WorldWideScience

Sample records for higher temperature membrane

  1. Develpment of Higher Temperature Membrane and Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell Devices

    Energy Technology Data Exchange (ETDEWEB)

    Susan Agro, Anthony DeCarmine, Shari Williams

    2005-12-30

    Our work will fucus on developing higher temperature MEAs based on SPEKK polymer blends. Thse MEAs will be designed to operatre at 120 degrees C Higher temperatures, up to 200 degrees C will also be explored. This project will develop Nafion-free MEAs using only SPEKK blends in both membrane and catalytic layers.

  2. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  3. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  4. High Temperature Membrane with Humidification-Independent Cluster Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-07-10

    The objective of this project was to develop high temperature membranes to facilitate the wide-spread deployment of hydrogen fuel cells. High temperature membranes offer significant advantages in PEM system operation, overall capital and operating costs. State-of-the-art Nafion-based membranes are inadequate for the high temperature operation. These conventional membranes become unstable at higher temperatures (90-120°C) and lose their conductivity, particularly at low relative humidity. In this program, alternate materials were developed to enable fabrication of novel high performance composite membranes. FCE’s concept for the multi-component composite membrane, named mC2, has been used in the design of more conductive membranes.

  5. Tympanic Membrane Temperature and Hemispheric Cognitive Style.

    Science.gov (United States)

    Genovese, Jeremy E C; Sparks, Kenneth E; Little, Kathleen D

    2017-01-01

    The authors tested the hypothesis that there is a correlation between hemispheric cognitive style and ear temperature. A sample of 100 participants completed a measure of hemispheric cognitive style, the Hemispheric Consensus Prediction Profile. Ear temperatures were taken in 2 sessions, 2 times for each ear at each session. Average left ear temperature was subtracted from average right ear temperature as an index of dominant temperature. Only 56 of the participants showed a stable dominant ear temperature. For these 56 participants, there was a statistically significant positive correlation between scores on the Hemispheric Consensus Prediction Profile and tympanic member temperature (Spearman's  ρ =.29, 95% CI [.04,.51]). Individuals with a left hemispheric cognitive style tended to have a warmer left tympanic membrane temperature while those with a right hemispheric cognitive style tended to have a warmer right tympanic membrane temperature. Tympanic membrane temperatures are easily obtained using inexpensive and noninvasive technology. The relationship suggested by these findings may open new opportunities for the study of cerebral asymmetry.

  6. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  7. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  8. Vacuum membrane distillation by microchip with temperature gradient.

    Science.gov (United States)

    Zhang, Yaopeng; Kato, Shinji; Anazawa, Takanori

    2010-04-07

    A multilayered microchip (25 x 95 mm) used for vacuum distillation is designed, fabricated and tested by rectification of a water-methanol mixture. The polymer chip employs a cooling channel to generate a temperature gradient along a distillation channel below, which is separated into a channel (72 microm deep) for liquid phase and a channel (72 microm deep) for vapor phase by an incorporated microporous poly(tetrafluoroethylene) (PTFE) membrane. The temperature gradient is controlled by adjusting hotplate temperature and flow rate of cooling water to make the temperatures in the stripping section higher than the increasing boiling points of the water-enriched liquids and the temperatures in the rectifying section lower than the decreasing dew points of the methanol-enriched vapors. The effects of temperature gradient, feed composition, feed flow rate and membrane pore size on the micro distillation are also investigated. A theoretical plate number up to 1.8 is achieved at the optimum conditions.

  9. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  10. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  11. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C–170 °C, and led to substantial increase in maximum power density of fuel cells by ∼30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ∼150% and ∼160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  12. Low temperature direct propane polymer electrolyte membranes fuel cell (DPFC)

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O.; Varela, F. J. R. [Ecole Polytechnique, Laboratoire d' electrochimie et de materiaux energetiques, Montreal, PQ (Canada)

    2001-04-01

    A low-temperature direct propane polymer electrolyte membrane fuel cell (DPFC) is demonstrated. The propane is fed into the fuel cell directly, eliminating the need for reforming. The key elements of the DPFC system are an appropriate catalyst for the anodes, an appropriate membrane and a propane humidifier. Overall, the system consists of a propane container, an oxygen container, a propane humidifier, and oxygen humidifier, a proton exchange membrane fuel cell (PEMFC), and a fuel cell station monitored by a computer. The membranes are Nafion 117, doped with heteropolyacids (HPAs) or polybenzimidazole (PBI). The fuel cell was built of graphite blocks in which flow fields were engraved, one for humidified propane, the other for oxygen. The anode was based on platinum, platinum-ruthenium, or platinum-chromium oxide electrocatalysts; the cathode was based on a platinum electrocatalyst. Results showed that polymer electrolyte membranes can be directly fed by propane gas to make direct propane fuel cell (DPFC). This has many advantages compared to methanol, such as lower cost, greater operating temperature range, easy handling, simpler infrastructure requirements, and higher energy than those of methanol. However, like methanol, DPFC also has the disadvantage that its reaction product is carbon dioxide. 22 refs., 2 tabs., 5 figs.

  13. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  14. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  15. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  16. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    the selectivity for platinum loading. Fuel cell durability tests in term of performance degradation were performed with acid doped polybenzimidazole membrane fuel cells at temperatures of up to 160°C. The tests were focused on catalyst degradation by means of a potential cycling protocol. The electrochemical......Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... mode of PEMFCs. Under idle, load-cycling or start-up/shutdown modes of operation, which are prerequisite for automobile applications, the cathode will experience significantly higher potentials and therefore suffer from serious carbon corrosion, especially at the presence of platinum. The carbon...

  17. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  18. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  19. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k......Da with good solubility in organic solvents. Membranes fabricated from the polymers were systematically characterized in terms of oxidative stability, acid doping and swelling, conductivity, mechanical strength and fuel cell performance and durability. With increased molecular weights the polymer membranes...

  20. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120/sup 0/C, and was found to be approximately five times greater at -120/sup 0/C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane.

  1. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1...... at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m...

  2. Development of ceramic membrane reactors for high temperature gas cleanup. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

    1993-06-01

    The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

  3. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  4. Preparation and Investigation of Poly (N-isopropylacrylamide-acrylamide Membranes in Temperature Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Elham Khodaverdi

    2010-06-01

    Full Text Available Objective(sPhysiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus–responsive drug delivery has been developed.Materials and MethodsIn this study, a kind of poly (N-isopropylacrylamide-acrylamide membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane were investigated in terms of temperature. On-off regulation of drug permeation through the membrane was then studied at temperatures below and above the phase transition temperature of the membrane. Two drugs, vitamin B12 and acetaminophen were chosen as models of high and low molecular weights here, respectively. ResultsIt was indicated that at temperatures below the phase transition temperature of the membrane, copolymer was in a swollen state. Above the phase transition temperature, water was partially expelled from the functional groups of the copolymer. Permeation of high molecular weight drug models such as vitamin B12 was shown to be much more distinct at temperatures below the phase transition temperature when the copolymer was in a swollen state. At higher temperatures when the copolymer was shrunken, drug permeation through the membrane was substantially decreased. However for acetaminophen, such a big change in drug permeation around the phase transition temperature of the membrane was not observed. ConclusionAccording to the pore mechanism of drug transport through hydrogels, permeability of solutes decreased with increasing molecular size. As a result, the relative permeability, around the phase transition temperature of the copolymer, was higher for solutes of high molecular weight.

  5. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 108

    Science.gov (United States)

    Yuan, Mingyun; Cohen, Martijn A.; Steele, Gary A.

    2015-12-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14 mK using a three-dimensional optomechanical cavity. Below 200 mK, high-Q modes of the membranes show a diverging increase of Q with decreasing temperature, reaching Q =1.27 ×108 at 14 mK, an order of magnitude higher than that reported before. The ultra-low dissipation makes the membranes highly attractive for the study of optomechanics in the quantum regime, as well as for other applications of optomechanics such as microwave to optical photon conversion.

  6. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf

    2007-01-01

    Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...

  7. Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method

    Science.gov (United States)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Linkov, Vladimir; Pasupathi, Sivakumar

    2014-11-01

    In this work, membrane electrode assemblies (MEAs) prepared by catalyst coating membrane (CCM) method are investigated for reduced platinum (Pt) loading and improved Pt utilization of high temperature proton exchange membrane fuel cell (PEMFC) based on phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane. The results show that CCM method exhibits significantly higher cell performance and Pt-specific power density than that of MEAs prepared with conventional gas diffusion electrode (GDE) under a low Pt loading level. In-suit cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that the MEAs prepared by the CCM method have a higher electrochemical surface area (ECSA), low cell ohmic resistance and low charge transfer resistance as compared to those prepared with GDEs at the same Pt loading.

  8. Acute Associations between Outdoor Temperature and Premature Rupture of Membranes.

    Science.gov (United States)

    Ha, Sandie; Liu, Danping; Zhu, Yeyi; Sherman, Seth; Mendola, Pauline

    2017-10-30

    Extreme ambient temperatures have been linked to preterm birth. Preterm premature rupture of membranes is a common precursor to preterm birth but is rarely studied in relation to temperature. We linked 15 381 singleton pregnancies with premature rupture of membranes from a nationwide US obstetrics cohort (2002-2008) to local temperature. Case-crossover analyses compared daily temperature during the week preceding delivery and the day of delivery to two control periods, before and after the case period. Conditional logistic regression models calculated the odds ratio (OR) and 95% confidence intervals (CI) of preterm and term premature rupture of membranes for a 1˚C increase in temperature during the warm (May-September) and cold (October-April) season separately after adjusting for humidity, barometric pressure, ozone and particulate matter. During the warm season, 1˚C increase during the week before delivery was associated with a 5% (95% CI: 3-6%) increased preterm premature rupture of membranes risk, and a 4% (95% CI: 3-5%) increased term premature rupture of membranes risk. During the cold season, 1˚C increase was associated with a 2% decreased risk for both preterm (95% CI: 1-3%) and term premature rupture of membranes (95% CI: 1-3%). The day-specific associations for the week before delivery were similar, but somewhat stronger for days closer to delivery. Relatively small ambient temperature changes were associated with the risk of both preterm and term premature of membranes. Given the adverse consequences of premature rupture of membranes and concerns over global climate change, these findings merit further investigation.

  9. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  10. Solid polymer electrolyte water electrolyser based on Nafion-TiO{sub 2} composite membrane for high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Matteucci, F.; Martina, F.; Zama, I. [Tozzi Renewable Energy SpA, Mezzano (Italy); Ciccarella, G. [National Nanotechnology Laboratory (NNL) of INFM-CNR, Distretto Tecnologico ISUFI, Innovazione, Universita del Salento, Lecce (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro Sanfandila (Mexico); Ornelas, R.

