervals became shorter. Distributions of licking were modestly shifted to later in the interfood interval as interfood intervals lengthened, a result that was most marked under 90% food deprivation, which also resulted in flatter distributions. It would therefore appear that food deprivation modulates the licking rate and the distribution of licking in different ways. Effects of food deprivation and food frequency are adequately explained by a theory of adjunctive behavior based on delayed food reinforcement, in contrast to alternative hypotheses. © Society for the Experimental Analysis of Behavior.

  5. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

    Science.gov (United States)

    Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z

    2013-12-19

    Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. MRI in temporal lobe epilepsy. Correlation between EEG, SPECT and clinical features

    International Nuclear Information System (INIS)

    Uesugi, Hideji; Onuma, Teiichi; Matsuda, Hiroshi; Ishida, Shiro

    1996-01-01

    The relationship between MRI, SPECT, EEG and clinical features in temporal lobe epilepsy was investigated. Subjects were 162 patients (84 males, 78 females) whose average age was 38.1±12.1 years. SPECT was carried out in 45 patients. The results were as follows: abnormal MR images were obtained in 36% of the group without epileptic discharge, and in 42% of the group with temporal spikes. There was no correlation between epileptic discharge in EEG and MRI abnormality. The lateralities of epileptic discharge and MRI were in disagreement in 9 of 39 patients (23%), indicating that determining the epileptic focus from scalp EEG was difficult. There was no correlation between the basic activity in EEG and abnormality in MRI. The rate of abnormal SPECT (89%) was higher than that of abnormal MRI (40%). The rate of the group with ictal automatism (52%) was higher than that of the group without ictal automatism (35%). The rate of abnormal MR images was high in the group with encephalitis (73%). The rate was higher in the group with febrile convulsion (62%) than in the group without it (28%). The rate of the abnormal MR images was higher in the group with a seizure frequency of at least several mal/month (48%) than in the group with a seizure frequency of less than several mal/year (29%). (author)

  7. Temporal epilepsy seizures monitoring and prediction using cross-correlation and chaos theory.

    Science.gov (United States)

    Haddad, Tahar; Ben-Hamida, Naim; Talbi, Larbi; Lakhssassi, Ahmed; Aouini, Sadok

    2014-01-01

    Temporal seizures due to hippocampal origins are very common among epileptic patients. Presented is a novel seizure prediction approach employing correlation and chaos theories. The early identification of seizure signature allows for various preventive measures to be undertaken. Electro-encephalography signals are spectrally broken down into the following sub-bands: delta; theta; alpha; beta; and gamma. The proposed approach consists of observing a high correlation level between any pair of electrodes for the lower frequencies and a decrease in the Lyapunov index (chaos or entropy) for the higher frequencies. Power spectral density and statistical analysis tools were used to determine threshold levels for the lower frequencies. After studying all five sub-bands, the analysis has revealed that the seizure signature can be extracted from the delta band and the high frequencies. High frequencies are defined as both the gamma band and the ripples occurring within the 60-120 Hz sub-band. To validate the proposed approach, six patients from both sexes and various age groups with temporal epilepsies originating from the hippocampal area were studied using the Freiburg database. An average seizure prediction of 30 min, an anticipation accuracy of 72%, and a false-positive rate of 0% were accomplished throughout 200 h of recording time.

  8. Spatial and temporal vision of macaques after central retinal lesions

    International Nuclear Information System (INIS)

    Merigan, W.H.; Pasternak, T.; Zehl, D.

    1981-01-01

    Spatial contrast and temporal modulation sensitivity of two macaque monkeys were measured at three luminance levels before and after binocular laser coagulation of the fovea. The radius of the lesions ranged from 1.6 to 2.2 degree from the center of the fovea. After placement of the lesions, the visibility of high spatial frequencies was greatly reduced, although sensitivity at middle and low spatial frequencies was unaffected. No loss of spatial resolution was found at the lowest luminance tested. When temporal modulation sensitivity was tested with 4 deg targets, foveal lesions had no effect at any temporal frequency or luminance. However, with a 0.57 degree target, sensitivity to lower temporal frequencies was impaired. Thus visual loss after destruction of the fovea is limited to high luminance, small targets, and the resolution of fine detail

  9. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Don A. Yungher

    2014-01-01

    Full Text Available A cardinal feature of freezing of gait (FOG is high frequency (3–8 Hz oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson’s disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso.

  10. Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli.

    Science.gov (United States)

    Necciari, Thibaud; Laback, Bernhard; Savel, Sophie; Ystad, Sølvi; Balazs, Peter; Meunier, Sabine; Kronland-Martinet, Richard

    2016-01-01

    Many audio applications perform perception-based time-frequency (TF) analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain) using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1) with standard model parameters (i.e. without efferents), (2) with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other) effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using maximally

  11. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  12. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    International Nuclear Information System (INIS)

    Hopkins, Mark A.; King, Lyon B.

    2014-01-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations

  13. Impaired temporal contrast sensitivity in dyslexics is specific to retain-and-compare paradigms.

    Science.gov (United States)

    Ben-Yehudah, G; Sackett, E; Malchi-Ginzberg, L; Ahissar, M

    2001-07-01

    Developmental dyslexia is a specific reading disability that affects 5-10% of the population. Recent studies have suggested that dyslexics may experience a deficit in the visual magnocellular pathway. The most extensively studied prediction deriving from this hypothesis is impaired contrast sensitivity to transient, low-luminance stimuli at low spatial frequencies. However, the findings are inconsistent across studies and even seemingly contradictory. In the present study, we administered several different paradigms for assessing temporal contrast sensitivity, and found both impaired and normal contrast sensitivity within the same group of dyslexic participants. Under sequential presentation, in a temporal forced choice paradigm, dyslexics showed impaired sensitivity to both drifting and flickering gratings. However, under simultaneous presentation, with a spatial forced choice paradigm, dyslexics' sensitivity did not differ from that of the controls. Within each paradigm, dyslexics' sensitivity was poorer at higher temporal frequencies, consistent with the magnocellular hypothesis. These results suggest that a basic perceptual impairment in dyslexics may be their limited ability to retain-and-compare perceptual traces across brief intervals.

  14. Extended Opacity Tables with Higher Temperature-Density-Frequency Resolution

    Science.gov (United States)

    Schillaci, Mark; Orban, Chris; Delahaye, Franck; Pinsonneault, Marc; Nahar, Sultana; Pradhan, Anil

    2015-05-01

    Theoretical models for plasma opacities underpin our understanding of radiation transport in many different astrophysical objects. These opacity models are also relevant to HEDP experiments such as ignition scale experiments on NIF. We present a significantly expanded set of opacity data from the widely utilized Opacity Project, and make these higher resolution data publicly available through OSU's portal with dropbox.com. This expanded data set is used to assess how accurate the interpolation of opacity data in temperature-density-frequency dimensions must be in order to adequately model the properties of most stellar types. These efforts are the beginning of a larger project to improve the theoretical opacity models in light of experimental results at the Sandia Z-pinch showing that the measured opacity of Iron disagrees strongly with all current models.

  15. Determinants of brain metabolism changes in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia

    2016-06-01

    To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of

  16. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than

  17. Fire in Fennoscandia: A palaeo-perspective of spatial and temporal variability in fire frequency and vegetation dynamics

    Science.gov (United States)

    Clear, Jennifer; Bradshaw, Richard; Seppä, Heikki

    2014-05-01

    Active fire suppression in Fennoscandia has created a boreal forest ecosystem that is almost free of fire. Absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce), though the character and structure of spruce forests operates as a positive feedback retarding fire frequency. This lack of fire and dominance by Picea abies may have assisted declines in deciduous tree species, with a concomitant loss of floristic diversity. Forest fires are driven by a complex interplay between natural (climate, vegetation and topography) and anthropogenic disturbance and through palaeoecology we are able to explore spatio-temporal variability in the drivers of fire, changing fire dynamics and the subsequent consequences for forest succession, development and floristic diversity over long timescales. High resolution analysis of palaeoenvironmental proxies (pollen and macroscopic charcoal) allows Holocene vegetation and fire dynamics to be reconstructed at the local forest-stand scale. Comparisons of fire histories with pollen-derived quantitative reconstruction of vegetation at local- and regional-scales identify large-scale ecosystem responses and local-scale disturbance. Spatio-temporal heterogeneity and variability in biomass burning is explored to identify the drivers of fire and palaeovegetation reconstructions are compared to process-based, climate-driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Fire was not always so infrequent in the northern European forest with early-Holocene fire regimes driven by natural climate variations and fuel availability. The establishment and spread of Picea abies was probably driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. Picea expansion led to a step-wise reduction in regional biomass burning and here we show the now

  18. The role of continuous low-frequency harmonicity cues for interrupted speech perception in bimodal hearing.

    Science.gov (United States)

    Oh, Soo Hee; Donaldson, Gail S; Kong, Ying-Yee

    2016-04-01

    Low-frequency acoustic cues have been shown to enhance speech perception by cochlear-implant users, particularly when target speech occurs in a competing background. The present study examined the extent to which a continuous representation of low-frequency harmonicity cues contributes to bimodal benefit in simulated bimodal listeners. Experiment 1 examined the benefit of restoring a continuous temporal envelope to the low-frequency ear while the vocoder ear received a temporally interrupted stimulus. Experiment 2 examined the effect of providing continuous harmonicity cues in the low-frequency ear as compared to restoring a continuous temporal envelope in the vocoder ear. Findings indicate that bimodal benefit for temporally interrupted speech increases when continuity is restored to either or both ears. The primary benefit appears to stem from the continuous temporal envelope in the low-frequency region providing additional phonetic cues related to manner and F1 frequency; a secondary contribution is provided by low-frequency harmonicity cues when a continuous representation of the temporal envelope is present in the low-frequency, or both ears. The continuous temporal envelope and harmonicity cues of low-frequency speech are thought to support bimodal benefit by facilitating identification of word and syllable boundaries, and by restoring partial phonetic cues that occur during gaps in the temporally interrupted stimulus.

  19. Temporal and frequency characteristics of a narrow light beam in sea water.

    Science.gov (United States)

    Luchinin, Alexander G; Kirillin, Mikhail Yu

    2016-09-20

    The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.

  20. Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli.

    Directory of Open Access Journals (Sweden)

    Thibaud Necciari

    Full Text Available Many audio applications perform perception-based time-frequency (TF analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1 with standard model parameters (i.e. without efferents, (2 with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using

  1. A spatio-temporal analysis of fires in South Africa

    Directory of Open Access Journals (Sweden)

    Sheldon Strydom

    2016-11-01

    Full Text Available The prevalence and history of fires in Africa has led to the continent being named "the fire continent". Fires are common on the continent and lead to a high number of annual fire disasters which result in many human fatalities and considerable financial loss. Increased population growth and concentrated settlement planning increase the probability of fire disasters and the associated loss of human life and financial loss when disasters occur. In order to better understand the spatial and temporal variations and characteristics of fires in South Africa, an 11-year data set of MODIS-derived Active Fire Hotspots was analysed using an open source geographic information system. The study included the mapping of national fire frequency over the 11-year period. Results indicate that the highest fire frequency occurred in the northeastern regions of South Africa, in particular the mountainous regions of KwaZulu-Natal and Mpumalanga, and in the Western Cape. Increasing trends in provincial fire frequency were observed in eight of the nine provinces of South Africa, with Mpumalanga the only province for which a decrease in annual fire frequency was observed. Temporally, fires were observed in all months for all provinces, although distinct fire seasons were observed and were largely driven by rainfall seasons. The southwestern regions of South Africa (winter-rainfall regions experienced higher fire frequencies during the summer months and the rest of the country (summer-rainfall regions during the winter months. Certain regions those which experienced bimodal rainfall seasons did not display distinct fire seasons because of the complex wet and dry seasons. Investigation into the likely effects of climate change on South African fire frequency revealed that increased air temperatures and events such as La Niña have a marked effect on fire activity.

  2. Modelling of oil spill frequency, leak sources and contamination probability in the Caspian Sea using multi-temporal SAR images 2006–2010 and stochastic modelling

    Directory of Open Access Journals (Sweden)

    Emil Bayramov

    2016-05-01

    Full Text Available The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution images acquired during 2006–2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2–10 (3471.04 sq km, 11–20 (971.66 sq km, 21–50 (692.44 sq km, 51–128 (191.38 sq km. The most critical oil leak sources with the frequency range of 41–128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  3. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California

    Science.gov (United States)

    Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.

    2015-01-01

    Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.

  4. Interictal mood and personality disorders in temporal lobe epilepsy and juvenile myoclonic epilepsy.

    Science.gov (United States)

    Perini, G I; Tosin, C; Carraro, C; Bernasconi, G; Canevini, M P; Canger, R; Pellegrini, A; Testa, G

    1996-01-01

    BACKGROUND: Mood disorders have been described as the commonest psychiatric disorders in patients with temporal lobe epilepsy. Secondary depression in temporal lobe epilepsy could be interpreted either as an adjustment reaction to a chronic disease or as a limbic dysfunction. To clarify this issue, a controlled study of psychiatric disorders was conducted in different forms of epileptic and non-epileptic chronic conditions. METHODS: Twenty outpatients with temporal lobe epilepsy, 18 outpatients with juvenile myoclonic epilepsy--a primary generalised seizure disorder--20 matched type I diabetic patients, and 20 matched normal controls were assessed by a structured interview (SADS) and by self rating scales (Beck depression inventory (BDI) and the state and trait anxiety scales STAIX1 and STAIX2). RESULTS: Sixteen (80%) patients with temporal lobe epilepsy fulfilled the criteria for a psychiatric diagnosis at the SADS interview with a significantly higher frequency than patients with juvenile myoclonic epilepsy (22%) and diabetic patients (10%) (P personality or anxiety disorder. Patients with temporal lobe epilepsy scored significantly higher on BDI, STAIX1, and STAIX2 than the three control groups (P personality disorders, often in comorbidity, than patients with juvenile myoclonic epilepsy and diabetic patients suggesting that these psychiatric disorders are not an adjustment reaction to a chronic disease but rather reflect a limbic dysfunction. PMID:8971108

  5. Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in β -BaB2O4

    International Nuclear Information System (INIS)

    Gehr, R.J.; Kimmel, M.W.; Smith, A.V.

    1998-01-01

    We experimentally demonstrate the benefits of simultaneous compensation of spatial and temporal walk-off in frequency doubling of 800-nm 250-fs pulses, using three active and two compensating β-BaB 2 O 4 crystals. The compensating crystals reverse both birefringent and group-velocity walk-off, resulting in a factor-of-4.5 improvement in doubling efficiency relative to one of the active crystals while maintaining the short pulse duration and the symmetric spatial profile that are characteristic of the single crystal. copyright 1998 Optical Society of America

  6. Computed tomography of temporal bone fractures and temporal region anatomy in horses.

    Science.gov (United States)

    Pownder, S; Scrivani, P V; Bezuidenhout, A; Divers, T J; Ducharme, N G

    2010-01-01

    In people, specific classifications of temporal bone fractures are associated with clinical signs and prognosis. In horses, similar classifications have not been evaluated and might be useful establishing prognosis or understanding pathogenesis of certain types of trauma. We hypothesized associations between temporal bone fracture location and orientation in horses detected during computed tomography (CT) and frequency of facial nerve (CN7) deficit, vestibulocochlear nerve (CN8) deficit, or temporohyoid osteoarthropathy (THO). Complex temporal region anatomy may confound fracture identification, and consequently a description of normal anatomy was included. All horses undergoing temporal region CT at our hospital between July 1998 and May 2008. Data were collected retrospectively, examiners were blinded, and relationships were investigated among temporal bone fractures, ipsilateral THO, ipsilateral CN7, or ipsilateral CN8 deficits by Chi-square or Fischer's exact tests. Seventy-nine horses had CT examinations of the temporal region (158 temporal bones). Sixteen temporal bone fractures were detected in 14 horses. Cranial nerve deficits were seen with fractures in all parts of the temporal bone (petrosal, squamous, and temporal) and, temporal bone fractures were associated with CN7 and CN8 deficits and THO. No investigated fracture classification scheme, however, was associated with specific cranial nerve deficits. Without knowledge of the regional anatomy, normal structures may be mistaken for a temporal bone fracture or vice versa. Although no fracture classification scheme was associated with the assessed clinical signs, simple descriptive terminology (location and orientation) is recommended for reporting and facilitating future comparisons.

  7. Higher moments method for generalized Pareto distribution in flood frequency analysis

    Science.gov (United States)

    Zhou, C. R.; Chen, Y. F.; Huang, Q.; Gu, S. H.

    2017-08-01

    The generalized Pareto distribution (GPD) has proven to be the ideal distribution in fitting with the peak over threshold series in flood frequency analysis. Several moments-based estimators are applied to estimating the parameters of GPD. Higher linear moments (LH moments) and higher probability weighted moments (HPWM) are the linear combinations of Probability Weighted Moments (PWM). In this study, the relationship between them will be explored. A series of statistical experiments and a case study are used to compare their performances. The results show that if the same PWM are used in LH moments and HPWM methods, the parameter estimated by these two methods is unbiased. Particularly, when the same PWM are used, the PWM method (or the HPWM method when the order equals 0) shows identical results in parameter estimation with the linear Moments (L-Moments) method. Additionally, this phenomenon is significant when r ≥ 1 that the same order PWM are used in HPWM and LH moments method.

  8. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    Science.gov (United States)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  9. Temporality of couple conflict and relationship perceptions.

    Science.gov (United States)

    Johnson, Matthew D; Horne, Rebecca M; Hardy, Nathan R; Anderson, Jared R

    2018-05-03

    Using 5 waves of longitudinal survey data gathered from 3,405 couples, the present study investigates the temporal associations between self-reported couple conflict (frequency and each partner's constructive and withdrawing behaviors) and relationship perceptions (satisfaction and perceived instability). Autoregressive cross-lagged model results revealed couple conflict consistently predicted future relationship perceptions: More frequent conflict and withdrawing behaviors and fewer constructive behaviors foretold reduced satisfaction and conflict frequency and withdrawal heightened perceived instability. Relationship perceptions also shaped future conflict, but in surprising ways: Perceptions of instability were linked with less frequent conflict, and male partner instability predicted fewer withdrawing behaviors for female partners. Higher satisfaction from male partners also predicted more frequent and less constructive conflict behavior in the future. These findings illustrate complex bidirectional linkages between relationship perceptions and couple conflict behaviors in the development of couple relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  11. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    Science.gov (United States)

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  12. Analysis of Higher Order Modes in Large Superconducting Radio Frequency Accelerating Structures

    CERN Document Server

    Galek, Tomasz; Brackebusch, Korinna; Van Rienen, Ursula

    2015-01-01

    Superconducting radio frequency cavities used for accelerating charged particle beams are commonly used in accelerator facilities around the world. The design and optimization of modern superconducting RF cavities requires intensive numerical simulations. Vast number of operational parameters must be calculated to ensure appropriate functioning of the accelerating structures. In this study, we primarily focus on estimation and behavior of higher order modes in superconducting RF cavities connected in chains. To calculate large RF models the state-space concatenation scheme, an efficient hybrid method, is employed.

  13. The Influence of Higher Protein Intake and Greater Eating Frequency on Appetite Control in Overweight and Obese Men

    Science.gov (United States)

    Leidy, Heather J.; Armstrong, Cheryl L.H.; Tang, Minghua; Mattes, Richard D.; Campbell, Wayne W.

    2014-01-01

    The purpose of this study was to determine the effects of dietary protein intake and eating frequency on perceived appetite, satiety, and hormonal responses in overweight/obese men. Thirteen men (age 51 ± 4 years; BMI 31.3 ± 0.8 kg/m2) consumed eucaloric diets containing normal protein (79 ± 2 g protein/day; 14% of energy intake as protein) or higher protein (138 ± 3 g protein/day; 25% of energy intake as protein) equally divided among three eating occasions (3-EO; every 4 h) or six eating occasions (6-EO; every 2 h) on four separate days in randomized order. Hunger, fullness, plasma glucose, and hormonal responses were assessed throughout 11 h. No protein × eating frequency interactions were observed for any of the outcomes. Independent of eating frequency, higher protein led to greater daily fullness (P < 0.05) and peptide YY (PYY) concentrations (P < 0.05). In contrast, higher protein led to greater daily ghrelin concentrations (P < 0.05) vs. normal protein. Protein quantity did not influence daily hunger, glucose, or insulin concentrations. Independent of dietary protein, 6-EO led to lower daily fullness (P < 0.05) and PYY concentrations (P < 0.05). The 6-EO also led to lower glucose (P < 0.05) and insulin concentrations (P < 0.05) vs. 3-EO. Although the hunger-related perceived sensations and hormonal responses were conflicting, the fullness-related responses were consistently greater with higher protein intake but lower with increased eating frequency. Collectively, these data suggest that higher protein intake promotes satiety and challenge the concept that increasing the number of eating occasions enhances satiety in overweight and obese men. PMID:20339363

  14. Gated myocardial SPECT using spatial and temporal filtering

    International Nuclear Information System (INIS)

    Hatton, R.L.; Hutton, B.F.; Kyme, A.Z.; Larcos, G.

    2002-01-01

    Full text: Standard protocols for examining myocardial perfusion and motion defects involve the use of gated SPECT images, and a composite of the gated frames. This study examines the usefulness of extracting one or a combination of frames from the gated image to assess perfusion, and whether the addition of a temporal filter to the gated image improves signal to noise. Choice of the most appropriate frame was also considered. Sixteen and eight frame gated SPECT studies were simulated using the dynamic NURBS-based cardiac torso (NCAT) phantom. Variously sized perfusion defects were included in the inferior wall to assess contrast to normal tissue. Scatter and attenuation were not included. Butterworth spatial cutoff frequencies were varied to establish the most appropriate combination of temporal/spatial filters to reduce noise and retain contrast in the images. The 16 frame data produced higher ejection fraction across all spatial filter cutoffs, and generally was unaffected by temporal filtering. Temporal filtering reduced the noise in a uniform liver region in the gated images to within 25% of the composite image noise. The lesion extent and contrast were greater in the end-diastolic frames compared to end-systolic and mid-cycle frames. In conclusion, by using a temporally filtered end-diastolic image from the gated sequence, a favourable balance between noise and contrast can be achieved. Work is progress to confirm these findings in the clinical situation. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age.

    Science.gov (United States)

    Grose, John H; Mamo, Sara K

    2012-01-01

    The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.

  16. Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation

    Science.gov (United States)

    Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-01-01

    This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.

  17. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    Science.gov (United States)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  18. Temporal dynamics of contrast gain in single cells of the cat striate cortex.

    Science.gov (United States)

    Bonds, A B

    1991-03-01

    The response amplitude of cat striate cortical cells is usually reduced after exposure to high-contrast stimuli. The temporal characteristics and contrast sensitivity of this phenomenon were explored by stimulating cortical cells with drifting gratings in which contrast sequentially incremented and decremented in stepwise fashion over time. All responses showed a clear hysteresis, in which contrast gain dropped on average 0.36 log unit and then returned to baseline values within 60 s. Noticeable gain adjustments were seen in as little as 3 s and with peak contrasts as low as 3%. Contrast adaptation was absent in responses from LGN cells. Adaptation was found to depend on temporal frequency of stimulation, with greater and more rapid adaptation at higher temporal frequencies. Two different tests showed that the mechanism controlling response reduction was influenced primarily by stimulus contrast rather than response amplitude. These results support the existence of a rapid and sensitive cortically based system that normalizes the output of cortical cells as a function of local mean contrast. Control of the adaptation appears to arise at least in part across a population of cells, which is consistent with the idea that the gain control serves to limit the information converging from many cells onto subsequent processing areas.

  19. Spatial–temporal signature of resting-state BOLD signals in classic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-12-01

    Full Text Available Yanping Wang,1 Congying Xu,1 Liping Zhai,1 Xudong Lu,1 Xiaoqiang Wu,1 Yahui Yi,2 Ziyun Liu,1 Qiaobing Guan,1 Xiaoling Zhang1 1Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, Zhejiang, 2Department of Radiology, the Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China Abstract: Resting-state functional magnetic resonance imaging (R-fMRI signals are spatiotemporally organized. R-fMRI studies in patients with classic trigeminal neuralgia (CTN have suggested alterations in functional connectivity. However, far less attention has been given to investigations of the local oscillations and their frequency-specific changes in these patients. The objective of this study was to address this issue in patients with CTN. R-fMRI data from 17 patients with CTN and 19 age- and gender-matched healthy controls (HCs were analyzed using amplitude of low-frequency fluctuation (ALFF. The ALFF was computed across different frequencies (slow-4: 0.027–0.073 Hz; slow-5: 0.01–0.027 Hz; and typical band: 0.01–0.08 Hz in patients with CTN compared to HCs. In the typical band, patients with CTN showed increases of ALFF in bilateral temporal, occipital, and left middle frontal regions and in the left middle cingulate gyrus, as well as decreases of ALFF in the right inferior temporal region and in regions (medial prefrontal regions of default mode network. These significant group differences were identified in different sub-bands, with greater brainstem findings in higher frequencies (slow-4 and extensive default mode network and right postparietal results in lower frequencies (slow-5. Furthermore, significant relationships were found between subjective pain ratings and both amplitudes of higher frequency (slow-4 blood oxygen level-dependent (BOLD signals in pain localization brain regions and lower frequencies (slow-5 in pain signaling/modulating brain regions in the patients, and decreased ALFF within the prefrontal regions was significantly

  20. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  1. The Role of Temporal Envelope and Fine Structure in Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Temporal information in a signal can be partitioned into temporal envelope (E and fine structure (FS. Fine structure is important for lexical tone perception for normal-hearing (NH listeners, and listeners with sensorineural hearing loss (SNHL have an impaired ability to use FS in lexical tone perception due to the reduced frequency resolution. The present study was aimed to assess which of the acoustic aspects (E or FS played a more important role in lexical tone perception in subjects with auditory neuropathy spectrum disorder (ANSD and to determine whether it was the deficit in temporal resolution or frequency resolution that might lead to more detrimental effects on FS processing in pitch perception. Fifty-eight native Mandarin Chinese-speaking subjects (27 with ANSD, 16 with SNHL, and 15 with NH were assessed for (1 their ability to recognize lexical tones using acoustic E or FS cues with the "auditory chimera" technique, (2 temporal resolution as measured with temporal gap detection (TGD threshold, and (3 frequency resolution as measured with the Q(10dB values of the psychophysical tuning curves. Overall, 26.5%, 60.2%, and 92.1% of lexical tone responses were consistent with FS cues for tone perception for listeners with ANSD, SNHL, and NH, respectively. The mean TGD threshold was significantly higher for listeners with ANSD (11.9 ms than for SNHL (4.0 ms; p < 0.001 and NH (3.9 ms; p < 0.001 listeners, with no significant difference between SNHL and NH listeners. In contrast, the mean Q(10dB for listeners with SNHL (1.8 ± 0.4 was significantly lower than that for ANSD (3.5 ± 1.0; p < 0.001 and NH (3.4 ± 0.9; p < 0.001 listeners, with no significant difference between ANSD and NH listeners. These results suggest that reduced temporal resolution, as opposed to reduced frequency selectivity, in ANSD subjects leads to greater degradation of FS processing for pitch perception.

  2. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues

    Science.gov (United States)

    Fraser, Matthew; McKay, Colette M.

    2012-01-01

    Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425

  3. Phase division multiplexed EIT for enhanced temporal resolution.

    Science.gov (United States)

    Dowrick, T; Holder, D

    2018-03-29

    The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r  >  0.85 and p  EIT injections.

  4. Syntactic Complexity and Frequency in the Neurocognitive Language System.

    Science.gov (United States)

    Yang, Yun-Hsuan; Marslen-Wilson, William D; Bozic, Mirjana

    2017-09-01

    Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.

  5. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2012-01-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans. (paper)

  6. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  7. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2017-09-20

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  8. Does temporal and locational flexibility of work reduce absenteeism?

    NARCIS (Netherlands)

    Possenriede, D.S.; Hassink, W.H.J.; Plantenga, J.

    In this study, the effects of temporal and locational flexibility or work on the frequency and length of sickness absenteeism are analysed. Using a Dutch survey of public sector employees, we show that increased temporal and locational flexibility is negatively associated with sickness absenteeism

  9. Spectro-temporal characterization of auditory neurons: redundant or necessary?

    NARCIS (Netherlands)

    Eggermont, J.J.; Aertsen, A.M.H.J.; Hermes, D.J.; Johannesma, P.I.M.

    1981-01-01

    For neurons in the auditory midbrain of the grass frog the use of a combined spectro-temporal characterization has been evaluated against the separate characterizations of frequency-sensitivity and temporal response properties. By factoring the joint density function of stimulus intensity, I(f, t),

  10. In-situ Fluorometers Reveal High Frequency Dynamics In Dissolved Organic Matter For Urban Rivers

    Science.gov (United States)

    Croghan, D.; Bradley, C.; Khamis, K.; Hannah, D. M.; Sadler, J. P.; Van Loon, A.

    2017-12-01

    To-date Dissolved Organic Matter (DOM) dynamics have been quantified poorly in urban rivers, despite the substantial water quality issues linked to urbanisation. Research has been hindered by the low temporal resolution of observations and over-reliance on manual sampling which often fail to capture precipitation events and diurnal dynamics. High frequency data are essential to estimate more accurately DOM fluxes/loads and to understand DOM furnishing and transport processes. Recent advances in optical sensor technology, including field deployable in-situ fluorometers, are yielding new high resolution DOM information. However, no consensus regarding the monitoring resolution required for urban systems exists, with no studies monitoring at lower temporal resolution monitoring. High temporal variation occurs during storm events in TLF and HLF intensity: TLF intensity is highest during the rising limb of the hydrograph and can rapidly decline thereafter, indicating the importance of fast flow-path and close proximity sources to TLF dynamics. HLF intensity tracks discharge more closely, but can also quickly decline during high flow events due to dilution effects. Furthermore, the ratio of TLF:HLF when derived at high-frequency provides a useful indication of the presence and type of organic effluents in stream, which aids in the identification of Combined Sewage Overflow releases. Our work highlights the need for future studies to utilise shorter temporal scales than previously used to monitor urban DOM dynamics. The application of higher frequency monitoring enables the identification of finer-scale patterns and subsequently aids in deciphering the sources and pathways controlling urban DOM dynamics.

  11. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (p<0.01, 75.6%). There were no significant correlations between the GIN test and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  12. Implicit Higher Order Temporal Differencing for Aeroacoustic and CFD Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a stand-alone implicit high order temporal differencing solver concept that will interface with research and commercial numerical analysis...

  13. Frequency-dependent changes in the amplitude of low-frequency fluctuations in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Xiao eLin

    2015-09-01

    Full Text Available Neuroimaging studies have revealed that the task-related functional brain activities are impaired in Internet gaming disorder (IGD subjects. However, little is known about the alternations in spontaneous brain activities about them. Recent studies have proposed that the brain activities of different frequency ranges are generated by different nervous activities and have different physiological and psychological functions. Thus, in this study, we set to explore the spontaneous brain activities in IGD subjects by measuring the fractional amplitude of low-frequency fluctuation (fALFF, to investigate band-specific changes of resting-state fALFF. We subdivided the frequency range into five bands based on literatures. Comparing to healthy controls, the IGD group showed decreased fALFF values in the cerebellum posterior lobe and increased fALFF values in superior temporal gyrus. Significant interactions between frequency bands and groups were found in the cerebellum, the anterior cingulate, the lingual gyrus, the middle temporal gyrus and the middle frontal gyrus. Those brain regions are proved related to the executive function and decision-making. These results revealed the changed spontaneous brain activity of IGD, which contributed to understanding the underlying pathophysiology of IGD.

  14. Fibre optics wavemeters calibration using a self-referenced optical frequency comb

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Santos, J.; Velasco, A. V.; Corredera, P. [Instituto de Óptica IO-CSIC, C/Serrano 121, 28006 Madrid (Spain)

    2015-01-15

    Self-referenced optical frequency combs enable the measurement of optical frequencies with a very high accuracy, achieving uncertainties close to the atomic clock used as reference (<10{sup −13} s). In this paper, we present the technique for the measurement of laser frequencies for optical communications followed at IO-CSIC and its application to the calibration of two wavemeters in the 1.5 μm optical communication window. Calibration uncertainties down to 12 MHz and 59 MHz were obtained, respectively, for each of the devices. Furthermore, the long-term behaviour of the higher resolution wavemeter was studied during a 750 h period of sustained operation, exhibiting a dispersion in the measurements of 7.72 MHz. Temperature dependence of the device was analysed, enabling to further reduce dispersion down to a 2.15 MHz range, with no significant temporal deviations.