    2009-06-15

    A composite Nafion-TiO{sub 2} membrane was manufactured by a recast procedure, using an in-house prepared TiO{sub 2}. This membrane has shown promising properties for high temperature operation in an SPE electrolyser allowing to achieve higher performance with respect to a commercial Nafion 115 membrane. This effect is mainly due to the water retention properties of the TiO{sub 2} filler. A promising increase in electrical efficiency was recorded at low current densities for the composite membrane-based SPE electrolyser at high temperature compared to conventional membrane-based devices. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Efficiency and temperature dependence of water removal by membrane dryers

    Science.gov (United States)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  12. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  13. Modular operation of membrane bioreactors for higher hydraulic capacity utilisation.

    Science.gov (United States)

    Veltmann, K; Palmowski, L M; Pinnekamp, J

    2011-01-01

    Using data from 6 full-scale municipal membrane bioreactors (MBR) in Germany the hydraulic capacity utilisation and specific energy consumption were studied and their connexion shown. The average hydraulic capacity utilisation lies between 14% and 45%. These low values are justified by the necessity to deal with intense rain events and cater for future flow increases. However, this low hydraulic capacity utilisation leads to high specific energy consumption. The optimisation of MBR operation requires a better utilisation of MBR hydraulic capacity, particularly under consideration of the energy-intensive membrane aeration. A first approach to respond to large influent flow fluctuations consists in adjusting the number of operating modules. This is practised by most MBR operators but so far mostly with variable flux and constant membrane aeration. A second approach is the real-time adjustment of membrane aeration in line with flux variations. This adjustment is not permitted under current manufacturers' warranty conditions. A further opportunity is a discontinuous operation, in which filtration takes place over short periods at high flux and energy for membrane aeration is saved during filtration pauses. The integration of a buffer volume is thereby indispensable. Overall a modular design with small units, which can be activated/ inactivated according to the influent flow and always operate under optimum conditions, enables a better utilisation of MBR hydraulic capacity and forms a solid base to reduce MBR energy demand.

  14. Temperature-induced plasticity in membrane and storage lipid composition: thermal reaction norms across five different temperatures.

    Science.gov (United States)

    Van Dooremalen, Coby; Koekkoek, Jacco; Ellers, Jacintha

    2011-02-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or biochemical traits. Lipid composition may be an important trait underlying fitness response to temperature, because it affects membrane fluidity as well as availability of stored energy reserves. Here, we investigate the effect of temperature on lipid composition of the springtail Orchesella cincta by measuring thermal reaction norms across five different temperatures after four weeks of cold or warm acclimation. Fatty acid composition in storage and membrane lipids showed a highly plastic response to temperature, but the responses of single fatty acids revealed deviations from the expectations based on HVA theory. We found an accumulation of C(18:2n6) and C(18:3n3) at higher temperatures and the preservation of C(20:4n6) across temperatures, which is contrary to the expectation of decreased unsaturation at higher temperatures. The thermal response of these fatty acids in O. cincta differed from the findings in other species, and therefore shows there is interspecific variation in how single fatty acids contribute to HVA. Future research should determine the consequences of such variation in terms of costs and benefits for the thermal performance of species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Current hurdles to the success of high temperature membrane reactors

    NARCIS (Netherlands)

    Saracco, G.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1994-01-01

    High-temperature catalytic processs performed using inorganic membranes have been in recent years a fast growing area of research, which seems to have not yet reached its peak. Chemical engineers, catalysts and materials scientists have addressed this topic from different viewpoint in a common

  16. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  17. Molecular dynamics simulation of membrane in room temperature ionic liquids

    Science.gov (United States)

    Theng, Soong Guan; Jumbri, Khairulazhar bin; Wirzal, Mohd Dzul Hakim

    2017-10-01

    The polyvinylidene difluoride (PVDF) membrane has been a popular material in membrane separation process. In this work, molecular dynamic simulation was done on the PVDF membrane with 100 wt% IL and 50 wt% IL in GROningen MAchine for Chemical Simulations (GROMACS). The results was evaluated based on potential energy, root mean square deviation (RMSD) and radial distribution function (RDF). The stability and interaction of PVDF were evaluated. Results reveal that PVDF has a stronger interaction to [C2bim]+ cation compared to water and bromine anion. Both potential energy and RMSD were lower when the weight percentage of IL is higher. This indicates that the IL is able to stabilize the PVDF structure. RMSD reveals that [C2bim]+ cation is dominant at short distance (less than 1 nm), indicating that strong interaction of cation to PVDF. This understanding of the behavior of PVDF-IL could be used as a reference for future development of stronger membrane.

  18. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  19. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    observed under continuous operation with hydrogen and air at 150-160oC, with a fuel cell performance degradation rate of 5-10 µV/h. Improvement of the membrane performance such as mechanical strength, swelling and oxidative stability has achieved by exploring the polymer chemistry, i.e. covalently......To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...

  20. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  1. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena

    2016-01-01

    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... understanding of organic and biofouling in AnMBR. An AnMBR consisting of external PVDF membrane was operated at 25°C and fed with synthetic dairy wastewater. Intensity, morphology and composition of foulants were determined using Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectrometry...

  2. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i...... group is achieved in 85wt% H3PO4 at room temperature. The membranes exhibit a proton conductivity of 0.015–0.022Scm−1 at 130–150°C under 15mol% water vapor in air, and a tensile strength of 5–6MPa at 130°C under ambient humidity. Fuel cell tests show an open circuit voltage as high as 0.96V and a peak...

  3. Composite Nafion membranes based on PWA-Zirconia for PEFCs operating at medium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, A.; Sacca, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy); Casciola, M.; Cavalaglio, S.; Costantino, U. [University of Perugia, Chemistry Department, Perugia (Italy); Ornelas, R.; Fodale, I. [Nuvera Fuel Cells Europe Srl, Milano (Italy)

    2004-01-01

    Nafion membranes based on phosphotungstic acid (PWA) were immobilized as Zr(IV) phospho-tungstate, and the solid obtained was used as a filler to recast Nafion. Composite membranes, containing different filler percentages were prepared and characterized for their ion exchange capacity, water uptake and proton conductivity. Results showed that the hydrophilic characteristics of the composite membranes was higher than that of pure Nafion membranes, allowing an increase in fuel cell efficiency above 80 degrees C. This ability to work at temperatures higher than classical proton exchange membranes made it possible to reduce the carbon monoxide poisoning and to feed the cell with processed hydrogen, in effect to extend the operating temperature range of the fuel cell to 120 degrees C. As a general rule, Nafion-based membranes give the best performance at 100 degrees C, yielding a very high power density when compared with results at 120 degrees C. When the synthetic fuel, containing 10 parts per million of carbon monoxide was fed at the platinum-based anode, a power density of 350 mW/sq cm was recorded, which is 70 mW/sq cm lower than pure hydrogen. 22 refs., 3 tabs., 2 figs.

  4. Catalytic polymer membranes for high temperature hydrogenation of viscous liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, D.; Bengtson, G. [GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2006-05-15

    Polymeric membranes with high oil fluxes were developed and catalytically activated by a new route of direct calcination of polymeric membranes charged by Pd or Pt catalyst precursors. High concentrations of citric acid mixed with the precursors afforded a decrease of the calcination temperature to 175 C. Membrane reactor tests in the flow through contactor mode displayed high reactivities for sunflower oil hydrogenation. Pt showed a similar activity to Pd catalysts as measured by iodine value and generated about 13% less trans-isomers but 5% more stearic acid at an iodine value of 90. By means of alumina supported catalysts tests of methyl oleate (cis-C18:1) and methyl elaidate (trans-C18:1) hydrogenation exhibited a different pathway of reaction by either isomerization followed by reduction (Pd) or primarily direct reduction to methyl stearate (Pt). (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K. [Southwest Research Inst. (SwRI), San Antonio, TX (United States)

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  6. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  7. Lateralized Difference in Tympanic Membrane Temperature: Emotion and Hemispheric Activity

    OpenAIRE

    Propper, Ruth E.; Brunyé, Tad T.

    2013-01-01

    We review literature examining relationships between tympanic membrane temperature (TMT), affective/motivational orientation, and hemispheric activity. Lateralized differences in TMT might enable real-time monitoring of hemispheric activity in real-world conditions, and could serve as a corroborating marker of mental illnesses associated with specific affective dysregulation. We support the proposal that TMT holds potential for broadly indexing lateralized brain physiology during tasks demand...

  8. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...... the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom...

  9. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae

    Science.gov (United States)

    Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.

    2013-01-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519

  10. Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae.

    Science.gov (United States)

    Henderson, Clark M; Zeno, Wade F; Lerno, Larry A; Longo, Marjorie L; Block, David E

    2013-09-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at "normal" temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.

  11. Temperature driven annealing of perforations in bicellar model membranes.

    Science.gov (United States)

    Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter

    2011-04-19

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society

  12. Temperature Driven Annealing of Perforations in Bicellar Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, Mu-Ping [University of Connecticut, Storrs; Raghunathan, V. A. [Raman Research Institute, India; Pabst, Georg [Austrian Academy of Sciences, Graz; Harroun, Thad [Brock University, Canada; Nagashima, K [University of Toronto, Canada; Morales, H [University of Toronto, Canada; Katsaras, John [ORNL; Macdonald, P [University of Toronto, Canada

    2011-01-01

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), {sup 31}P NMR, and {sup 1}H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. {sup 31}P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the 'mixed bicelle model' (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, {sup 31}P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.

  13. Surfactant and temperature effects on paraben transport through silicone membranes.

    Science.gov (United States)

    Waters, Laura J; Dennis, Laura; Bibi, Aisha; Mitchell, John C

    2013-08-01

    This study investigates the effects of two surfactants (one anionic and one non-ionic) and controlled modifications in temperature (298-323K) on the permeation of two structurally similar compounds through a silicone membrane using a Franz diffusion cell system. In all cases the presence of an anionic surfactant, namely sodium dodecyl sulphate (SDS), reduced the permeation of both compounds (methylparaben and ethylparaben) over a period of 24h. The degree of permeation reduction was proportional to the concentration of surfactant with a maximum effect observed, with an average reduction of approximately 50%, at the highest surfactant concentration of 20mM. Differences were seen around the critical micelle concentration (CMC) of SDS implying the effect was partially connected with the favoured formation of micelles. In contrast, the presence of non-ionic surfactant (Brij 35) had no effect on the permeation of methylparaben or ethylparaben at any of the concentrations investigated, both above and below the CMC of the surfactant. From these findings the authors conclude that the specific effects of SDS are a consequence of ionic surfactant-silicone interactions retarding the movement of paraben through the membrane through indirect modifications to the surface of the membrane. As expected, an increase in experimental temperature appeared to enhance the permeation of both model compounds, a finding that is in agreement with previously reported data. Interestingly, in the majority of cases this effect was optimum at the second highest temperature studied (45°C) which suggests that permeation is a temperature-dependent phenomenon. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system...... is managed by running the stack at a high stoichiometric air flow. This is possible because of the polybenzimidazole (PBI) fuel cell membranes used and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle, and end....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...

  15. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H.

    1964-07-15

    Aqueous solutions of benzene have been irradiated with Co {gamma}-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed.

  16. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    Science.gov (United States)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  17. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Shabanikia, Akbar; Enhessari, Morteza

    2015-02-01

    Novel PBI (polybenzimidazole)-BaZrO3 (PBZ) nanocomposite membranes have been prepared for the high temperature proton exchange membrane (HT-PEM) fuel cells. The results showed that the water uptake, acid doping level and proton conductivity of the PBZ nanocomposite membranes were higher than that of virgin PBI membrane due to the presence of perovskite structure BaZrO3 nanoparticles, which as protonic conductor can perform as a special pathway for hydrogen transport. The proton conductivity of the PBZ nanocomposite membranes with 13 mol phosphoric acid per PBI repeat unit was obtained 125 mS/cm at 180 °C and 5% relative humidity. It was found that the performance of the fuel cells increases by increasing temperature; this was explained by faster reaction kinetic and higher proton conductivity. The power density and current density at 0.5 V 180 °C with 5% relative humidity were observed 0.56 W/cm2 and 1.12 A/cm2, respectively for PBZ nanocomposite membranes containing 4 wt% of the nanofillers. The results suggested that PBZ nanocomposite membranes are promising electrolytes for HT-PEM fuel cells with improved proton conductivity.

  18. Conditioning of the membrane fatty acid profile of Escherichia coli during periodic temperature cycling.

    Science.gov (United States)

    Ivancic, Tina; Vodovnik, Masa; Marinsek-Logar, Romana; Stopar, David

    2009-10-01

    The membrane fatty acid composition of Escherichia coli becomes conditioned during periodic temperature cycling between 37 and 8 degrees C. After several cycles of temperature change, the bacteria become locked into a low-temperature physiology. Even after a prolonged incubation at high temperature the membrane fatty acid composition of conditioned cells was similar to that of cold-stressed cells.

  19. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Piao, Shilong; Ciais, Philippe; Guo, Weichao; Yin, Yi; Poulter, Ben; Peng, Changhui; Viovy, Nicolas; Vuichard, Nicolas; Wang, Pei; Huang, Yongmei

    2017-06-01

    Interannual air temperature variability has changed over some regions in Northern Hemisphere (NH), accompanying with climate warming. However, whether and to what extent it regulates the interannual sensitivity of vegetation growth to temperature variability (i.e., interannual temperature sensitivity)—one central issue in understanding and predicting the responses of vegetation growth to changing climate—still remains poorly quantified and understood. Here we quantify the relationships between the interannual temperature sensitivity of mean growing-season (April-October) normalized difference vegetation index (NDVI) and ecosystem model simulations of gross primary productivity (GPP), and variability in mean growing-season temperature for forest, shrub, and grass over NH. We find that higher interannual variability in mean growing-season temperature leads to consistent decrease in interannual temperature sensitivity of mean growing-season NDVI among all vegetation types but not in model simulations of GPP. Drier condition associates with 130 ± 150% further decrease in interannual temperature sensitivity of mean growing-season NDVI by temperature variability in forest and shrub. These results illustrate that varying temperature variability can significantly regulate the interannual temperature sensitivity of vegetation growth over NH, interacted with drought variability and nonlinear responses of photosynthesis to temperature. Our findings call for an improved characterization of the nonlinear effects of temperature variability on vegetation growth within global ecosystem models.

  20. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2013-07-01

    Full Text Available Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS and single gas (He or N2 permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa. The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82% for a NaCl feed solution with a TDS (total dissolved solids of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1 and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection.

  1. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    Science.gov (United States)

    Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel

    2013-01-01

    Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943

  2. Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Barquín

    2016-05-01

    Full Text Available In this work, mixed matrix membranes (MMMs composed of small-pore zeolites with various topologies (CHA (Si/Al = 5, LTA (Si/Al = 1 and 5, and Rho (Si/Al = 5 as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne (PTMSP as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298–333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van’t Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson’s upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K.

  3. Oral and Tympanic Membrane Temperatures are Inaccurate to Identify Fever in Emergency Department Adults

    Directory of Open Access Journals (Sweden)

    Robert Silverman

    2011-05-01

    Full Text Available Introduction: Identifying fever can influence management of the emergency department (ED patient, including diagnostic testing, treatment, and disposition. We set out to determine how well oral and tympanic membrane (TM temperatures compared with rectal measurements. Methods: A convenience sample of consecutively adult ED patients had oral, TM, and rectal temperatures performed within several minutes of each other. Descriptive statistics, Bland–Altman agreement matrices with 95% confidence interval (CI, and measures of test performance, including sensitivity, specificity, predictive values, and interval likelihood ratios were performed. Results: A total of 457 patients were enrolled with an average age of 64 years (standard deviation: 19 years. Mean temperatures were: oral (98.38F, TM (99.68F, and rectal (99.48F. The mean difference in rectal and oral temperatures was 1.18F, although there was considerable lack of agreement between oral and rectal temperatures, with the oral temperature as much as 2.918F lower or 0.748F higher than the rectal measurement (95% CI. Although the difference in mean temperature between right TM and rectal temperature was only 0.228F, the right TM was lower than rectal by up to 1.618F or greater by up to 2.058F (95% CI. Test performance varied as the positive predictive value of the oral temperature was 97% and for tympanic temperature was 55% (relative to a rectal temperature of 100.48F or higher. Comparative findings differed even at temperatures considered in the normal range; among patients with an oral temperature of 98.0 to 98.9, 38% (25/65 were found to have a rectal temperature of 100.4 or higher, while among patients with a TM of 98.0 to 98.9, only 7% (10/134 were found to have a rectal temperature of 100.4 or higher. Conclusion: In conclusion, the oral and tympanic temperature readings are not equivalent to rectal thermometry readings. Oral thermometry frequently underestimates the temperature relative to

  4. Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions

    Science.gov (United States)

    Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)

    2001-01-01

    A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.

  5. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  6. Lateralized Difference in Tympanic Membrane Temperature: Emotion and Hemispheric Activity

    Directory of Open Access Journals (Sweden)

    Ruth E Propper

    2013-03-01

    Full Text Available We review literature examining relationships between tympanic membrane temperature (TMT, affective/motivational orientation, and hemispheric activity. Lateralized differences in TMT might enable real-time monitoring of hemispheric activity in real-world conditions, and could serve as a corroborating marker of mental illnesses associated with specific affective dysregulation. We support the proposal that TMT holds potential for broadly indexing lateralized brain physiology during tasks demanding the processing and representation of emotional and/or motivational states, and for predicting trait-related affective/motivational orientations. The precise nature of the relationship between TMT and brain physiology, however, remains elusive. Indeed the limited extant research has sampled different participant populations and employed largely different procedures and measures, making for seemingly discrepant findings and implications. We propose, however, that many of these discrepancies can be resolved by considering how emotional states map onto motivational systems, and further examining how validated methods for inducing lateralized brain activity might affect TMT.

  7. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes.

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2007-06-01

    Full Text Available Exosomes are secreted organelles that have the same topology as the cell and bud outward (outward is defined as away from the cytoplasm from endosome membranes or endosome-like domains of plasma membrane. Here we describe an exosomal protein-sorting pathway in Jurkat T cells that selects cargo proteins on the basis of both higher-order oligomerization (the oligomerization of oligomers and plasma membrane association, acts on proteins seemingly without regard to their function, sequence, topology, or mechanism of membrane association, and appears to operate independently of class E vacuolar protein-sorting (VPS function. We also show that higher-order oligomerization is sufficient to target plasma membrane proteins to HIV virus-like particles, that diverse Gag proteins possess exosomal-sorting information, and that higher-order oligomerization is a primary determinant of HIV Gag budding/exosomal sorting. In addition, we provide evidence that both the HIV late domain and class E VPS function promote HIV budding by unexpectedly complex, seemingly indirect mechanisms. These results support the hypothesis that HIV and other retroviruses are generated by a normal, nonviral pathway of exosome biogenesis.

  8. Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells

    Science.gov (United States)

    Shin, Dong Won; Kang, Na Rae; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Won Hyo; Lee, Young Moo

    2014-09-01

    Inorganic-organic composite membranes are fabricated using zirconium acetylacetonate nanoparticles and biphenol-based sulfonated poly(arylene ether sulfone) as an inorganic, proton conducting nanomaterial and a polymer matrix, respectively. An amphiphilic surfactant (Pluronic®) induces distribution of the inorganic nanoparticles over the entire polymer membrane. The composite membranes are thermally stable up to 200 °C. Zirconium acetylacetonate improves inter-chain interactions and the robustness of polymer membranes resulting in excellent membrane mechanical properties. In addition, composite membranes show outstanding proton conductivity compared to that of the pristine membrane at medium temperatures (80-120 °C) and low relative humidity (<50%) conditions. This improvement is due to the presence of acetylacetonate anions, which bind water molecules and act as an additional proton conducting site and/or medium. Therefore, the composite membranes significantly outperform the pristine membrane in fuel cell performance tests at medium temperatures and low relative humidity.

  9. Poly(imide benzimidazole)s for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Yuan, Sen; Guo, Xiaoxia; Aili, David

    2014-01-01

    -cresol in the presence of benzoic acid and isoquinoline at 180°C for 20h. The resulting PIBIs showed excellent thermo-oxidative as well as radical-oxidative resistance and, depending on the composition of the random copolymers, the PIBI membranes could be readily doped in polyphosphoric acid (PPA) or in 85wt......% orthophosphoric acid under pressure at 180°C to give acid uptakes as high as 780wt% and anhydrous proton conductivity of up to 0.26Scm-1 at elevated temperatures. The PIBI membrane with a 1:1molar ratio of APABI:ODA (PIBI-1/1) and with an acid uptake of 300wt% showed an elastic modulus of 0.1GPa at 160°C, which...... is an order of magnitude higher than that of the common polybenzimidazole membranes with similar acid contents. A preliminary H2/air fuel cell test at 180°C showed a peak power density of 350mWcm-2 of the fuel cell equipped with the phosphoric acid doped PIBI-1/1 membrane with a 300wt% acid uptake...