  15. Exponential Frequency Spectrum in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses

  16. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  17. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus.

    Directory of Open Access Journals (Sweden)

    Jacquelin DeFaveri

    Full Text Available Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  18. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  19. The effects of context and musical training on auditory temporal-interval discrimination.

    Science.gov (United States)

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Temporally selective processing of communication signals by auditory midbrain neurons

    DEFF Research Database (Denmark)

    Elliott, Taffeta M; Christensen-Dalsgaard, Jakob; Kelley, Darcy B

    2011-01-01

    click rates ranged from 4 to 50 Hz, the rate at which the clicks begin to overlap. Frequency selectivity and temporal processing were characterized using response-intensity curves, temporal-discharge patterns, and autocorrelations of reduplicated responses to click trains. Characteristic frequencies...... of the rate of clicks in calls. The majority of neurons (85%) were selective for click rates, and this selectivity remained unchanged over sound levels 10 to 20 dB above threshold. Selective neurons give phasic, tonic, or adapting responses to tone bursts and click trains. Some algorithms that could compute...

  1. Consumption Frequency of Foods Away from Home Linked with Higher Body Mass Index and Lower Fruit and Vegetable Intake among Adults: A Cross-Sectional Study

    Science.gov (United States)

    Seguin, Rebecca A.; Aggarwal, Anju; Vermeylen, Francoise; Drewnowski, Adam

    2016-01-01

    Introduction. Consumption of foods prepared away from home (FAFH) has grown steadily since the 1970s. We examined the relationship between FAFH and body mass index (BMI) and fruit and vegetable (FV) consumption. Methods. Frequency of FAFH, daily FV intake, height and weight, and sociodemographic data were collected using a telephone survey in 2008-2009. Participants included a representative sample of 2,001 adult men and women (mean age 54 ± 15 years) residing in King County, WA, with an analytical sample of 1,570. Frequency of FAFH was categorized as 0-1, 2–4, or 5+ times per week. BMI was calculated from self-reported height and weight. We examined the relationship between FAFH with FV consumption and BMI using multivariate models. Results. Higher frequency of FAFH was associated with higher BMI, after adjusting for age, income, education, race, smoking, marital status, and physical activity (women: p = 0.001; men: p = 0.003). There was a negative association between frequency of FAFH and FV consumption. FAFH frequency was significantly (p < 0.001) higher among males than females (43.1% versus 54.0% eating out 0-1 meal per week, resp.). Females reported eating significantly (p < 0.001) more FV than males. Conclusion. Among adults, higher frequency of FAFH was related to higher BMI and less FV consumption. PMID:26925111

  2. Consumption Frequency of Foods Away from Home Linked with Higher Body Mass Index and Lower Fruit and Vegetable Intake among Adults: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Rebecca A. Seguin

    2016-01-01

    Full Text Available Introduction. Consumption of foods prepared away from home (FAFH has grown steadily since the 1970s. We examined the relationship between FAFH and body mass index (BMI and fruit and vegetable (FV consumption. Methods. Frequency of FAFH, daily FV intake, height and weight, and sociodemographic data were collected using a telephone survey in 2008-2009. Participants included a representative sample of 2,001 adult men and women (mean age 54±15 years residing in King County, WA, with an analytical sample of 1,570. Frequency of FAFH was categorized as 0-1, 2–4, or 5+ times per week. BMI was calculated from self-reported height and weight. We examined the relationship between FAFH with FV consumption and BMI using multivariate models. Results. Higher frequency of FAFH was associated with higher BMI, after adjusting for age, income, education, race, smoking, marital status, and physical activity (women: p=0.001; men: p=0.003. There was a negative association between frequency of FAFH and FV consumption. FAFH frequency was significantly (p<0.001 higher among males than females (43.1% versus 54.0% eating out 0-1 meal per week, resp.. Females reported eating significantly (p<0.001 more FV than males. Conclusion. Among adults, higher frequency of FAFH was related to higher BMI and less FV consumption.

  3. Low frequency geomagnetic field fluctuations at low latitude during the passage of a higher pressure solar wind region

    Directory of Open Access Journals (Sweden)

    U. Villante

    1997-06-01

    Full Text Available The passage of a higher pressure solar wind region at the Earth's orbit marked the onset of low latitude (L=1.6 fluctuations in the frequency range (0.8–5.5 mHz for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earth's magnetosphere.

  4. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.

    Science.gov (United States)

    Ronconi, Luca; Melcher, David

    2017-11-01

    Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural

  5. Analysis on the time and frequency domains of the acceleration in front crawl stroke.

    Science.gov (United States)

    Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella

    2012-05-01

    The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.

  6. Depression in patients with refractory temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Eleonora Borges Gonçalves

    2011-10-01

    Full Text Available OBJECTIVE: To evaluate the comorbidity of depressive disorders in patients with refractory temporal lobe epilepsy (TLE. METHOD: We evaluated 25 consecutive patients with refractory TLE (16 women and 9 men, using semi-structured psychiatric interviews, according to the International Classification of Diseases (ICD-10, and the Beck Depression Inventory. RESULTS: Seventeen of 25 patients (68% had depressive disorder: 6 with dysthymia, three with major depressive episodes and 8 with recurrent depressive disorders. Two (8% were diagnosed with mixed anxiety and depression. Only 5 of 17 patients (29.4% were previously diagnosed with depressive disorder and received prior antidepressant treatment. Duration of epilepsy was significantly higher in patients with depressive disorder (p=0.016, but there was no relationship between depression and seizure frequency. CONCLUSION: This study confirmed that depressive disorders are common and underdiagnosed in patients with TLE refractory to AEDs. Patients with longer duration of epilepsy are at higher risk of having depression.

  7. Comparing the effects of age on amplitude modulation and frequency modulation detection.

    Science.gov (United States)

    Wallaert, Nicolas; Moore, Brian C J; Lorenzi, Christian

    2016-06-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured at 40 dB sensation level for young (22-28 yrs) and older (44-66 yrs) listeners with normal audiograms for a carrier frequency of 500 Hz and modulation rates of 2 and 20 Hz. The number of modulation cycles, N, varied between 2 and 9. For FM detection, uninformative AM at the same rate as the FM was superimposed to disrupt excitation-pattern cues. For both groups, AM and FM detection thresholds were lower for the 2-Hz than for the 20-Hz rate, and AM and FM detection thresholds decreased with increasing N. Thresholds were higher for older than for younger listeners, especially for FM detection at 2 Hz, possibly reflecting the effect of age on the use of temporal-fine-structure cues for 2-Hz FM detection. The effect of increasing N was similar across groups for both AM and FM. However, at 20 Hz, older listeners showed a greater effect of increasing N than younger listeners for both AM and FM. The results suggest that ageing reduces sensitivity to both excitation-pattern and temporal-fine-structure cues for modulation detection, but more so for the latter, while sparing temporal integration of these cues at low modulation rates.

  8. Effect of explant density and medium culture volumes on cassava micropropagation in Temporal Immersion System

    Directory of Open Access Journals (Sweden)

    Milagros Basail

    2003-04-01

    Full Text Available Due to the need of producing high quality planting material available to cassava growers, it has been necessary to look for alternatives in order to increase the efficiancy of in vitro propagation methods and their automation, such as the use of the Temporal Immersion Systems (RITA®. This work was carried out to increase the multiplication coefficient for cassava mass propagation through out Temporal Immersion Systems. The clone ‘CMC-40’ was used. Different medium volumes per explant, and material density per unit at a given Immersion frequency were tested. The highest results were obtained in the 2.8 multiplication coefficient with 20 ml culture medium volume and 3.2 using a density of 40 explants/flask. When the Temporal Immersion System is used with these results, a more efficient method for cassava micropropagation is established and also higher quality vitroplants for the rooting stage and further acclimatization in field conditions are produced. Key Words: Tissue Culture, liquid culture medium, Manihot esculenta Crantz

  9. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  10. Reversal alterations of amplitude of low-frequency fluctuations in early and late onset, first-episode, drug-naive depression.

    Science.gov (United States)

    Guo, Wen-bin; Liu, Feng; Xun, Guang-lei; Hu, Mao-rong; Guo, Xiao-feng; Xiao, Chang-qing; Chen, Hua-fu; Wooderson, Sarah C; Chen, Jin-dong; Zhao, Jing-ping

    2013-01-10

    It is unclear how patients with early onset depression (EOD) and late onset depression (LOD) differ at the neural level. Using amplitude of low-frequency fluctuations (ALFF) approach, we are to test the hypothesis of the different abnormal neural activities between patients with EOD and LOD. Fifteen patients with EOD, 15 patients with LOD, 15 young healthy subjects (HS) and 15 old HS were enrolled in the study. ALFF approach was employed to analyze the images. ANOVA analysis revealed widespread differences in ALFF values among the four groups throughout frontal, parietal, temporal, occipital cortex, cerebellum and limbic regions. Compared to LOD group, EOD group had higher ALFF in bilateral precuneus, superior medial frontal gyrus and superior frontal gyrus, and lower ALFF in left brainstem and left superior temporal gyrus. Compared to young HS, lower ALFF in left superior/inferior temporal gyrus, left lingual gyrus and right middle occipital gyrus and higher ALFF in left medial frontal gyrus and bilateral superior frontal gyrus were seen in the EOD group; in contrast, in the LOD group, lower ALFF in bilateral superior frontal gyrus and higher ALFF in left superior temporal gyrus were observed. Further ROC analysis suggested that the mean ALFF values in the bilateral superior frontal gyrus and left superior temporal gyrus could serve as markers to separate patients with EOD from individuals with LOD. Patients with EOD and LOD exhibit reversal pattern of abnormal ALFF in bilateral superior frontal gyrus and left superior temporal gyrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Factors influencing the temporal growth rate of the high order TM{sub 0n} modes in the Ka-band overmoded Cherenkov oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng, E-mail: vipbenjamin@163.com; Shu, Ting; Ju, Jinchuan [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-06-15

    When the wavelength of overmoded Cherenkov oscillator goes into Ka-band, power handling capacity becomes an essential issue. Using the TM{sub 02} mode or higher order TM{sub 0n} modes as the operating mode is a potential solution. This paper is aimed to find some proper parameters to make the temporal growth rate of the TM{sub 02} mode higher in our previously studied Gigawatt (GW)-class Ka band oscillator. An accurate and fast calculation method of the “hot” dispersion equation is derived for rectangular corrugated SWSs, which are widely used in the high frequency Cherenkov devices. Then, factors that affect the temporal growth rate of the high order TM{sub 0n} modes are analyzed, including the depth of corrugation, the radius of drift tube, and the diode voltage. Results show that, when parameters are chosen properly, the temporal growth rate of the TM{sub 02} mode can be as high as 0.3 ns{sup −1}.

  12. Insular epilepsy: similarities to temporal lobe epilepsy case report Epilepsia insular: similaridades à epilepsia do lobo temporal - relato de caso

    Directory of Open Access Journals (Sweden)

    ARTHUR CUKIERT

    1998-03-01

    Full Text Available Insular epilepsy has been rarely reported and its clinical and electrographic features are poorly understood. The electrographic study of the insula is difficult since it is hidden from the brain surface by the frontal and temporal lobe. A 48 years-old woman started having simple partial autonomic and complex partial seizures with automatisms and ictal left arm paresis 8 years prior to admission. Seizure's frequency was 1 per week. Pre-operative EEG showed a right temporal lobe focus. Neuropsychological testing disclosed right fronto-temporal dysfunction. MRI showed a right anterior insular cavernous angioma. Intraoperative ECoG obtained after spliting of the sylvian fissure showed independent spiking from the insula and temporal lobe and insular spikes that spread to the temporal lobe. The cavernous angioma and the surrounding gliotic tissue were removed and the temporal lobe was left in place. Post-resection ECoG still disclosed independent temporal and insular spiking with a lower frequency. The patient has been seizure-free since surgery. Insular epilepsy may share many clinical and electroencephalographic features with temporal lobe epilepsy.A epilepsia insular tem sido raramente relatada e suas características clínicas e eletrencefalográficas são pobremente conhecidas. O estudo eletrográfico da ínsula é difícil já que ela se encontra recoberta pelos lobos frontal e temporal. Uma paciente, de 48 anos, começou a ter crises parciais simples autonômicas e crises parciais complexas com automatismos e paresia crítica de membro superior esquerdo 8 anos antes desta internação. A frequência de crises era de 1/semana . O EEG pré-operatório mostrou foco temporal direito. Testagem neuropsicológica demonstrou disfunção fronto-temporal direita. RMN demonstrou cavernoma insular anterior direito. A eletrocorticografia intraoperatória obtida após a abertura da fissura sylviana demonstrou a presença de espículas independentes na

  13. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  14. Identification and Removal of High Frequency Temporal Noise in a Nd:YAG Macro-Pulse Laser Assisted with a Diagnostic Streak Camera

    International Nuclear Information System (INIS)

    Kent Marlett; Ke-Xun Sun

    2004-01-01

    This paper discusses the use of a reference streak camera (SC) to diagnose laser performance and guide modifications to remove high frequency noise from Bechtel Nevada's long-pulse laser. The upgraded laser exhibits less than 0.1% high frequency noise in cumulative spectra, exceeding National Ignition Facility (NIF) calibration specifications. Inertial Confinement Fusion (ICF) experiments require full characterization of streak cameras over a wide range of sweep speeds (10 ns to 480 ns). This paradigm of metrology poses stringent spectral requirements on the laser source for streak camera calibration. Recently, Bechtel Nevada worked with a laser vendor to develop a high performance, multi-wavelength Nd:YAG laser to meet NIF calibration requirements. For a typical NIF streak camera with a 4096 x 4096 pixel CCD, the flat field calibration at 30 ns requires a smooth laser spectrum over 33 MHz to 68 GHz. Streak cameras are the appropriate instrumentation for measuring laser amplitude noise at these very high frequencies since the upper end spectral content is beyond the frequency response of typical optoelectronic detectors for a single shot pulse. The SC was used to measure a similar laser at its second harmonic wavelength (532 nm), to establish baseline spectra for testing signal analysis algorithms. The SC was then used to measure the new custom calibration laser. In both spatial-temporal measurements and cumulative spectra, 6-8 GHz oscillations were identified. The oscillations were found to be caused by inter-surface reflections between amplifiers. Additional variations in the SC spectral data were found to result from temperature instabilities in the seeding laser. Based on these findings, laser upgrades were made to remove the high frequency noise from the laser output

  15. Transfer of temporal fluctuations in photorefractive two-beam coupling

    DEFF Research Database (Denmark)

    Juul Jensen, S.; Saffman, M.

    1997-01-01

    Transfer of temporal fluctuations between the signal and pump beams in diffusion dominated photorefractive two-beam coupling is studied experimentally. The dependence on the gain, beam intensity ratio, and frequency of the fluctuations is found to agree well with a linearized analysis, The transf...... of perturbations is frequency dependent at low frequencies, and becomes constant at frequencies large compared to the inverse material time constant. Vde discuss the possibility of pump noise suppression when amplifying weak signals. (C) 1997 American Institute of Physics....

  16. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    Science.gov (United States)

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  17. Kisspeptin and LH pulsatile temporal coupling in PCOS patients.

    Science.gov (United States)

    Katulski, Krzysztof; Podfigurna, Agnieszka; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Alessandro D

    2018-05-04

    To evaluate the temporal coupling between spontaneous kisspeptin and luteinizing hormone (LH) pulsatile releases in polycystic ovary syndrome (PCOS) patients. We examined 71 patients diagnosed with PCOS. A 2 h pulsatility study was performed to evaluate serum kisspeptin and LH pulse frequency and concentration, sampled every 10 min; baseline follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), cortisol, 17-hydroksy-progesterone (17OHP), testosterone (T), free testosterone index (FTI, and insulin levels were also measured. Detect and Specific Concordance (SC) algorithms were used to evaluate the temporal coupling associations between spontaneous episodic secretion of kisspeptin and LH. All PCOS patients demonstrated LH and kisspeptin pulsatile secretions. When the SC index was calculated across the sample of PCOS patients (n = 71), no temporal coupling was observed between kisspeptin and LH pulses. When PCOS patients were subdivided according to their menstrual cyclicity, oligomenorrheic patients demonstrated elevated kisspeptin pulse frequency. Additionally, the SC index reveled a temporal coupling between kisspeptin and LH secretory peaks only in eumenorrheic patients (n = 30, intermenstrual interval PCOS patients (intermenstrual interval > 45 days) did not demonstrate temporal coupling between kisspeptin and LH secretory peaks. The study of the endogenous kisspeptin and LH pulsatile release revealed the temporal coupling of kisspeptin with LH secretory pulses only in eumenorrheic. This data supports the hypothesis that neuroendocrine impairments in PCOS affect the coupling of kisspeptin with LH pulses and potentially worsen as the disease progresses, becoming unequivocally evident in oligomenorrheic PCOS patients.

  18. Temporality of Features in Near-Death Experience Narratives

    Directory of Open Access Journals (Sweden)

    Charlotte Martial

    2017-06-01

    Full Text Available Background: After an occurrence of a Near-Death Experience (NDE, Near-Death Experiencers (NDErs usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area.Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives as well as the most frequently reported temporality sequences of features.Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32. A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features.Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs.Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon.

  19. Aging and Spectro-Temporal Integration of Speech

    Directory of Open Access Journals (Sweden)

    John H. Grose

    2016-10-01

    Full Text Available The purpose of this study was to determine the effects of age on the spectro-temporal integration of speech. The hypothesis was that the integration of speech fragments distributed over frequency, time, and ear of presentation is reduced in older listeners—even for those with good audiometric hearing. Younger, middle-aged, and older listeners (10 per group with good audiometric hearing participated. They were each tested under seven conditions that encompassed combinations of spectral, temporal, and binaural integration. Sentences were filtered into two bands centered at 500 Hz and 2500 Hz, with criterion bandwidth tailored for each participant. In some conditions, the speech bands were individually square wave interrupted at a rate of 10 Hz. Configurations of uninterrupted, synchronously interrupted, and asynchronously interrupted frequency bands were constructed that constituted speech fragments distributed across frequency, time, and ear of presentation. The over-arching finding was that, for most configurations, performance was not differentially affected by listener age. Although speech intelligibility varied across condition, there was no evidence of performance deficits in older listeners in any condition. This study indicates that age, per se, does not necessarily undermine the ability to integrate fragments of speech dispersed across frequency and time.

  20. Twitter data analysis: temporal and term frequency analysis with real-time event

    Science.gov (United States)

    Yadav, Garima; Joshi, Mansi; Sasikala, R.

    2017-11-01

    From the past few years, World Wide Web (www) has become a prominent and huge source for user generated content and opinionative data. Among various social media, Twitter gained popularity as it offers a fast and effective way of sharing users’ perspective towards various critical and other issues in different domain. As the data is hugely generated on cloud, it has opened doors for the researchers in the field of data science and analysis. There are various domains such as ‘Political’ domain, ‘Entertainment’ domain and ‘Business’ domain. Also there are various APIs that Twitter provides for developers 1) Search API, focus on the old tweets 2) Rest API, focuses on user details and allow to collect the user profile, friends and followers 3) Streaming API, which collects details like tweets, hashtags, geo locations. In our work we are accessing Streaming API in order to fetch real-time tweets for the dynamic happening event. For this we are focusing on ‘Entertainment’ domain especially ‘Sports’ as IPL-T20 is currently the trending on-going event. We are collecting these numerous amounts of tweets and storing them in MongoDB database where the tweets are stored in JSON document format. On this document we are performing time-series analysis and term frequency analysis using different techniques such as filtering, information extraction for text-mining that fulfils our objective of finding interesting moments for temporal data in the event and finding the ranking among the players or the teams based on popularity which helps people in understanding key influencers on the social media platform.

  1. Long-distance thermal temporal ghost imaging over optical fibers

    Science.gov (United States)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  2. Temporal focus, temporal distance, and mind-wandering valence: Results from an experience sampling and an experimental study.

    Science.gov (United States)

    Spronken, Maitta; Holland, Rob W; Figner, Bernd; Dijksterhuis, Ap

    2016-04-01

    When mind-wandering, people may think about events that happened in the past, or events that may happen in the future. Using experience sampling, we first aimed to replicate the finding that future-oriented thoughts show a greater positivity bias than past-oriented thoughts. Furthermore, we investigated whether there is a relation between the temporal distance of past- and future-oriented thoughts and the frequency of positive thoughts, a factor that has received little attention in previous work. Second, we experimentally investigated the relation between temporal focus, temporal distance, and thought valence. Both studies showed that future-oriented thoughts were more positive compared to past-oriented thoughts. Regarding temporal distance, thoughts about the distant past and future were more positive than thoughts about the near past and future in the experiment. However, the experience sampling study did not provide clear insight into this relation. Potential theoretical and methodological explanations for these findings are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Optimized temporal pattern of brain stimulation designed by computational evolution.

    Science.gov (United States)

    Brocker, David T; Swan, Brandon D; So, Rosa Q; Turner, Dennis A; Gross, Robert E; Grill, Warren M

    2017-01-04

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson's disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We varied the temporal pattern of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson's disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in a parkinsonian rat model and in patients. Both optimized and standard high-frequency stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution of temporal patterns to increase the efficiency of brain stimulation in treating Parkinson's disease and thereby reduce the energy required for successful treatment below that of current brain stimulation paradigms. Copyright © 2017, American Association for the Advancement of Science.

  4. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Kozerke, Sebastian; Ringgaard, Steffen

    2009-01-01

    in applications exhibiting a broad range of temporal frequencies such as free-breathing myocardial perfusion imaging. We show that temporal basis functions calculated by subjecting the training data to principal component analysis (PCA) can be used to constrain the reconstruction such that the temporal resolution...... is improved. The presented method is called k-t PCA....

  5. Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity

    KAUST Repository

    Elwakil, Ahmed S.

    2009-04-28

    Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.

  6. Temporal hypometabolism at the onset of cryptogenic temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Matheja, P.; Kuwert, T.; Weckesser, M.; Schober, O. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Luedemann, P.; Kellinghaus, C.; Diehl, B.; Ringelstein, E.B. [Dept. of Neurology, Muenster Univ. (Germany); Schuierer, G. [Dept. of Clinical Radiology, Muenster Univ. (Germany)

    2001-05-01

    Most patients with intractable temporal lobe epilepsy (TLE) exhibit temporal glucose hypometabolism. The reasons for the development of this abnormality are as yet unclear. The current notion is that an initial injury causes seizures, which in turn give rise to hypometabolism. The aim of this study was to assess whether temporal reductions in glucose metabolism in non-lesional TLE are the result of repeated seizures or whether hypometabolism represents an initial disturbance at the onset of disease. Glucose consumption was assessed with fluorine-18 fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) in 62 patients with cryptogenic non-refractory TLE in different stages of disease. Twelve subjects without neurological illness served as controls. Patients with onset of epilepsy at least 3 years prior to the PET scan were defined as having chronic TLE. Using this criterion, the whole patient cohort included 27 patients with de novo TLE and 35 patients with chronic TLE. The groups were matched for age and sex. The appearance of high-resolution magnetic resonance images of the brain was unremarkable in all patients. In the total cohort, number, duration and frequency of seizures had a significant relation to the magnitude of hypometabolism. Temporal hypometabolism was exhibited by 26 of the 62 patients (42%), including 8 out of 27 (30%) with newly diagnosed TLE and 18 out of 35 (51%) with chronic TLE. The disturbances were more extensive and more severe in patients with chronic TLE. It is concluded that temporal hypometabolism may already be present at the onset of TLE, but is less frequent and less severe in newly diagnosed than in chronic TLE. The metabolic disturbance correlates with the number of seizures. These findings suggest that an initial dysfunction is present in a considerable number of patients and that hypometabolism is worsened by continuing epileptic activity. (orig.)

  7. Gender-specific effects of emotional modulation on visual temporal order thresholds.

    Science.gov (United States)

    Liang, Wei; Zhang, Jiyuan; Bao, Yan

    2015-09-01

    Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.

  8. Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010.

    Science.gov (United States)

    Shen, Qiu; Liang, Liang; Luo, Xiang; Li, Yanjun; Zhang, Lianpeng

    2017-08-25

    Drought is a complex natural phenomenon that can cause reduced water supplies and can consequently have substantial effects on agriculture and socioeconomic activities. The objective of this study was to gain a better understanding of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China. The Vegetation Condition Index (VCI) dataset calculated from NOAA/AVHRR images from 1982 to 2010 was used to analyse the spatial-temporal variation characteristics of vegetative drought in China. This study also examined the trends in meteorological factors and their influences on drought using monitoring data collected from 686 national ground meteorological stations. The results showed that the VCI appeared to slowly rise in China from 1982 to 2010. From 1982 to 1999, the VCI rose slowly. Then, around 2000, the VCI exhibited a severe fluctuation before it entered into a relatively stable stage. Drought frequencies in China were higher, showing a spatial distribution feature of "higher in the north and lower in the south". Based on the different levels of drought, the frequencies of mild and moderate drought in four geographical areas were higher, and the frequency of severe drought was higher only in ecologically vulnerable areas, such as the Tarim Basin and the Qaidam Basin. Drought was mainly influenced by meteorological factors, which differed regionally. In the northern region, the main influential factor was sunshine duration, while the other factors showed minimal effects. In the southern region and Tibetan Plateau, the main influential factors were sunshine duration and temperature. In the northwestern region, the main influential factors were wind velocity and station atmospheric pressure.

  9. Amplitude modulation detection with concurrent frequency modulation.

    Science.gov (United States)

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  10. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Full-fledged temporal processing: bridging the gap between deep linguistic processing and temporal extraction

    Directory of Open Access Journals (Sweden)

    Francisco Costa

    2013-07-01

    Full Text Available The full-fledged processing of temporal information presents specific challenges. These difficulties largely stem from the fact that the temporal meaning conveyed by grammatical means interacts with many extra-linguistic factors (world knowledge, causality, calendar systems, reasoning. This article proposes a novel approach to this problem, based on a hybrid strategy that explores the complementarity of the symbolic and probabilistic methods. A specialized temporal extraction system is combined with a deep linguistic processing grammar. The temporal extraction system extracts eventualities, times and dates mentioned in text, and also temporal relations between them, in line with the tasks of the recent TempEval challenges; and uses machine learning techniques to draw from different sources of information (grammatical and extra-grammatical even if it is not explicitly known how these combine to produce the final temporal meaning being expressed. In turn, the deep computational grammar delivers richer truth-conditional meaning representations of input sentences, which include a principled representation of temporal information, on which higher level tasks, including reasoning, can be based. These deep semantic representations are extended and improved according to the output of the aforementioned temporal extraction module. The prototype implemented shows performance results that increase the quality of the temporal meaning representations and are better than the performance of each of the two components in isolation.

  12. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study

    OpenAIRE

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    PURPOSE: To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise - GIN) and IQ, attention, memory and age measurements. METHOD: Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and ...

  13. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.

    Science.gov (United States)

    Ebeling, Daniel; Solares, Santiago D

    2013-01-01

    We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.

  14. A comparison between temporal and subband minimum variance adaptive beamforming

    Science.gov (United States)

    Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis

    2014-03-01

    This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar

  15. Purely temporal figure-ground segregation.

    Science.gov (United States)

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  16. MedTime: a temporal information extraction system for clinical narratives.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Hsinchun; Brown, Randall A

    2013-12-01

    Temporal information extraction from clinical narratives is of critical importance to many clinical applications. We participated in the EVENT/TIMEX3 track of the 2012 i2b2 clinical temporal relations challenge, and presented our temporal information extraction system, MedTime. MedTime comprises a cascade of rule-based and machine-learning pattern recognition procedures. It achieved a micro-averaged f-measure of 0.88 in both the recognitions of clinical events and temporal expressions. We proposed and evaluated three time normalization strategies to normalize relative time expressions in clinical texts. The accuracy was 0.68 in normalizing temporal expressions of dates, times, durations, and frequencies. This study demonstrates and evaluates the integration of rule-based and machine-learning-based approaches for high performance temporal information extraction from clinical narratives. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    Science.gov (United States)

    Liss, Alexander

    Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate

  18. Integrating speech in time depends on temporal expectancies and attention.

    Science.gov (United States)

    Scharinger, Mathias; Steinberg, Johanna; Tavano, Alessandro

    2017-08-01

    Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Temporal Neocortical Pathology on Seizure Freeness in Adult Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Kemerdere, Rahsan; Ahmedov, Merdin Lyutviev; Alizada, Orkhan; Yeni, Seher Naz; Oz, Buge; Tanriverdi, Taner

    2018-05-23

    Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Focal cortical dysplasia is the most common dual pathology found in association with the hippocampal sclerosis. In this study, the effect of dual pathology on freedom from seizure was sought in patients with TLE. This study performed a retrospective analysis of patients with TLE who underwent surgery between 2010 and 2017. Histopathologic analysis was performed on patients with and without dual pathology in the temporal neocortex. Seizure outcomes were compared. A total of 54 patients with TLE were included. The rate of overall favorable seizure outcome was found to be 96.3%. In 53.7%, dual pathology was present in the temporal cortices in addition to the hippocampal sclerosis. Patients without dual pathology showed significantly greater freedom from seizure (P = 0.02). Patients without dual pathology had a significantly higher seizure-free rate after anterior temporal resection than patients with dual pathology. Resection of the temporal cortex in addition to mesial temporal structures seems to be reasonable for better seizure outcome. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Extending the ICRF to Higher Radio Frequencies: 24 and 43 GHz Astrometry

    Science.gov (United States)

    Jacobs, Christopher S.; Charlot, Patrick; Fomalont, Ed B.; Gordon, David; Lanyi, Gabor E.; Ma, Chopo; Naudet, Charles J.; Sovers, Ojars J.; Zhang, Liwei D.; Kq VLBI Survey Collaboration

    2004-06-01

    Celestial reference frames have been constructed at K-band (24 GHz) and Q-band (43 GHz) based on VLBI astrometric survey observations of active galactic nuclei. Five VLBA observing sessions covered the full 24 hours of right ascension and declinations down to -44°. K-band's 230 sources have median formal position uncertainties of 150 and 290 μas in α cos δ and δ, respectively; the corresponding uncertainties for 132 Q-band sources are 215 and 360 μas, respectively. K-band weighted RMS (WRMS) residuals were 33 ps and 48 fs/s in delay and rate, respectively. Comparison of the K-band frame to the S/X-band ICRF shows WRMS agreement of 330 and 590 μas in α cos δ and δ, respectively. The motivations for extending the ICRF to higher frequencies are to use more compact sources to construct a more stable frame, to provide phase calibrators, and to support spacecraft navigation at Ka-band.

  1. Temporal contrast enhancement and parametric imaging for the visualisation of time patterns in dynamic scintigraphic imaging

    International Nuclear Information System (INIS)

    Deconinck, F.; Bossuyt, A.; Lepoudre, R.

    1982-01-01

    Image contrast, photon noise and sampling frequency limit the visual extraction of relevant temporal information in scintigraphic image series. When the Unitation is mainly due to low temporal contrast, temporal contrast enhancement will strongly improve the perceptibility of time patterns in the series. When the limitation is due to photon noise and limited temporal sampling, parametric imaging by means of the Hadamard transform can visualise temporal patterns. (WU)

  2. Active sources in the cutoff of centrifugal fans to reduce the blade tones at higher-order duct mode frequencies

    Science.gov (United States)

    Neise, W.; Koopmann, G. H.

    1991-01-01

    A previously developed (e.g., Neise and Koopmann, 1984; Koopmann et al., 1988) active noise control technique in which the unwanted acoustic signals from centrifugal fans are suppressed by placing two externally driven sources near the cutoff of the casing was applied to the frequency region where not only plane sound waves are propagational in the fan ducts but also higher-order acoustic modes. Using a specially designed fan noise testing facility, the performance of two fans (280-mm impeller diam and 508 mm diam) was monitored with static pressure taps mounted peripherally around the inlet nozzle. Experimental results show that the aerodynamically generated source pressure field around the cutoff is too complex to be successfully counterimaged by only two active sources introduced in this region. It is suggested that, for an efficient application of this noise control technique in the higher-order mode frequency regime, it is neccessary to use an active source involving larger number of individually driven loudspeakers.

  3. Control and characterization of spatio-temporal disorder in ...

    Indian Academy of Sciences (India)

    characterizing the type of spatio-temporal disorder that is embodied in this disordered ... The results from this experiment will shed light on the more general questions ... sponds to only odd or even multiples of the common frequency, ω0. Thus ...