  10. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  11. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  13. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed an......V higher than that of methanol, indicating less fuel crossover.......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  14. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  15. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  16. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature

    Directory of Open Access Journals (Sweden)

    Khairul Aimi Yusof

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 thin films were sputtered by radio frequency (RF magnetron sputtering method and have been employed as the sensing membrane of an extended gate field effect transistor (EGFET for pH sensing detection application. The TiO2 thin films were deposited onto indium tin oxide (ITO coated glass substrates at room temperature and 200°C, respectively. The effect of deposition temperature on thin film properties and pH detection application was analyzed. The TiO2 samples used as the sensing membrane for EGFET pH-sensor and the current-voltage (I-V, hysteresis, and drift characteristics were examined. The sensitivity of TiO2 EGFET sensing membrane was obtained from the transfer characteristic (I-V curves for different substrate heating temperatures. TiO2 thin film sputtered at room temperature achieved higher sensitivity of 59.89 mV/pH compared to the one deposited at 200°C indicating lower sensitivity of 37.60 mV/pH. Moreover the hysteresis and the drift of TiO2 thin film deposited at room temperature showed lower values compared to the one at 200°C. We have also tested the effect of operating temperature on the performance of the EGFET pH-sensing and found that the temperature effect was very minimal.

  17. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  18. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    and stratiform precipitation events by cloud observations. We find that for stratiform precipitation, extremes increase with temperature at approximately the Clausius-Clapeyron rate, without characteristic scales. In contrast, convective precipitation exhibits characteristic spatial and temporal scales, and its...... intensity in response to warming exceeds the Clausius-Clapeyron rate. We conclude that convective precipitation responds much more sensitively to temperature increases than stratiform precipitation, and increasingly dominates events of extreme precipitation.......Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...

  19. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8

    NARCIS (Netherlands)

    Yuan, M.; Cohen, M.A.; Steele, G.A.

    2015-01-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14?mK using a three-dimensional optomechanical cavity. Below 200?mK, high-Q modes of the membranes show a diverging increase of Q with

  20. Dynamic hyperfiltration membranes for high-temperature spacecraft wash water recycle

    Science.gov (United States)

    Gaddis, J. L.; Brandon, C. A.

    1978-01-01

    The effect of operating parameters on the performance of the hyperfiltration membrane when operating on washwater was examined. The parameters were pressure, temperature, velocity, and concentration. Data taken included rejections of organic materials, ammonia, urea, and an assortment of ions. The membrane used was a dual layer, polyacrylic acid over zirconium oxide, deposited in situ on a porcelain ceramic substrate.

  1. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  2. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

    Science.gov (United States)

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M

    2017-08-01

    We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016

  3. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... these data with present environmental temperatures throughout its distribution range, together with projected future temperatures and evolutionary ancient temperatures, leads us to conclude that present temperatures are sub-optimal in this economically important species....

  4. Page 1 Oxide dielectrics 177 given temperature or to higher ...

    Indian Academy of Sciences (India)

    -mºw-wºw-º-º-º-. 0. 909 1110 1428K 909 1 #10 1428K. 0.2 3.2 x 10'9 5.6 2.0 ().71 31.7 11.3 4.0. 1.0 1.6 x 10°0 2.8 1.3 0.54 35.3 16.4 6.8. 2.0 3.2 x 1030 2.0 1.0 0.45 35.8 17.9 8.1. Table 3. Room temperature resistivity of specimens heated in H, ...

  5. Study on the Impact of Coagulation Bath Temperature on the Surface Morphology and Performance of Polyethylene Membrane Prepared by TIPS Method in Purification of Collagen Protein

    Directory of Open Access Journals (Sweden)

    Ali Akbari

    2015-11-01

    Full Text Available Fabrication of an efficient microfiltration polymeric membrane with low fouling characteristic and high permeation flux is an essential task for developing membrane-related researches and membrane industries. Surface skin layer which decreases the membrane permeation and accelerates the membrane fouling in purification and separation of protein solution is usually observed for all membranes fabricated via thermally induced phase separation (TIPS method. In this work, the impact of coagulation bath temperature on the skin layer thickness and performance of fabricated membranes was investigated. Collagen protein purification tests were carried out to investigate the impact of skin layer on the performance and determine the fouling mechanisms of the membranes. Obtained results showed that when coagulation bath temperature increases, the thickness of skin layer decreases. In membranes with lower surface porosity, decline in protein permeation is mainly due to the standard blocking fouling mechanism which is a kind of the irreversible fouling phenomenon. In membranes with higher surface porosity, however, decline in protein permeation is mainly due to the intermediate blocking fouling mechanism which is a kind of reversible fouling phenomenon. Obtained results from permeation flux and spectrophotometric analyses of inlet feed and retentate streams within 800 min showed that the collagen recovery ratio for modified and unmodified membranes were 5.6 and less than 1%, respectively. It is worth to mention that for membrane with lower surface porosity the collagen filtration process was stopped within 400 min due to the membrane fouling. For membrane with higher surface porosity, however there was no halting in filtration process within 800 min.

  6. The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell

    Science.gov (United States)

    Huang, Kuan-Jen; Hwang, Sheng-Jye; Lai, Wei-Hsiang

    2015-06-01

    This paper discusses the effects of humidification and temperature differences of the anode and cathode on water transport in a proton exchange membrane fuel cell. Heaters are used to cause a difference in gas temperature between two electrodes before the gases enter the fuel cell. The results show that when the temperature of the cathode is higher than that of the anode, the electro-osmotic drag is suppressed. In contrast, when the temperature of the anode is higher than that of cathode, it is enhanced. These effects are more significant when the temperature difference between the anode and cathode is greater. The same trends are seen with back diffusion. Three cases are tested, and the results show that the suppression due to the temperature difference occurs even when the relative humidity is low at the hotter side. The water transport tendencies of electro-osmotic drag and back diffusion in different situations can be expressed as dominant percentages calculated by the water masses collected at the anode and cathode. The suppression effect due to the temperature difference is relatively insignificant with regard to back diffusion compared to electro-osmosis, so water tends to accumulate on the anode rather than the cathode side.

  7. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under...... different current cycling profile, while one cell was operated at constant current density for comparison. Polarization curves and electrochemical impedance spectroscopy measurements were recorded during the course of the tests and analysed. Two different current densities, 0.2 Acm-2 for the lower end and 0.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...

  8. Effect of surfactants and temperature on the hyperfiltration performance of poly(ether/urea) membranes

    Science.gov (United States)

    Leban, M. I.; Wydeven, T. J.

    1984-01-01

    The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.

  9. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner......, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack...

  10. Electrolysis test of different composite membranes at elevated temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    sprayed directly onto the gas diffusion layers (GDLs). For the anode side GDL a tantalum covered stainless steel felt was used, whereas on the cathode side, the GDLs were wet-proofed carbon cloth. The composite membranes were prepared from commercial available Nafion® membranes. They were treated over.......7V for a Nafion® 115 treated with both H3PO4 and ZrP. Variations of the GDL on the anode side were tested. Different kinds of stainless steel felts were examined to find the best candidate for the final electrolysis setup. The felts differed in both tread thickness and overall thickness. The felts...... were covered with tantalum to protect the stainless steel. The felts were covered either once or twice to obtain different thicknesses of the tantalum. Experiments with PTFE treated felt was also preformed to examine if wet-proofing the anode GDL would improve the overall performance of the cell...

  11. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  12. Higher spin entanglement entropy at finite temperature with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871 (China)

    2016-07-11

    It is generally believed that the semiclassical AdS{sub 3} higher spin gravity could be described by a two dimensional conformal field theory with W-algebra symmetry in the large central charge limit. In this paper, we study the single interval entanglement entropy on the torus in the CFT with a W{sub 3} deformation. More generally we develop the monodromy analysis to compute the two-point function of the light operators under a thermal density matrix with a W{sub 3} chemical potential to the leading order. Holographically we compute the probe action of the Wilson line in the background of the spin-3 black hole with a chemical potential. We find exact agreement.

  13. Evaluation of epididymis storage temperature and cryopreservation conditions for improved mitochondrial membrane potential, membrane integrity, sperm motility and in vitro fertilization in bovine epididymal sperm.

    Science.gov (United States)

    Nichi, M; Rijsselaere, T; Losano, Jda; Angrimani, Dsr; Kawai, Gkv; Goovaerts, Igf; Van Soom, A; Barnabe, V H; De Clercq, Jbp; Bols, Pej

    2017-04-01

    The maintaining of the epididymis at lower temperatures during storage and transport improves sperm quality. Our study aimed to test whether epididymis storage temperature (post-mortem) and sperm cryopreservation affect sperm kinetics, membrane integrity, mitochondrial potential and fertility capacity. Thirty-six epididymides were collected from 18 bulls after slaughter and divided into two groups: at 4 or 34°C for 2-3 hr. The sperm was collected from the epididymis cauda. The evaluation consisted of computer-assisted sperm analysis (CASA), SYBR14/PI/JC1 to evaluate membrane integrity, mitochondrial membrane potential (MMP) and measurement of lipid peroxidation (TBARS). The sperm was then frozen using an automatic device. After thawing, sperm samples were evaluated by the same variables and further in vitro fertilization rates. Cryopreservation negatively affected sperm motility in samples stored at 4 and 34°C. Nevertheless, the 4°C samples yielded higher rates of blastocyst formation. Pre-freeze sperm motility, progressive motility and velocity were higher in sperm from epididymis stored at 4°C while post-thaw sperm motility, progressive motility and velocity remained the same among samples from epididymis stored at 4 or 34°C. However, with regard to the kinetic patterns, samples collected from epididymis stored at 34°C had lower values when compared to those stored at 4°C prior the cryopreservation process. Our results indicate that epididymis handling conditions after cryopreservation may affect sperm quality after thawing, especially due to compromised MMP in sperm collected from epididymis stored at higher temperatures. © 2016 Blackwell Verlag GmbH.

  14. Doped ceria-chloride composite electrolyte for intermediate temperature ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Q.X.; Zhang, W.; Peng, R.R.; Peng, D.K.; Meng, G.Y.; Zhu, B. [Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei (China)

    2002-03-01

    A kind of oxide-salt composite electrolyte, gadolinium-doped ceria (GDC)-LiCl-SrCl{sub 2}, prepared with hot-press technique, shows superior ionic conductivity, which is 2-10 times higher than that of GDC itself at the temperature range of 400-600C. More interestingly, not like the GDC electrolyte, which has some extent of electronic conduction under reducing atmosphere, the composite electrolyte is almost a pure ionic conductor, evidenced by the fuel cell's (FC) open circuit voltage (OCV) close to the theoretical one. The fuel cells based on this composite electrolyte show excellent power density output even at temperature as low as 500C (240 mW cm{sup -2} ) in spite of the relatively thick electrolyte (0.4 mm). Such high performance, in combination with its low cost in both raw materials and fabrication process, make this kind of composite electrolyte a good candidate electrolyte material for future ultra-low-cost intermediate temperature ceramic membrane fuel cells (IT-CMFCs)

  15. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes.

    Science.gov (United States)

    Taylor, Graham J; Heberle, Frederick A; Seinfeld, Jason S; Katsaras, John; Collier, C Patrick; Sarles, Stephen A

    2017-09-26

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interface bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ∼38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near

  16. Hydrocarbon-based fuel cell membranes: Sulfonated crosslinked poly(1,3-cyclohexadiene) membranes for high temperature polymer electrolyte fuel cells

    OpenAIRE

    Deng, Suxiang; Hassan, Mohammad K.; Kenneth A. Mauritz; Mays, Jimmy W.

    2015-01-01

    High temperature fuel cell membranes based on poly(1,3-cyclohexadiene) were prepared by a Polymerization-Crosslinking-Sulfonation (PCS) approach, and a broad range of membrane compositions were achieved using various sulfonating reagents and reaction conditions. Membranes were characterized for their proton conductivity and thermal degradation behavior. Some of the membranes showed up to a 68% increase in proton conductivity as compared to Nafion under the same conditions (100% relative humid...

  17. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  18. Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2016-01-01

    Full Text Available Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.

  19. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Savinell, Robert F

    2009-01-01

    havebeenmadeincluding spectroscopy,wateruptake and acid doping, thermal and oxidative stability, conductivity, electro-osmoticwater drag, methanol crossover, solubility and permeability of gases, and oxygen reduction kinetics. Related fuel cell technologies such as electrode and MEA fabrication have been developed......To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, acid–base polymer membranes represent an effective approach. The phosphoric acid-doped polybenzimidazole membrane seems so far the most successful system in the field. It has...... in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer synthesis, membrane casting, physicochemical characterizations and fuel cell technologies. To optimize the membrane properties, high molecular weight polymers...

  20. Development of Pd-Ag Compostie Membrane for Separation of Hydrogen at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2009-02-28

    Pd-based membrane reactor offers the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. In this project to develop a defect-free and hermally-stable Pd-film on microporous stainless steel (MPSS) support for H2-separation and membrane reactor applications, the electroless plating process was revisited with an aim to improve the membrane morphology. Specifically, this study includes; (a) an improvement f activation step using Pulse Laser Deposition (PLD), (b) development of a novel surfactant induced electroless plating (SIEP) for depositing robust Pd-film on microporous support, and (c) application of Pd-membrane as membrane reactor in steam methanol reforming (SMR) reactions.

  1. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines.

    Science.gov (United States)

    Kabaso, Doron; Lokar, Maruša; Kralj-Iglič, Veronika; Veranič, Peter; Iglič, Aleš

    2011-01-01

    The growth of membrane nanotubes is crucial for intercellular communication in both normal development and pathological conditions. Therefore, identifying factors that influence their stability and formation are important for both basic research and in development of potential treatments of pathological states. Here we investigate the effect of cholera toxin B (CTB) and temperature on two pathological model systems: urothelial cell line RT4, as a model system of a benign tumor, and urothelial cell line T24, as a model system of a metastatic tumor. In particular, the number of intercellular membrane nanotubes (ICNs; ie, membrane nanotubes that bridge neighboring cells) was counted. In comparison with RT4 cells, we reveal a significantly higher number in the density of ICNs in T24 cells not derived from RT4 without treatments (P = 0.005), after 20 minutes at room temperature (P = 0.0007), and following CTB treatment (P = 0.000025). The binding of CTB to GM1-lipid complexes in membrane exvaginations or tips of membrane nanotubes may reduce the positive spontaneous (intrinsic) curvature of GM1-lipid complexes, which may lead to lipid mediated attractive interactions between CTB-GM1-lipid complexes, their aggregation and consequent formation of enlarged spherical tips of nanotubes. The binding of CTB to GM1 molecules in the outer membrane leaflet of membrane exvaginations and tips of membrane nanotubes may also increase the area difference between the two leaflets and in this way facilitate the growth of membrane nanotubes.

  2. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Rudbeck, Hans Christian; Chromik, Andreas

    2010-01-01

    Polybenzimidazoles (PBIs) with synthetically modified structures and their blends with a partially fluorinated sulfonated aromatic polyether have been prepared and characterized for high temperature proton exchange membrane fuel cells. Significant improvement in the polymer chemical stability...... to further improve the polymer stability and assist maintaining the membrane integrity. Upon acid doping the membrane swelling was reduced for the modified PBI and their blend membranes, which, in turn, results in enhancement of the mechanical strength, proton conductivity and high temperature fuel cell...

  3. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, V.; Di Blasi, A.; Baglio, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Ornelas, R.; Matteucci, F. [Tozzi Apparecchiature Elettriche SpA, Via Zuccherificio, 10-48010 Mezzano (RA) (Italy); Ledesma-Garcia, J.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico)

    2008-10-15

    The high temperature behaviour of a solid polymer electrolyte (SPE) water electrolyser based on a composite Nafion-SiO{sub 2} membrane was investigated and compared to that of a commercial Nafion membrane. The SPE water electrolyser performance was studied from 80 to 120{sup o}C with an operating pressure varying between 1 and 3 bar abs. IrO{sub 2} and Pt were used as oxygen and hydrogen evolution catalysts, respectively. The assemblies were manufactured by using a catalyst-coated membrane (CCM) technique. The performance was significantly better for the composite Nafion-SiO{sub 2} membrane than commercial Nafion 115. Furthermore, the composite membrane allowed suitable water electrolysis at high temperature under atmospheric pressure. The current densities were 2 and 1.2 A cm{sup -2} at a terminal voltage of 1.9 V for Nafion-SiO{sub 2} and Nafion 115, respectively, at 100{sup o}C and atmospheric pressure. By increasing the temperature up to 120{sup o}C, the performance of Nafion 115 drastically decreased; whereas, the cell based on Nafion-SiO{sub 2} membrane showed a further increase of performance, especially when the pressure was increased to 3 bar abs (2.1 A cm{sup -2} at 1.9 V). (author)

  4. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    Science.gov (United States)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  5. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... m thick layer of TFTCs on 75 mu m thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 mu m liquid Kapton layer using spin coating technique to protect them from environmental...

  6. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  7. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem

    2014-08-13

    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.

  8. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3....... A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers...... will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity....

  9. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    Science.gov (United States)

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy.

    Science.gov (United States)

    Bag, Nirmalya; Yap, Darilyn Hui Xin; Wohland, Thorsten

    2014-03-01

    The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered(Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase.The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics.In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion,which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So–Ldphase are static and large while they are small and dynamic in the Lo–Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells.The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity.

  11. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy

    Science.gov (United States)

    Zhu, Ying; Zhu, Wenhua H.; Tatarchuk, Bruce J.

    2014-06-01

    A temperature above 100 °C is always desired for proton exchange membrane (PEM) fuel cell operation. It not only improves kinetic and mass transport processes, but also facilitates thermal and water management in fuel cell systems. Increased carbon monoxide (CO) tolerance at higher operating temperature also simplifies the pretreatment of fuel supplement. The novel phosphoric acid (PA) doped polybenzimidazole (PBI) membranes achieve PEM fuel cell operations above 100 °C. The performance of a commercial high temperature (HT) PEM fuel cell stack module is studied by measuring its impedance under various current loads when the operating temperature is set at 160 °C. The contributions of kinetic and mass transport processes to stack impedance are analyzed qualitatively and quantitatively by equivalent circuit (EC) simulation. The performance of a traditional PEM fuel cell stack module operated is also studied by impedance measurement and EC simulation. The operating temperature is self-stabilized between 40 °C and 65 °C. An enhancement of the HT-PEM fuel cell stack in polarization impedance is evaluated by comparing to the traditional PEM fuel cell stack. The impedance study on two commercial fuel cell stacks reveals the real situation of current fuel cell development.

  12. Performance of ceramic membranes at elevated pressure and temperature. Effect of non-ideal flow conditions in a pilot scale membrane separator

    Energy Technology Data Exchange (ETDEWEB)

    Koukou, M.K.; Papayannakos, N.; Markatos, N.C. [Department of Chemical Engineering, National Technical University of Athens, Athens (Greece); Bracht, M.; Van Veen, H.M.; Roskam, A. [ECN Fuels Conversion and Environment, Petten (Netherlands)

    1998-11-01

    Microporous silica membrane manufacturing technology has been scaled-up and tubes with several hundred cm{sup 2} of membrane surface area have been prepared. Practical problems in applying high-temperature ceramic membrane technology, such as sealing and ceramic metal joining, have been solved successfully on pilot scale. Experiments show that membranes developed are capable of selectively separating hydrogen from a gas mixture containing hydrogen at elevated pressures and temperatures. Permselectivity values for H{sub 2}/CH{sub 4} separation are as high as 28. The gas separation performance of membranes is influenced by the flow conditions at both the feed and permeate side of the membrane separators. By performing high-temperature high-pressure separation experiments and simulation of the non-ideal flow effects around the membrane, the influence of the flow effects is predicted. The operation of the pilot scale membrane separator is simulated by a two-dimensional, one-phase mathematical model which predicts the basic features of the separator from an engineering point of view. A comparison between the experimental data and the modelling results yields the conclusion that the dispersion model predicts much better the membrane separator performance than the simplified model which assumes plug flow on both sides of the membrane separator. 29 refs.

  13. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  14. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  15. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature

    OpenAIRE

    Blauw, Lisanne L; Aziz, N Ahmad; Tannemaat, Martijn R; Blauw, C Alexander; de Craen, Anton J; Pijl, Hanno; Rensen, Patrick C N

    2017-01-01

    Objective Rising global temperatures might contribute to the current worldwide diabetes epidemic, as higher ambient temperature can negatively impact glucose metabolism via a reduction in brown adipose tissue activity. Therefore, we examined the association between outdoor temperature and diabetes incidence in the USA as well as the prevalence of glucose intolerance worldwide. Research design and methods Using meta-regression, we determined the association between mean annual temperature and ...