  4. Components of cross-frequency modulation in health and disease

    Directory of Open Access Journals (Sweden)

    Elena A Allen

    2011-07-01

    Full Text Available The cognitive deficits associated with schizophrenia are commonly believed to arise from the abnormal temporal integration of information, however a quantitative approach to assess network coordination is lacking. Here, we propose to use cross-frequency modulation, the dependence of local high-frequency activity on the phase of widespread low-frequency oscillations, as an indicator of network coordination and functional integration. In an exploratory analysis based on pre-existing data, we measured cross-frequency modulation from multi-channel EEG recordings acquired while schizophrenia patients (n = 47 and healthy controls (n = 130 performed an auditory oddball task. Novel application of independent component analysis (ICA to modulation data delineated components with specific spatial and spectral profiles, the weights of which showed co-variation with diagnosis. Global cross-frequency modulation was significantly greater in healthy controls (F1,175=9.25, P<0.005, while modulation at fronto-temporal electrodes was greater in patients (F1,175 =17.5, P<0.0001. We further found that the weights of schizophrenia-relevant components were associated with genetic polymorphisms at previously identified risk loci. Global cross-frequency modulation decreased with copies of 957C allele in the gene for the dopamine D2 receptor (r = −0.20, P < 0.01 across all subjects. Additionally, greater ‘aberrant’ fronto-temporal modulation in schizophrenia patients was correlated with several polymorphisms in the gene for the α2-subunit of the GABAA receptor (GABRA2 as well as the total number of risk alleles in GABRA2 (r = 0.45, P < 0.01. Overall, our results indicate great promise for this approach in establishing patterns of cross-frequency modulation in health and disease and elucidating the roles of oscillatory interactions in functional connectivity.

  5. Regularization of Instantaneous Frequency Attribute Computations

    Science.gov (United States)

    Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.

    2014-12-01

    We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.

  6. Sensitivity of trajectory calculations to the temporal frequency of wind data

    Science.gov (United States)

    Doty, Kevin G.; Perkey, Donald J.

    1993-01-01

    A mesoscale primitive equation model is used to create a 36-h simulation of the three-dimensional wind field of an intense maritime extratropical cyclone. The control experiment uses the simulated wind field every 15 min in a trajectory model to calculate back trajectories from various horizontal and vertical positions of interest relative to synoptic features of the storm. The latter trajectories are compared to trajectories that were calculated with the simulated wind data degraded in time to 30 min, 1 h, 3 h, 6h, and 12 h. Various error statistics reveal significant deterioration in trajectory accuracy between trajectories calculated with 1- and 3-h data frequencies. Trajectories calculated with 15-min, 30-min, and 1-h data frequencies yielded similar results, while trajectories calculated with data time frequencies 3 h and greater yielded results with unacceptably large errors.

  7. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  8. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  9. An advection-based model to increase the temporal resolution of PIV time series.

    Science.gov (United States)

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence . In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence , where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time . An additional favorable effect is observed by the analysis in the

  10. Temporal correlation coefficient for directed networks.

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  11. Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks

    Science.gov (United States)

    Zaal, Peter; Sweet, Barbara

    2010-01-01

    Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.

  12. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study.

    Science.gov (United States)

    Carrete, Henrique; Abdala, Nitamar; Lin, Kátia; Caboclo, Luís Otávio; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Szjenfeld, Jacob; Nogueira, Roberto Gomes; Yacubian, Elza Márcia Targas

    2007-09-01

    To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, chi2 test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved.

  13. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study

    International Nuclear Information System (INIS)

    Carrete Junior, Henrique; Abdala, Nitamar; Szjenfeld, Jacob; Nogueira, Roberto Gomes; Lin, Katia; Caboclo, Luis Otavio; Centeno, Ricardo Silva; Sakamoto, Americo Ceiki; Yacubian, Elza Marcia Targas

    2007-01-01

    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, χ 2 test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  14. Temporal Compounding of Heat Waves in the Present and Projected Future

    Science.gov (United States)

    Baldwin, J. W.; Dessy, J.; Vecchi, G. A.; Oppenheimer, M.

    2017-12-01

    The hazard of heat waves is projected to increase significantly with global warming, motivating much recent research characterizing various aspects of these extreme events. One less examined aspect of heat waves is their temporal structure. Here we first modify existing heat wave duration definitions to flexibly account for a variety of possible heat wave temporal structures (sequences of hot and cooler days). We then examine past heat waves associated with high mortality using observational reanalysis data, and note that many past heat waves might be better described as series of hot days compounded together with short breaks of cooler days in between. We employ Geophysical Fluid Dynamics Laboratory (GFDL) global climate model (GCM) simulations to compare the frequency of these compound heat waves in the present and projected future with higher levels of atmospheric carbon dioxide. Our results indicate that temporally compound heatwaves will constitute a greater proportion of heat wave risk with global warming. Via examining synthetic autoregressive model data, we propose that this phenomenon is expected when shifting the mean of a time series with some memory and noise. Notably, an increased proportion of compound events implies that vulnerability from prior hot days will play an increasingly large role in heat wave risk, with possible implications for both heat wave-related policy and preparedness.

  15. An underestimated role of precipitation frequency in regulating summer soil moisture

    International Nuclear Information System (INIS)

    Wu Chaoyang; Chen, Jing M; Pumpanen, Jukka; Cescatti, Alessandro; Marcolla, Barbara; Blanken, Peter D; Ardö, Jonas; Tang, Yanhong; Magliulo, Vincenzo; Georgiadis, Teodoro; Soegaard, Henrik; Cook, David R; Harding, Richard J

    2012-01-01

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 and 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions. (letter)

  16. Spatial-Temporal Event Detection from Geo-Tagged Tweets

    Directory of Open Access Journals (Sweden)

    Yuqian Huang

    2018-04-01

    Full Text Available As one of the most popular social networking services in the world, Twitter allows users to post messages along with their current geographic locations. Such georeferenced or geo-tagged Twitter datasets can benefit location-based services, targeted advertising and geosocial studies. Our study focused on the detection of small-scale spatial-temporal events and their textual content. First, we used Spatial-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN to spatially-temporally cluster the tweets. Then, the word frequencies were summarized for each cluster and the potential topics were modeled by the Latent Dirichlet Allocation (LDA algorithm. Using two years of Twitter data from four college cities in the U.S., we were able to determine the spatial-temporal patterns of two known events, two unknown events and one recurring event, which then were further explored and modeled to identify the semantic content about the events. This paper presents our process and recommendations for both finding event-related tweets as well as understanding the spatial-temporal behaviors and semantic natures of the detected events.

  17. The driving frequency effects on the atmospheric pressure corona jet plasmas from low frequency to radio frequency

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Rhee, J. K.; Choe, W.; Moon, S. Y.

    2011-01-01

    Lately, the atmospheric pressure jet type corona plasma, which has been typically driven by dc to low frequency (LF: several tens of kHz), is often generated by using radio frequency of 13.56 MHz. Yet, the relationship between the plasma and its driving frequency has seldom been investigated. Hence, in this study, dependence of the atmospheric pressure corona plasma characteristics on the driving frequency was explored experimentally from LF to rf (5 kHz-13.56 MHz). The plasmas generated by the driving frequency under 2 MHz were cylindrical shape of several tens of millimeters long while the 13.56 MHz plasma is spherical and a few millimeters long. As the driving frequency was increased, the plasma length became shortened. At the lower driving frequencies (below 2 MHz), the plasmas existed as positive streamer and negative glow for each half period of the applied voltage, but the discharge was more continuous in time for the 13.56 MHz plasma. It was inferred from the measured I-V curves that the higher driving frequency induced higher discharge currents, and the gas temperature was increased as the driving frequency was increased.

  18. A comparative perspective on the human temporal lobe

    NARCIS (Netherlands)

    Bryant, K.L.; Preuss, T.M.; Bruner, E.; Ogihara, N.; Tanabe, H.

    2018-01-01

    The temporal lobe is a morphological specialization of primates resulting from an expansion of higher-order visual cortex that is a hallmark of the primate brain. Among primates, humans possess a temporal lobe that has significantly expanded. Several uniquely human cognitive abilities, including

  19. Relationship between wingbeat frequency and resonant frequency of the wing in insects

    International Nuclear Information System (INIS)

    Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol

    2013-01-01

    In this study, we experimentally studied the relationship between wingbeat frequency and resonant frequency of 30 individuals of eight insect species from five orders: Odonata (Sympetrum flaveolum), Lepidoptera (Pieris rapae, Plusia gamma and Ochlodes), Hymenoptera (Xylocopa pubescens and Bombus rupestric), Hemiptera (Tibicen linnei) and Coleoptera (Allomyrina dichotoma). The wingbeat frequency of free-flying insects was measured using a high-speed camera while the natural frequency was determined using a laser displacement sensor along with a Bruel and Kjaer fast Fourier transform analyzer based on the base excitation method. The results showed that the wingbeat frequency was related to body mass (m) and forewing area (A f ), following the proportionality f ∼ m 1/2 /A f , while the natural frequency was significantly correlated with area density (f 0  ∼ m w /A f , m w is the wing mass). In addition, from the comparison of wingbeat frequency to natural frequency, the ratio between wingbeat frequency and natural frequency was found to be, in general, between 0.13 and 0.67 for the insects flapping at a lower wingbeat frequency (less than 100 Hz) and higher than 1.22 for the insects flapping at a higher wingbeat frequency (higher than 100 Hz). These results suggest that wingbeat frequency does not have a strong relation with resonance frequency: in other words, insects have not been evolved sufficiently to flap at their wings' structural resonant frequency. This contradicts the general conclusion of other reports-–that insects flap at their wings' resonant frequency to take advantage of passive deformation to save energy. (paper)

  20. Importance of sampling frequency when collecting diatoms

    KAUST Repository

    Wu, Naicheng; Faber, Claas; Sun, Xiuming; Qu, Yueming; Wang, Chao; Ivetic, Snjezana; Riis, Tenna; Ulrich, Uta; Fohrer, Nicola

    2016-01-01

    There has been increasing interest in diatom-based bio-assessment but we still lack a comprehensive understanding of how to capture diatoms’ temporal dynamics with an appropriate sampling frequency (ASF). To cover this research gap, we collected

  1. Feasibility Studies on the Use of Higher Frequency Bands and Beamforming Selection Scheme for High Speed Train Communication

    Directory of Open Access Journals (Sweden)

    Ayotunde O. Laiyemo

    2017-01-01

    Full Text Available With increasing popularity of high speed trains and traffic forecast for future cellular networks, the need to provide improved data rates using higher frequency bands (HFBs for train passengers is becoming crucial. In this paper, we modify the OFDM frame structure for HST, taking into account the increasing sensitivity to speed at HFBs. A lower bound on the SNR/SINR for a given rate for reliable communication was derived considering the physical layer parameters from the OFDM frame. We also analyze different pathloss models in the context of examining the required gain needed to achieve the same performance as with microwave bands. Finally, we present a time-based analogue beamforming selection approach for HST. We observed that, irrespective of the pathloss models used, the required gains are within the same range. For the same SNR/SINR at different frequency bands, the achievable data rate varies with respect to the frequency bands. Our results show the potential of the use of HFBs. However, due to the increased sensitivity of some channel parameters, a maximum frequency band of 38 GHz is suggested. Evaluation of our proposed beamforming scheme indicates a close performance to the optimal SVD scheme with a marginal rate gap of less than 2 b/s/Hz.

  2. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy.

    Science.gov (United States)

    Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T

    2012-01-01

    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency

  3. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG

    NARCIS (Netherlands)

    Maris, Eric; van Vugt, Marieke; Kahana, Michael

    2011-01-01

    Spatially distributed coherent oscillations provide temporal windows of excitability that allow for interactions between distinct neuronal groups. It has been hypothesized that this mechanism for neuronal communication is realized by bursts of high-frequency oscillations that are phase-coupled to a

  4. Temporal and spectral interaction in loudness perception

    Science.gov (United States)

    Pedersen, Benjamin; Ellermeier, Wolfgang

    2005-04-01

    An experiment was conducted to investigate how changes in spectral content influence loudness judgments. Six listeners were asked to discriminate sounds, which were of one second duration and changing in level every 0.1 s. In one condition the first half of the sound was low-pass filtered and the second half high-pass filtered. In a second condition the opposite order was used. In a third condition no filtering was applied and the frequency spectrum was simply white noise. The results were analyzed using a statistical method, which assigns relative weights to the ten temporal segments. In this way individual weighting curves were obtained for each condition. Listeners tended to emphasize the beginning of the sound in their loudness judgments. When the frequency spectrum changed in the middle of the sound, however, the weighting of the onset of the new spectral content was emphasized as well. This outcome is inconsistent with overall temporal integration, and argues for a cognitive mechanism allocating attention to changes in an event sequence.

  5. Spatial and temporal analysis of drought in greece using the Standardized Precipitation Index (SPI)

    Science.gov (United States)

    Livada, I.; Assimakopoulos, V. D.

    2007-07-01

    In the present study the Standardised Precipitation Index (SPI) is used to detect drought events in spatial and temporal basis. Using monthly precipitation data from 23 stations well spread over Greece and for a period of 51 years, a classification of drought is performed, based on its intensity and duration. Results indicate that, mild and moderate droughts reduce from north to south and from west to east on the 3- and 6-months time scale, while for the class of severe drought, the frequencies in the southern part of Greece are higher than in the other parts of the country. Furthermore the frequency of occurrence of severe and extreme drought conditions is very low over the whole Greek territory on the 12-month running time scale. Finally SPI was compared to the “de Martonne aridity index (I)” and a satisfactory correlation between them was found.

  6. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks.

    Science.gov (United States)

    Gu, Ning; Jackson, Jesse; Goutagny, Romain; Lowe, Germaine; Manseau, Frédéric; Williams, Sylvain

    2013-05-08

    Increasing evidence suggests that synchronization between brain regions is essential for information exchange and memory processes. However, it remains incompletely known which synaptic mechanisms contribute to the process of synchronization. Here, we investigated whether NMDA receptor-mediated synaptic plasticity was an important player in synchronization between septal and temporal CA3 areas of the rat hippocampus. We found that both the septal and temporal CA3 regions intrinsically generate weakly synchronized δ frequency oscillations in the complete hippocampus in vitro. Septal and temporal oscillators differed in frequency, power, and rhythmicity, but both required GABAA and AMPA receptors. NMDA receptor activation, and most particularly the NR2B subunit, contributed considerably more to rhythm generation at the temporal than the septal region. Brief activation of NMDA receptors by application of extracellular calcium dramatically potentiated the septal-temporal coherence for long durations (>40 min), an effect blocked by the NMDA antagonist AP-5. This long-lasting NMDA-receptor-dependent increase in coherence was also associated with an elevated phase locking of spikes locally and across regions. Changes in coherence between oscillators were associated with increases in phase locking between oscillators independent of oscillator amplitude. Finally, although the septal CA3 rhythm preceded the oscillations in temporal regions in control conditions, this was reversed during the NMDA-dependent enhancement in coherence, suggesting that NMDA receptor activation can change the direction of information flow along the septotemporal CA3 axis. These data demonstrate that plastic changes in communication between septal and temporal hippocampal regions can arise from the NMDA-dependent phase locking of neural oscillators.

  7. Focus: Two-dimensional electron-electron double resonance and molecular motions: The challenge of higher frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)

    2015-06-07

    The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane

  8. Focus: Two-dimensional electron-electron double resonance and molecular motions: The challenge of higher frequencies

    International Nuclear Information System (INIS)

    Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.

    2015-01-01

    The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane

  9. Higher balance task demands are associated with an increase in individual alpha peak frequency

    Directory of Open Access Journals (Sweden)

    Thorben eHülsdünker

    2016-01-01

    Full Text Available Balance control is fundamental for most daily motor activities, and its impairment is associated with an increased risk of falling. Growing evidence suggests the human cortex is essentially contributing to the control of standing balance. However, the exact mechanisms remain unclear and need further investigation. In a previous study we introduced a new protocol to identify electrocortical activity associated with performance of different continuous balance tasks with the eyes opened. The aim of this study was to extend our previous results by investigating the individual alpha peak frequency (iAPF, a neurophysiological marker of thalamo-cortical information transmission, which remained unconsidered so far in balance research. Thirty-seven subjects completed nine balance tasks varying in surface stability and base of support. Electroencephalography (EEG was recorded from 32 scalp locations throughout balancing with the eyes closed to ensure reliable identification of the iAPF. Balance performance was quantified as the sum of anterior-posterior and medio-lateral movements of the supporting platform. The iAPF, as well as power in the theta, lower alpha and upper alpha frequency bands were determined for each balance task after applying an ICA-based artifact rejection procedure. Higher demands on balance control were associated with a global increase in iAPF and a decrease in lower alpha power. These results may indicate increased thalamo-cortical information transfer and general cortical activation, respectively. In addition, a significant increase in upper alpha activity was observed in the fronto-central region whereas it decreased in the centro-parietal region. Furthermore, midline theta increased with higher task demands probably indicating activation of error detection/processing mechanisms. IAPF as well as theta and alpha power were correlated with platform movements. The results provide new insights into spectral and spatial characteristics

  10. The temporal response of recombination events to gamma radiation of meiotic cells in Sordaria brevicollis.

    Science.gov (United States)

    Lewis, L A

    1982-01-01

    The temporal frequencies of different stages of prophase I were determined cytologically in Sordaria brevicollis (Olive and Fantini) as the basis for ascertaining the degree of synchrony in meiosis in this ascomycete. Croziers, karyogamy-zygotene and pachytene asci were shown to be in significant majorities at three distinct periods of the meiotic cycle. The response of recombination frequency to ionizing radiation was examined for the entire meiotic cycle. Three radiosensitive periods were determined. This response, which correlated temporally with each of the three peaks in ascal frequency, is interpreted as showing that the meiotic cycle of this organism is divided into periods of recombination commitment (radiation reduced frequencies) during the pre-meiotic S phase and recombination consummation (radiation induced frequencies) during zygotene and pachytene. The results are discussed in the context of the time at which recombination is consummated in eukaryotes such as yeast and Drosophila.

  11. The neural bases of spatial frequency processing during scene perception

    Science.gov (United States)

    Kauffmann, Louise; Ramanoël, Stephen; Peyrin, Carole

    2014-01-01

    Theories on visual perception agree that scenes are processed in terms of spatial frequencies. Low spatial frequencies (LSF) carry coarse information whereas high spatial frequencies (HSF) carry fine details of the scene. However, how and where spatial frequencies are processed within the brain remain unresolved questions. The present review addresses these issues and aims to identify the cerebral regions differentially involved in low and high spatial frequency processing, and to clarify their attributes during scene perception. Results from a number of behavioral and neuroimaging studies suggest that spatial frequency processing is lateralized in both hemispheres, with the right and left hemispheres predominantly involved in the categorization of LSF and HSF scenes, respectively. There is also evidence that spatial frequency processing is retinotopically mapped in the visual cortex. HSF scenes (as opposed to LSF) activate occipital areas in relation to foveal representations, while categorization of LSF scenes (as opposed to HSF) activates occipital areas in relation to more peripheral representations. Concomitantly, a number of studies have demonstrated that LSF information may reach high-order areas rapidly, allowing an initial coarse parsing of the visual scene, which could then be sent back through feedback into the occipito-temporal cortex to guide finer HSF-based analysis. Finally, the review addresses spatial frequency processing within scene-selective regions areas of the occipito-temporal cortex. PMID:24847226

  12. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.

    Science.gov (United States)

    Eddins, Ann Clock; Eddins, David A

    This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000

  13. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  14. Transcranial cavitation-mediated ultrasound therapy at sub-MHz frequency via temporal interference modulation

    Science.gov (United States)

    Sun, Tao; Sutton, Jonathan T.; Power, Chanikarn; Zhang, Yongzhi; Miller, Eric L.; McDannold, Nathan J.

    2017-10-01

    Sub-megahertz transmission is not usually adopted in pre-clinical small animal experiments for focused ultrasound (FUS) brain therapy due to the large focal size. However, low frequency FUS is vital for preclinical evaluations due to the frequency-dependence of cavitation behavior. To maximize clinical relevance, a dual-aperture FUS system was designed for low-frequency (274.3 kHz) cavitation-mediated FUS therapy. Combining two spherically curved transducers provides significantly improved focusing in the axial direction while yielding an interference pattern with strong side lobes, leading to inhomogeneously distributed cavitation activities. By operating the two transducers at slightly offset frequencies to modulate this interference pattern over the period of sonication, the acoustic energy was redistributed and resulted in a spatially homogenous treatment profile. Simulation and pressure field measurements in water were performed to assess the beam profiles. In addition, the system performance was demonstrated in vivo in rats via drug delivery through microbubble-mediated blood-brain barrier disruption. This design resulted in a homogenous treatment profile that was fully contained within the rat brain at a clinically relevant acoustic frequency.

  15. Accelerated cognitive decline in a rodent model for temporal lobe epilepsy.

    Science.gov (United States)

    Schipper, Sandra; Aalbers, Marlien W; Rijkers, Kim; Lagiere, Melanie; Bogaarts, Jan G; Blokland, Arjan; Klinkenberg, Sylvia; Hoogland, Govert; Vles, Johan S H

    2016-12-01

    Cognitive impairment is frequently observed in patients with temporal lobe epilepsy. It is hypothesized that cumulative seizure exposure causes accelerated cognitive decline in patients with epilepsy. We investigated the influence of seizure frequency on cognitive decline in a rodent model for temporal lobe epilepsy. Neurobehavioral assessment was performed before and after surgery, after the induction of self-sustaining limbic status epilepticus (SSLSE), and in the chronic phase in which rats experienced recurrent seizures. Furthermore, we assessed potential confounders of memory performance. Rats showed a deficit in spatial working memory after the induction of the SSLSE, which endured in the chronic phase. A progressive decline in recognition memory developed in SSLSE rats. Confounding factors were absent. Seizure frequency and also the severity of the status epilepticus were not correlated with the severity of cognitive deficits. The effect of the seizure frequency on cognitive comorbidity in epilepsy has long been debated, possibly because of confounders such as antiepileptic medication and the heterogeneity of epileptic etiologies. In an animal model of temporal lobe epilepsy, we showed that a decrease in spatial working memory does not relate to the seizure frequency. This suggests for other mechanisms are responsible for memory decline and potentially a common pathophysiology of cognitive deterioration and the occurrence and development of epileptic seizures. Identifying this common denominator will allow development of more targeted interventions treating cognitive decline in patients with epilepsy. The treatment of interictal symptoms will increase the quality of life of many patients with epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Temporal Variability of Daily Personal Magnetic Field Exposure Metrics in Pregnant Women

    OpenAIRE

    Lewis, Ryan C.; Evenson, Kelly R.; Savitz, David A.; Meeker, John D.

    2014-01-01

    Recent epidemiology studies of power-frequency magnetic fields and reproductive health have characterized exposures using data collected from personal exposure monitors over a single day, possibly resulting in exposure misclassification due to temporal variability in daily personal magnetic field exposure metrics, but relevant data in adults are limited. We assessed the temporal variability of daily central tendency (time-weighted average, median) and peak (upper percentiles, maximum) persona...

  17. Low-Frequency Temporal Variability in Mira and Semiregular Variables

    Science.gov (United States)

    Templeton, Matthew R.; Karovska, M.; Waagen, E. O.

    2012-01-01

    We investigate low-frequency variability in a large sample of Mira and semiregular variables with long-term visual light curves from the AAVSO International Database. Our aim is to determine whether we can detect and measure long-timescale variable phenomena in these stars, for example photometric variations that might be associated with supergranular convection. We analyzed the long-term light curves of 522 variable stars of the Mira and SRa, b, c, and d classes. We calculated their low-frequency time-series spectra to characterize rednoise with the power density spectrum index, and then correlate this index with other observable characteristics such as spectral type and primary pulsation period. In our initial analysis of the sample, we see that the semiregular variables have a much broader range of spectral index than the Mira types, with the SRb subtype having the broadest range. Among Mira variables we see that the M- and S-type Miras have similarly wide ranges of index, while the C-types have the narrowest with generally shallower slopes. There is also a trend of steeper slope with larger amplitude, but at a given amplitude, a wide range of slopes are seen. The ultimate goal of the project is to identify stars with strong intrinsic red noise components as possible targets for resolved surface imaging with interferometry.

  18. How does higher frequency monitoring data affect the calibration of a process-based water quality model?

    Science.gov (United States)

    Jackson-Blake, Leah; Helliwell, Rachel

    2015-04-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto

  19. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany

    Directory of Open Access Journals (Sweden)

    Sandro Martinis

    2015-06-01

    Full Text Available In this study, an analysis of multi-temporal and multi-frequency Synthetic Aperture Radar data is performed to investigate the backscatter behavior of various semantic classes in the context of flood mapping in central Europe. The focus is mainly on partially submerged vegetation such as forests and agricultural fields. The test area is located at River Saale, Saxony-Anhalt, Germany, which is covered by a time series of 39 TerraSAR-X data acquired within the time interval December 2009 to June 2013. The data set is supplemented by ALOS PALSAR L-band and RADARSAT-2 C-band data. The time series covers two inundations in January 2011 and June 2013 which allows evaluating backscatter variations between flood periods and normal water level conditions using different radar wavelengths. According to the results, there is potential in detecting flooding beneath vegetation in all microwave wavelengths, even in X-band for sparse vegetation or leaf-off forests.

  20. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela; Motamed, Mohammad; Runborg, Olof; Tempone, Raul

    2016-01-01

    or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral

  1. [Effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children].

    Science.gov (United States)

    Yang, Xiao-Yan; Long, Li-Li; Xiao, Bo

    2016-07-01

    To investigate the effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children and the risk factors for cognitive impairment. A retrospective analysis was performed for the clinical data of 38 children with temporal lobe epilepsy and 40 children with idiopathic epilepsy. The controls were 42 healthy children. All subjects received the following neuropsychological tests: Montreal Cognitive Assessment (MoCA) scale, verbal fluency test, digit span test, block design test, Social Anxiety Scale for Children (SASC), and Depression Self-rating Scale for Children (DSRSC). Compared with the control group, the temporal lobe epilepsy and idiopathic epilepsy groups showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (Pepilepsy group, the temporal lobe epilepsy group showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (Ptemporal lobe epilepsy group, MoCA score was negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.571, -0.529, and -0.545 respectively; Pepilepsy group, MoCA score was also negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.542, -0.487, and -0.555 respectively; Ptemporal lobe epilepsy and idiopathic epilepsy show impaired whole cognition, verbal fluency, memory, and executive function and have anxiety and depression, which are more significant in children with temporal lobe epilepsy. High levels of anxiety, depression, and seizure frequency are risk factors for impaired cognitive function.

  2. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    Science.gov (United States)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  3. Small temporal pole encephalocele: A hidden cause of "normal" MRI temporal lobe epilepsy.

    Science.gov (United States)

    Toledano, Rafael; Jiménez-Huete, Adolfo; Campo, Pablo; Poch, Claudia; García-Morales, Irene; Gómez Angulo, Juan Carlos; Coras, Roland; Blümcke, Ingmar; Álvarez-Linera, Juan; Gil-Nagel, Antonio

    2016-05-01

    Small temporal pole encephalocele (STPE) can be the pathologic substrate of epilepsy in a subgroup of patients with noninformative magnetic resonance imaging (MRI). Herein, we analyzed the clinical, neurophysiologic, and radiologic features of the epilepsy found in 22 patients with STPE, and the frequency of STPE in patients with refractory focal epilepsy (RFE). We performed an observational study of all patients with STPE identified at our epilepsy unit from January 2007 to December 2014. Cases were detected through a systematic search of our database of RFE patients evaluated for surgery, and a prospective collection of patients identified at the outpatient clinic. The RFE database was also employed to analyze the frequency of STPE among the different clinical subgroups. We identified 22 patients with STPE (11 women), including 12 (4.0%) of 303 patients from the RFE database, and 10 from the outpatient clinic. The median age was 51.5 years (range 29-75) and the median age at seizure onset was 38.5 years (range 15-73). Typically, 12 (80%) of 15 patients with left STPE reported seizures with impairment of language. Among the RFE cases, STPE were found in 9.6% of patients with temporal lobe epilepsy (TLE), and in 0.5% of those with extra-TLE (p = 0.0001). STPEs were more frequent in TLE patients with an initial MRI study reported as normal (23.3%) than in those with MRI-visible lesions (1.4%; p = 0.0002). Stereo-electroencephalography was performed in four patients, confirming the localization of the epileptogenic zone at the temporal pole with late participation of the hippocampus. Long-term seizure control was achieved in four of five operated patients. STPE can be a hidden cause of TLE in a subgroup of patients with an initial report of "normal" MRI. Early identification of this lesion may help to select patients for presurgical evaluation and tailored resection. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  4. Frequency distribution function of stellar flares in the Orion association

    International Nuclear Information System (INIS)

    Parsamian, E.S.

    1981-01-01

    The temporal distributions of flare stars in the Orion association and the numbers of stars with different flare frequencies are determined by means of Ambartsumian's (1978) method, which uses the chronology of discovery of 'first' flares and the chronology of confirmations, i.e., the temporal distributions of 'repeated' flares. It is shown that flare stars with high flare frequency (not greater than 1000 hours) in the Pleiades are basically stars of low luminosity with M(U) not less than 13m. Two independent methods of determining the number of flare stars in the aggregates confirm that there are about 1.5 times more flare stars in the Orion association than in the Pleiades

  5. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  6. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  7. Investigation of superflares frequency variability of solar-type stars

    International Nuclear Information System (INIS)

    Akopian, A.A.

    2015-01-01

    Statistical study of the variability of the superflares frequency of 46 solar-type stars detected by orbital observatory 'Kepler' is presented. Two possible scenarios for changes in frequency are considered. In the first, the temporal sequence of superflares is regarded as a piecewise stationary Poissonian process. Statistically significant change in the frequency of superflares by several times is revealed at five stars. Moments of change of frequency are accompanied by sudden changes in the behavior of the star's brightness. Brightness of a star for a short time becomes irregular, with a significant decrease in the amplitude

  8. Temporal resolution of orientation-defined texture segregation: a VEP study.

    Science.gov (United States)

    Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael

    2008-09-01

    Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.

  9. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  10. Coral larvae settle at a higher frequency on red surfaces

    Science.gov (United States)

    Mason, B.; Beard, M.; Miller, M. W.

    2011-09-01

    Although chemical cues serve as the primary determinants of larval settlement and metamorphosis, light is also known to influence the behavior and the settlement of coral planulae. For example, Porites astreoides planulae settle preferentially on unconditioned red substrata. In order to test whether this behavior was a response to color and whether other species also demonstrate color preference, settlement choice experiments were conducted with P. astreoides and Acropora palmata. In these experiments, larvae were offered various types of plastic substrata representing three to seven different color choices. Both species consistently settled on red (or red and orange) substrata at a higher frequency than other colors. In one experiment, P. astreoides settled on 100% of red, plastic cable ties but failed to settle on green or white substrata. In a second experiment, 24% of larvae settled on red buttons, more than settled on six other colors combined. A. palmata settled on 80% of red and of orange cables ties but failed to settle on blue in one experiment and settled on a greater proportion of red acrylic squares than on four other colors or limestone controls in a second experiment. The consistency of the response across a variety of plastic materials suggests the response is related to long-wavelength photosensitivity. Fluorescence and reflectance spectra of experimental substrata demonstrated that the preferred substrata had spectra dominated by wavelengths greater than 550 nm with little or no reflection or emission of shorter wavelengths. These results suggest that some species of coral larvae may use spectral cues for fine-scale habitat selection during settlement. This behavior may be an adaptation to promote settlement in crustose coralline algae (CCA)-dominated habitats facilitating juvenile survival.

  11. Higher Eating Frequency Does Not Decrease Appetite in Healthy Adults.

    Science.gov (United States)

    Perrigue, Martine M; Drewnowski, Adam; Wang, Ching-Yun; Neuhouser, Marian L

    2016-01-01

    Consumption of small, frequent meals is suggested as an effective approach to control appetite and food intake and might be a strategy for weight loss or healthy weight maintenance. Despite much speculation on the topic, scientific evidence is limited to support such a relation in the absence of changes to diet composition. We examined the effects of high compared with low eating frequency (EF) on self-reported appetite as a secondary outcome in a controlled trial. We conducted a randomized, crossover intervention trial in 12 participants (4 men, 8 women) who completed 2 isocaloric 3-wk intervention phases of low EF (3 eating occasions/d) compared with high EF (8 eating occasions/d). On the last morning of each study phase, participants completed a 4-h appetite testing session. During the appetite testing session, participants completing the low EF phase consumed a meal at 0800. Participants completing the high EF intervention consumed the same meal spread evenly over 2 eating occasions at 0800 and 1030. Standardized ratings of hunger, desire to eat, fullness, thirst, and nausea were completed every 30 min with the use of paper-and-pencil semianchored 100-mm visual analog scales. A composite appetite score was calculated as the mean of hunger, desire to eat, and the inverse of fullness (calculated as 100-fullness rating). Linear regression analysis compared ratings between low EF and high EF conditions. The mean composite appetite score was higher in the high EF condition for the total testing period (baseline through 1200) (P appetite. This trial was registered at clinicaltrials.gov as NCT02548026. © 2016 American Society for Nutrition.

  12. Temporal variability of daily personal magnetic field exposure metrics in pregnant women.

    Science.gov (United States)

    Lewis, Ryan C; Evenson, Kelly R; Savitz, David A; Meeker, John D

    2015-01-01

    Recent epidemiology studies of power-frequency magnetic fields and reproductive health have characterized exposures using data collected from personal exposure monitors over a single day, possibly resulting in exposure misclassification due to temporal variability in daily personal magnetic field exposure metrics, but relevant data in adults are limited. We assessed the temporal variability of daily central tendency (time-weighted average, median) and peak (upper percentiles, maximum) personal magnetic field exposure metrics over 7 consecutive days in 100 pregnant women. When exposure was modeled as a continuous variable, central tendency metrics had substantial reliability, whereas peak metrics had fair (maximum) to moderate (upper percentiles) reliability. The predictive ability of a single-day metric to accurately classify participants into exposure categories based on a weeklong metric depended on the selected exposure threshold, with sensitivity decreasing with increasing exposure threshold. Consistent with the continuous measures analysis, sensitivity was higher for central tendency metrics than for peak metrics. If there is interest in peak metrics, more than 1 day of measurement is needed over the window of disease susceptibility to minimize measurement error, but 1 day may be sufficient for central tendency metrics.

  13. A single subconvulsant dose of domoic acid at mid-gestation does not cause temporal lobe epilepsy in mice.

    Science.gov (United States)

    Demars, Fanny; Clark, Kristen; Wyeth, Megan S; Abrams, Emily; Buckmaster, Paul S

    2018-05-01

    Harmful blooms of domoic acid (DA)-producing algae are a problem in oceans worldwide. DA is a potent glutamate receptor agonist that can cause status epilepticus and in survivors, temporal lobe epilepsy. In mice, one-time low-dose in utero exposure to DA was reported to cause hippocampal damage and epileptiform activity, leading to the hypothesis that unrecognized exposure to DA from contaminated seafood in pregnant women can damage the fetal hippocampus and initiate temporal lobe epileptogenesis. However, development of epilepsy (i.e., spontaneous recurrent seizures) has not been tested. In the present study, long-term seizure monitoring and histology was used to test for temporal lobe epilepsy following prenatal exposure to DA. In Experiment One, the previous study's in utero DA treatment protocol was replicated, including use of the CD-1 mouse strain. Afterward, mice were video-monitored for convulsive seizures from 2 to 6 months old. None of the CD-1 mice treated in utero with vehicle or DA was observed to experience spontaneous convulsive seizures. After seizure monitoring, mice were evaluated for pathological evidence of temporal lobe epilepsy. None of the mice treated in utero with DA displayed the hilar neuron loss that occurs in patients with temporal lobe epilepsy and in the mouse pilocarpine model of temporal lobe epilepsy. In Experiment Two, a higher dose of DA was administered to pregnant FVB mice. FVB mice were tested as a potentially more sensitive strain, because they have a lower seizure threshold, and some females spontaneously develop epilepsy. Female offspring were monitored with continuous video and telemetric bilateral hippocampal local field potential recording at 1-11 months old. A similar proportion of vehicle- and DA-treated female FVB mice spontaneously developed epilepsy, beginning in the fourth month of life. Average seizure frequency and duration were similar in both groups. Seizure frequency was lower than that of positive

  14. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    Science.gov (United States)

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  15. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States.

    Science.gov (United States)

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.

  16. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2013-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  17. Learning of spatio-temporal codes in a coupled oscillator system.

    Science.gov (United States)

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  18. Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL

    2012-01-01

    We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  19. Influence of musical training on sensitivity to temporal fine structure.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R; Raj, Swapna

    2015-04-01

    The objective of this study was to extend the findings that temporal fine structure encoding is altered in musicians by examining sensitivity to temporal fine structure (TFS) in an alternative (non-Western) musician model that is rarely adopted--Indian classical music. The sensitivity to TFS was measured by the ability to discriminate two complex tones that differed in TFS but not in envelope repetition rate. Sixteen South Indian classical (Carnatic) musicians and 28 non-musicians with normal hearing participated in this study. Musicians have significantly lower relative frequency shift at threshold in the TFS task compared to non-musicians. A significant negative correlation was observed between years of musical experience and relative frequency shift at threshold in the TFS task. Test-retest repeatability of thresholds in the TFS tasks was similar for both musicians and non-musicians. The enhanced performance of the Carnatic-trained musicians suggests that the musician advantage for frequency and harmonicity discrimination is not restricted to training in Western classical music, on which much of the previous research on musical training has narrowly focused. The perceptual judgments obtained from non-musicians were as reliable as those of musicians.

  20. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    International Nuclear Information System (INIS)

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  1. Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Manoela Ojeda

    2014-01-01

    Full Text Available Due to lower limb paralysis, individuals with spinal cord injury (SCI rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE and mean absolute percentage of error (MAPE were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion.

  2. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    Science.gov (United States)

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  3. Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers

    Science.gov (United States)

    Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.

    2018-01-01

    Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.

  4. Fatty acid profiles among the Inuit of Nunavik: current status and temporal change.

    Science.gov (United States)

    Proust, Françoise; Lucas, Michel; Dewailly, Eric

    2014-05-01

    The Inuit undergo substantial changes in their lifestyle, but few data exist on how these changes occur in biomarkers, such as polyunsaturated fatty acids (PUFAs). Here, we report data from a cross-sectional survey conducted in 2004 among 861 representative Nunavik Inuit adults, in whom FAs were measured in red blood cells (RBCs). FAs were also measured in plasma phospholipids (n=452) to assess temporal trend by comparing plasma PUFAs measured in 1992. Food intakes were estimated using a validated food frequency questionnaire. In 2004, marine food intake was 84±4g/d (±SEM). Adjusted-mean of RBC omega-3 was significantly higher, and omega-6 lower, in older age groups (PtrendInuit adults still have high RBC omega-3, but show signs of nutritional transition - as indicated by lower omega-3 and higher trans-fats in RBCs of young compared to older. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Blood velocity estimation using spatio-temporal encoding based on frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a feasibility study of using a spatial encoding technique based on frequency division for blood flow estimation is presented. The spatial encoding is carried out by dividing the available bandwidth of the transducer into a number of narrow frequency bands with approximately disjoint...... spectral support. By assigning one band to one virtual source, all virtual sources can be excited simultaneously. The received echoes are beamformed using Synthetic Transmit Aperture beamforming. The velocity of the moving blood is estimated using a cross- correlation estimator. The simulation tool Field...

  6. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  7. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.

    Science.gov (United States)

    Farthouat, Juliane; Franco, Ana; Mary, Alison; Delpouve, Julie; Wens, Vincent; Op de Beeck, Marc; De Tiège, Xavier; Peigneux, Philippe

    2017-03-01

    Humans are highly sensitive to statistical regularities in their environment. This phenomenon, usually referred as statistical learning, is most often assessed using post-learning behavioural measures that are limited by a lack of sensibility and do not monitor the temporal dynamics of learning. In the present study, we used magnetoencephalographic frequency-tagged responses to investigate the neural sources and temporal development of the ongoing brain activity that supports the detection of regularities embedded in auditory streams. Participants passively listened to statistical streams in which tones were grouped as triplets, and to random streams in which tones were randomly presented. Results show that during exposure to statistical (vs. random) streams, tritone frequency-related responses reflecting the learning of regularities embedded in the stream increased in the left supplementary motor area and left posterior superior temporal sulcus (pSTS), whereas tone frequency-related responses decreased in the right angular gyrus and right pSTS. Tritone frequency-related responses rapidly developed to reach significance after 3 min of exposure. These results suggest that the incidental extraction of novel regularities is subtended by a gradual shift from rhythmic activity reflecting individual tone succession toward rhythmic activity synchronised with triplet presentation, and that these rhythmic processes are subtended by distinct neural sources.

  8. Temporal lobe volume predicts Wada memory test performance in patients with mesial temporal sclerosis.

    Science.gov (United States)

    Ding, Kan; Gong, Yunhua; Modur, Pradeep N; Diaz-Arrastia, Ramon; Agostini, Mark; Gupta, Puneet; McColl, Roderick; Hays, Ryan; Van Ness, Paul

    2016-02-01

    The Wada test is widely used in the presurgical evaluation of potential temporal lobectomy patients to predict postoperative memory function. Expected asymmetry (EA), defined as Wada memory lateralized to the nonsurgical hemisphere, or a higher score after injection of the surgical hemisphere would be considered favorable in terms of postoperative memory outcome. However, in some cases, nonlateralized memory (NM) results, with no appreciable asymmetry, may occur because of impaired scores after both injections, often leading to denial of surgery. The reason for such nonlateralized Wada memory in patients with intractable temporal lobe epilepsy (TLE) remains unclear. Given that quantitative morphometric magnetic resonance imaging studies in TLE patients have shown bilateral regional atrophy in temporal and extratemporal structures, we hypothesized that the volume loss in contralateral temporal structures could contribute to nonlateralized Wada memory performance. To investigate this, we examined the relationship between the volume changes of temporal structures and Wada memory scores in patients with intractable TLE with mesial temporal sclerosis (MTS) using an age- and gender-matched control group. Memory was considered nonlateralized if the absolute difference in the total correct recall scores between ipsilateral and contralateral injections was memory was lateralized in 15 and nonlateralized in 6 patients, with all the nonlateralized scores being observed in left TLE. The recall scores after ipsilateral injection were significantly lower in patients with an NM profile than an EA profile (23 ± 14% vs. 59 ± 18% correct recall, p ≤ 0.001). However, the recall scores after contralateral injection were low but similar between the two groups (25 ± 17% vs. 25 ± 15% correct recall, p=0.97). Compared to controls, all the patients showed greater volume loss in the temporal regions. However, patients with a NM profile showed significantly more volume loss than those

  9. SMAP Multi-Temporal Soil Moisture and Vegetation Optical Depth Retrievals in Vegetated Regions Including Higher-Order Soil-Canopy Interactions

    Science.gov (United States)

    Feldman, A.; Akbar, R.; Konings, A. G.; Piles, M.; Entekhabi, D.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission utilizes a zeroth order radiative transfer model, known as the tau-omega model, to retrieve soil moisture from microwave brightness temperature observations. This model neglects first order scattering which is significant at L-Band in vegetated regions, or 30% of land cover. Previous higher order algorithms require extensive in-situ measurements and characterization of canopy layer physical properties. We propose a first order retrieval algorithm that approximately characterizes the eight first order emission pathways using rough surface reflectivity, vegetation optical depth (VOD), and scattering albedo terms. The recently developed Multi-Temporal Dual Channel Algorithm (MT-DCA) then retrieves these three parameters in a forward model without ancillary information under the assumption of temporally static albedo and constant vegetation water content between three day SMAP revisits. The approximated scattering terms are determined to be conservative estimates of analytically derived first order scattering terms. In addition, we find the first order algorithm to be more sensitive to surface emission than the tau-omega model. The simultaneously retrieved VOD, previously demonstrated to be proportional to vegetation water content, can provide insight into vegetation dynamics in regions with significant phenology. Specifically, dry tropical forests exhibit an increase in VOD during the dry season in alignment with prior studies that suggest that certain vegetative species green up during the dry season despite limited water availability. VOD retrieved using the first order algorithm and MT-DCA framework can therefore contribute to understanding of tropical forests' role in the carbon, energy, and water cycles, which has yet to be fully explained.

  10. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  11. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  12. The role of temporal resolution in modulation-based speech segregation

    DEFF Research Database (Denmark)

    May, Tobias; Bentsen, Thomas; Dau, Torsten

    2015-01-01

    speech and noise activity on the basis of individual time-frequency (T-F) units. One important parameter of the segregation system is the window duration of the analysis-synthesis stage, which determines the lower limit of modulation frequencies that can be represented but also the temporal acuity...... with which the segregation system can manipulate individual T-F units. To clarify the consequences of this trade-off on modulation-based speech segregation performance, the influence of the window duration was systematically investigated...

  13. Frequency prediction by linear stability analysis around mean flow

    Science.gov (United States)

    Bengana, Yacine; Tuckerman, Laurette

    2017-11-01

    The frequency of certain limit cycles resulting from a Hopf bifurcation, such as the von Karman vortex street, can be predicted by linear stability analysis around their mean flows. Barkley (2006) has shown this to yield an eigenvalue whose real part is zero and whose imaginary part matches the nonlinear frequency. This property was named RZIF by Turton et al. (2015); moreover they found that the traveling waves (TW) of thermosolutal convection have the RZIF property. They explained this as a consequence of the fact that the temporal Fourier spectrum is dominated by the mean flow and first harmonic. We could therefore consider that only the first mode is important in the saturation of the mean flow as presented in the Self-Consistent Model (SCM) of Mantic-Lugo et al. (2014). We have implemented a full Newton's method to solve the SCM for thermosolutal convection. We show that while the RZIF property is satisfied far from the threshold, the SCM model reproduces the exact frequency only very close to the threshold. Thus, the nonlinear interaction of only the first mode with itself is insufficiently accurate to estimate the mean flow. Our next step will be to take into account higher harmonics and to apply this analysis to the standing waves, for which RZIF does not hold.

  14. Temporal variation and scaling of parameters for a monthly hydrologic model

    Science.gov (United States)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  15. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    Science.gov (United States)

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  16. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study; Anormalidade de sinal na imagem por RM do polo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela sequencia inversao recuperacao com supressao da agua livre (FLAIR)

    Energy Technology Data Exchange (ETDEWEB)

    Carrete Junior, Henrique; Abdala, Nitamar; Szjenfeld, Jacob; Nogueira, Roberto Gomes [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem; Lin, Katia; Caboclo, Luis Otavio; Centeno, Ricardo Silva; Sakamoto, Americo Ceiki; Yacubian, Elza Marcia Targas [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Neurologia e Neurocirurgia

    2007-09-15

    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, {chi}{sup 2} test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  17. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and

  18. Accelerated cognitive decline in a rodent model for temporal lobe epilepsy

    NARCIS (Netherlands)

    Schipper, Sandra; Aalbers, Marlien W.; Rijkers, Kim; Lagiere, Melanie; Bogaarts, Jan G.; Blokland, Arjan; Klinkenberg, Sylvia; Hoogland, Govert; Vles, Johan S. H.

    2016-01-01

    Objective: Cognitive impairment is frequently observed in patients with temporal lobe epilepsy. It is hypothesized that cumulative seizure exposure causes accelerated cognitive decline in patients with epilepsy. We investigated the influence of seizure frequency on cognitive decline in a rodent

  19. Frequency-dependent changes in the amplitude of low-frequency fluctuations in patients with Wilson's disease: a resting-state fMRI study.

    Science.gov (United States)

    Hu, Xiaopeng; Chen, Siyi; Huang, Chang-Bing; Qian, Yinfeng; Yu, Yongqiang

    2017-06-01

    To investigate the frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) in patients with Wilson's disease (WD). Resting-state function magnetic resonance imaging (R-fMRI) were employed to measure the amplitude of ALFF in 28 patients with WD and 27 matched normal controls. Slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands were analyzed. Apart from the observation of atrophy in the cerebellum, basal ganglia, occipital gyrus, frontal gyrus, precentral gyrus, and paracentral lobule, we also found widespread differences in ALFF of the two bands in the medial frontal gyrus, inferior temporal gyrus, insula, basal ganglia, hippocampus/parahippocampal gyrus, and thalamus bilaterally. Compared to normal controls, WD patients had increased ALFF in the posterior lobe of the cerebellum, inferior temporal gyrus, brain stem, basal ganglia, and decreased ALFF in the anterior lobe of the cerebellum and medial frontal gyrus. Specifically, we observed that the ALFF abnormalities in the cerebellum and middle frontal gyrus were greater in the slow-5 than in the slow-4 band. Correlation analysis showed consistently positive correlations between urinary copper excretion (Cu), serum ceruloplasmin (CP) and ALFFs in the cerebellum. Our study suggests the accumulation of copper profoundly impaired intrinsic brain activity and the impairments seem to be frequency-dependent. These results provide further insights into the understanding of the pathophysiology of WD.

  20. Comparison of level discrimination, increment detection, and comodulation masking release in the audio- and envelope-frequency domains

    DEFF Research Database (Denmark)

    Nelson, Paul C.; Ewert, Stephan; Carney, Laurel H.

    2007-01-01

    In general, the temporal structure of stimuli must be considered to account for certain observations made in detection and masking experiments in the audio-frequency domain. Two such phenomena are (1) a heightened sensitivity to amplitude increments with a temporal fringe compared to gated level......-frequency domain. Pure-tone carrier amplitude-modulation (AM) depth-discrimination thresholds were found to be similar using both traditional gated stimuli and using a temporally modulated fringe for a fixed standard depth (ms=0.25) and a range of AM frequencies (4-64 Hz). In a second experiment, masked sinusoidal...... AM detection thresholds were compared in conditions with and without slow and regular fluctuations imposed on the instantaneous masker AM depth. Release from masking was obtained only for very slow masker fluctuations (less than 2 Hz). A physiologically motivated model that effectively acts...

  1. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    Science.gov (United States)

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  2. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  3. Spatial and temporal relations in conditioned reinforcement and observing behavior.

    Science.gov (United States)

    Bowe, C A; Dinsmoor, J A

    1983-03-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Experiment 2, pigeons that were allowed to produce combined spatial and temporal information did not acquire the perch pressing any faster or maintain it at a higher level than pigeons allowed to produce only temporal information. Later, when perching produced only spatial information, the time spent depressing the perch eventually declined. The results are not those implied by the statement that information concerning biologically important events is reinforcing but are consistent with an interpretation in terms of the acquisition of reinforcing properties by a stimulus associated with a higher density of primary reinforcement.

  4. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  5. Estimation of 2N(e)s from temporal allele frequency data

    DEFF Research Database (Denmark)

    Bollback, Jonathan Paul; York, Thomas L.; Nielsen, Rasmus

    2008-01-01

    We develop a new method for estimating effective population sizes, Ne, and selection coefficients, s, from time-series data of allele frequencies sampled from a single diallelic locus. The method is based on calculating transition probabilities, using a numerical solution of the diffusion process...

  6. Multiple concurrent temporal recalibrations driven by audiovisual stimuli with apparent physical differences.

    Science.gov (United States)

    Yuan, Xiangyong; Bi, Cuihua; Huang, Xiting

    2015-05-01

    Out-of-synchrony experiences can easily recalibrate one's subjective simultaneity point in the direction of the experienced asynchrony. Although temporal adjustment of multiple audiovisual stimuli has been recently demonstrated to be spatially specific, perceptual grouping processes that organize separate audiovisual stimuli into distinctive "objects" may play a more important role in forming the basis for subsequent multiple temporal recalibrations. We investigated whether apparent physical differences between audiovisual pairs that make them distinct from each other can independently drive multiple concurrent temporal recalibrations regardless of spatial overlap. Experiment 1 verified that reducing the physical difference between two audiovisual pairs diminishes the multiple temporal recalibrations by exposing observers to two utterances with opposing temporal relationships spoken by one single speaker rather than two distinct speakers at the same location. Experiment 2 found that increasing the physical difference between two stimuli pairs can promote multiple temporal recalibrations by complicating their non-temporal dimensions (e.g., disks composed of two rather than one attribute and tones generated by multiplying two frequencies); however, these recalibration aftereffects were subtle. Experiment 3 further revealed that making the two audiovisual pairs differ in temporal structures (one transient and one gradual) was sufficient to drive concurrent temporal recalibration. These results confirm that the more audiovisual pairs physically differ, especially in temporal profile, the more likely multiple temporal perception adjustments will be content-constrained regardless of spatial overlap. These results indicate that multiple temporal recalibrations are based secondarily on the outcome of perceptual grouping processes.

  7. A hybrid spatio-temporal data indexing method for trajectory databases.

    Science.gov (United States)

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-07-21

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  8. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    Directory of Open Access Journals (Sweden)

    Shengnan Ke

    2014-07-01

    Full Text Available In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  9. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    Science.gov (United States)

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  10. Temporal lobe developmental malformations and epilepsy: dual pathology and bilateral hippocampal abnormalities.

    Science.gov (United States)

    Ho, S S; Kuzniecky, R I; Gilliam, F; Faught, E; Morawetz, R

    1998-03-01

    Temporal lobe developmental malformations (TLDM) with focal cortical dysplasia and balloon cells may coexist with mesial temporal sclerosis. The true incidence of this dual pathology is unknown. Our aim was to assess the frequency of amygdala (AM)-hippocampal abnormality in a homogeneous population with this specific developmental malformation. MRI-based volumetry of the AM and hippocampal formation (HF) in 30 patients with unilateral TLDM and intractable partial epilepsy was performed. A volume normalization process defined a normal range of HF and AM volumes in control subjects, and enabled the detection of bilateral volume loss. Normalized volumes detected HF atrophy in 26 patients (nine unilateral and 17 bilateral) and AM atrophy in 18 patients (three unilateral and 15 bilateral). Visual analysis detected unilateral HF abnormality in 21 patients and bilateral abnormality in two. When compared with a group of patients with temporal lobe epilepsy and pure hippocampal sclerosis (N = 92), where volumetry revealed bilateral HF atrophy in 18%, a significant difference in the frequency of bilateral HF atrophy was found (p Dual pathology is frequent in patients with TLDM (87%), and the AM-HF abnormality is often bilateral (57%). Our data suggest that more widespread and potentially epileptogenic lesions coexist with visibly detectable unilateral TLDM. This has implications for the selection of patients for temporal lobe surgery and may influence surgical strategies.

  11. Long-term seizure, cognitive, and psychiatric outcome following trans-middle temporal gyrus amygdalohippocampectomy and standard temporal lobectomy.

    Science.gov (United States)

    Bujarski, Krzysztof A; Hirashima, Fuyuki; Roberts, David W; Jobst, Barbara C; Gilbert, Karen L; Roth, Robert M; Flashman, Laura A; McDonald, Brenna C; Saykin, Andrew J; Scott, Rod C; Dinnerstein, Eric; Preston, Julie; Williamson, Peter D; Thadani, Vijay M

    2013-07-01

    Previous comparisons of standard temporal lobectomy (STL) and selective amygdalohippocampectomy (SelAH) have been limited by inadequate long-term follow-up, variable definitions of favorable outcome, and inadequate consideration of psychiatric comorbidities. The authors performed a retrospective analysis of seizure, cognitive, and psychiatric outcomes in a noncontemporaneous cohort of 69 patients with unilateral refractory temporal lobe epilepsy and MRI evidence of mesial temporal sclerosis after either an STL or an SelAH and examined seizure, cognitive, and psychiatric outcomes. The mean duration of follow-up for STL was 9.7 years (range 1-18 years), and for trans-middle temporal gyrus SelAH (mtg-SelAH) it was 6.85 years (range 1-15 years). There was no significant difference in seizure outcome when "favorable" was defined as time to loss of Engel Class I or II status; better seizure outcome was seen in the STL group when "favorable" was defined as time to loss of Engel Class IA status (p=0.034). Further analysis revealed a higher occurrence of seizures solely during attempted medication withdrawal in the mtg-SelAH group than in the STL group (p=0.016). The authors found no significant difference in the effect of surgery type on any cognitive and most psychiatric variables. Standard temporal lobectomy was associated with significantly higher scores on assessment of postsurgical paranoia (p=0.048). Overall, few differences in seizure, cognitive, and psychiatric outcome were found between STL and mtg-SelAH on long-term follow-up. Longer exposure to medication side effects after mtg-SelAH may adversely affect quality of life but is unlikely to cause additional functional impairment. In patients with high levels of presurgical psychiatric disease, mtg-SelAH may be the preferred surgery type.

  12. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    Science.gov (United States)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  13. Decoding face information in time, frequency and space from direct intracranial recordings of the human brain.

    Directory of Open Access Journals (Sweden)

    Naotsugu Tsuchiya

    Full Text Available Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60-150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than 10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus.

  14. Infrared frequency-tunable coherent thermal sources

    International Nuclear Information System (INIS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-01-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm −1 . The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region. (paper)

  15. Forecasting Antarctic Sea Ice Concentrations Using Results of Temporal Mixture Analysis

    Science.gov (United States)

    Chi, Junhwa; Kim, Hyun-Cheol

    2016-06-01

    Sea ice concentration (SIC) data acquired by passive microwave sensors at daily temporal frequencies over extended areas provide seasonal characteristics of sea ice dynamics and play a key role as an indicator of global climate trends; however, it is typically challenging to study long-term time series. Of the various advanced remote sensing techniques that address this issue, temporal mixture analysis (TMA) methods are often used to investigate the temporal characteristics of environmental factors, including SICs in the case of the present study. This study aims to forecast daily SICs for one year using a combination of TMA and time series modeling in two stages. First, we identify temporally meaningful sea ice signatures, referred to as temporal endmembers, using machine learning algorithms, and then we decompose each pixel into a linear combination of temporal endmembers. Using these corresponding fractional abundances of endmembers, we apply a autoregressive model that generally fits all Antarctic SIC data for 1979 to 2013 to forecast SIC values for 2014. We compare our results using the proposed approach based on daily SIC data reconstructed from real fractional abundances derived from a pixel unmixing method and temporal endmember signatures. The proposed method successfully forecasts new fractional abundance values, and the resulting images are qualitatively and quantitatively similar to the reference data.

  16. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    International Nuclear Information System (INIS)

    Ju, S; Chae, S H; Choi, Y; Jun, S; Park, S M; Lee, S; Ji, C-H; Lee, H W

    2013-01-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken

  17. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    Science.gov (United States)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  18. Theta oscillations orchestrate medial temporal lobe and neocortex in remembering autobiographical memories.

    Science.gov (United States)

    Fuentemilla, L; Barnes, G R; Düzel, E; Levine, B

    2014-01-15

    Remembering autobiographical events can be associated with detailed visual imagery. The medial temporal lobe (MTL), precuneus and prefrontal cortex are held to jointly enable such vivid retrieval, but how these regions are orchestrated remains unclear. An influential prediction from animal physiology is that neural oscillations in theta frequency may be important. In this experiment, participants prospectively collected audio recordings describing personal autobiographical episodes or semantic knowledge over 2 to 7 months. These were replayed as memory retrieval cues while recording brain activity with magnetoencephalography (MEG). We identified a peak of theta power within a left MTL region of interest during both autobiographical and General Semantic retrieval. This MTL region was selectively phase-synchronized with theta oscillations in precuneus and medial prefrontal cortex, and this synchrony was higher during autobiographical as compared to General Semantic knowledge retrieval. Higher synchrony also predicted more detailed visual imagery during retrieval. Thus, theta phase-synchrony orchestrates in humans the MTL with a distributed neocortical memory network when vividly remembering autobiographical experiences. © 2013.

  19. A comparison framework for temporal image reconstructions in electrical impedance tomography

    International Nuclear Information System (INIS)

    Gagnon, Hervé; Adler, Andy; Grychtol, Bartłomiej

    2015-01-01

    Electrical impedance tomography (EIT) provides low-resolution images of internal conductivity distributions, but is able to achieve relatively high temporal resolutions. Most EIT image reconstruction algorithms do not explicitly account for the temporal constraints on the measurements or physiological processes under investigation. Instead, algorithms typically assume both that the conductivity distribution does not change during the acquisition of each EIT data frame, and that frames can be reconstructed independently, without consideration of the correlation between images. A failure to account for these temporal effects will result in aliasing-related artefacts in images. Several methods have been proposed to compensate for these effects, including interpolation of raw data, and reconstruction algorithms using Kalman and temporal filtering. However, no systematic work has been performed to understand the severity of the temporal artefacts nor the extent to which algorithms can account for them. We seek to address this need by developing a temporal comparison framework and figures of merit to assess the ability of reconstruction algorithms to account for temporal effects. Using this approach, we compare combinations of three reconstruction algorithms using three EIT data frame types: perfect, realistic and interpolated. The results show that, without accounting for temporal effects, artefacts are present in images for dynamic conductivity contrasts at frequencies 10–20 times slower than the frame rate. The proposed methods show some improvements in reducing these artefacts. (paper)

  20. An fMRI study of mesial temporal lobe epilepsy with different pathological basis using amplitude of low-frequency fluctuation analysis

    Directory of Open Access Journals (Sweden)

    Wei WEI

    2014-12-01

    Full Text Available Objective To study the distinction of abnormal brain activity in mesial temporal lobe epilepsy (mTLE with hippocampal sclerosis (HS or other pathogical basis, and to discuss their underlying pathophysiological mechanism in mTLE.  Methods Thirty mTLE patients with unilateral hippocampal sclerosis (mTLE-HS and 30 mTLE patients with occupying lesion in unilateral temporal lobe (mTLE-OL were investigated by comparing with 30 age- and sex-matched healthy subjects. MRI data were collected using a Siemens 3.0T scanner, and all of the participants were studied using amplitude of low-frequency fluctuation (ALFF analysis of resting state fMRI. A cost-function modification was used for image preprocessing, then the difference of extratemporal mALFF changes between the two groups of mTLE patients were analyzed with two-sample t test, and the correlation between mALFF and epilepsy duration of mTLE were also investigated.  Results In the resting state, mTLE-HS patients and mTLE-OL patients all showed significant changes in mALFF in extratemporal structures, but the distribution patterns of changes in brain were different. Compared with mTLE-HS, the mTLE-OL patients showed increased mALFF in bilateral inferior parietal lobes, precuneus, angular gyrus, middle and posterior cingulate gyrus and contralateral middle temporal gyrus, while mALFF reducing was observed in contralateral postcentral gyrus, bilateral middle occipital gyrus and cerebellum (P < 0.05, AlphaSim corrected, that is to say, the default mode network (DMN in mTLE-HS were inhibited more seriously than in mTLE-OL patients. Correlation analysis showed that no significant correlation was found between mALFF and epilepsy duration in mTLE-HS patients; mALFF in bilateral middle and posterior cingulate gyrus was positively correlated with epilepsy duration in mTLE-OL patients (r = 0.687, P = 0.000, while mALFF in bilateral anterior cingulate gyrus was negatively correlated with epilepsy duration (r

  1. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    Science.gov (United States)

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  2. YAOPBM-II: extension to higher degrees and to shorter time series

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    In 2005, I presented a new fitting methodology (Yet AnOther Peak Bagging Method -YAOPBM), derived for very-long time series (2088-day-long) and applied it to low degree modes, {iota} {<=} 25. That very-long time series was also sub-divided into shorter segments (728-day-long) that were each fitted over the same range of degrees, to estimate changes with solar activity levels. I present here the extension of this method in several 'directions': a) to substantially higher degrees ({iota} {<=} 125); b) to shorter time series (364- and 182-day-long); and c) to additional 728-day-long segments, covering now some 10 years of observations. I discuss issues with the fitting, namely the leakage matrix, and the f- and p1 mode at very low frequencies, and I present some of the characteristics of the observed temporal changes.

  3. Temporal lobe epilepsy: analysis of patients with dual pathology.

    Science.gov (United States)

    Salanova, V; Markand, O; Worth, R

    2004-02-01

    To determine the frequency and types of dual pathology in patients with temporal lobe epilepsy (TLE) and to analyze the clinical manifestations and surgical outcome. A total of 240 patients with TLE underwent temporal resections following a comprehensive pre-surgical evaluation. Thirty-seven (15.4%) of these had hippocampal sclerosis (HS) or temporal lobe gliosis in association with another lesion (dual pathology). Eighteen of 37 patients with dual pathology had heterotopia of the temporal lobe, nine had cortical dysplasia, four had cavernous angiomas or arteriovenous malformations, one had a dysembryoplastic neuroepithelial tumor, one had a contusion and four patients had cerebral infarctions in childhood. 68.5% had abnormal head magnetic resonance imagings, 91.3% had abnormal positron emission tomography scans, and 96% had abnormal ictal SPECT. The intracarotid amobarbital procedure (IAP) showed impaired memory of the epileptogenic side in 72% of the patients. Twenty patients had left and 17 had right-sided en bloc temporal resections, including the lesion and mesial temporal structures. Twenty-six (70.2%) became seizure-free, eight (21.6%) had rare seizures, two (5.4%) had worthwhile seizure reduction and one (2.7%) had no improvement (range of follow-up 1-16 years, mean = 7.4 years). 15.4% had dual pathology. The dual pathology was almost exclusively seen in patients whose lesions were congenital, or occurred early in life, suggesting that the hippocampus is more vulnerable and more readily develops HS in early childhood. Resections, including the lateral and mesial temporal structures led to a favorable outcome with no mortality and little morbidity.