  16. Origin and applicability of tetraether membrane lipids as temperature proxies in French peri-urban lakes

    Science.gov (United States)

    Mainié, François; Huguet, Arnaud; Breban, Alice; Lacroix, Gérard; Anquetil, Christelle; Derenne, Sylvie

    2015-04-01

    The Ile-de-France region is the most populated area in France, with ca. 12 million inhabitants, i.e. about 20 % of French population. The peri-urban aquatic ecosystems of this region are impacted by a large variety of environmental stressors, and especially high anthropogenic pressures (agricultural, industrial and urban pollutants), leading to the increased eutrophication of these water systems. The Ile-de-France lakes are therefore highly vulnerable ecosystems. Over the last years, several environmental markers have been developed to better understand the functioning of aquatic ecosystems, including the so-called GDGTs (glycerol dialkyl glycerol tetraethers). GDGTs are membrane lipids produced by archaea and some unknown bacteria, which are increasingly used to reconstruct mean annual air and surface water temperature as well as pH. These compounds are ubiquitous in terrestrial and aquatic environments, but their origin and applicability as temperature and pH proxies in lakes, especially highly polluted ones, need further investigation. In this study, GDGTs were analysed in 33 lakes from the Ile-de-France region, representing the diversity of the regional landscape and characterised by different levels of eutrophication. The abundance and distribution of GDGTs in lacustrine sediments and surrounding soils were compared. Bacterial GDGTs were systematically much more abundant in sediments than in soils and displayed different distributions in the two types of environments, showing that they are mainly produced in situ in lakes, in the water column and/or sediment. Similarly, the concentration in archaeal GDGTs was much higher in sediments than in soils and the distribution of these compounds differed between soils and sediments, implying that the predominant archaeal communities are not the same in the two environments. When the lakes are distinguished by their eutrophication level, the latter was shown for the first time to have an impact on the microorganisms

  17. Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater.

    Science.gov (United States)

    Ozgun, Hale; Tao, Yu; Ersahin, Mustafa Evren; Zhou, Zhongbo; Gimenez, Juan B; Spanjers, Henri; van Lier, Jules B

    2015-10-15

    The objective of this study was to assess the operational feasibility of an anaerobic membrane bioreactor (AnMBR), consisting of an upflow anaerobic sludge blanket (UASB) reactor coupled to an ultrafiltration membrane unit, at two operational temperatures (25°C and 15°C) for the treatment of municipal wastewater. The results showed that membrane fouling at 15°C was more severe than that at 25°C. Higher chemical oxygen demand (COD) and soluble microbial products (SMP) concentrations, lower mean particle diameter, and higher turbidity in the UASB effluent at lower temperature aggravated membrane fouling compared to the 25°C operation. However, the overall AnMBR treatment performance was not significantly affected by temperature, which was attributed to the physical membrane barrier. Cake resistance was found responsible for over 40% of the total fouling in both cases. However, an increase was observed in the contribution of pore blocking resistance at 15°C related to the larger amount of fine particles in the UASB effluent compared to 25°C. Based on the overall results, it is concluded that an AnMBR, consisting of a UASB coupled membrane unit, is not found technically feasible for the treatment of municipal wastewater at 15°C, considering the rapid deterioration of the filtration performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xue-Min; Mei, Ping; Mi, Yuanzhu; Gao, Lin; Qin, Shaoxiong [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China)

    2009-01-15

    Novel water-retention proton exchange membrane of Nafion-phosphotungstic acid/mesoporous silica with hydrophilic capillaries has been fabricated to improve the elevated temperature performance of the PEM fuel cells. Due to the hydrophilic capillarity of the HPW/meso-SiO{sub 2} mesoporous structure, the Nafion-HPW/meso-SiO{sub 2} composite membrane retained 23.7 wt% of water after being dried in 100 C for 2 h and then exposed in 25 RH% gas for 2 h. As a result, under the condition of elevated temperature of 120 C and low humidity of 25 RH%, the Nafion-HPW/meso-SiO{sub 2} composite membrane showed a steady performance. (author)

  19. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    Science.gov (United States)

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Current hurdles to the success of high-temperature membrane reactors

    NARCIS (Netherlands)

    Saracco, G.; Versteeg, G.F.; Swaaij, W.P.M. van

    1994-01-01

    High-temperature catalytic processes performed using inorganic membranes have been in recent years a fast growing area of research, which seems to have not yet reached its peak. Chemical engineers, catalysts and materials scientists have addressed this topic from different viewpoints in a common

  1. Phosphoric acid doped AB-PBI membranes and its applications in high temperature PEMFC

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Bjerrum, Niels

    2005-01-01

    Poly(2,5-benzimidazole) (ab-PBI) was prepared from 3,4-diaminobenzoic acid via a polymerisation reaction. The obtained polymer exhibits excellent thermal stability in a temperature range ….. The membrane of ab-PBI when doped with phosphoric acid at room temperaturepresents high proton conductivity...

  2. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?

    NARCIS (Netherlands)

    Simons-Fischbein, K.; Nijmeijer, Dorothea C.; Bara, J.B.; Noble, R.D.; Wessling, Matthias

    2010-01-01

    Room-temperature ionic liquids (RTILs) are a class of organic solvents that have been explored as novel media for CO2 separations. Polymerized RTILs (poly(RTILs)) can be synthesized from RTIL monomers to form dense, solid gas selective membranes. It is of interest to understand the permeation

  3. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  4. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  5. Retention of Acholeplasma laidlawii by sterile filtration membranes: effect of cultivation medium and filtration temperature.

    Science.gov (United States)

    Helling, Alexander; König, Hannes; Seiler, Felix; Berkholz, Ralph; Thom, Volkmar; Polakovic, Milan

    2018-01-17

    This experimental study compares cell size, zeta potential and the ability to penetrate tailor-made size exclusion membrane filters of mycoplasma A. laidlawii cultivated in five different cultivation media. The influence of relevant filtration process parameters, in particular transmembrane pressure and filtration temperature, on their respective retention was tested. The impact of the filtration temperature was further evaluated for the Gram-negative bacteria species Brevundimonas diminuta, the Gram-positive bacteria species Staphylococcus epidermidis, the Pseudomonas phage PP7 and the mycoplasma species M. orale. The findings were correlated to the different mechanical properties of the particles, especially also with respect to the different bacterial cell envelopes found in those species. This study suggests, that mycoplasma, surrounded by a flexible lipid bilayer, are significantly susceptible to changes in temperature, altering the stiffness of the cell envelope. Mycoplasma retention could thus be increased significantly by a decreased filtration temperature. In contrast, Gram-negative and Gram-positive bacteria species, with a cell wall containing a cross-linked peptidoglycan layer, as well as bacteriophages PP7 exhibiting a rigid protein capsid, did not show a temperature dependent retention within the applied filtration temperatures between 2 and 35 °C. The trends of the retention of A. laidlawii with increasing temperature and transmembrane pressure were independent of cultivation media. Data obtained with mycoplasma M. orale suggest that the trend of mycoplasma retention at different filtration temperatures is also independent of the membrane pore size and thus retention level. Copyright © 2018, Parenteral Drug Association.

  6. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  7. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature

    Directory of Open Access Journals (Sweden)

    Monika Haponska

    2017-12-01

    Full Text Available In this study, we successfully prepared nine non-woven, supported polyvinylidene fluoride (PVDF membranes, using a phase inversion precipitation method, starting from a 15 wt % PVDF solution in N-methyl-2-pyrrolidone. Various membrane morphologies were obtained by using (1 PVDF polymers, with diverse molecular weights ranging from 300 to 700 kDa, and (2 different temperature coagulation baths (20, 40, and 60 ± 2 °C used for the film precipitation. An environmental scanning electron microscope (ESEM was used for surface and cross-section morphology characterization. An atomic force microscope (AFM was employed to investigate surface roughness, while a contact angle (CA instrument was used for membrane hydrophobicity studies. Fourier transform infrared spectroscopy (FTIR results show that the fabricated membranes are formed by a mixture of TGTG’ chains, in α phase crystalline domains, and all-TTTT trans planar zigzag chains characteristic to β phase. Moreover, generated results indicate that the phases’ content and membrane morphologies depend on the polymer molecular weight and conditions used for the membranes’ preparation. The diversity of fabricated membranes could be applied by the End User Industries for different applications.

  8. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...... routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack and integration of such a system, FURIM is expected to sufficiently promote the commercialisation of the fuel cell technology...

  9. Determination of metal foam flow conditions at a temperature higher than the liquidus temperature

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2011-01-01

    Full Text Available As it is known a foam made of composite with aluminium alloy matrix and SiC particles reinforcement does not reach the liquid state evenat a temperature over 1000°C. The causes of such behaviour of foam have been examined. It has been found that it is due to two phenomena. One is connected with the creation of continuous layer of oxides at the boundary of gaseous pores and liquid metal lic phase. The other is an increase of the apparent viscosity of solids suspended in liquid metal along with an increased content of these inclusions to the point where the suspension loses its continuity.

  10. Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John A.

    2008-09-03

    The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies. Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode

  11. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    2015-01-01

    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  12. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature

    Science.gov (United States)

    Karuza, M.; Biancofiore, C.; Bawaj, M.; Molinelli, C.; Galassi, M.; Natali, R.; Tombesi, P.; Di Giuseppe, G.; Vitali, D.

    2013-07-01

    We demonstrate the analog of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-Pérot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.

  13. TiO2 Nanotubes Membrane Flexible Sensor for Low-Temperature H2S Detection

    Directory of Open Access Journals (Sweden)

    Patricia María Perillo

    2016-08-01

    Full Text Available This paper presents the fabrication and characterization of a flexible gas sensor based on TiO2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was used to detect hydrogen sulphide within a concentration range of 6–38 ppm. The response to low concentrations of H2S at low temperature and good stability make the sensor a promising candidate for practical applications. These results support the proposal that the TiO2 nanotubes membrane flexible sensors are promising in portable on-site detection based on low cost nanomaterials.

  14. Unusually strong temperature dependence of P2X3 receptor traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Evgeny ePryazhnikov

    2011-12-01

    Full Text Available ATP-gated P2X3 receptors are expressed by nociceptive neurons and participate in transduction of pain. Responsiveness of P2X3 receptors is strongly enhanced at high temperatures, suggesting a role for these receptors in temperature detection. Since sustained responsiveness depends on receptor trafficking to the plasma membrane, we employed total-internal reflection fluorescence (TIRF microscopy to highlight perimembrane pool of DsRed-tagged P2X3 receptors and studied the effects of temperature on perimembrane turnover of P2X3-DsRed. Patch clamp recordings confirmed membrane expression of functional, rapidly desensitizing P2X3-DsRed receptors. By combining TIRF microscopy with the technique of fluorescence recovery after photobleaching (FRAP, we measured the rate of perimembrane turnover of P2X3-DsRed receptors expressed in hippocampal neurons. At room temperature, the P2X3-DsRed perimembrane turnover as measured by TIRF-FRAP had a time constant of ~2 min. At 29oC, receptor turnover was strongly accelerated, yielding an extremely high temperature dependence coefficient Q10 ~4.5. In comparison, AMPA receptor turnover measured with TIRF-FRAP was only moderately sensitive to temperature (Q10 ~1.5. The traffic inhibitor Brefeldin A selectively decelerated P2X3-DsRed receptor turnover at 29oC, but had no effect at 21oC (Q10 ~1.5. This indicates that receptor traffic to plasma membrane, rather than endosomal recycling, is the key temperature-sensitive component of P2X3 turnover. The selective inhibitor of the RhoA kinase Y27632 significantly decreased the temperature dependence of P2X3-DsRed receptor turnover (Q10 ~2.0. In summary, the RhoA kinase-dependent membrane trafficking of P2X3 receptors to plasma membrane has an exceptional sensitivity to temperature. These data link two fundamental sensory processes, thermoreception and nociception, which are likely co-involved in hyperthermia-associated pain states.