  4. Noise-induced temporal dynamics in Turing systems

    KAUST Repository

    Schumacher, Linus J.

    2013-04-25

    We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using stochastic simulations at a wide range of points in parameter space and compare with analytical approximations. Specifically, we investigate whether polarity switching of stochastic patterns occurs at a defined frequency. We find that it can do so in individual realizations of a stochastic simulation, but that the frequency is not defined consistently across realizations in our samples of parameter space. Further, we examine the effect of noise on deterministically predicted traveling waves and find them increased in amplitude and decreased in speed. © 2013 American Physical Society.

  5. ESTIMATING GROSS PRIMARY PRODUCTION IN CROPLAND WITH HIGH SPATIAL AND TEMPORAL SCALE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    S. Lin

    2018-04-01

    Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  6. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    Science.gov (United States)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  7. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator—High Frequency Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Darius Žižys

    2017-04-01

    Full Text Available Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  8. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  9. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    Science.gov (United States)

    Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon

    2016-01-01

    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601

  10. Brain alterations in low-frequency fluctuations across multiple bands in obsessive compulsive disorder.

    Science.gov (United States)

    Giménez, Mònica; Guinea-Izquierdo, Andrés; Villalta-Gil, Victoria; Martínez-Zalacaín, Ignacio; Segalàs, Cinto; Subirà, Marta; Real, Eva; Pujol, Jesús; Harrison, Ben J; Haro, Josep Maria; Sato, Joao R; Hoexter, Marcelo Q; Cardoner, Narcís; Alonso, Pino; Menchón, José Manuel; Soriano-Mas, Carles

    2017-12-01

    The extent of functional abnormalities in frontal-subcortical circuits in obsessive-compulsive disorder (OCD) is still unclear. Although neuroimaging studies, in general, and resting-state functional Magnetic Resonance Imaging (rs-fMRI), in particular, have provided relevant information regarding such alterations, rs-fMRI studies have been typically limited to the analysis of between-region functional connectivity alterations at low-frequency signal fluctuations (i.e., <0.08 Hz). Conversely, the local attributes of Blood Oxygen Level Dependent (BOLD) signal across different frequency bands have been seldom studied, although they may provide valuable information. Here, we evaluated local alterations in low-frequency fluctuations across different oscillation bands in OCD. Sixty-five OCD patients and 50 healthy controls underwent an rs-fMRI assessment. Alterations in the fractional amplitude of low-frequency fluctuations (fALFF) were evaluated, voxel-wise, across four different bands (from 0.01 Hz to 0.25 Hz). OCD patients showed decreased fALFF values in medial orbitofrontal regions and increased fALFF values in the dorsal-medial prefrontal cortex (DMPFC) at frequency bands <0.08 Hz. This pattern was reversed at higher frequencies, where increased fALFF values also appeared in medial temporal lobe structures and medial thalamus. Clinical variables (i.e., symptom-specific severities) were associated with fALFF values across the different frequency bands. Our findings provide novel evidence about the nature and regional distribution of functional alterations in OCD, which should contribute to refine neurobiological models of the disorder. We suggest that the evaluation of the local attributes of BOLD signal across different frequency bands may be a sensitive approach to further characterize brain functional alterations in psychiatric disorders.

  11. Higher Eating Frequency Does Not Decrease Appetite in Healthy Adults12

    Science.gov (United States)

    Perrigue, Martine M; Drewnowski, Adam; Wang, Ching-Yun; Neuhouser, Marian L

    2016-01-01

    Background: Consumption of small, frequent meals is suggested as an effective approach to control appetite and food intake and might be a strategy for weight loss or healthy weight maintenance. Despite much speculation on the topic, scientific evidence is limited to support such a relation in the absence of changes to diet composition. Objective: We examined the effects of high compared with low eating frequency (EF) on self-reported appetite as a secondary outcome in a controlled trial. Methods: We conducted a randomized, crossover intervention trial in 12 participants (4 men, 8 women) who completed 2 isocaloric 3-wk intervention phases of low EF (3 eating occasions/d) compared with high EF (8 eating occasions/d). On the last morning of each study phase, participants completed a 4-h appetite testing session. During the appetite testing session, participants completing the low EF phase consumed a meal at 0800. Participants completing the high EF intervention consumed the same meal spread evenly over 2 eating occasions at 0800 and 1030. Standardized ratings of hunger, desire to eat, fullness, thirst, and nausea were completed every 30 min with the use of paper-and-pencil semianchored 100-mm visual analog scales. A composite appetite score was calculated as the mean of hunger, desire to eat, and the inverse of fullness (calculated as 100-fullness rating). Linear regression analysis compared ratings between low EF and high EF conditions. Results: The mean composite appetite score was higher in the high EF condition for the total testing period (baseline through 1200) (P appetite. This trial was registered at clinicaltrials.gov as NCT02548026. PMID:26561409

  12. Effects of dynamic-range compression on temporal acuity

    DEFF Research Database (Denmark)

    Wiinberg, Alan; Jepsen, Morten Løve; Epp, Bastian

    2016-01-01

    Some of the challenges that hearing-aid listeners experience with speech perception in complex acoustic environments may originate from limitations in the temporal processing of sounds. To systematically investigate the influence of hearing impairment and hearing-aid signal processing on temporal...... processing, temporal modulation transfer functions (TMTFs) and “supra-threshold” modulation-depth discrimination (MDD) thresholds were obtained in normal-hearing (NH) and hearing-impaired (HI) listeners with and without wide-dynamic range compression (WDRC). The TMTFs were obtained using tonal carriers of 1...... with the physical compression of the modulation depth due to the WDRC. Indications of reduced temporal resolution in the HI listeners were observed in the TMTF patterns for the 5 kHz carrier. Significantly higher MDD thresholds were found for the HI group relative to the NH group. No relationship was found between...

  13. Temporal dynamics of divided spatial attention.

    Science.gov (United States)

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.

  14. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Ziyan Cai

    2017-10-01

    Full Text Available Deep brain stimulation (DBS has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms.

  15. From the Invisible Hand to the Invisible Handshake: Marketing Higher Education.

    Science.gov (United States)

    Gibbs, Paul

    2002-01-01

    Business marketing principles do not meet the needs of higher education. An alternative, humanistic marketing philosophy, includes a reconceptualization of the marketing mix as temporality (learning as a temporal activity), existential trust, and learner self-confidence. (Contains 60 references.) (SK)

  16. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wang, Xun-Heng; Li, Lihua

    2015-01-01

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  17. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xun-Heng, E-mail: xhwang@hdu.edu.cn [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Li, Lihua [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-05-15

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  18. Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion

    International Nuclear Information System (INIS)

    Sergienko, A.V.; Walton, Z.D.; Booth, M.C.; Saleh, B.E.A.; Teich, M.C.

    2005-01-01

    Full text: A new method for generating entangled photons with controllable frequency correlation via spontaneous parametric down-conversion (SPDC) is presented. The method entails initiating counter-propagating SPDC in a single-mode nonlinear waveguide by pumping with a pulsed beam perpendicular to the waveguide. In a typical spontaneous parametric down-conversion (SPDC) experiment, a photon from a monochromatic pump beam decays into two photons (often referred to as signal and idler) via interaction with a nonlinear optical crystal. While the signal and idler may be broadband individually, conservation of energy requires that the sum of their respective frequencies equals the single frequency of the monochromatic pump. This engenders frequency anti-correlation in the down-converted beams. Two developments in quantum information theory have renewed interest in the generalized states of frequency correlation. First, quantum information processes requiring the synchronized creation of multiple photon pairs have been devised, such as quantum teleportation. The requisite temporal control can be achieved by pumping the crystal with a brief pulse. The availability of pump photons of differing frequencies relaxes the strict frequency anti-correlation in the down-converted beams. Second, applications such as entanglement-enhanced clock synchronization and one-way auto-compensating quantum cryptography have been introduced that specifically require frequency correlation, as opposed to the usual frequency anticorrelation. Our method for obtaining controllable frequency entanglement entails initiating type-I SPDC (signal and idler identically polarized) in a single-mode nonlinear waveguide by pumping with a pulsed beam perpendicular to the waveguide. The down-converted photons emerge from opposite ends of the waveguide with a joint spectrum that can be varied from frequency anti-correlated to frequency correlated by adjusting the temporal and spatial characteristics of the

  19. Temporal resolution for the perception of features and conjunctions.

    Science.gov (United States)

    Bodelón, Clara; Fallah, Mazyar; Reynolds, John H

    2007-01-24

    The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.

  20. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  1. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    International Nuclear Information System (INIS)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C.; Koeber, S.; Freude, W.; Koos, C.; Rembe, C.

    2014-01-01

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB

  2. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C. [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Koeber, S.; Freude, W., E-mail: christian.koos@kit.edu; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany and Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Rembe, C. [Polytec GmbH, 76337 Waldbronn (Germany)

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  3. Level and Temporal Trend of Perfluoroalkyl Acids in Greenlandic Inuit

    DEFF Research Database (Denmark)

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva Cecilie

    bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design: Cross-section and temporal time trend survey. Methods: Serum PFAA levels were determined in 284 Inuit from different...... Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 19982005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results: Serum PFAA levels were...... higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 19982005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs...

  4. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit

    DEFF Research Database (Denmark)

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva Cecilie

    2012-01-01

    bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design: Cross-section and temporal time trend survey. Methods: Serum PFAA levels were determined in 284 Inuit from different...... Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 19982005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results: Serum PFAA levels were...... higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 19982005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs...

  5. Temporal characteristics of rainfall events under three climate types in Slovenia

    Science.gov (United States)

    Dolšak, Domen; Bezak, Nejc; Šraj, Mojca

    2016-10-01

    Temporal rainfall distribution can often have significant influence on other hydrological processes such as runoff generation or rainfall interception. High-frequency rainfall data from 30 stations in Slovenia were analysed in order to improve the knowledge about the temporal rainfall distribution within a rainfall event. Using the pre-processed rainfall data Huff curves were determined and the binary shape code (BSC) methodology was applied. Although Slovenia covers only about 20,000 km2, results indicate large temporal and spatial variability in the precipitation pattern of the analysed stations, which is in agreement with the different Slovenian climate types: sub-Mediterranean, temperate continental, and mountain climate. Statistically significant correlation was identified between the most frequent BSC types, mean annual precipitation, and rainfall erosivity for individual rainfall stations. Moreover, different temporal rainfall distributions were observed for rainfall events with shorter duration (less than 12 h) than those with longer duration (more than 24 h). Using the analysis of the Huff curves it was shown that the variability in the Huff curves decreases with increasing rainfall duration. Thus, it seems that for shorter duration convective storms a more diverse temporal rainfall distribution can be expected than for the longer duration frontal precipitation where temporal rainfall distribution shows less variability.

  6. Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed?

    Science.gov (United States)

    McLean, Gregor M T; Stuart, Geoffrey W; Coltheart, Veronika; Castles, Anne

    2011-12-01

    A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore temporal aspects of magnocellular functioning in 40 children with dyslexia and 42 age-matched controls (aged 7-11). The relationship between magnocellular temporal resolution and higher-level aspects of visual temporal processing including inspection time, single and dual-target (attentional blink) RSVP performance, go/no-go reaction time, and rapid naming was also assessed. The Dyslexia group exhibited significant deficits in magnocellular temporal resolution compared with controls, but the two groups did not differ in parvocellular temporal resolution. Despite the significant group differences, associations between magnocellular temporal resolution and reading ability were relatively weak, and links between low-level temporal resolution and reading ability did not appear specific to the magnocellular system. Factor analyses revealed that a collective Perceptual Speed factor, involving both low-level and higher-level visual temporal processing measures, accounted for unique variance in reading ability independently of phonological processing, rapid naming, and general ability.

  7. Cholinergic neuromodulation controls directed temporal communication in neocortex in vitro

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2010-03-01

    Full Text Available Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12 – 80 Hz. Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex.

  8. Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro

    Science.gov (United States)

    Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.

    2010-01-01

    Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636

  9. Flicker sensitivity as a function of target area with and without temporal noise.

    Science.gov (United States)

    Rovamo, J; Donner, K; Näsänen, R; Raninen, A

    2000-01-01

    Flicker sensitivities (1-30 Hz) in foveal, photopic vision were measured as functions of stimulus area with and without strong external white temporal noise. Stimuli were circular, sinusoidally flickering sharp-edged spots of variable diameters (0.25-4 degrees ) but constant duration (2 s), surrounded by a uniform equiluminant field. The data was described with a model comprising (i) low-pass filtering in the retina (R), with a modulation transfer function (MTF) of a form derived from responses of cones; (ii) normalisation of the temporal luminance distribution by the average luminance; (iii) high-pass filtering by postreceptoral neural pathways (P), with an MTF proportional to temporal frequency; (iv) addition of internal white neural noise (N(i)); (v) integration over a spatial window; and (vi) detection by a suboptimal temporal matched filter of efficiency eta. In strong external noise, flicker sensitivity was independent of spot area. Without external noise, sensitivity increased with the square root of stimulus area (Piper's law) up to a critical area (A(c)), where it reaches a maximum level (S(max)). Both A(c) and eta were monotonic functions of temporal frequency (f), such that log A(c) increased and log eta decreased linearly with log f. Remarkably, the increase in spatial integration area and the decrease in efficiency were just balanced, so A(c)(f)eta(f) was invariant against f. Thus the bandpass characteristics of S(max)(f) directly reflected the composite effect of the distal filters R(f) and P(f). The temporal equivalent (N(it)) of internal neural noise (N(i)) decreased in inverse proportion to spot area up to A(c) and then stayed constant indicating that spatially homogeneous signals and noise are integrated over the same area.

  10. Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults

    OpenAIRE

    Tse, Chun-Yu; Gordon, Brian A.; Fabiani, Monica; Gratton, Gabriele

    2010-01-01

    Relatively high frequency activity (>4 Hz) carries important information about the state of the brain or its response to high frequency events. The electroencephalogram (EEG) is commonly used to study these changes because it possesses high temporal resolution and a good signal-to-noise ratio. However, it provides limited spatial information. Non-invasive fast optical signals (FOS) have been proposed as a neuroimaging tool combining spatial and temporal resolution. Yet, this technique has not...

  11. Characteristics of low frequency MHD fluctuations in the PRETEXT tokamak

    International Nuclear Information System (INIS)

    Kochanski, T.P.

    1981-05-01

    The temporal and spectral characteristics of low frequency (< 100KHz) MHD fluctuations, which are commonly associated with disruptions, have been investigated in the PRETEXT tokamak. There exists rigid phase coherence between the internal m = 1, and externally detected m = 2 modes indicative of strong mode coupling. A parametric study of the frequency of the mode, in the saturated state, indicates that the frequency scales with the toroidal magnetic field, and is inversely proportional to the plasma current. The frequency is observed to decrease abruptly as the mode amplitude rapidly increases prior to a plasma disruption. The burst type growth of the m = 2 mode appears to be inextricably linked to the occurrence of the disruptive instability

  12. Effects of temporal correlations in social multiplex networks.

    Science.gov (United States)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  13. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans.

    Directory of Open Access Journals (Sweden)

    Sebastian Michelmann

    2016-08-01

    Full Text Available Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans.

  14. Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.

    Science.gov (United States)

    Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen

    2018-04-01

    Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.

  15. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes.

    Science.gov (United States)

    Yang, Guo-Jing; Brook, Barry W; Whelan, Peter I; Cleland, Sam; Bradshaw, Corey J A

    2008-12-01

    The growing demand for efficient and effective mosquito control requires a better understanding of vector population dynamics and how these are modified by endogenous and exogenous factors. A long-term (11-year) monitoring data set describing the relative abundance of the saltmarsh mosquito (Aedes vigilax) in the greater Darwin region, northern Australia, was examined in a suite of Gompertz-logistic (GL) models with and without hypothesized environmental correlates (high tide frequency, rainfall, and relative humidity). High tide frequency and humidity were hypothesized to influence saltmarsh mosquito abundance positively, and rainfall was hypothesized to correlate negatively by reducing the availability of suitable habitats (moist substrata) required by ovipositing adult female mosquitoes. We also examined whether environmental correlates explained the variance in seasonal carrying capacity (K) because environmental stochasticity is hypothesized to modify population growth rate (r), carrying capacity, or both. Current and lagged-time effects were tested by comparing alternative population dynamics models using three different information criteria (Akaike's Information Criterion [corrected; AIC(c)], Bayesian Information Criterion [BIC], and cross-validation [C-V]). The GL model with a two-month lag without environmental effects explained 31% of the deviance in population growth rate. This increased to > 70% under various model combinations of high tide frequency, rainfall, and relative humidity, of which, high tide frequency and rainfall had the highest contributions. Temporal variation in K was explained weakly by high tide frequency, and there was some evidence that the filling of depressions to reduce standing water availability has reduced Aedes vigilax carrying capacity over the study period. This study underscores the need to consider simultaneously both types of drivers (endogenous and exogenous) when predicting mosquito abundance and population growth

  16. Importance of sampling frequency when collecting diatoms

    KAUST Repository

    Wu, Naicheng

    2016-11-14

    There has been increasing interest in diatom-based bio-assessment but we still lack a comprehensive understanding of how to capture diatoms’ temporal dynamics with an appropriate sampling frequency (ASF). To cover this research gap, we collected and analyzed daily riverine diatom samples over a 1-year period (25 April 2013–30 April 2014) at the outlet of a German lowland river. The samples were classified into five clusters (1–5) by a Kohonen Self-Organizing Map (SOM) method based on similarity between species compositions over time. ASFs were determined to be 25 days at Cluster 2 (June-July 2013) and 13 days at Cluster 5 (February-April 2014), whereas no specific ASFs were found at Cluster 1 (April-May 2013), 3 (August-November 2013) (>30 days) and Cluster 4 (December 2013 - January 2014) (<1 day). ASFs showed dramatic seasonality and were negatively related to hydrological wetness conditions, suggesting that sampling interval should be reduced with increasing catchment wetness. A key implication of our findings for freshwater management is that long-term bio-monitoring protocols should be developed with the knowledge of tracking algal temporal dynamics with an appropriate sampling frequency.

  17. MRI in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Kodama, Kazuhiro

    1992-01-01

    The present study investigated magnetic resonance imaging (MRI) features in temporal lobe epilepsy and correlated them with clinical variables, such as age, illness duration, past history, and the frequency of seizure. Cerebral MRI was performed in 45 patients with temporal lobe epilepsy of unknown etiology, using a 0.5 T and/or a 1.5 T MRI systems. The temporal lobe was seen as high signal intensity on T2-weighted images and/or proton density-weighted images in 6 patients, although it was missed on CT and T1-weighted images. The high intensity area seemed to reflect sclerosis of the temporal lobe. This finding was significantly associated with partial seizure. Of these patients, 3 had a history of febrile convulsions. Ten patients had slight dilatation of the inferior horn of the lateral ventricle. They were significantly old at the time of onset and examination, as compared with those without dilatation. Furthermore, 6 patients with unilateral dilatation were significantly younger than the other 4 with bilateral dilatation. Nine patients had small multiple high signal areas in white matter, mainly in the parietal lobe, which suggested vascular origin. These patients were significantly old at the time of onset and examination, as compared with those having no such findings. In depicting high signal intensity areas, a 1.5 T MRI system was not always superior to a 0.5 T MRI system. Proton density-weighted images were better than T2-weighted images in some patients. (N.K.)

  18. Cognitive changes in people with temporal lobe epilepsy over a 13-year period.

    Science.gov (United States)

    Mameniškienė, Rūta; Rimšienė, Justė; Puronaitė, Roma

    2016-10-01

    The aims of our study were to evaluate cognitive decline in people with temporal lobe epilepsy over a period of 13years and to determine what clinical and treatment characteristics may have been associated with these. Thirty-three individuals with temporal lobe epilepsy underwent the same neuropsychological assessment of verbal and nonverbal memory, attention, and executive functions using the same cognitive test battery as one used 13years ago. Long-term verbal and nonverbal memory was tested four weeks later. Results were compared with those carried out 13years earlier. There was no significant change in verbal and verbal-logical memory tests; however, nonverbal memory worsened significantly. Long-term verbal memory declined for 21.9% of participants, long-term verbal-logical memory for 34.4%, and long-term nonverbal memory for 56.3%. Worsening of working verbal and verbal-logical memory was associated with longer epilepsy duration and lower levels of patients' education; worsening of verbal delayed recall and long-term verbal-logical memory was associated with higher seizure frequency. Decline in long-term nonverbal memory had significant association with a longer duration of epilepsy. The worsening of reaction and attention inversely correlated with the symptoms of depression. Over a 13-year period, cognitive functions did not change significantly. Good seizure control and reduced symptoms of depression in this sample of people with temporal lobe epilepsy were associated with better cognitive functioning. The predictors of change of cognitive functions could be complex and require further study. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Can intraoperative electrocorticography patterns predict surgical outcome in patients with temporal lobe epilepsy secondary to unilateral mesial temporal sclerosis?

    Science.gov (United States)

    Oliveira, Pedro A L; Garzon, Eliana; Caboclo, Luís O S F; Sousa, Patrícia S; Carrete, Henrique; Centeno, Ricardo S; Costa, José M P; Machado, Hélio R; Yacubian, Elza M T; Bianchin, Marino M; Sakamoto, Américo C

    2006-10-01

    Intraoperative electrocorticography (ECoG) can be performed in cases of temporal lobe epilepsy due to hippocampal sclerosis (TLE-HS). However, its significance and correlation with surgical outcome are still controversial. To analyze the electrophysiological characteristics of temporal lobe structures during ECoG of patients with TLE-HS, with emphasis on the comparison between pre- and post-resection recordings and surgical outcome. Seventeen patients with refractory TLE-HS submitted to corticoamigdalohipocampectomy were included in the study. Clinical variables included age at the onset, duration of epilepsy and seizure outcome. The post-operative follow-up ranged from 24 to 36 months. According to outcome subjects were divided in two subgroups: (A) individuals free of seizures (Engel 1A), and (B) individuals not-free of seizures (Engel 1B-IV). Four patterns of ECoG findings were identified: isolated discharges; high frequency spikes (HFS); continuous discharges; combination of isolated discharges and HFS. According to predominant topography ECoG was classified as mediobasal, lateral (or neocortical), mediobasal and lateral. The progressive removal of the temporal pole and the hippocampus was associated with significant decrease of neocortical spikes. No correlation between clinical variables and seizure outcome was observed. Patients who only had isolated spikes on intraoperative ECoG presented a statistical trend for excellent surgical control. Patients who presented temporal pole blurring on MRI also had better post-surgical seizure outcome. This study showed that out of diverse clinical and laboratory variables, only isolated discharges on intraoperative ECoG and temporal pole blurring on MRI predicted excellent post-surgical seizure outcome. However, other studies with larger number of patients are still necessary to confirm these findings.

  20. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2010-05-01

    Full Text Available The way the cerebellar granular layer transforms incoming mossy fiber signals into new spike patterns to be related to Purkinje cells is not yet clear. Here, a realistic computational model of the granular layer was developed and used to address four main functional hypotheses: center-surround organization, time-windowing, high-pass filtering in responses to spike bursts and coherent oscillations in response to diffuse random activity. The model network was activated using patterns inspired by those recorded in vivo. Burst stimulation of a small mossy fiber bundle resulted in granule cell bursts delimited in time (time windowing and space (center-surround by network inhibition. This burst-burst transmission showed marked frequency-dependence configuring a high-pass filter with cut-off frequency around 100 Hz. The contrast between center and surround properties was regulated by the excitatory-inhibitory balance. The stronger excitation made the center more responsive to 10-50 Hz input frequencies and enhanced the granule cell output (with spike occurring earlier and with higher frequency and number compared to the surround. Finally, over a certain level of mossy fiber background activity, the circuit generated coherent oscillations in the theta-frequency band. All these processes were fine-tuned by NMDA and GABA-A receptor activation and neurotransmitter vesicle cycling in the cerebellar glomeruli. This model shows that available knowledge on cellular mechanisms is sufficient to unify the main functional hypotheses on the cerebellum granular layer and suggests that this network can behave as an adaptable spatio-temporal filter coordinated by theta-frequency oscillations.

  1. CNV amplitude as a neural correlate for stuttering frequency: A case report of acquired stuttering.

    Science.gov (United States)

    Vanhoutte, Sarah; Van Borsel, John; Cosyns, Marjan; Batens, Katja; van Mierlo, Pieter; Hemelsoet, Dimitri; Van Roost, Dirk; Corthals, Paul; De Letter, Miet; Santens, Patrick

    2014-11-01

    A neural hallmark of developmental stuttering is abnormal articulatory programming. One of the neurophysiological substrates of articulatory preparation is the contingent negative variation (CNV). Unfortunately, CNV tasks are rarely performed in persons who stutter and mainly focus on the effect of task variation rather than on interindividual variation in stutter related variables. However, variations in motor programming seem to be related to variation in stuttering frequency. The current study presents a case report of acquired stuttering following stroke and stroke related surgery in the left superior temporal gyrus. A speech related CNV task was administered at four points in time with differences in stuttering severity and frequency. Unexpectedly, CNV amplitudes at electrode sites approximating bilateral motor and left inferior frontal gyrus appeared to be inversely proportional to stuttering frequency. The higher the stuttering frequency, the lower the activity for articulatory preparation. Thus, the amount of disturbance in motor programming seems to determine stuttering frequency. At right frontal electrodes, a relative increase in CNV amplitude was seen at the test session with most severe stuttering. Right frontal overactivation is cautiously suggested to be a compensation strategy. In conclusion, late CNV amplitude elicited by a relatively simple speech task seems to be able to provide an objective, neural correlate of stuttering frequency. The present case report supports the hypothesis that motor preparation has an important role in stuttering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The associations between multisensory temporal processing and symptoms of schizophrenia.

    Science.gov (United States)

    Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T

    2017-01-01

    Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.

    Science.gov (United States)

    Nicholls, M E

    1996-07-01

    This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.

  4. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    LENUS (Irish Health Repository)

    Kimmich, Okka

    2012-02-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects <50 years of age; 22 subjects >50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige\\'s syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1\\/61 (2%) control subjects, 27\\/32 (84%) patients with adult-onset primary torsion dystonia and 32\\/73 (44%) unaffected relatives [siblings (20\\/36; 56%), offspring (11\\/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  5. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    Science.gov (United States)

    Kimmich, Okka; Bradley, David; Whelan, Robert; Mulrooney, Nicola; Reilly, Richard B; Hutchinson, Siobhan; O'Riordan, Sean; Hutchinson, Michael

    2011-09-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects 50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige's syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1/61 (2%) control subjects, 27/32 (84%) patients with adult-onset primary torsion dystonia and 32/73 (44%) unaffected relatives [siblings (20/36; 56%), offspring (11/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  6. Frequency-domain interferometer simulation with higher-order spatial modes

    International Nuclear Information System (INIS)

    Freise, A; Heinzel, G; Lueck, H; Schilling, R; Willke, B; Danzmann, K

    2004-01-01

    FINESSE is a software simulation allowing one to compute the optical properties of laser interferometers used by interferometric gravitational-wave detectors today. This fast and versatile tool has already proven to be useful in the design and commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite-Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands for easily generating and plotting the most common signals including power enhancement, error and control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE provides an advanced and versatile optical simulation based on a general analysis of user-defined optical setups and is quick to install and easy to use

  7. Correlation between memory, proton magnetic resonance spectroscopy, and interictal epileptiform discharges in temporal lobe epilepsy related to mesial temporal sclerosis.

    Science.gov (United States)

    Mantoan, Marcele Araújo Silva; Caboclo, Luís Otávio Sales Ferreira; de Figueiredo Ferreira Guilhoto, Laura Maria; Lin, Katia; da Silva Noffs, Maria Helena; de Souza Silva Tudesco, Ivanda; Belzunces, Erich; Carrete, Henrique; Bussoletti, Renato Tavares; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2009-11-01

    The aim of the study described here was to examine the relationship between memory function, proton magnetic resonance spectroscopy ((1)H-MRS) abnormalities, and interictal epileptiform discharge (IED) lateralization in patients with temporal lobe epilepsy (TLE) related to unilateral mesial temporal sclerosis. We assessed performance on tests of memory function and intelligence quotient (IQ) in 29 right-handed outpatients and 24 controls. IEDs were assessed on 30-minute-awake and 30-minute-sleep EEG samples. Patients had (1)H-MRS at 1.5 T. There was a negative correlation between IQ (P=0.031) and Rey Auditory Verbal Learning Test results (P=0.022) and epilepsy duration; between(1)H-MRS findings and epilepsy duration (P=0.027); and between N-acetylaspartate (NAA) levels and IEDs (P=0.006) in contralateral mesial temporal structures in the left MTS group. (1)H-MRS findings, IEDs, and verbal function were correlated. These findings suggest that IEDs and NAA/(Cho+Cr) ratios reflecting neural metabolism are closely related to verbal memory function in mesial temporal sclerosis. Higher interictal activity on the EEG was associated with a decline in total NAA in contralateral mesial temporal structures.

  8. Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions

    Science.gov (United States)

    Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean

    2015-01-01

    Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436

  9. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    Science.gov (United States)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  10. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  11. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    International Nuclear Information System (INIS)

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-01-01

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  12. Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, O.; Kovalchuk, I.; Hohn, B. [Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel (Switzerland); Arkhipov, A. [Chernobyl Scientific and Technical Center of International Research, Shkolnaya Str. 6, 255620 Chernobyl (Ukraine); Barylyak, I.; Karachov, I. [Ukrainian Scientific Genetics Center, Popudrenko Str. 50, 253660 Kiev (Ukraine); Titov, V. [Ivano-Frankivsk State Medical Academy, Galitska Str.2, 284000 Ivano-Frankivsk (Ukraine)

    2000-04-03

    different chemical composition, but equal radioactivity, exhibited different levels of HR, dependent upon the absorbed dose of radiation. Remarkably, we observed a much higher frequency of HR in plants exposed to chronic irradiation when compared to acutely irradiated plants. Although acute application of 0.1-0.5 Gy did not lead to an increase of frequency of HR, the chronic exposure of the plants to several orders of magnitude lower dose of 200 {mu}Gy led to a 5-6-fold induction of the frequency of HR as compared to the control.

  13. Temporal Segmentation of MPEG Video Streams

    Directory of Open Access Journals (Sweden)

    Janko Calic

    2002-06-01

    Full Text Available Many algorithms for temporal video partitioning rely on the analysis of uncompressed video features. Since the information relevant to the partitioning process can be extracted directly from the MPEG compressed stream, higher efficiency can be achieved utilizing information from the MPEG compressed domain. This paper introduces a real-time algorithm for scene change detection that analyses the statistics of the macroblock features extracted directly from the MPEG stream. A method for extraction of the continuous frame difference that transforms the 3D video stream into a 1D curve is presented. This transform is then further employed to extract temporal units within the analysed video sequence. Results of computer simulations are reported.

  14. Aspects of Oral Language, Speech, and Written Language in Subjects with Temporal Lobe Epilepsy of Difficult Control

    Directory of Open Access Journals (Sweden)

    Berberian, Ana Paula

    2015-03-01

    Full Text Available Introduction About 50 million people have epilepsy and 30% of them have epilepsy that does not respond to properly conducted drug treatment. Objective Verify the incidence of language disorders in oral language, speech, and written language of subjects with difficult to control temporal lobe epilepsy (TLE and compare the occurrence of these disorders in subjects before and after surgery. Methods Cross-sectional study with quantitative analysis, exploratory type. A questionnaire for data collection was administered covering the following aspects: oral language, speech complaints, and writing production and comprehension. Criteria for inclusion of subjects were a diagnosis of TLE refractory to drug treatment and at least 4 years of schooling. Results The sample of 63 patients with TLE was divided into two groups: presurgical (n = 31 and postsurgical (n = 32. In the postsurgical group, there was a higher frequency of left lobectomy (75% than right (25%. Conclusion Statistical analysis was performed with the chi-square test (significance level of 0.05. Complaints related to speech-language attention were more predominant in postsurgical subjects. Analysis of oral language, speech, and written language in subjects with epilepsy who underwent temporal lobectomy or not showed findings consistent with symptoms related to transient aphasia, with the presence of paraphasias, as well as changes in speech prosody and melody. These symptoms appeared more associated with recurrence after having a temporal lobectomy.

  15. The detection of higher-order acoustic transitions is reflected in the N1 ERP.

    Science.gov (United States)

    Weise, Annekathrin; Schröger, Erich; Horváth, János

    2018-01-30

    The auditory system features various types of dedicated change detectors enabling the rapid parsing of auditory stimulation into distinct events. The activity of such detectors is reflected by the N1 ERP. Interestingly, certain acoustic transitions show an asymmetric N1 elicitation pattern: whereas first-order transitions (e.g., a change from a segment of constant frequency to a frequency glide [c-to-g change]) elicit N1, higher-order transitions (e.g., glide-to-constant [g-to-c] changes) do not. Consensus attributes this asymmetry to the absence of any available sensory mechanism that is able to rapidly detect higher-order changes. In contrast, our study provides compelling evidence for such a mechanism. We collected electrophysiological and behavioral data in a transient-detection paradigm. In each condition, a random (50%-50%) sequence of two types of tones occurred, which did or did not contain a transition (e.g., c-to-g and constant stimuli or g-to-c and glide tones). Additionally, the rate of pitch change of the glide varied (i.e., 10 vs. 40 semitones per second) in order to increase the number of responding neural assemblies. The rate manipulation modulated transient ERPs and behavioral detection performance for g-to-c transitions much stronger than for c-to-g transitions. The topographic and tomographic analyses suggest that the N1 response to c-to-g and also to g-to-c transitions emerged from the superior temporal gyrus. This strongly supports a sensory mechanism that allows the fast detection of higher-order changes. © 2018 Society for Psychophysiological Research.

  16. Atypical central pain processing in sensory modulation disorder: absence of temporal summation and higher after-sensation.

    Science.gov (United States)

    Bar-Shalita, T; Vatine, J-J; Yarnitsky, D; Parush, S; Weissman-Fogel, I

    2014-02-01

    Sensory over-responsivity (SOR), a subtype of the proposed sensory modulation disorder (SMD), is characterized by over-responsiveness to stimuli in several sensory modalities. SMD individuals demonstrate abnormal responses to naturally occurring stimuli in a manner that interferes with daily life participation. Previous psychophysical testing of the somatosensory system revealed that SOR individuals rated pain sensations higher than controls, demonstrating hyperalgesia that can be centrally mediated. Temporal summation (TS) of second pain and after-sensation are manifestations of central sensitization; therefore, this study explored these measures for better characterization of central pain processing in SOR. Twelve SOR adults and 12 healthy controls participated. TS was produced by a train of fifteen repetitive heat pulses, 0.7 s duration each, and 2 s of inter-stimulus interval, applied to the thenar-eminence, while four pain ratings were obtained. An after-sensation was then measured for 5 min, obtaining six pain ratings. No TS of pain was indicated in the SOR group (SOR: p = 0.36; control: p sensation, individuals with SOR continued to report pain for the duration of the 5 min measured (p = 0.002). These results demonstrate an atypical response pattern, suggesting alteration in pain processing and/or modulation at a central level in individuals with SOR. These possible neural changes may manifest themselves as interference with daily functioning as well as shed light on some of the between-subject variability seen in psychophysical testing in non-painful subjects.

  17. Isolating spectral cues in amplitude and quasi-frequency modulation discrimination by reducing stimulus duration.

    Science.gov (United States)

    Borucki, Ewa; Berg, Bruce G

    2017-05-01

    This study investigated the psychophysical effects of distortion products in a listening task traditionally used to estimate the bandwidth of phase sensitivity. For a 2000 Hz carrier, estimates of modulation depth necessary to discriminate amplitude modulated (AM) tones and quasi-frequency modulated (QFM) were measured in a two interval forced choice task as a function modulation frequency. Temporal modulation transfer functions were often non-monotonic at modulation frequencies above 300 Hz. This was likely to be due to a spectral cue arising from the interaction of auditory distortion products and the lower sideband of the stimulus complex. When the stimulus duration was decreased from 200 ms to 20 ms, thresholds for low-frequency modulators rose to near-chance levels, whereas thresholds in the region of non-monotonicities were less affected. The decrease in stimulus duration appears to hinder the listener's ability to use temporal cues in order to discriminate between AM and QFM, whereas spectral information derived from distortion product cues appears more resilient. Copyright © 2017. Published by Elsevier B.V.

  18. Temporal integration of loudness in listeners with hearing losses of primarily cochlear origin

    DEFF Research Database (Denmark)

    Buus, Søren; Florentine, Mary; Poulsen, Torben

    1999-01-01

    To investigate how hearing loss of primarily cochlear origin affects the loudness of brief tones, loudness matches between 5- and 200-ms tones were obtained as a function of level for 15 listeners with cochlear impairments and for seven age-matched controls. Three frequencies, usually 0.5, 1, and 4...... of temporal integration—defined as the level difference between equally loud short and long tones—varied nonmonotonically with level and was largest at moderate levels. No consistent effect of frequency was apparent. The impaired listeners varied widely, but most showed a clear effect of level on the amount...... of temporal integration. Overall, their results appear consistent with expectations based on knowledge of the general properties of their loudness-growth functions and the equal-loudness-ratio hypothesis, which states that the loudness ratio between equal-SPL long and brief tones is the same at all SPLs...

  19. Temporal structure of neuronal population oscillations with empirical model decomposition

    International Nuclear Information System (INIS)

    Li Xiaoli

    2006-01-01

    Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation

  20. Frequency Characteristics of Path Loss and Delay-Angular Profile of Propagation Channels in An Indoor Room Environment in SHF Bands

    DEFF Research Database (Denmark)

    HANPINITSAK, Panawit; SAITO, Kentaro; Fan, Wei

    2017-01-01

    Comparison of channel characteristics at many frequency bands is necessary to study the frequency-de-pendency which is important for consistent multi-frequency spatial-temporal channel model. Path loss (PL) and power spectrum characteristics of the channel measured in a typical classroom line...

  1. Unilateral mesial temporal atrophy after a systemic insult as a possible etiology of refractory temporal lobe epilepsy: case report Esclerose mesial temporal unilateral após insulto sistêmico como possível etiologia de epilepsia refratária do lobo temporal: relato de caso

    Directory of Open Access Journals (Sweden)

    Arthur Cukiert

    1997-09-01

    Full Text Available Mesial temporal sclerosis is the main pathological substrate present in refractory temporal lobe epilepsy and its presence is often related to the occurrence of febrile seizures in infancy. There is an on-going discussion on the nature of mesial temporal sclerosis as it related to epilepsy: cause or consequence. A previously normal child developed hyperosmolar coma after abdominal surgery at the age of 6. Three months afterwards he developed simple and complex partial seizures with an increasing frequency and refractory to multiple mono-and polytherapic drug regimens. He was evaluated for surgery at the age of 13. Ictal and interictal recordings showed left temporal lobe abnormalities. Early CT scaning suggested left temporal atrophy. MRI showed mesial temporal sclerosis. Neuropsichological testing showed verbal memory deficits and he passed a left carotid artery amytal injection. He was submitted to a cortico-amygdalo-hippocampectomy and has been seizure-free since then. The clinical data obtained from this patient suggest that at least in this case mesial temporal sclerosis would be related to the cause of epilepsy and not resultant from repeated seizure activity.A esclerose mesial temporal é o principal substrato anatomo-patológico envolvido na epilepsia refratária do lobo temporal e está frequentemente associada à ocorrência de convulsões febris na infância. Persiste até o momento intensa discussão se a esclerose mesial seria causa ou consequência da síndrome epiléptica. Uma criança previamente normal, desenvolveu coma hiperosmolar após intercorrência em cirurgia abdominal aos 6 anos de idade. Após 3 meses iniciaram-se crises parciais simples e complexas em frequência ascendente e refratárias a múltiplos esquemas terapêuticos em mono- e politerapia. Ele realizou investigação pré-operatória para epilepsia aos 13 anos de idade. Registros eletrencefalográficos de superfície ictais e interictais mostraram anormalidades

  2. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    Science.gov (United States)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  3. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  4. Diversity and resilience of the wood?feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations

    OpenAIRE

    Wang, Ying; Su, Lijuan; Huang, Shi; Bo, Cunpei; Yang, Sen; Li, Yan; Wang, Fengqin; Xie, Hui; Xu, Jian; Song, Andong

    2016-01-01

    Abstract Termites are considered among the most efficient bioreactors, with high capacities for lignocellulose degradation and utilization. Recently, several studies have characterized the gut microbiota of diverse termites. However, the temporal dynamics of the gut microbiota within a given termite with dietary diversity are poorly understood. Here, we employed 16S rDNA barcoded pyrosequencing analysis to investigate temporal changes in bacterial diversity and richness of the gut microbiota ...

  5. [A Case of Amusia Following Right Temporal Subcortical Hemorrhage].

    Science.gov (United States)

    Nagayoshi, Narumi; Arai, Takao; Tanno, Maiko; Watanabe, Motoi; Suzuki, Tadashi; Akasaki, Yasuharu; Murayama, Yuichi

    2017-07-01

    A woman in her 60s presented with amusia due to a localized subcortical hemorrhage of the right temporal lobe. No other symptoms of higher brain dysfunction or body paralysis were observed. One characteristic symptom in this case was rhythm impairment. Few cases of this impairment have been previously reported, and the responsible lesion and underlying mechanisms are still a matter of speculation. However, in this case, a relationship with the right temporal lobe was indicated.

  6. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  7. Auditory temporal processing in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi

    2016-07-01

    Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system

    DEFF Research Database (Denmark)

    Dicke, Ulrike; Ewert, Stephan D.; Dau, Torsten

    2007-01-01

    Periodic amplitude modulations AMs of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathw...... accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds....

  9. Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.

    Science.gov (United States)

    Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida

    2014-03-01

    Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a

  10. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    Science.gov (United States)

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.

  11. On the frequency scalings of RF guns

    International Nuclear Information System (INIS)

    Lin, L.C.; Chen, S.C.; Wurtele, J.S.

    1995-01-01

    A frequency scaling law for RF guns is derived from the normalized Vlasov-Maxwell equations. It shows that higher frequency RF guns can generate higher brightness beams under the assumption that the accelerating gradient and all beam and structure parameters are scaled with the RF frequency. Numerical simulation results using MAGIC confirm the scaling law. A discussion of the range of applicability of the law is presented. copyright 1995 American Institute of Physics

  12. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    Science.gov (United States)

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A model of photon cell killing based on the spatio-temporal clustering of DNA damage in higher order chromatin structures.

    Directory of Open Access Journals (Sweden)

    Lisa Herr

    Full Text Available We present a new approach to model dose rate effects on cell killing after photon radiation based on the spatio-temporal clustering of DNA double strand breaks (DSBs within higher order chromatin structures of approximately 1-2 Mbp size, so called giant loops. The main concept of this approach consists of a distinction of two classes of lesions, isolated and clustered DSBs, characterized by the number of double strand breaks induced in a giant loop. We assume a low lethality and fast component of repair for isolated DSBs and a high lethality and slow component of repair for clustered DSBs. With appropriate rates, the temporal transition between the different lesion classes is expressed in terms of five differential equations. These allow formulating the dynamics involved in the competition of damage induction and repair for arbitrary dose rates and fractionation schemes. Final cell survival probabilities are computable with a cell line specific set of three parameters: The lethality for isolated DSBs, the lethality for clustered DSBs and the half-life time of isolated DSBs. By comparison with larger sets of published experimental data it is demonstrated that the model describes the cell line dependent response to treatments using either continuous irradiation at a constant dose rate or to split dose irradiation well. Furthermore, an analytic investigation of the formulation concerning single fraction treatments with constant dose rates in the limiting cases of extremely high or low dose rates is presented. The approach is consistent with the Linear-Quadratic model extended by the Lea-Catcheside factor up to the second moment in dose. Finally, it is shown that the model correctly predicts empirical findings about the dose rate dependence of incidence probabilities for deterministic radiation effects like pneumonitis and the bone marrow syndrome. These findings further support the general concepts on which the approach is based.

  14. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  15. The temporal-relevance temporal-uncertainty model of prospective duration judgment.

    Science.gov (United States)

    Zakay, Dan

    2015-12-15

    A model aimed at explaining prospective duration judgments in real life settings (as well as in the laboratory) is presented. The model is based on the assumption that situational meaning is continuously being extracted by humans' perceptual and cognitive information processing systems. Time is one of the important dimensions of situational meaning. Based on the situational meaning, a value for Temporal Relevance is set. Temporal Relevance reflects the importance of temporal aspects for enabling adaptive behavior in a specific moment in time. When Temporal Relevance is above a certain threshold a prospective duration judgment process is evoked automatically. In addition, a search for relevant temporal information is taking place and its outcomes determine the level of Temporal Uncertainty which reflects the degree of knowledge one has regarding temporal aspects of the task to be performed. The levels of Temporal Relevance and Temporal Uncertainty determine the amount of attentional resources allocated for timing by the executive system. The merit of the model is in connecting timing processes with the ongoing general information processing stream. The model rests on findings in various domains which indicate that cognitive-relevance and self-relevance are powerful determinants of resource allocation policy. The feasibility of the model is demonstrated by analyzing various temporal phenomena. Suggestions for further empirical validation of the model are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Frequency Hopping Transceiver Multiplexer

    Science.gov (United States)

    1983-03-01

    ATC 17 ULR IHQ OCLI CPCTR ULTRA HIGH "OQS" UP TO 4X HIGHER THAN BEST INDUS- TRY STANDARD (ATC 100). MICROWAVE POWER, CURRENT. AND 0 RATINGS5...Q"W were assigned to element (FigC-2); which will be modelled into the transformer previously ment td . The center frequencies, "Q", frequency range...of the TD 1288 system. Temperature stability, change with time or storage. Flexure Frequency, or non-linear change over bandwidth. * Humidity

  18. Coherence of EEG frequency components during manual movements executed by the subdominant hand in women

    Directory of Open Access Journals (Sweden)

    O. V. Korzhyk

    2017-02-01

    analysis of differences proved that women with a low IαF had relatively higher coherence of the EEG frequency components in the frontal lobes. However, relatively higher frequency components of EEG coherence in the central, posterior temporal and parietal leads were set in women with high IαF. Changes in cortical activity were established during different movements performed by fingers of the subdominant hand, namely, grasping movements of common occurrence, successive movements and movements under power loading. They differ from each other in their low specificity. Thus, the factor of motor performance of tests by means of the subdominant hand had obviously more decisive importance in the nature of the organization of brain activity than for the actual specifics of manual movements.

  19. Effects of state and trait factors on nightmare frequency.

    Science.gov (United States)

    Schredl, Michael

    2003-10-01

    In a new approach, this study compared the effects of trait and state factors on nightmare frequency in a non-clinical sample. Although neuroticism and boundary thinness were related to nightmare frequency, regression analyses indicated that the trait measures did not add to the variance explained by the state measures. This finding supports the so-called continuity hypothesis of dreaming, i. e., nightmares reflect negative waking-life experiences. Second, the moderate relationship between nightmare frequency and poor sleep quality was partly explained by the day-time measures of neuroticism and stress, but it can be assumed that nightmares are an independent factor contributing to complaints of insomnia. Longitudinal studies measuring nightmare frequency and stress on a daily basis will shed light on the temporal relationship between daytime measures and the occurrence of nightmares. It will be also very interesting to study the relationship between stress and nightmare frequency in a sample who have undergone cognitive-behavioral treatment for nightmares.

  20. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  1. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    Science.gov (United States)

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields.

    Science.gov (United States)

    Frei, Patrizia; Mohler, Evelyn; Neubauer, Georg; Theis, Gaston; Bürgi, Alfred; Fröhlich, Jürg; Braun-Fahrländer, Charlotte; Bolte, John; Egger, Matthias; Röösli, Martin

    2009-08-01

    Little is known about the population's exposure to radio frequency electromagnetic fields (RF-EMF) in industrialized countries. To examine levels of exposure and the importance of different RF-EMF sources and settings in a sample of volunteers living in a Swiss city. RF-EMF exposure of 166 volunteers from Basel, Switzerland, was measured with personal exposure meters (exposimeters). Participants carried an exposimeter for 1 week (two separate weeks in 32 participants) and completed an activity diary. Mean values were calculated using the robust regression on order statistics (ROS) method. Mean weekly exposure to all RF-EMF sources was 0.13 mW/m(2) (0.22 V/m) (range of individual means 0.014-0.881 mW/m(2)). Exposure was mainly due to mobile phone base stations (32.0%), mobile phone handsets (29.1%) and digital enhanced cordless telecommunications (DECT) phones (22.7%). Persons owning a DECT phone (total mean 0.15 mW/m(2)) or mobile phone (0.14 mW/m(2)) were exposed more than those not owning a DECT or mobile phone (0.10 mW/m(2)). Mean values were highest in trains (1.16 mW/m(2)), airports (0.74 mW/m(2)) and tramways or buses (0.36 mW/m(2)), and higher during daytime (0.16 mW/m(2)) than nighttime (0.08 mW/m(2)). The Spearman correlation coefficient between mean exposure in the first and second week was 0.61. Exposure to RF-EMF varied considerably between persons and locations but was fairly consistent within persons. Mobile phone handsets, mobile phone base stations and cordless phones were important sources of exposure in urban Switzerland.

  3. The interplay between regulatory focus and temporal distance in the health context.

    Science.gov (United States)

    Berezowska, Aleksandra; Fischer, Arnout R H; van Trijp, Hans C M

    2018-02-01

    This study identifies how the interaction between temporal distance, regulatory focus, and framing of health outcomes affects individuals' intention to adopt a personalized nutrition service. A 2 (temporal distance: immediate health outcomes vs. delayed health outcomes) × 2 (regulatory focus: prevention vs. promotion) × 2 (health outcome framing: illness prevention vs. health promotion) full-factorial between-subjects design. In two experiments with samples of 236 and 242 students, regulatory focus was manipulated by asking participants to describe which academic outcomes they want to either achieve or prevent and how they aim to do this. Temporal distance and health outcome framing were manipulated by modifying descriptions of personalized nutrition services. To study the process through which temporal distance, regulatory focus, and health outcome framing affect adoption intention, measures of perceived privacy risk and perceived personalization benefit were included as mediators. The interaction between temporal distance and regulatory focus had a significant effect on adoption intention, perceived privacy risk, and perceived personalization benefit. For prevention-focused individuals' adoption intention was higher, perceived personalization benefit was higher, and perceived privacy risk was lower when health outcomes were immediate instead of delayed. These effects were not significant for promotion-focused individuals. Health outcome framing affected the interaction between temporal distance and regulatory focus, but only in Study 1. Only perceived personalization benefit served as a mediator. Tailoring temporal distance to individuals' regulatory focus increases adoption intention for personalized nutrition advice. Statement of contribution What is already known on this subject? Intention to adopt dietary recommendations results from a cognitive decision-making process. Regulatory focus and temporal distance are relevant for the adoption of dietary

  4. Host-Parasite Interactions in Individuals with Type 1 and 2 Diabetes Result in Higher Frequency of Ascaris lumbricoides and Giardia lamblia in Type 2 Diabetic Individuals

    Directory of Open Access Journals (Sweden)

    Eleuza Rodrigues Machado

    2018-01-01

    Full Text Available Host-parasite interactions in diabetic patients might influence diabetes complications and intestinal parasitosis. The aim was to investigate the occurrence of enteroparasites in individuals with diabetes types 1 and 2. A descriptive study was designed to estimate frequencies of parasites and to compare them in individuals with diabetes types 1 and 2 from two Health Centers and one hospital in the Federal District of Brazil. Patients were allocated to the study by convenience. Three fecal samples of 156 diabetic individuals (120 type 1 and 36 type 2 were analyzed using two parasitological methods. Enteroparasites or commensals frequency in diabetics was 64%. Diabetics infected with up to six species of intestinal parasites or commensals were found. Frequencies of Ascaris lumbricoides and Giardia lamblia were higher in individuals with type 2 diabetes. The lower frequency of A. lumbricoides found in type 1 diabetes may be related to a strong Th2 response to parasites. Autoimmune response developed in type 1 diabetic individuals characterized by the production of Th1 cytokines could explain low frequency of G. lamblia. High frequency of parasites found in type 2 diabetes emphasizes the importance of periodic parasitological examinations in these individuals.

  5. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  6. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  7. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  8. Determining Time Variation of Cable Tension Forces in Suspended Bridges Using Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Gannon Stromquist-LeVoir

    2018-01-01

    Full Text Available A feasibility study was conducted to develop a novel method to determine the temporal changes of tensile forces in bridge suspender cables using time-frequency analysis of ambient vibration measurements. An analytical model of the suspender cables was developed to evaluate the power spectral density (PSD function of a cable with consideration of cable flexural stiffness. Discrete-time, short-time Fourier transform (STFT was utilized to analyze the recorded acceleration histories in both time and frequency domains. A mathematical convolution of the analytical PSD function and time-frequency data was completed to evaluate changes in cable tension force over time. The method was implemented using acceleration measurements collected from an in-service steel arch bridge with a suspended deck to calculate the temporal variation in cable forces from the vibration measurements. The observations served as proof of concept that the proposed method may be used for cable fatigue life calculations and bridge weigh-in-motion studies.

  9. Joint Spatio-Temporal Filtering Methods for DOA and Fundamental Frequency Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Benesty, Jacob

    2015-01-01

    some attention in the community and is quite promising for several applications. The proposed methods are based on optimal, adaptive filters that leave the desired signal, having a certain DOA and fundamental frequency, undistorted and suppress everything else. The filtering methods simultaneously...... operate in space and time, whereby it is possible resolve cases that are otherwise problematic for pitch estimators or DOA estimators based on beamforming. Several special cases and improvements are considered, including a method for estimating the covariance matrix based on the recently proposed...

  10. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  11. Bandpass characteristics of high-frequency sensitivity and visual experience in blindsight

    NARCIS (Netherlands)

    Seifert, Doerthe; Falter, Christine; Strasburger, Hans; Elliott, Mark A.

    Patient RP suffers a unilateral right homonymous quadrant anopia but demonstrates better than chance discrimination for Stimuli presented in the blind field at temporal frequencies between 33 and 47 Hz (all significant at p <05, binomial) Examination of her reports of visual experience during

  12. Ocular-following responses to white noise stimuli in humans reveal a novel nonlinearity that results from temporal sampling.

    Science.gov (United States)

    Sheliga, Boris M; Quaia, Christian; FitzGibbon, Edmond J; Cumming, Bruce G

    2016-01-01

    White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion.

  13. Exploring spatial–temporal dynamics of fire regime features in mainland Spain

    Directory of Open Access Journals (Sweden)

    A. Jiménez-Ruano

    2017-10-01

    Full Text Available This paper explores spatial–temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial – regional and provincial/NUTS3 – levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974–2013. Temporal shifts in fire features are investigated by means of change point detection procedures – Pettitt test, AMOC (at most one change, PELT (pruned exact linear time and BinSeg (binary segmentation – at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann–Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA and varimax rotation to trend outputs – mainly Sen's slope values – to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann–Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1, summer burnt area (PC2, large fires (PC3 and natural fires (PC4.

  14. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  15. Components of cross-frequency modulation in health and disease.

    Science.gov (United States)

    Allen, Elena A; Liu, Jingyu; Kiehl, Kent A; Gelernter, Joel; Pearlson, Godfrey D; Perrone-Bizzozero, Nora I; Calhoun, Vince D

    2011-01-01

    The cognitive deficits associated with schizophrenia are commonly believed to arise from the abnormal temporal integration of information, however a quantitative approach to assess network coordination is lacking. Here, we propose to use cross-frequency modulation (cfM), the dependence of local high-frequency activity on the phase of widespread low-frequency oscillations, as an indicator of network coordination and functional integration. In an exploratory analysis based on pre-existing data, we measured cfM from multi-channel EEG recordings acquired while schizophrenia patients (n = 47) and healthy controls (n = 130) performed an auditory oddball task. Novel application of independent component analysis (ICA) to modulation data delineated components with specific spatial and spectral profiles, the weights of which showed covariation with diagnosis. Global cfM was significantly greater in healthy controls (F(1,175) = 9.25, P modulation at fronto-temporal electrodes was greater in patients (F(1,175) = 17.5, P modulation in schizophrenia patients was correlated with several polymorphisms in the gene for the α2-subunit of the GABA(A) receptor (GABRA2) as well as the total number of risk alleles in GABRA2 (r = 0.45, P < 0.01). Overall, our results indicate great promise for this approach in establishing patterns of cfM in health and disease and elucidating the roles of oscillatory interactions in functional connectivity.

  16. Frequency effects of upstream wake and blade interaction on the unsteady boundary layer flow

    International Nuclear Information System (INIS)

    Kang, Dong Jin; Bae, Sang Su

    2002-01-01

    Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake stripe inside the viscous sublayer as well as the buffer layer

  17. High Order Differential Frequency Hopping: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-01-01

    Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.

  18. ULF wave effects on high frequency signal propagation through the ionosphere

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2009-07-01

    Full Text Available Variations in the total electron content (TEC of the ionosphere alter the propagation characteristics of EM radiation for frequencies above a few megahertz (MHz. Spatial and temporal variations of the ionosphere TEC influence highly sensitive, ground based spatial measurements such as those used in radio astronomy and Global Positioning System (GPS applications. In this paper we estimate the magnitudes of the changes in TEC and the time delays of high frequency signals introduced by variations in the ionosphere electron density caused by the natural spectrum of ultra-low frequency (ULF wave activity that originates in near-Earth space. The time delays and associated phase shifts depend on the frequency, spatial structure and amplitude of the ULF waves.

  19. Seizure semiology and electroencephalography in young children with lesional temporal lobe epilepsy.

    Science.gov (United States)

    Lv, Rui-Juan; Sun, Zhen-Rong; Cui, Tao; Shao, Xiao-Qiu

    2014-02-01

    This study aimed to discuss the clinical features of seizure semiology and electroencephalography (EEG) in young children with lesional temporal lobe epilepsy (TLE). Children with lesional TLE received presurgical evaluation for intractable epilepsy. They were followed up for more than one year after temporal lobectomy. We reviewed the medical history and video-EEG monitoring of children with TLE to analyze the semiology of seizures and EEG findings and compared the semiology of seizures and EEG findings of childhood TLE and adult TLE. A total of 84 seizures were analyzed in 11 children (aged 23-108 months). The age of seizure onset was from 1 month to 26 months (a mean of 17.6 months). All of the patients exhibited prominent motor manifestations including epileptic spasm, tonic seizure, and unilateral clonic seizure. Seven children manifested behavioral arrest similar to an automotor seizure in adult TLE but with a shorter duration and higher frequency. The automatisms were typically orofacial, whereas manual automatisms were rarely observed. The EEG recordings revealed that diffuse discharge patterns were more common in younger children, whereas focal or unilateral patterns were more typical in older children. All of the patients were seizure-free after temporal lobectomy with more than one-year follow-up. All of the children had a mental development delay or regression; however, there was improvement after surgery, especially in those with surgery performed early. In contrast to TLE in adults, young children with lesional TLE probably represent a distinct nosological and probably less homogeneous syndrome. Although they had generalized clinical and electrographic features, resective epilepsy surgery should be considered as early as possible to obtain seizure control and improvement in mental development. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners

    Science.gov (United States)

    Gregan, Melanie J.; Nelson, Peggy B.; Oxenham, Andrew J.

    2013-01-01

    Hearing-impaired (HI) listeners often show less masking release (MR) than normal-hearing listeners when temporal fluctuations are imposed on a steady-state masker, even when accounting for overall audibility differences. This difference may be related to a loss of cochlear compression in HI listeners. Behavioral estimates of compression, using temporal masking curves (TMCs), were compared with MR for band-limited (500–4000 Hz) speech and pure tones in HI listeners and age-matched, noise-masked normal-hearing (NMNH) listeners. Compression and pure-tone MR estimates were made at 500, 1500, and 4000 Hz. The amount of MR was defined as the difference in performance between steady-state and 10-Hz square-wave-gated speech-shaped noise. In addition, temporal resolution was estimated from the slope of the off-frequency TMC. No significant relationship was found between estimated cochlear compression and MR for either speech or pure tones. NMNH listeners had significantly steeper off-frequency temporal masking recovery slopes than did HI listeners, and a small but significant correlation was observed between poorer temporal resolution and reduced MR for speech. The results suggest either that the effects of hearing impairment on MR are not determined primarily by changes in peripheral compression, or that the TMC does not provide a sufficiently reliable measure of cochlear compression. PMID:24116426

  1. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures.

    Science.gov (United States)

    Barba, Carmen; Rheims, Sylvain; Minotti, Lorella; Guénot, Marc; Hoffmann, Dominique; Chabardès, Stephan; Isnard, Jean; Kahane, Philippe; Ryvlin, Philippe

    2016-02-01

    Reasons for failed temporal lobe epilepsy surgery remain unclear. Temporal plus epilepsy, characterized by a primary temporal lobe epileptogenic zone extending to neighboured regions, might account for a yet unknown proportion of these failures. In this study all patients from two epilepsy surgery programmes who fulfilled the following criteria were included: (i) operated from an anterior temporal lobectomy or disconnection between January 1990 and December 2001; (ii) magnetic resonance imaging normal or showing signs of hippocampal sclerosis; and (iii) postoperative follow-up ≥ 24 months for seizure-free patients. Patients were classified as suffering from unilateral temporal lobe epilepsy, bitemporal epilepsy or temporal plus epilepsy based on available presurgical data. Kaplan-Meier survival analysis was used to calculate the probability of seizure freedom over time. Predictors of seizure recurrence were investigated using Cox proportional hazards model. Of 168 patients included, 108 (63.7%) underwent stereoelectroencephalography, 131 (78%) had hippocampal sclerosis, 149 suffered from unilateral temporal lobe epilepsy (88.7%), one from bitemporal epilepsy (0.6%) and 18 (10.7%) from temporal plus epilepsy. The probability of Engel class I outcome at 10 years of follow-up was 67.3% (95% CI: 63.4-71.2) for the entire cohort, 74.5% (95% CI: 70.6-78.4) for unilateral temporal lobe epilepsy, and 14.8% (95% CI: 5.9-23.7) for temporal plus epilepsy. Multivariate analyses demonstrated four predictors of seizure relapse: temporal plus epilepsy (P temporal lobe surgery failure was 5.06 (95% CI: 2.36-10.382) greater in patients with temporal plus epilepsy than in those with unilateral temporal lobe epilepsy. Temporal plus epilepsy represents a hitherto unrecognized prominent cause of temporal lobe surgery failures. In patients with temporal plus epilepsy, anterior temporal lobectomy appears very unlikely to control seizures and should not be advised. Whether larger

  2. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  3. Iconic memory and parietofrontal network: fMRI study using temporal integration.

    Science.gov (United States)

    Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-08-03

    We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.

  4. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    Science.gov (United States)

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.

  5. Losing the beat: deficits in temporal coordination

    Science.gov (United States)

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-01-01

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783

  6. Musical Scales in Tone Sequences Improve Temporal Accuracy.

    Science.gov (United States)

    Li, Min S; Di Luca, Massimiliano

    2018-01-01

    Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.

  7. Demultiplexing of photonic temporal modes by a linear system

    Science.gov (United States)

    Xu, Shuang; Shen, H. Z.; Yi, X. X.

    2018-03-01

    Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.

  8. When does word frequency influence written production?

    Science.gov (United States)

    Baus, Cristina; Strijkers, Kristof; Costa, Albert

    2013-01-01

    The aim of the present study was to explore the central (e.g., lexical processing) and peripheral processes (motor preparation and execution) underlying word production during typewriting. To do so, we tested non-professional typers in a picture typing task while continuously recording EEG. Participants were instructed to write (by means of a standard keyboard) the corresponding name for a given picture. The lexical frequency of the words was manipulated: half of the picture names were of high-frequency while the remaining were of low-frequency. Different measures were obtained: (1) first keystroke latency and (2) keystroke latency of the subsequent letters and duration of the word. Moreover, ERPs locked to the onset of the picture presentation were analyzed to explore the temporal course of word frequency in typewriting. The results showed an effect of word frequency for the first keystroke latency but not for the duration of the word or the speed to which letter were typed (interstroke intervals). The electrophysiological results showed the expected ERP frequency effect at posterior sites: amplitudes for low-frequency words were more positive than those for high-frequency words. However, relative to previous evidence in the spoken modality, the frequency effect appeared in a later time-window. These results demonstrate two marked differences in the processing dynamics underpinning typing compared to speaking: First, central processing dynamics between speaking and typing differ already in the manner that words are accessed; second, central processing differences in typing, unlike speaking, do not cascade to peripheral processes involved in response execution.