  15. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  16. Effects of temperature, salt concentration, and the protonation state on the dynamics and hydrogen-bond interactions of polyelectrolyte multilayers on lipid membranes.

    Science.gov (United States)

    Lee, Hwankyu

    2016-03-07

    Polyelectrolyte multilayers, which consist of poly-l-lysines (PLL) and hyaluronic acids (HA), are simulated on phospholipid membranes with explicit water at different temperatures, salt concentrations, and protonation states of PLL that correspond to pH 7 or higher. PLL and HA polymers, which are initially sequentially deposited as three HA/PLL bilayers above the membrane, partially intermix with each other within 300 ns, and with a significant amount of water at almost half of its bulk density. With reduced protonation of amine groups of PLL, the polymers diffuse faster, especially at higher temperatures, and for 0%-protonation, disperse into the water, due to the many fewer hydrogen bonds between PLL and HA polymers. When PLL is protonated, the addition of salt ions weakens electrostatic interactions between PLL and HA and, at 0.5 M NaCl, eventually reduces the number of hydrogen bonds, which in experiments leads to hole formation inside the PLL/HA film. Multilayers are stabilized by hydrogen bonds, primarily between charged groups and to a lesser extent between uncharged groups. PLL and HA also electrostatically interact with lipid head groups of membranes which reduces the lateral mobility of membrane lipids, to an extent dependent on the salt concentration. These findings help quantitate the effects of temperature, salt, and the protonation state (or pH) on the stability and dynamics of multilayers and membranes, and show trends that compare favorably with the experimental observations of the swelling of multilayers.

  17. Silica based composite membranes for methanol fuel cells operating at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Guzman, C.; Peza-Ledesma, C.; Godinez, Luis A.; Nava, R.; Duron-Torres, S.M.; Ledesma-Garcia, J.; Arriaga, L.G.

    2011-01-15

    Direct methanol fuel cells (DMFCs) are seen as an alternative energy source for several applications, particularly portable power sources. Nafion membranes constitute a well known proton exchange system for DMFC systems due to their convenient electrochemical, mechanical and thermal stability and high proton conductivity properties. But there are problems currently associated with the direct methanol fuel cell technology. Intensive efforts to decrease the methanol crossover are focused mainly on the development of new polymer electrolyte membranes. In this study, Nafion polymer was modified by means of the incorporation of inorganic oxides with different structural properties (SBA-15 and SiO2), both prepared by sol-gel method in order to increase the proton conductivity at high temperature of fuel cell and to contribute decrementing the methanol crossover effect. Composite membranes based in inorganic fillers showed a significant decrease in the concentration of methanol permeation.

  18. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng

    2012-01-01

    Phosphoric acid doped polybenzimidazole (PBI) has emerged as one of the most promising electrolyte materials for proton exchange membrane (PEM) fuel cells operating under anhydrous conditions at temperatures of up to 200 °C. The limited long-term durability of the membrane electrode assemblies...... long-term durability of the corresponding fuel cell MEAs. During continuous operation for 1800 h at 160 °C and 600 mA cm−2, the average cell voltage decay rate of the MEA based on the cured membrane was 43 μV h−1. This should be compared with an average cell voltage decay rate of 308 μV h−1 which...

  19. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review

    Science.gov (United States)

    Quartarone, Eliana; Angioni, Simone; Mustarelli, Piercarlo

    2017-01-01

    Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity. PMID:28773045

  20. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    Energy Technology Data Exchange (ETDEWEB)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  1. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions.

    Science.gov (United States)

    Martinez-Sosa, David; Helmreich, Brigitte; Netter, Thomas; Paris, Stefania; Bischof, Franz; Horn, Harald

    2011-11-01

    A pilot scale anaerobic submerged membrane bioreactor (AnSMBR) with an external filtration unit for municipal wastewater treatment was operated for 100 days. Besides gas sparging, additional shear was created by circulating sludge to control membrane fouling. During the first 69 days, the reactor was operated under mesophilic temperature conditions. Afterwards, the temperature was gradually reduced to 20 °C. A slow and linear increase in the filtration resistance was observed under critical flux conditions (7 L/(m2 h)) at 35 °C. However, an increase in the fouling rate probably linked to an accumulation of solids, a higher viscosity and soluble COD concentrations in the reactor was observed at 20 °C. The COD removal efficiency was close to 90% under both temperature ranges. Effluent COD and BOD5 concentrations were lower than 80 and 25 mg/L, respectively. Pathogen indicator microorganisms (fecal coliforms bacteria) were reduced by log(10)5. Hence, the effluent could be used for irrigation purposes in agriculture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  3. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    Directory of Open Access Journals (Sweden)

    Roswitha Zeis

    2015-01-01

    Full Text Available The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA primarily consists of a polybenzimidazole (PBI-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE, the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes

  4. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Zeis, Roswitha

    2015-01-01

    The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell

  5. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    Science.gov (United States)

    Yeoh, Wui Keat; Lee, Jason Kai Wei; Lim, Hsueh Yee; Gan, Chee Wee; Liang, Wenyu; Tan, Kok Kiong

    2017-01-01

    Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  6. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  7. Microbiological viability of bovine amniotic membrane stored in glycerin 99% at room temperature for 48 months

    Directory of Open Access Journals (Sweden)

    Kelly Cristine de Sousa Pontes

    Full Text Available ABSTRACT The medium for storing biological tissues is of great importance for their optimal use in surgery. Glycerin has been proven efficient for storing diverse tissues for prolonged time, but the preservation of the bovine amniotic membrane in glycerin 99% at room temperature has never been evaluated to be used safely in surgical procedures. This study evaluated the preservation of 80 bovine amniotic membrane samples stored in glycerin 99% at room temperature. The samples were randomly divided evenly into four groups. Samples were microbiologically tested after 1, 6, 12 and 48 months of storage. The presence of bacteria and fungi in the samples was evaluated by inoculation on blood agar and incubation at 37 ºC for 48 hours and on Sabouraud agar at 25 ºC for 5 to 10 days. No fungal or bacterial growth was detected in any of the samples. It was concluded that glycerin is an efficient medium, regarding microbiology, for preserving pre-prepared bovine amniotic membrane, keeping the tissue free of microorganisms that grow in the media up to 48 months at room temperature.

  8. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    Directory of Open Access Journals (Sweden)

    Wui Keat Yeoh

    Full Text Available Core body temperature (CBT is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  9. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature

    Science.gov (United States)

    Blauw, Lisanne L; Aziz, N Ahmad; Tannemaat, Martijn R; Blauw, C Alexander; de Craen, Anton J; Pijl, Hanno; Rensen, Patrick C N

    2017-01-01

    Objective Rising global temperatures might contribute to the current worldwide diabetes epidemic, as higher ambient temperature can negatively impact glucose metabolism via a reduction in brown adipose tissue activity. Therefore, we examined the association between outdoor temperature and diabetes incidence in the USA as well as the prevalence of glucose intolerance worldwide. Research design and methods Using meta-regression, we determined the association between mean annual temperature and diabetes incidence during 1996–2009 for each US state separately. Subsequently, results were pooled in a meta-analysis. On a global scale, we performed a meta-regression analysis to assess the association between mean annual temperature and the prevalence of glucose intolerance. Results We demonstrated that, on average, per 1°C increase in temperature, age-adjusted diabetes incidence increased with 0.314 (95% CI 0.194 to 0.434) per 1000. Similarly, the worldwide prevalence of glucose intolerance increased by 0.170% (95% CI 0.107% to 0.234%) per 1°C rise in temperature. These associations persisted after adjustment for obesity. Conclusions Our findings indicate that the diabetes incidence rate in the USA and prevalence of glucose intolerance worldwide increase with higher outdoor temperature. PMID:28405341

  10. High temperature size selective membranes. Final report, September 1992--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Availability of a high temperature size selective membrane capable of separating hydrogen from carbon dioxide and other gases is seen as highly desirable from an economic perspective. Preparation of such a membrane is technically very difficult due to the limitations that the high temperature places on materials selection. We have prepared high temperature membranes as thin film composites of a porous Blackglas{trademark} support and a carbon molecular sieve selective film. Porous Blackglail{trademark} supports have been prepared by pyrolysis of a formed mixture of Blackglas{trademark} B-staged precursor and short Carbon fibers. Such supports have the necessary smoothness for use as a membrane support, good mechanical properties, and an appropriate pore size distribution. These supports can be made either in flat sheet form or in a tubular configuration. A carbon molecular sieve layer can be added to the support by repeated coating/pyrolysis with a dilute solution of precursor polymer. The preferred precursors are polyimide or polyamic acid. Crack formation is observed after the first pyrolyses, but these cracks are repaired during later pyrolyses. The final membrane thickness is only 2.5 {mu}m. The permeation flux of the membrane for hydrogen ranges from 8.1 x 10{sup -5} at room temperature to 3.0 x 10{sup -3} cm{sup 3} (STP) cm{sup -2} sec{sup -1} cmHg{sup -1} at 717{degrees}C, and the selectivity for hydrogen over nitrogen from 2.8 to 3.8, and a selectivity for hydrogen over carbon dioxide of 2.4. This selectivity is close to the Knudsen diffusion limit. In a companion study, unsupported carbon molecular sieve films were also prepared under pyrolysis conditions similar to those used for the supported film. Hydrogen adsorption porosimetry at 19.7{degrees}K was used to show that, under appropriate activation or pyrolysis conditions, such films can be prepared which adsorb hydrogen to a much greater extent than carbon dioxide.

  11. Evaluation of a ZrO2 composite membrane in PEM fuel operating at high temperature and low relativity humidity

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Alvarez, A.; Godinez, Luis A.; Herrera, O.E.; Merida, W.; Ledesma-Garcia, J.; Arriaga, L.G.