  9. When does word frequency influence written production?

    Directory of Open Access Journals (Sweden)

    Cristina eBaus

    2013-12-01

    Full Text Available The aim of the present study was to explore the central (e.g., lexical processing and peripheral processes (motor preparation and execution underlying word production during typewriting. To do so, we tested non-professional typers in a picture typing task while continuously recording EEG. Participants were instructed to write (by means of a standard keyboard the corresponding name for a given picture. The lexical frequency of the words was manipulated: half of the picture names were of high-frequency while the remaining were of low-frequency. Different measures were obtained: 1 first keystroke latency and 2 keystroke latency of the subsequent letters and duration of the word. Moreover, ERPs locked to the onset of the picture presentation were analysed to explore the temporal course of word frequency in typewriting. The results showed an effect of word frequency for the first keystroke latency but not for the duration of the word or the speed to which letter were typed (interstroke intervals. The electrophysiological results showed the expected ERP frequency effect at posterior sites: amplitudes for low-frequency words were more positive than those for high-frequency words. However, relative to previous evidence in the spoken modality, the frequency effect appeared in a later time-window. These results demonstrate two marked differences in the processing dynamics underpinning typing compared to speaking: First, central processing dynamics between speaking and typing differ already in the manner that words are accessed; second, central processing differences in typing, unlike speaking, do not cascade to peripheral processes involved in response execution.

  10. Temporal processing and long-latency auditory evoked potential in stutterers.

    Science.gov (United States)

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  12. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2012-03-01

    Full Text Available The differences in North African dust emission regions and transport routes, between the boreal winter and summer, are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 yr of satellite data, in order to better characterize the different dust transport periods. We see a robust annual triplet: a discernible rhythm of "transatlantic dust weather".

    The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes.

    The southern-route period lasts ~4 months. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months and is associated with a steady drift northward of ~0.1 latitude day−1, reaching ~1500 km north of the southern-route. The northern period is characterized by higher frequency of dust events, higher (and variable background and smaller variance in dust loading. It is less episodic than the southern period.

    Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition, between the northern and southern periods, commences with an abrupt reduction in dust loading and rapid shift southward of ~0.2 latitude day−1, and ~1300 km in total.

    Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the

  13. Resting-state functional MR changes in Alzheimer's disease patients visualized by amplitude of low-frequency fluctuation and fraction of amplitude of low-frequency fluctuation

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan; Feng Jie; Zhang Hongtao; Liu Tie; Shen Wen; Qi Ji

    2013-01-01

    Objective: To investigate the difference of amplitude of low-frequency fluctuation (ALFF) and fraction of amplitude of low-frequency fluctuation (fALFF) between Alzheimer's disease (AD)patients and normal aging (NA) controls by voxel-based analysis. Methods: Thirty-one AD patients and 44 NA controls were enrolled in the study. Blood oxygen level dependent functional (BOLD) EPI data were obtained during resting-state by using 32-channel head coil. Data were realigned, normalized and then smoothed with 8 mm FWHM kernel. Resting-state fMRI toolkit (version 1.6) was used to generate ALFF and fALFF images. Independent two sample t-test was performed with SPM5 to compare ALFF and fALFF of AD and NA controls. Pearson correlation analysis was performed to examine the relationship between MMSE score and ALFF, fALFF parameters. The significance level was set to be uncorrected O.001 on the voxel level and 0.05 on the cluster level. Results: AD patients showed increased ALFF in left temporal lobe (0.492 ± 0.119) and right cingulated cortex (0.434 ± 0.093) of AD patients, which were 0.443 ± 0.068 and 0.380 ± 0.081 in NA controls (t = 2.658, 2.227, P < 0.05). Decreased fALFF was found in bilateral posterior cingulate cortices (1.167 ± 0.203) and increased fALFF was found in bilateral temporal lobes (left 1.226 ± 0.127, right 1.146 ± 0.214) with left side dominance, which were 1.453 ± 0.269, 1.134 ± 0.088, 1.014 ± O.132 in NA controls (t =5.001, 3.695, 3.285, P < 0.05). Bilateral temporal ALFF and fALFF correlated with MMSE positively (r = 0.768-0.909, P < 0.05) with left dominance. Conclusion: AD patients showed increased resting-state functional MRI changes correlated with MMSE score in the temporal lobes with left dominance, which indicated left temporal lobe may be the best location for the observation of disease progression in AD patients. (authors)

  14. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    Science.gov (United States)

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  15. Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M

    2009-08-01

    Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.

  16. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    Science.gov (United States)

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Mental health problems are associated with low-frequency fluctuations in reaction time in a large general population sample. The TRAILS study.

    Science.gov (United States)

    Bastiaansen, J A; van Roon, A M; Buitelaar, J K; Oldehinkel, A J

    2015-02-01

    Increased intra-subject reaction time variability (RT-ISV) as coarsely measured by the standard deviation (RT-SD) has been associated with many forms of psychopathology. Low-frequency RT fluctuations, which have been associated with intrinsic brain rhythms occurring approximately every 15-40s, have been shown to add unique information for ADHD. In this study, we investigated whether these fluctuations also relate to attentional problems in the general population, and contribute to the two major domains of psychopathology: externalizing and internalizing problems. RT was monitored throughout a self-paced sustained attention task (duration: 9.1 ± 1.2 min) in a Dutch population cohort of young adults (n=1455, mean age: 19.0 ± 0.6 years, 55.1% girls). To characterize temporal fluctuations in RT, we performed direct Fourier Transform on externally validated frequency bands based on frequency ranges of neuronal oscillations: Slow-5 (0.010-0.027 Hz), Slow-4 (0.027-0.073 Hz), and three additional higher frequency bands. Relative magnitude of Slow-4 fluctuations was the primary predictor in regression models for attentional, internalizing and externalizing problems (measured by the Adult Self-Report questionnaire). Additionally, stepwise regression models were created to investigate (a) whether Slow-4 significantly improved the prediction of problem behaviors beyond the RT-SD and (b) whether the other frequency bands provided important additional information. The magnitude of Slow-4 fluctuations significantly predicted attentional and externalizing problems and even improved model fit after modeling RT-SD first (R(2) change=0.6%, Pfrequency bands provided additional information. Low-frequency RT fluctuations have added predictive value for attentional and externalizing, but not internalizing problems beyond global differences in variability. This study extends previous findings in clinical samples of children with ADHD to adolescents from the general population and

  18. Suboptimal choice, reward-predictive signals, and temporal information.

    Science.gov (United States)

    Cunningham, Paul J; Shahan, Timothy A

    2018-01-01

    Suboptimal choice refers to preference for an alternative offering a low probability of food (suboptimal alternative) over an alternative offering a higher probability of food (optimal alternative). Numerous studies have found that stimuli signaling probabilistic food play a critical role in the development and maintenance of suboptimal choice. However, there is still much debate about how to characterize how these stimuli influence suboptimal choice. There is substantial evidence that the temporal information conveyed by a food-predictive signal governs its function as both a Pavlovian conditioned stimulus and as an instrumental conditioned reinforcer. Thus, we explore the possibility that food-predictive signals influence suboptimal choice via the temporal information they convey. Application of this temporal information-theoretic approach to suboptimal choice provides a formal, quantitative framework that describes how food-predictive signals influence suboptimal choice in a manner consistent with related phenomena in Pavlovian conditioning and conditioned reinforcement. Our reanalysis of previous data on suboptimal choice suggests that, generally speaking, preference in the suboptimal choice procedure tracks relative temporal information conveyed by food-predictive signals for the suboptimal and optimal alternatives. The model suggests that suboptimal choice develops when the food-predictive signal for the suboptimal alternative conveys more temporal information than that for the optimal alternative. Finally, incorporating a role for competition between temporal information provided by food-predictive signals and relative primary reinforcement rate provides a reasonable account of existing data on suboptimal choice. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    Science.gov (United States)

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  1. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  2. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  3. Semantics of Temporal Models with Multiple Temporal Dimensions

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    ending up with lexical data models. In particular we look upon the representations by sets of normalised tables, by sets of 1NF tables and by sets of N1NF/nested tables. At each translation step we focus on how the temporal semantic is consistently maintained. In this way we recognise the requirements...... for representation of temporal properties in different models and the correspondence between the models. The results rely on the assumptions that the temporal dimensions are interdependent and ordered. Thus for example the valid periods of existences of a property in a mini world are dependent on the transaction...... periods in which the corresponding recordings are valid. This is not the normal way of looking at temporal dimensions and we give arguments supporting our assumption....

  4. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  5. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  6. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  7. Observation of frequency cutoff for self-excited dust acoustic waves

    Science.gov (United States)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  8. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames

    Science.gov (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington

    2012-01-01

    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  9. Temporal networks

    CERN Document Server

    Saramäki, Jari

    2013-01-01

    The concept of temporal networks is an extension of complex networks as a modeling framework to include information on when interactions between nodes happen. Many studies of the last decade examine how the static network structure affect dynamic systems on the network. In this traditional approach  the temporal aspects are pre-encoded in the dynamic system model. Temporal-network methods, on the other hand, lift the temporal information from the level of system dynamics to the mathematical representation of the contact network itself. This framework becomes particularly useful for cases where there is a lot of structure and heterogeneity both in the timings of interaction events and the network topology. The advantage compared to common static network approaches is the ability to design more accurate models in order to explain and predict large-scale dynamic phenomena (such as, e.g., epidemic outbreaks and other spreading phenomena). On the other hand, temporal network methods are mathematically and concept...

  10. Personal measures of power-frequency magnetic field exposure among men from an infertility clinic: distribution, temporal variability and correlation with their female partners' exposure

    International Nuclear Information System (INIS)

    Lewis, Ryan C.; Hauser, Russ; Maynard, Andrew D.; Neitzel, Richard L.; Meeker, John D.; Wang, Lu; Kavet, Robert; Morey, Patricia; Ford, Jennifer B.

    2016-01-01

    Power-frequency magnetic field exposure science as it relates to men and couples have not been explored despite the advantage of this information in the design and interpretation of reproductive health epidemiology studies. This analysis examined the distribution and temporal variability of exposures in men, and the correlation of exposures within couples using data from a longitudinal study of 25 men and their female partners recruited from an infertility clinic. The average and 90. percentile demonstrated fair to good reproducibility, whereas the maximum showed poor reproducibility over repeated sampling days, each separated by a median of 4.6 weeks. Average magnetic field exposures were also strongly correlated within couples, suggesting that one partner's data could be used as a surrogate in the absence of data from the other for this metric. Environment was also an important effect modifier in these explored matters. These issues should be considered in future relevant epidemiology studies. (authors)

  11. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics

    DEFF Research Database (Denmark)

    Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina

    2014-01-01

    finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity...... but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of internal tides on sediment dynamics is proposed. (C) 2014 Elsevier Ltd. All rights reserved.......In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from...

  12. Temporal distribution of alcohol related facial fractures.

    Science.gov (United States)

    Lee, Kai H; Qiu, Michael; Sun, Jiandong

    2017-11-01

    This study aimed to address 2 important aspects of temporal pattern in alcohol-related facial fractures: (1) comparison of temporal pattern of alcohol-related facial fracture (alcohol group) presentation with non-alcohol-related fracture (non-alcohol group) presentation; (2) temporal pattern of patient demographic characteristics, injury characteristics, and surgical management in the alcohol group presentation. This study retrospectively examined the Victorian admitted episodes data set (VAED) for the years 2010 to 2013. VAED is a standardized set of data collected during all hospital presentations in Victoria. The study found higher incidence of alcohol-related facial fracture presentations during weekends and during the summer and spring months compared with non-alcohol-related fractures (statistically significant). Alcohol-related facial fractures are more likely to involve male patients in the 20- to 29-year age group, occur as a result of interpersonal violence, and require shorter hospital stays during weekend admissions (statistically significant). No statistically significant relationship has been observed in seasonal variation across all variables. This study found distinct characteristics in temporal distribution of alcohol-related facial fractures. These characteristics are, in particular, significant in weekend trauma admissions. Such information is important in workforce planning, resource distribution, and implementation of injury prevention programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantification of a Secondary Task-Specific Tremor in a Violinist after a Temporal Lobectomy

    Directory of Open Access Journals (Sweden)

    André eLee

    2014-07-01

    Full Text Available Task-specific tremors occur mainly during certain tasks and may be highly disabling. In this case study, we report on a 66-year-old violinist who developed a task-specific tremor of the right arm only while playing the violin four weeks after a temporal lobectomy, which had been performed as a result of his temporal lobe epilepsy. Since a similar case, to our knowledge, has not been reported so far, our aim was to quantitatively assess and describe the tremor by measuring (a the electromyography (EMG activity of the wrist flexor and extensor as well as (b an accelerometer signal of the hand. We found a tremor-related frequency of about 7 Hz. Furthermore, at a similar frequency of about 7 Hz, there was coherence between the tremor acceleration and EMG-activity of the wrist flexor and extensor as well as between the tremor acceleration and coactivation. The tremorgenesis remains unclear, and possible explanations can only be speculative.

  14. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    Science.gov (United States)

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  15. PET and SPECT in medically non-refractory complex partial seizures. Temporal asymmetries of glucose consumption, Benzodiazepine receptor density

    International Nuclear Information System (INIS)

    Matheja, P.; Kuwert, T.; Wolf, K.; Schober, O.; Stodieck, S.R.G.; Diehl, B.; Ringelstein, E.B.; Schuierer, G.

    1998-01-01

    Aim: In contrast to medically refractory complex partial seizures (CPS), only limited knowledge exists on cerebral perfusion and metabolism in medically non-refractory CPS. The aim of this study was to investigate the frequency of temporal asymmetries in regional cerebral glucose consumption (rCMRGlc), regional cerebral blood flow (rCBF), and regional cerebral benzodiazepine receptor density (BRD) in this group of patients. Methods: The study included 49 patients with medically non-refractory cryptogenic CPS (age: 36.0±16.1 years). rCMRGlc was studied with F-18-FDG-PET (FDG), rCBF with Tc-99m-ECD-SPECT (ECD), and BRD with I-123-iomazenil-SPECT (IMZ). All studies were performed interictally and within four weeks in each patient. Duration of epilepsy ranged from 0.1 to 42 years (median 4.0 years). SPECT was performed with the triple-headed SPECT camera Multispect 3, PET with the PET camera ECAT EXACT 47. Using linear profiles, glucose consumption, as well as uptake of ECD and IMZ, were measured in four temporal regions of interest (ROIs), and asymmetry indices were calculated (ASY). The results were compared to 95% confidence intervals determined in control subjects. Results: Thirty-five of the 49 (71%) patients had at least one significantly elevated ASY; temporal rCMRGlc was asymmetrical in 41% of the patients, temporal BRD in 29%, and temporal rCBF in 24%. One patient had an asymmetry of all three variables, two of temporal rCMRGlc and BRD, three of temporal rCMRGlc and rCBF, and another four of rCBF and BRD. Fourteen patients had an isolated temporal asymmetry in rCMRGlc, seven in BRD, and four in rCBF. A discrepancy in lateralization between the three modalities was not observed. Conclusion: The majority of patients with medically non-refractory CPS have focal abnormalities of blood flow and metabolism in their temporal lobe. In this group of patients, FDG-PET demonstrates abnormalities with the highest frequency of the three modalities studied, followed by IMZ

  16. Heaven can wait. How religion modulates temporal discounting.

    Science.gov (United States)

    Paglieri, Fabio; Borghi, Anna M; Colzato, Lorenza S; Hommel, Bernhard; Scorolli, Claudia

    2013-11-01

    Evidence suggests that religious systems have specific effects on attentional and action control processes. The present study investigated whether religions also modulate choices that involve higher-order knowledge and the delay of gratification in particular. We tested Dutch Calvinists, Italian Catholics, and Atheists from both countries/cultures using an intertemporal choice task where participants could choose between a small immediate and a larger delayed monetary reward. Based on the Calvinist theory of predestination and the Catholic concept of a cycle of sin-confession-expiation, we predicted a reduced delay tolerance, i.e., higher discount rate, for Italian Catholics than for Dutch Calvinists, and intermediate rates for the two atheist groups. Analyses of discount rates support our hypotheses. We also found a magnitude effect on temporal discounting and faster responses for large than for small rewards across religions and countries/cultures. We conclude that temporal discounting is specifically modulated by religious upbringing rather than by generic cultural differences.

  17. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.

    Science.gov (United States)

    Fu, Qian-Jie; Chinchilla, Sherol; Galvin, John J

    2004-09-01

    The present study investigated the relative importance of temporal and spectral cues in voice gender discrimination and vowel recognition by normal-hearing subjects listening to an acoustic simulation of cochlear implant speech processing and by cochlear implant users. In the simulation, the number of speech processing channels ranged from 4 to 32, thereby varying the spectral resolution; the cutoff frequencies of the channels' envelope filters ranged from 20 to 320 Hz, thereby manipulating the available temporal cues. For normal-hearing subjects, results showed that both voice gender discrimination and vowel recognition scores improved as the number of spectral channels was increased. When only 4 spectral channels were available, voice gender discrimination significantly improved as the envelope filter cutoff frequency was increased from 20 to 320 Hz. For all spectral conditions, increasing the amount of temporal information had no significant effect on vowel recognition. Both voice gender discrimination and vowel recognition scores were highly variable among implant users. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to comparable speech processing (4-8 spectral channels). The results suggest that both spectral and temporal cues contribute to voice gender discrimination and that temporal cues are especially important for cochlear implant users to identify the voice gender when there is reduced spectral resolution.

  18. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  19. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  20. Temporal Ventriloquism Reveals Intact Audiovisual Temporal Integration in Amblyopia.

    Science.gov (United States)

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-02-01

    We have shown previously that amblyopia involves impaired detection of asynchrony between auditory and visual events. To distinguish whether this impairment represents a defect in temporal integration or nonintegrative multisensory processing (e.g., cross-modal matching), we used the temporal ventriloquism effect in which visual temporal order judgment (TOJ) is normally enhanced by a lagging auditory click. Participants with amblyopia (n = 9) and normally sighted controls (n = 9) performed a visual TOJ task. Pairs of clicks accompanied the two lights such that the first click preceded the first light, or second click lagged the second light by 100, 200, or 450 ms. Baseline audiovisual synchrony and visual-only conditions also were tested. Within both groups, just noticeable differences for the visual TOJ task were significantly reduced compared with baseline in the 100- and 200-ms click lag conditions. Within the amblyopia group, poorer stereo acuity and poorer visual acuity in the amblyopic eye were significantly associated with greater enhancement in visual TOJ performance in the 200-ms click lag condition. Audiovisual temporal integration is intact in amblyopia, as indicated by perceptual enhancement in the temporal ventriloquism effect. Furthermore, poorer stereo acuity and poorer visual acuity in the amblyopic eye are associated with a widened temporal binding window for the effect. These findings suggest that previously reported abnormalities in audiovisual multisensory processing may result from impaired cross-modal matching rather than a diminished capacity for temporal audiovisual integration.

  1. Quantum Temporal Imaging

    OpenAIRE

    Tsang, Mankei; Psaltis, Demetri

    2006-01-01

    The concept of quantum temporal imaging is proposed to manipulate the temporal correlation of entangled photons. In particular, we show that time correlation and anticorrelation can be converted to each other using quantum temporal imaging.

  2. Quantitative magnetic resonance imaging study on patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Senzaki, Akira; Okubo, Yoshiro; Matsuura, Masato; Toru, Michio; Abe, Tetsuo; Asai, Kunihiko; Moriiwa, Motoi.

    1993-01-01

    In 30 patients with temporal lobe epilepsy who had no visual abnormality on either CT or MRI, cerebral changes especially in the mesial temporal region were examined. The findings were compared with those in 20 normal volunteers. In epileptic patients, the mesial temporal region was significantly smaller and T1-weighted values in this region were significantly higher, as compared with the controls. In the group of epilepsy, atrophy especially in the hippocampal and tonsillar regions and increased water content were suggested. Regarding the bilateral difference in the size of the mesial temporal region, there was no significant difference between the group of epilepsy and the control group. The group of epilepsy seemed to have bilateral changes in the mesial temporal region. In 9 patients with the present or past history of organic delusional (schizophrenia-like) disorder, the coronal section of the third ventricle was significantly large, suggesting the likelihood of structural changes surrounding the third ventricle. (N.K.)

  3. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    Science.gov (United States)

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  4. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  5. Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    OpenAIRE

    Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.

    2018-01-01

    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an an...

  6. Wigner higher-order spectra: definition, properties, computation and application to transient signal analysis

    OpenAIRE

    Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.

    1993-01-01

    The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...

  7. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    Science.gov (United States)

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, Jiayin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-04-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

  8. Manipulating Electromagnetic Waves in Magnetized Plasmas: Compression, Frequency Shifting, and Release

    International Nuclear Information System (INIS)

    Avitzour, Yoav; Shvets, Gennady

    2008-01-01

    A new approach to manipulating the duration and frequency of microwave pulses using magnetized plasmas is demonstrated. The plasma accomplishes two functions: (i) slowing down and spatially compressing the incident wave, and (ii) modifying the propagation properties (group velocity and frequency) of the wave in the plasma during a uniform in space adiabatic in time variation of the magnitude and/or direction of the magnetic field. The increase in the group velocity results in the shortening of the temporal pulse duration. Depending on the plasma parameters, the frequency of the outgoing compressed pulse can either change or remain unchanged. Such dynamic manipulation of radiation in plasma opens new avenues for manipulating high power microwave pulses

  9. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    Science.gov (United States)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  10. Personal power-frequency magnetic field exposure in women recruited at an infertility clinic: association with physical activity and temporal variability.

    Science.gov (United States)

    Lewis, Ryan C; Hauser, Russ; Wang, Lu; Kavet, Robert; Meeker, John D

    2016-03-01

    Current epidemiologic approaches for studying exposure to power-frequency magnetic fields and the risk of miscarriage are potentially biased due to lack of attention to the relationship of exposure with physical activity and within-individual variability in exposures over time. This analysis examines these two issues using data from a longitudinal pilot study of 40 women recruited from an infertility clinic that contributed data for up to three 24-h periods separated by a median of 3.6 weeks. Physical activity was positively associated with peak exposure metrics. Higher physical activity within environments did not necessarily lead to higher peak exposures, suggesting that movement between and not within environments increases one's probability of encountering a high field source. Peak compared with central tendency metrics were more variable over time. Future epidemiology studies associated with peak exposure metrics should adjust for physical activity and collect more than 1 d of exposure measurement to reduce bias. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Clinico-pathological factors influencing surgical outcome in drug resistant epilepsy secondary to mesial temporal sclerosis.

    Science.gov (United States)

    Savitr Sastri, B V; Arivazhagan, A; Sinha, Sanjib; Mahadevan, Anita; Bharath, R D; Saini, J; Jamuna, R; Kumar, J Keshav; Rao, S L; Chandramouli, B A; Shankar, S K; Satishchandra, P

    2014-05-15

    Mesial temporal sclerosis (MTS) is the most common cause of drug resistant epilepsy amenable for surgical treatment and seizure control. This study analyzed the outcome of patients with MTS following anterior temporal lobectomy and amygdalohippocampectomy (ATL-AH) over 10 years and correlated the electrophysiological and radiological factors with the post operative seizure outcome. Eighty seven patients were included in the study. Sixty seven (77.2%) patients had an Engel Class 1 outcome, 9 (11.4%) had Class 2 outcome. Engel's class 1 outcome was achieved in 89.9% at 1 year, while it reduced slightly to 81.9% at 2 years and 76.2% at 5 year follow up. Seventy seven (88.5%) patients had evidence of hippocampal sclerosis on histopathology. Dual pathology was observed in 19 of 77 specimens with hippocampal sclerosis, but did not influence the outcome. Factors associated with an unfavorable outcome included male gender (p=0.04), and a higher frequency of pre-operative seizures (p=0.005), whereas the presence of febrile seizures (p=0.048) and loss of hippocampal neurons in CA4 region on histopathology (p=0.040) were associated with favorable outcome. The effect of CA4 loss on outcome is probably influenced by neuronal loss in other subfields as well since isolated CA4 loss was rare. Abnormal post operative EEG at the end of 1 week was found to be a significant factor predicting unfavorable outcome (p=0.005). On multivariate analysis, the pre-operative seizure frequency was the only significant factor affecting outcome. The present study observed excellent seizure free outcome in a carefully selected cohort of patients with MTS with refractory epilepsy. The presence of dual pathology did not influence the outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Probe-controlled soliton frequency shift in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self...

  13. Temporal properties of the lens eyes of the box jellyfish Tripedalia cystophora

    DEFF Research Database (Denmark)

    O'Connor, Megan; Nilsson, Dan-E; Garm, Anders Lydik

    2010-01-01

    Box jellyWsh (Cubomedusae) are visually orientating animals which posses a total of 24 eyes of 4 morphological types; 2 pigment cup eyes (pit eye and slit eye) and 2 lens eyes [upper lens-eye (ule) and lower lens-eye (lle)]. In this study, we use electroretinograms (ERGs) to explore temporal...... properties of the two lens eyes. We Wnd that the ERG of both lens eyes are complex and using sinusoidal Xicker stimuli we Wnd that both lens eyes have slow temporal resolution. The average Xicker fusion frequency (FFF) was found to be approximately 10 Hz for the ule and 8 Hz for the lle. Di......Verences in the FFF and response patterns between the two lens eyes suggest that the ule and lle Wlter information diVerently in the temporal domain and thus are tuned to perform diVerent visual tasks. The data collected in this study support the idea that the visual system of box jellyWsh is a collection of special...

  14. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    International Nuclear Information System (INIS)

    Branquinho, Cristina; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Maguas, Cristina; Correia, Otilia

    2008-01-01

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates

  15. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande, Edificio C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)], E-mail: cmbranquinho@fc.ul.pt; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Maguas, Cristina; Correia, Otilia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande, Edificio C2, Piso 4, 1749-016 Lisbon (Portugal)

    2008-01-15

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates.

  16. Efficient temporal shaping of electron distributions for high-brightness photoemission electron guns

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-04-01

    Full Text Available To achieve the lowest emittance electron bunches from photoemission electron guns, it is essential to limit the uncorrelated emittance growth due to space charge forces acting on the bunch in the vicinity of the photocathode through appropriate temporal shaping of the optical pulses illuminating the photocathode. We present measurements of the temporal profile of electron bunches from a bulk crystal GaAs photocathode illuminated with 520 nm wavelength pulses from a frequency-doubled Yb-fiber laser. A transverse deflecting rf cavity was used to make these measurements. The measured laser pulse temporal profile and the corresponding electron beam temporal profile have about 30 ps FWHM duration, with rise and fall times of a few ps. GaAs illuminated by 520 nm optical pulses is a prompt emitter within our measurement uncertainty of ∼1  ps rms. Combined with the low thermal emittance of negative electron affinity photocathodes, GaAs is a very suitable photocathode for high-brightness photoinjectors. We also report measurements of the photoemission response time for GaAsP, which show a strong dependence on the quantum efficiency of the photocathode.

  17. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.

    Science.gov (United States)

    Stockman, Andrew; Henning, G Bruce; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Cammack, Jocelyn; Ripamonti, Caterina

    2014-02-10

    We report a psychophysical investigation of 5 observers with the retinal disorder "cone dystrophy with supernormal rod ERG," caused by mutations in the gene KCNV2 that encodes a voltage-gated potassium channel found in rod and cone photoreceptors. We compared losses for rod- and for cone-mediated vision to further investigate the disorder and to assess whether the supernormal ERG is associated with any visual benefit. L-cone, S-cone, and rod temporal acuity (critical flicker fusion frequency) were measured as a function of target irradiance; L-cone temporal contrast sensitivity was measured as a function of temporal frequency. Temporal acuity measures revealed that losses for vision mediated by rods, S-cones, and L-cones are roughly equivalent. Further, the gain in rod function implied by the supernormal ERG provides no apparent benefit to near-threshold rod-mediated visual performance. The L-cone temporal contrast sensitivity function in affected observers was similar in shape to the mean normal function but only after the mean function was compressed by halving the logarithmic sensitivities. The name of this disorder is potentially misleading because the comparable losses found across rod and cone vision suggest that the disorder is a generalized cone-rod dystrophy. Temporal acuity and temporal contrast sensitivity measures are broadly consistent with the defect in the voltage-gated potassium channel producing a nonlinear distortion of the photoreceptor response but after otherwise normal transduction processes.

  18. Parametric instabilities excited by localized pumps near the lower-hybrid frequency

    International Nuclear Information System (INIS)

    Kuo, Y.Y.; Chen, L.

    1976-04-01

    Parametric instabilities excited in non-uniform plasmas by spatially localized pump fields oscillating near the local lower-hybrid frequency are analytically investigated. Corresponding threshold conditions, temporal growth rates, and spatial amplification factors are obtained for the oscillating-two-stream instability and the decay instabilities due to nonlinear electron and ion Landau dampings

  19. Broadcast Communication by System Frequency Modulation

    DEFF Research Database (Denmark)

    Douglass, Philip James; You, Shi; Heussen, Kai

    2012-01-01

    Load controllers available today can measure AC system frequency and react to frequency deviations. A system operator can communicate to frequency sensitive loads by changing the set-points of the system’s dispatchable frequency regulation resources. Explicitly signaling system state by generating...... off-nominal system frequency values is a novel narrowband broadcast communications channel between system operators and frequency sensitive distributed energy resources (FS-DER). The feasibility of the proposed system is evaluated on an existing island power system in Denmark. This study shows...... that within standard frequency quality constraints, 4 distinct symbols are feasible on the island. However, the overarching imperative of system stability prevents the symbols from having arbitrary meanings. Higher frequency values must translate into greater consumption from loads, and vice versa. Within...

  20. Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression

    Directory of Open Access Journals (Sweden)

    Amber M. Leaver

    2018-03-01

    Full Text Available BackgroundElectroconvulsive therapy (ECT is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics. Here, we assessed the ability of aggregated, functional MRI metrics of basal brain activity and connectivity to predict antidepressant response to ECT using machine learning.MethodsA radial support vector machine was trained using arterial spin labeling (ASL and blood-oxygen-level-dependent (BOLD functional magnetic resonance imaging (fMRI metrics from n = 46 (26 female, mean age 42 depressed patients prior to ECT (majority right-unilateral stimulation. Image preprocessing was applied using standard procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, fractional amplitude of low-frequency modulations, and graph theory metrics (strength, local efficiency, and clustering in BOLD data. A 5-repeated 5-fold cross-validation procedure with nested feature-selection validated model performance. Linear regressions were applied post hoc to aid interpretation of discriminative features.ResultsThe range of balanced accuracy in models performing statistically above chance was 58–68%. Here, prediction of non-responders was slightly higher than for responders (maximum performance 74 and 64%, respectively. Several features were consistently selected across cross-validation folds, mostly within frontal and temporal regions. Among these were connectivity strength among: a fronto-parietal network [including left dorsolateral prefrontal cortex (DLPFC], motor and temporal networks (near ECT electrodes, and/or subgenual anterior cingulate cortex (sgACC.ConclusionOur data indicate that pattern classification of multimodal f

  1. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    Science.gov (United States)

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  2. Dynamic spatial organization of the occipito-temporal word form area for second language processing.

    Science.gov (United States)

    Gao, Yue; Sun, Yafeng; Lu, Chunming; Ding, Guosheng; Guo, Taomei; Malins, Jeffrey G; Booth, James R; Peng, Danling; Liu, Li

    2017-08-01

    Despite the left occipito-temporal region having shown consistent activation in visual word form processing across numerous studies in different languages, the mechanisms by which word forms of second languages are processed in this region remain unclear. To examine this more closely, 16 Chinese-English and 14 English-Chinese late bilinguals were recruited to perform lexical decision tasks to visually presented words in both their native and second languages (L1 and L2) during functional magnetic resonance imaging scanning. Here we demonstrate that visual word form processing for L1 versus L2 engaged different spatial areas of the left occipito-temporal region. Namely, the spatial organization of the visual word form processing in the left occipito-temporal region is more medial and posterior for L2 than L1 processing in Chinese-English bilinguals, whereas activation is more lateral and anterior for L2 in English-Chinese bilinguals. In addition, for Chinese-English bilinguals, more lateral recruitment of the occipito-temporal region was correlated with higher L2 proficiency, suggesting higher L2 proficiency is associated with greater involvement of L1-preferred mechanisms. For English-Chinese bilinguals, higher L2 proficiency was correlated with more lateral and anterior activation of the occipito-temporal region, suggesting higher L2 proficiency is associated with greater involvement of L2-preferred mechanisms. Taken together, our results indicate that L1 and L2 recruit spatially different areas of the occipito-temporal region in visual word processing when the two scripts belong to different writing systems, and that the spatial organization of this region for L2 visual word processing is dynamically modulated by L2 proficiency. Specifically, proficiency in L2 in Chinese-English is associated with assimilation to the native language mechanisms, whereas L2 in English-Chinese is associated with accommodation to second language mechanisms. Copyright © 2017

  3. Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study.

    Science.gov (United States)

    Suresh, Suraj; Sweet, Jennifer; Fastenau, Philip S; Lüders, Hans; Landazuri, Patrick; Miller, Jonathan

    2015-12-01

    Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores. Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management. Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year. This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.

  4. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss.

    Science.gov (United States)

    Paraouty, Nihaad; Ewert, Stephan D; Wallaert, Nicolas; Lorenzi, Christian

    2016-07-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth. The target stimuli always contained both amplitude and frequency modulations, while the standard stimuli only contained the interfering modulation. Young and older normal-hearing listeners, as well as older listeners with mild-to-moderate sensorineural hearing loss were tested. For all groups, AM and FM detection thresholds were degraded in the presence of the interfering modulation. AM detection with and without interfering FM was hardly affected by either age or hearing loss. While aging had an overall detrimental effect on FM detection with and without interfering AM, there was a trend that hearing loss further impaired FM detection in the presence of AM. Several models using optimal combination of temporal-envelope cues at the outputs of off-frequency filters were tested. The interfering effects could only be predicted for hearing-impaired listeners. This indirectly supports the idea that, in addition to envelope cues resulting from FM-to-AM conversion, normal-hearing listeners use temporal fine-structure cues for FM detection.

  5. Advance in ERG Analysis: From Peak Time and Amplitude to Frequency, Power, and Energy

    Directory of Open Access Journals (Sweden)

    Mathieu Gauvin

    2014-01-01

    Full Text Available Purpose. To compare time domain (TD: peak time and amplitude analysis of the human photopic electroretinogram (ERG with measures obtained in the frequency domain (Fourier analysis: FA and in the time-frequency domain (continuous (CWT and discrete (DWT wavelet transforms. Methods. Normal ERGs n=40 were analyzed using traditional peak time and amplitude measurements of the a- and b-waves in the TD and descriptors extracted from FA, CWT, and DWT. Selected descriptors were also compared in their ability to monitor the long-term consequences of disease process. Results. Each method extracted relevant information but had distinct limitations (i.e., temporal and frequency resolutions. The DWT offered the best compromise by allowing us to extract more relevant descriptors of the ERG signal at the cost of lesser temporal and frequency resolutions. Follow-ups of disease progression were more prolonged with the DWT (max 29 years compared to 13 with TD. Conclusions. Standardized time domain analysis of retinal function should be complemented with advanced DWT descriptors of the ERG. This method should allow more sensitive/specific quantifications of ERG responses, facilitate follow-up of disease progression, and identify diagnostically significant changes of ERG waveforms that are not resolved when the analysis is only limited to time domain measurements.

  6. Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.

    Science.gov (United States)

    Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun

    2014-04-01

    The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Calibration of higher eigenmodes of cantilevers

    International Nuclear Information System (INIS)

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger; Lysy, Martin

    2016-01-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  8. Calibration of higher eigenmodes of cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States); Lysy, Martin [Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-07-15

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  9. MODELING SPECTRAL AND TEMPORAL MASKING IN THE HUMAN AUDITORY SYSTEM

    DEFF Research Database (Denmark)

    Dau, Torsten; Jepsen, Morten Løve; Ewert, Stephan D.

    2007-01-01

    An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997)] but inclu......An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997...... was tested in conditions of tone-in-noise masking, intensity discrimination, spectral masking with tones and narrowband noises, forward masking with (on- and off-frequency) noise- and pure-tone maskers, and amplitude modulation detection using different noise carrier bandwidths. One of the key properties...

  10. Alterations of pH and Pi in seizure foci of temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Hubesch, B.; Sappey-Marinier, D.; Laxer, K.; Weiner, M.W.

    1989-01-01

    Previous investigations with positron-emission tomography have demonstrated that glucose uptake is diminished in seizure foci. This paper reports on P-31 MR studies performed on patients with temporal lobe epilepsy in order to determine if metabolic alterations were detectablein seizure foci. In seven of eight patients, the pH of the seizure foci was significantly higher than the pH of the control temporal lobe. In addition, the inorganic phosphate (Pi) concentration was significantly higher in the seizure foci. These metabolic changes indicate that P-31 MR spectroscopymight be useful in the investigation of epilepsy

  11. Spatial and temporal analysis of drought variability at several time scales in Syria during 1961-2012

    Science.gov (United States)

    Mathbout, Shifa; Lopez-Bustins, Joan A.; Martin-Vide, Javier; Bech, Joan; Rodrigo, Fernando S.

    2018-02-01

    This paper analyses the observed spatiotemporal characteristics of drought phenomenon in Syria using the Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI). Temporal variability of drought is calculated for various time scales (3, 6, 9, 12, and 24 months) for 20 weather stations over the 1961-2012 period. The spatial patterns of drought were identified by applying a Principal Component Analysis (PCA) to the SPI and SPEI values at different time scales. The results revealed three heterogeneous and spatially well-defined regions with different temporal evolution of droughts: 1) Northeastern (inland desert); 2) Southern (mountainous landscape); 3) Northwestern (Mediterranean coast). The evolutionary characteristics of drought during 1961-2012 were analysed including spatial and temporal variability of SPI and SPEI, the frequency distribution, and the drought duration. The results of the non-parametric Mann-Kendall test applied to the SPI and SPEI series indicate prevailing significant negative trends (drought) at all stations. Both drought indices have been correlated both on spatial and temporal scales and they are highly comparable, especially, over a 12 and 24 month accumulation period. We concluded that the temporal and spatial characteristics of the SPI and SPEI can be used for developing a drought intensity - areal extent - and frequency curve that assesses the variability of regional droughts in Syria. The analysis of both indices suggests that all three regions had a severe drought in the 1990s, which had never been observed before in the country. Furthermore, the 2007-2010 drought was the driest period in the instrumental record, happening just before the onset of the recent conflict in Syria.

  12. Spatial pattern and temporal trend of mortality due to tuberculosis

    Directory of Open Access Journals (Sweden)

    Ana Angélica Rêgo de Queiroz

    2018-05-01

    Full Text Available ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB, to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease.

  13. Characterizing Traffic Conditions from the Perspective of Spatial-Temporal Heterogeneity

    Directory of Open Access Journals (Sweden)

    Peichao Gao

    2016-03-01

    Full Text Available Traffic conditions are usually characterized from the perspective of travel time or the average vehicle speed in the field of transportation, reflecting the congestion degree of a road network. This article provides a method from a new perspective to characterize traffic conditions; the perspective is based on the heterogeneity of vehicle speeds. A novel measurement, the ratio of areas (RA in a rank-size plot, is included in the proposed method to capture the heterogeneity. The proposed method can be performed from the perspective of both spatial heterogeneity and temporal heterogeneity, being able to characterize traffic conditions of not only a road network but also a single road. Compared with methods from the perspective of travel time, the proposed method can characterize traffic conditions at a higher frequency. Compared to methods from the perspective of the average vehicle speed, the proposed method takes account of the heterogeneity of vehicle speeds. The effectiveness of the proposed method has been demonstrated with real-life traffic data of Shenzhen (a coastal urban city in China, and the advantage of the proposed RA has been verified by comparisons to similar measurements such as the ht-index and the CRG index.

  14. Late maturation of adult-born neurons in the temporal dentate gyrus.

    Science.gov (United States)

    Snyder, Jason S; Ferrante, Sarah C; Cameron, Heather A

    2012-01-01

    Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1-2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter

  15. Noise frame duration, masking potency and whiteness of temporal noise

    OpenAIRE

    Kukkonen, Helja; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antii

    2002-01-01

    PURPOSE. Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. \\ud \\ud METHODS. Contrast energy thresho...

  16. An investigation of temporal regularization techniques for dynamic PET reconstructions using temporal splines

    International Nuclear Information System (INIS)

    Verhaeghe, Jeroen; D'Asseler, Yves; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace

    2007-01-01

    The use of a temporal B-spline basis for the reconstruction of dynamic positron emission tomography data was investigated. Maximum likelihood (ML) reconstructions using an expectation maximization framework and maximum A-posteriori (MAP) reconstructions using the generalized expectation maximization framework were evaluated. Different parameters of the B-spline basis of such as order, number of basis functions and knot placing were investigated in a reconstruction task using simulated dynamic list-mode data. We found that a higher order basis reduced both the bias and variance. Using a higher number of basis functions in the modeling of the time activity curves (TACs) allowed the algorithm to model faster changes of the TACs, however, the TACs became noisier. We have compared ML, Gaussian postsmoothed ML and MAP reconstructions. The noise level in the ML reconstructions was controlled by varying the number of basis functions. The MAP algorithm penalized the integrated squared curvature of the reconstructed TAC. The postsmoothed ML was always outperformed in terms of bias and variance properties by the MAP and ML reconstructions. A simple adaptive knot placing strategy was also developed and evaluated. It is based on an arc length redistribution scheme during the reconstruction. The free knot reconstruction allowed a more accurate reconstruction while reducing the noise level especially for fast changing TACs such as blood input functions. Limiting the number of temporal basis functions combined with the adaptive knot placing strategy is in this case advantageous for regularization purposes when compared to the other regularization techniques

  17. Towards General Temporal Aggregation

    DEFF Research Database (Denmark)

    Boehlen, Michael H.; Gamper, Johann; Jensen, Christian Søndergaard

    2008-01-01

    associated with the management of temporal data. Indeed, temporal aggregation is complex and among the most difficult, and thus interesting, temporal functionality to support. This paper presents a general framework for temporal aggregation that accommodates existing kinds of aggregation, and it identifies...

  18. Electrophysiological evidence for a defect in the processing of temporal sound patterns in multiple sclerosis.

    Science.gov (United States)

    Jones, S J; Sprague, L; Vaz Pato, M

    2002-11-01

    To assess the processing of spectrotemporal sound patterns in multiple sclerosis by using auditory evoked potentials (AEPs) to complex harmonic tones. 22 patients with definite multiple sclerosis but mild disability and no auditory complaints were compared with 15 normal controls. Short latency AEPs were recorded using standard methods. Long latency AEPs were recorded to synthesised musical instrument tones, at onset every two seconds, at abrupt frequency changes every two seconds, and at the end of a two second period of 16/s frequency changes. The subjects were inattentive but awake, reading irrelevant material. Short latency AEPs were abnormal in only 4 of 22 patients, whereas long latency AEPs were abnormal to one or more stimuli in 17 of 22. No significant latency prolongation was seen in response to onset and infrequent frequency changes (P1, N1, P2) but the potentials at the end of 16/s frequency modulations, particularly the P2 peaking approximately 200 ms after the next expected change, were significantly delayed. The delayed responses appear to be a mild disorder in the processing of change in temporal sound patterns. The delay may be conceived of as extra time taken to compare the incoming sound with the contents of a temporally ordered sensory memory store (the long auditory store or echoic memory), which generates a response when the next expected frequency change fails to occur. The defect cannot be ascribed to lesions of the afferent pathways and so may be due to disseminated brain lesions visible or invisible on magnetic resonance imaging.

  19. Frequency and longitudinal trends of household care product use

    Science.gov (United States)

    Moran, Rebecca E.; Bennett, Deborah H.; Tancredi, Daniel J.; Wu, Xiangmei (May); Ritz, Beate; Hertz-Picciotto, Irva

    2012-08-01

    The use of household cleaning products and air fresheners exposes people to a variety of chemicals, including some that have been shown to be irritants, potential carcinogens and endocrine disrupting compounds. In addition, some react with ambient ozone infiltrating to the indoor environment to form potentially toxic secondary pollutants. Although realistic estimates of usage patterns are necessary for modeling potential exposures in risk assessments, few studies have documented cleaning habits and product usage to characterize how they vary between households and over time. In addition, understanding within-household temporal variability of use is important to assess the reliability of exposure questionnaires used in epidemiological surveys and improve the cost-efficiency of data collection. In the SUPERB (Study of Use of Products and Exposure-Related Behavior) study, frequencies of use of eight types of household cleaning products and air fresheners and the performance of different types of cleaning tasks are collected in three annual telephone and six quarterly web-based surveys. All-purpose and glass cleaners were the products most frequently used among all products surveyed. Use frequencies differed by demographic and other household characteristics for some products. Product usage was internally consistent, with over 75% of pairwise cross-sectional correlations between product types statistically significantly different from zero. In addition, each product type was correlated with at least one cleaning habit. Frequency of cleaning product use and performing cleaning tasks did not vary by season. An examination of intra-household variability showed moderately to highly consistent usage patterns over time, with lower temporal consistency observed among products used more frequently, such as all-purpose cleaners. Frequency of household care product usage was consistent enough that in epidemiologic studies, participants can be classified, for example, into three

  20. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...... multiply in interaction with project management technologies and how conventional linear conceptions of project time may be contested with the emergence of new non-human stakeholders and temporalities. Research limitations/implications – The study draws on ANT to show how animals can become stakeholders...

  1. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data

    Science.gov (United States)

    Roberts, James H.; Hitt, Nathaniel P.

    2010-01-01

    Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.

  2. Adopting Consumer Time: Potential Issues for Higher Education

    Science.gov (United States)

    Gibbs, Paul

    2009-01-01

    Time and temporality have received little attention in the consumerism, marketing or, until recently, higher education literature. This paper attempts to compare the notions of timing implicit in education as "paideia" (transitional personal growth) with that implicit in consumerism and the marketing practices which foster it. This…

  3. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  4. Laser frequency modulator for modulating a laser cavity

    Science.gov (United States)

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  5. Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli.

    Science.gov (United States)

    Hullett, Patrick W; Hamilton, Liberty S; Mesgarani, Nima; Schreiner, Christoph E; Chang, Edward F

    2016-02-10

    The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech. While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior-posterior spatial distribution of spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectrotemporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain specialized for speech perception. Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross organization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectrotemporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic properties of speech stimuli. Copyright © 2016 the authors 0270-6474/16/362014-13$15.00/0.

  6. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  7. Frequency of chronic complications of type II diabetes

    International Nuclear Information System (INIS)

    Basit, A.; Hydrie, M.Z.I.; Ahmedani, M.Y.; Masood, Q.; Hakeem, R.

    2004-01-01

    Objective: To assess the frequency of chronic complications of type II diabetes in subjects attending a tertiary care Unit in Karachi, Pakistan. Subjects and Methods: Computerized clinical records of 2199 type II diabetic subjects were analyzed for this study. The clinical and laboratory variables were statistically evaluated with significance at p. Results: Means of glycosylated hemoglobin HbA1c, fasting and random plasma glucose levels, systolic blood pressure, triglycerides and high density lipoproteins (HDL) were higher than the risk indicator value for both genders (p<0.005). Mean body mass index and total blood cholesterol was higher for females only. Hyperglycemia was present in 88%, high HbA1c in 81%, low HDL in 81%, obesity in 66% and hypertriglyceridemia in 54%, neuropathy in 36% proteinuria in 28% and hypertension in 50% of the subjects. Frequency of obesity, low HDL and hypertension was higher among females (p<0.001 in each case). Retinopathy (p<0.05), nephropathy (p<0.005), neuropathy (p<0.005) and foot ulcers (p<0.001) were higher among males. Frequency of obesity was significantly higher among those with shorter duration and in younger group while frequency of other complications was higher among those with longer duration and in the older groups. Conclusion: Higher rates of complications were observed compared to previous studies. Certain variables showed significant association with gender and age as described above. (author)

  8. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  9. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    Science.gov (United States)

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  10. Effect of temporal distribution of dose on oncogenic transformation

    International Nuclear Information System (INIS)

    Miller, R.C.; Brenner, D.J.; Geard, C.R.; Marino, S.A.; Hall, E.J.

    1988-01-01

    Risk estimates for neutron hazards are of considerable social and economic importance. Effectiveness per unit dose of X or γ rays (low-LET radiations) has been consistently observed to be dependent on the temporal distribution of dose. In a series of comparisons, 0.5 Gy of single or fractionated (five fractions in 8 h), neutrons of 0.23, 0.35, 0.45, 5.9, or 13.7 MeV were delivered to a synchronous C3H 10T1/2 cells. Transformation frequencies per surviving cell are shown. Cells exposed to one energy (5.9 MeV) show a significant enhancement at the 95% level due to fractionated exposures, and at the 85% confidence level the 0.35- and 0.45-MeV fractionated exposures additionally result in significantly greater transformation frequencies. The frequencies of surviving cells per dish between a single or fractionated exposure vary by less than 10%. In three of five pairwise comparisons, fractionated exposures result in statistically greater frequencies of transformants per dish, and are in complete agreement with the results when induction is expressed as transformants per surviving cell. However, after 0.23-MeV neutron irradiation, the single dose resulted in a greater incidence of transformed foci than the fractionated dose

  11. Spectral long-range interaction of temporal incoherent solitons.

    Science.gov (United States)

    Xu, Gang; Garnier, Josselin; Picozzi, Antonio

    2014-02-01

    We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.

  12. Time and frequency weightings and the assessment of sound exposure

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; de Toro, Miguel Angel Aranda; Hammershøi, Dorte

    2010-01-01

    Since the development of averaging/integrating sound level meters and frequency weighting networks in the 1950’s, measurement of the physical characteristics of sound has not changed a great deal. Advances have occurred in how the measured values are used (day-night averages, limit and action...... of the exposure. This information is being used to investigate metrics that can differentiate temporal characteristics (impulsive, fluctuating) as well as frequency characteristics (narrow-band or tonal dominance) of sound exposures. This presentation gives an overview of the existing sound measurement...... and analysis methods, that can provide a better representation of the effects of sound exposures on the hearing system...

  13. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  14. Higher order mode damping in Kaon factory RF cavities

    International Nuclear Information System (INIS)

    Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.

    1989-05-01

    Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report

  15. Spatio-temporal analyses of impacts of multiple climatic hazards in a savannah ecosystem of Ghana

    Directory of Open Access Journals (Sweden)

    Gerald A.B. Yiran, PhD

    2016-01-01

    Full Text Available Ghana’s savannah ecosystem has been subjected to a number of climatic hazards of varying severity. This paper presents a spatial, time-series analysis of the impacts of multiple hazards on the ecosystem and human livelihoods over the period 1983–2012, using the Upper East Region of Ghana as a case study. Our aim is to understand the nature of hazards (their frequency, magnitude and duration and how they cumulatively affect humans. Primary data were collected using questionnaires, focus group discussions, in-depth interviews and personal observations. Secondary data were collected from documents and reports. Calculations of the standard precipitation index (SPI and crop failure index used rainfall data from 4 weather stations (Manga, Binduri, Vea and Navrongo and crop yield data of 5 major crops (maize, sorghum, millet, rice and groundnuts respectively. Temperature and windstorms were analysed from the observed weather data. We found that temperatures were consistently high and increasing. From the SPI, drought frequency varied spatially from 9 at Binduri to 13 occurrences at Vea; dry spells occurred at least twice every year and floods occurred about 6 times on average, with slight spatial variations, during 1988–2012, a period with consistent data from all stations. Impacts from each hazard varied spatio-temporally. Within the study period, more 70% of years recorded severe crop losses with greater impacts when droughts and floods occur in the same year, especially in low lying areas. The effects of crop losses were higher in districts with no/little irrigation (Talensi, Nabdam, Garu-Tempane, Kassena-Nankana East. Frequency and severity of diseases and sicknesses such as cerebrospinal meningitis, heat rashes, headaches and malaria related to both dry and wet conditions have increased steadily over time. Other impacts recorded with spatio-temporal variations included destruction to housing, displacement, injury and death of people. These

  16. Detection of anomalous signals in temporally correlated data (Invited)

    Science.gov (United States)

    Langbein, J. O.

    2010-12-01

    Detection of transient tectonic signals in data obtained from large geodetic networks requires the ability to detect signals that are both temporally and spatially coherent. In this report I will describe a modification to an existing method that estimates both the coefficients of temporally correlated noise model and an efficient filter based on the noise model. This filter, when applied to the original time-series, effectively whitens (or flattens) the power spectrum. The filtered data provide the means to calculate running averages which are then used to detect deviations from the background trends. For large networks, time-series of signal-to-noise ratio (SNR) can be easily constructed since, by filtering, each of the original time-series has been transformed into one that is closer to having a Gaussian distribution with a variance of 1.0. Anomalous intervals may be identified by counting the number of GPS sites for which the SNR exceeds a specified value. For example, during one time interval, if there were 5 out of 20 time-series with SNR>2, this would be considered anomalous; typically, one would expect at 95% confidence that there would be at least 1 out of 20 time-series with an SNR>2. For time intervals with an anomalously large number of high SNR, the spatial distribution of the SNR is mapped to identify the location of the anomalous signal(s) and their degree of spatial clustering. Estimating the filter that should be used to whiten the data requires modification of the existing methods that employ maximum likelihood estimation to determine the temporal covariance of the data. In these methods, it is assumed that the noise components in the data are a combination of white, flicker and random-walk processes and that they are derived from three different and independent sources. Instead, in this new method, the covariance matrix is constructed assuming that only one source is responsible for the noise and that source can be represented as a white

  17. Spatio-Temporal Rule Mining

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach

    2005-01-01

    Recent advances in communication and information technology, such as the increasing accuracy of GPS technology and the miniaturization of wireless communication devices pave the road for Location-Based Services (LBS). To achieve high quality for such services, spatio-temporal data mining techniques...... are needed. In this paper, we describe experiences with spatio-temporal rule mining in a Danish data mining company. First, a number of real world spatio-temporal data sets are described, leading to a taxonomy of spatio-temporal data. Second, the paper describes a general methodology that transforms...... the spatio-temporal rule mining task to the traditional market basket analysis task and applies it to the described data sets, enabling traditional association rule mining methods to discover spatio-temporal rules for LBS. Finally, unique issues in spatio-temporal rule mining are identified and discussed....

  18. Cerebral infarction secondary to temporal lobe herniation in head trauma: a CT study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyoung; Park, Eui Dong; Kim, Hyung Jin; Han, Jong Woo; Chung, Sung Hoon; Ha, Choong Kun; Kim, Jae Il [College of Medicine, Gyeongsang National University, Jinju (Korea, Republic of)

    1992-11-15

    Cerebral infarction is a known complication of temporal lobe herniation caused by a traumatic intracranial lesion. To ascertain the frequency, time of recognition, and influence on mortality of posttraumatic cerebral infarction secondary to temporal lobe herniation, we retrospectively reviewed brain CT scans and clinical records of 55 patients who had CT and clinical signs of temporal lobe herniation on admission date. Cerebral infarctions were recognized in seven (12.7%) patients on CT scans taken within two days after admission (mean: 1.3 days). Cerebral infarctions were in the terrtiories of the posterior cerebral artery in all seven patients, two of whom had infarctions of the anterior choroidal artery as well. Mortality (71.4%) for these seven patients was not statistically significant from that (50%) of patients without cerebral infarction admitted with the same range of Glasgow Coma Scale score. The result suggests that such cerebral infarction dose not greatly influence patient's mortality.

  19. Electrophysiological evidence during episodic prospection implicates medial prefrontal and bilateral middle temporal gyrus.

    Science.gov (United States)

    Hsu, Chia-Fen; Sonuga-Barke, Edmund J S

    2016-08-01

    fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  1. Combining Temporal and Spectral Information with Spatial Mapping to Identify Differences between Phonological and Semantic Networks: A Magnetoencephalographic Approach.

    Science.gov (United States)

    McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J; Rippon, Gina

    2012-01-01

    Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bands were analyzed in pre-selected time windows of 350-550 and 500-700 ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700 ms for the phonological task and 350-550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550 ms for the phonological task and 500-700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains.

  2. Increased Eating Frequency Is Associated with Lower Obesity Risk, But Higher Energy Intake in Adults: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yue-Qiao Wang

    2016-06-01

    Full Text Available Body weight is regulated by energy intake which occurs several times a day in humans. In this meta-analysis, we evaluated whether eating frequency (EF is associated with obesity risk and energy intake in adults without any dietary restriction. Experimental and observational studies published before July 2015 were selected through English-language literature searches in several databases. These studies reported the association between EF and obesity risk (odd ratios, ORs in adults who were not in dietary restriction. R software was used to perform statistical analyses. Ten cross-sectional studies, consisting of 65,742 participants, were included in this analysis. ORs were considered as effect size for the analysis about the effect of EF on obesity risk. Results showed that the increase of EF was associated with 0.83 time lower odds of obesity (i.e., OR = 0.83, 95% confidence intervals (CI 0.70–0.99, p = 0.040. Analysis about the effect of EF on differences in participants’ energy intake revealed that increased EF was associated with higher energy intake (β = 125.36, 95% CI 21.76–228.97, p = 0.017. We conclude that increased EF may lead to lower obesity risk but higher energy intake. Clinical trials are warranted to confirm these results and to assess the clinical practice applicability.

  3. Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    Science.gov (United States)

    Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.

    2011-03-01

    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.

  4. The Temporal Association Between Executive Function and Life-Space Mobility in Old Age.

    Science.gov (United States)

    Poranen-Clark, Taina; von Bonsdorff, Mikaela B; Rantakokko, Merja; Portegijs, Erja; Eronen, Johanna; Pynnönen, Katja; Eriksson, Johan G; Viljanen, Anne; Rantanen, Taina

    2018-05-09

    Life-space mobility, an indicator of community mobility, describes person's movements in terms of the distance from home, the frequency of movement, and the need of assistance for movement. Executive function (EF) is a higher-order cognitive function that supervises motor control and plays a key role in a person's ability to function independently. Cognitive impairment often co-occurs with restricted life-space mobility; however, the direction of the longitudinal associations between EF and life-space mobility is unclear. The aim of this study was to investigate the temporal associations between EF and life-space mobility among community-dwelling older people. One hundred eight community-dwelling persons aged 76 to 91 years participated in the 2 year follow-up study. EF was measured with the Trail Making Test. The Life-Space Assessment (range 0-120, higher scores indicate more mobility) was used to assess life-space mobility. Cross-lagged model design was used to examine longitudinal relationship between EF and life-space mobility. The model was adjusted for age and gender. Average age of participants at baseline was 82.2 (SD 4.1) years and 59% were women. Better EF at baseline predicted higher life-space mobility at follow-up (path coefficient = 3.81, 95% confidential interval; 0.84, 6.78, p = .012), whereas baseline life-space mobility did not predict EF at follow-up. EF was a determinant of life-space mobility. Supporting EF may enhance maintaining independence and active participation in old age.

  5. Spatial and temporal variability in recruitment of intertidal mussels ...

    African Journals Online (AJOL)

    Intensity of intertidal mussel recruitment was compared across a range of different spatial and temporal scales around the coast of southern Africa between June 1995 and October 1996. Comparison of the east and west coasts revealed significantly higher recruit densities on the west coast, corresponding to larger adult ...

  6. Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models

    NARCIS (Netherlands)

    Wilczek, Michael; Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2015-01-01

    Motivated by the need to characterize the spatio-temporal structure of turbulence in wall-bounded flows, we study wavenumber–frequency spectra of the streamwise velocity component based on large-eddy simulation (LES) data. The LES data are used to measure spectra as a function of the two

  7. Temporal networks

    Science.gov (United States)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  8. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Science.gov (United States)

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  9. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  10. Life satisfaction in the new country: a multilevel longitudinal analysis of effects of culture and 5-HTT allele frequency distribution in country of origin.

    Science.gov (United States)

    Kashima, Emiko S; Kent, Stephen; Kashima, Yoshihisa

    2015-01-01

    Life satisfaction of migrants to Australia from 17 countries, assessed at 4-5 months, 16-17 months and 3½ years after arrival, was analyzed with a longitudinal, multilevel analysis. The results indicated that migrants were more satisfied, if the national average life satisfaction was higher in their country of origin, after adjustment for individual-level income, age, and sex and a linear temporal trend. Simultaneously, the migrants were also happier if people in their country of origin had a higher frequency of 5-HTT long allele, a genotype known to be associated with resilience under life stresses. These two relationships were independent, suggesting that both culture and gene matter in international transitions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury.

    Science.gov (United States)

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; and typical: 0.01-0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients.

  12. Amplitude of low-frequency fluctuations in multiple-frequency bands in acute mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jie eZhan

    2016-02-01

    Full Text Available Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO. Here, we used the amplitude of low-frequency fluctuations (ALFF to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz; and typical: 0.01–0.08 Hz in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls (HC participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4 frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the MMSE score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients.

  13. Indeterministic Temporal Logic

    Directory of Open Access Journals (Sweden)

    Trzęsicki Kazimierz

    2015-09-01

    Full Text Available The questions od determinism, causality, and freedom have been the main philosophical problems debated since the beginning of temporal logic. The issue of the logical value of sentences about the future was stated by Aristotle in the famous tomorrow sea-battle passage. The question has inspired Łukasiewicz’s idea of many-valued logics and was a motive of A. N. Prior’s considerations about the logic of tenses. In the scheme of temporal logic there are different solutions to the problem. In the paper we consider indeterministic temporal logic based on the idea of temporal worlds and the relation of accessibility between them.

  14. Frogs Call at a Higher Pitch in Traffic Noise

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Male frogs call to attract females for mating and to defend territories from rival males. Female frogs of some species prefer lower-pitched calls, which indicate larger, more experienced males. Acoustic interference occurs when background noise reduces the active distance or the distance over which an acoustic signal can be detected. Birds are known to call at a higher pitch or frequency in urban noise, decreasing acoustic interference from low-frequency noise. Using Bayesian linear regression, we investigated the effect of traffic noise on the pitch of advertisement calls in two species of frogs, the southern brown tree frog (Litoria ewingii and the common eastern froglet (Crinia signifera. We found evidence that L. ewingii calls at a higher pitch in traffic noise, with an average increase in dominant frequency of 4.1 Hz/dB of traffic noise, and a total effect size of 123 Hz. This frequency shift is smaller than that observed in birds, but is still large enough to be detected by conspecific frogs and confer a significant benefit to the caller. Mathematical modelling predicted a 24% increase in the active distance of a L. ewingii call in traffic noise with a frequency shift of this size. Crinia signifera may also call at a higher pitch in traffic noise, but more data are required to be confident of this effect. Because frog calls are innate rather than learned, the frequency shift demonstrated by L. ewingii may represent an evolutionary adaptation to noisy conditions. The phenomenon of frogs calling at a higher pitch in traffic noise could therefore constitute an intriguing trade-off between audibility and attractiveness to potential mates.

  15. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  16. Correcting length-frequency distributions for imperfect detection

    Science.gov (United States)

    Breton, André R.; Hawkins, John A.; Winkelman, Dana L.

    2013-01-01

    Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection. We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are a function of fish length, temporal variation, and capture history. The method is applied to a study involving the removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River, Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model, we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year×behavior, and year×pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes (≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78, 81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely applied when mark–recapture data

  17. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  18. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Directory of Open Access Journals (Sweden)

    Carlijn van den Boomen

    Full Text Available Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed in a higher spatial frequency (reference frequency: 6 cycles per degree discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135. Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28 punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be

  19. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Science.gov (United States)

    van den Boomen, Carlijn; Peters, Judith Carolien

    2017-01-01

    Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future

  20. Intracerebrally recorded high frequency oscillations: Simple visual assessment versus automated detection

    Czech Academy of Sciences Publication Activity Database

    Pail, M.; Halámek, Josef; Daniel, P.; Kuba, R.; Tyrlíková, I.; Chrastina, J.; Jurák, Pavel; Rektor, I.; Brázdil, M.

    2013-01-01

    Roč. 124, č. 10 (2013), s. 1935-1942 ISSN 1388-2457 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : High frequency oscillations * Spikes * Ripples * Temporal lobe epilepsy * Extratemporal lobe epilepsy * Seizure onset zone * Epileptogenic zone Subject RIV: FH - Neurology Impact factor: 2.979, year: 2013