    2011-01-15

    Using proton exchange fuel cells (PEMFC's) is a sustainable way to generate electrical power. High temperature PEMFC's (HT - PEMFC's) have enhanced electrode kinetics, increased CO tolerance and simplified water management that these operation conditions imply. Unfortunately, Nafion and other perfluorosulfonic acid membranes (PFSA) are characterized by a decreased proton conductivity at high temperatures (above 100 degree C) due to dehydration which also causes shrinkage and increases the contact resistance between the membrane and the electrode. For these reasons, fuel cell research aims to create new membranes capable of working at high temperatures and low relative humidity conditions. The inclusion of inorganic materials into the Nafion matrix are employed to improve the mechanical properties of the membrane and enhance the membrane's hydration. In this study, the composite membrane ZrO2 showed better performance at high temperature and low relative humidity than commercial Nafion membrane. The performance results confirmed that composite membranes retain water and help retain the membrane hydration.

  12. Temperature- and pH-induced structural changes in the membrane of the hyperthermophilic archaeon Aeropyrum pernix K1.

    Science.gov (United States)

    Ulrih, Natasa Poklar; Adamlje, Urska; Nemec, Marjanca; Sentjurc, Marjeta

    2007-10-01

    The influence of pH and temperature on the structural organization, fluidity and permeability of the hyperthermophilic archaeon membrane was investigated in situ by a combination of electron paramagnetic resonance (EPR) and fluorescence emission spectroscopy. For EPR measurements, Aeropyrum pernix cells, after growing at different pHs, were spin-labeled with the doxyl derivative of palmitic acid methylester (MeFASL(10,3)). From the EPR spectra maximal hyperfine splitting (2A (max)) and empirical correlation time (tau (emp)), which are related to mean membrane fluidity, were determined. The mean membrane fluidity increases with temperature and depends on the pH of the growth medium. Computer simulation of the EPR spectra shows that membrane of A. pernix is heterogeneous and consists of the regions characterized with three different types of motional characteristics, which define three types of membrane domains. Order parameter and proportion of the spin probes in the three types of domains define mean membrane fluidity. The fluidity changes of the membrane with pH and temperature correlate well with the ratio between the fluorescence emission intensity of the first and third bands in the vibronic spectra of pyrene, I(1)/I(3). At pH 7.0 a decrease of I(1)/I(3) from 2.0 to 1.2, due to the penetration of pyrene into the nonpolar membrane region, is achieved at temperatures above 65 degrees C, the lower temperature limit of A. pernix growth.

  13. Pure and Au nanoparticles doped higher alkanes for an optical fiber temperature threshold sensor

    Science.gov (United States)

    Przybysz, Natalia; Marć, Paweł; Tomaszewska, Emilia; Grobelny, Jarosław; Jaroszewicz, Leszek R.

    2017-05-01

    Development of photonic crystal fibers (PCFs) technology has created new research fields for optical sensors and telecommunication. The cross section geometry modifications of this type of fibers allow to influence their optical parameters. These modifications are not limited to change sizes and arrangements of an air holes' lattice, but also replacing air with another material. In the paper we have shown how to change thermo-optical properties of a large mode area commercially available LMA-10 PCF by filling it with different chemical substances. Our previous research has led us to develop a class of optical fiber temperature threshold sensor transducers based on a partially filled PCF with higher alkanes. The principle of work of such a sensor transducer is to use a temperature bi-stability of a filling material because when the higher alkane is in the solid state light cannot pass through the transducer, and when it is in the liquid state light can be transmitted. One of the most important advantages of higher alkanes we used in the experiments are their different melting points, but the most important disadvantage is discrepancy between melting and crystallization temperatures and the sensor switches on and off for different temperatures. This effect called supercoiling appears due to the lack of nucleation centers. To reduce this effect the gold nanoparticels (NPs) in hexane colloid were used. We have prepared samples with three higher alkanes doped with 1% of Au NPs and we have shown their temperature and time responses. The proper selection of melting points of higher alkanes allows to design the multilevel temperature threshold sensor which can cover the temperature range from -20°C up to 70°C, and can be applied in chemical, oil, gas and energy industry.

  14. Osmotic flows and membrane efficiency in Pierre Shale: Influence of temperature, illitization, and solute diffusion

    Science.gov (United States)

    Mohammed, Y.; Forgotson, J.

    2006-12-01

    Dehydration of shales is a key feature in mediating shale related problems such as wellbore stability, swelling, landslides and soil stability problems. Chemical osmotic behaviors of shale have been studied as a means of dehydration of shale when exposed to pore fluid chemical potential gradients. New laboratory studies using Pierre Shale and clayey sediments are presented examining osmotic membrane efficiency, solute diffusion, swelling pressure, permeability, and mineralogical and textural changes with time as functions of temperature, effective pressure, and pore fluid chemistry. Experiments were run with up to 2 molal calcium, sodium, and potassium nitrate salt solutions, to 200 degrees Celsius and 34.5 MPa effective pressure, and were several months in duration. Competing effects increase or decrease membrane efficiency with time and are highly dependent on dominant cation in solution. Membrane efficiency progressively increases with consolidation and swelling, while it decreases with chemical diffusion and continued illitization of smectite. These effects are captured in a mathematical model for membrane efficiency and by numerical solution of coupled solute and water reaction-transport equations modeling experimental results.

  15. Effects of Temperature and Dietary Lipids on Phospholipid Fatty Acids and Membrane Fluidity in Steinernema carpocapsae.

    Science.gov (United States)

    Fodor, A; Dey, I; Farkas, T; Chitwood, D J

    1994-09-01

    The phospholipid composition of Steinernema carpocapsae was studied in relation to diet and culture temperature. When reared at 18 and 27.5 C on Galleria mellonella or on an artificial diet supplemented with lard, linseed oil, or fish oil as lipid sources, nematode phospholipids contained an abundance of 20-carbon polyunsaturated fatty acids, with eicosapentaenoic acid (20:5(n - 3)) predominant, regardless of the fatty acid composition of the diet. Because the level of linolenic acid (18:3(n - 3)) in nematode phospholipids was very low and because eicosapentaenoic acid was present even when its precursor (linolenic acid) was undetectable in the diet, S. carpocapsae likely produces n - 3 polyunsaturated fatty acids by de novo biosynthesis, a pathway seldom reported in eukaryotic animals. Reduction of growth temperature from 25 to 18 C increased the proportion of 20:5(n - 3) but not other polyunsaturated fatty acids. A fluorescence polarization technique revealed that vesicles produced from phospholipids of nematodes reared at 18 C were less ordered than those from nematodes reared at 27.5 C, especially in the outermost region of the bilayer. Dietary fish oil increased fluidity in the outermost region but increased rigidity in deeper regions. Therefore, S. carpocapsae appears to modify its membrane physical state in response to temperature, and eicosapentaenoic acid may be involved in this response. The results also indicate that nematode membrane physical state can be modified dietarily, possibly to the benefit of host-finding or survival of S. carpocapsae at low temperatures.

  16. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  17. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    Energy Technology Data Exchange (ETDEWEB)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  18. Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue.

    Science.gov (United States)

    Chow, Wah Soon; Kim, Eun-Ha; Horton, Peter; Anderson, Jan M

    2005-12-01

    The formation of grana in chloroplasts of higher plants is examined in terms of the subtle interplay of physicochemical forces of attraction and repulsion. The attractive forces between two adjacent membranes comprise (1) van der Waals attraction that depends on the abundance and type of atoms in each membrane, on the distance between the membranes and on the dielectric constant, (2) depletion attraction that generates local order by granal stacking at the expense of greater disorder (i.e. entropy) in the stroma, and (3) an electrostatic attraction of opposite charges located on adjacent membranes. The repulsive forces comprise (1) electrostatic repulsion due to the net negative charge on the outer surface of thylakoid membranes, (2) hydration repulsion that operates at small separations between thylakoid membranes due to layers of bound water molecules, and (3) steric hindrance due to bulky protrusions of Photosystem I (PSI) and ATP synthase into the stroma. In addition, specific interactions may occur, but they await experimental demonstration. Although grana are not essential for photosynthesis, they are ubiquitous in higher plants. Grana may have been selected during evolution for the functional advantages that they confer on higher plants. The functional consequences of grana stacking include (1) enhancement of light capture through a vastly increased area-to-volume ratio and connectivity of several PSIIs with large functional antenna size, (2) the ability to control the lateral separation of PSI from PSII and, therefore, the balanced distribution of excitation energy between two photosystems working in series, (3) the reversible fine-tuning of energy distribution between the photosystems by State 1-State 2 transitions, (4) the ability to regulate light-harvesting via controlled thermal dissipation of excess excitation energy, detected as non-photochemical quenching, (5) dynamic flexibility in the light reactions mediated by a granal structure in response to

  19. Investigation of high temperature operation of proton exchange membrane fuel cells

    Science.gov (United States)

    Adjemian, Kevork Tro

    Proton exchange membrane fuel cells (PEMFCs) have garnered much attention in the media over the past years as they can provide a clean, environmentally friendly alternative to internal combustion engines. PEMFCs also have the flexibility to operate on many different types of fuels, thereby diminishing our reliance on foreign oil. PEMFCs, however, suffer from many drawbacks which need to be overcome before mass production becomes viable. One drawback is the expense of the fuel cell system, costing several times more than existing technologies. Another problem is that if the fuel cell is running on reformed fuels, trace amounts of carbon monoxide (10 ppm) in the hydrogen gas stream will completely poison the anode electrocatalyst, killing the PEMFC. Also, as a lot of waste heat is generated, a very elaborate cooling system needs to be used, making the overall system more expensive and complex. A possible solution to both the carbon monoxide poisoning and thermal management of a PEMFC is to elevate its operating temperature above 100°C. Unfortunately, current state-of-the-art electrolytes used in PEMFCs, i.e. Nafion 115, rely on water for the conduction of protons and by elevating the temperature, water loss occurs due to evaporation resulting in inadequate PEMFC performance. This thesis delves into the modification of Nafion and similar electrolytes to permit PEMFC operation above 100°C. This was accomplished by impregnating the pores of the Nafion with hydrophilic inorganic materials-silicon oxide via sol-gel processing and various inorganic particles. By performing these modifications to the various electrolytes, several composite membranes performed exceptionally well at an operating temperature of 130°C and demonstrated carbon monoxide tolerance of up to 500 ppm. In addition, a theory on how these materials help improve the water management characteristics of Nafion was developed, laying the foundation for the development of a completely novel membrane to

  20. Characteristics of fatty acid composition of lipids in higher plant vacuolar membranes.

    Science.gov (United States)

    Makarenko, S P; Konenkina, T A; Salyaev, R K

    2000-01-01

    The fatty acid composition of vacuolar membrane lipids from plant storage tissues and their genesis have been studied. A high content of unsaturated fatty acids (up to 77%) was observed in lipids of these membranes. Linoleic acid prevailed in vacuolar lipids of carrot and red beet (54.2 and 44.2%, respectively). Linolenic acid prevailed in vacuolar lipids of garden radish and turnip (39.7 and 33.9%, respectively). Regarding saturated fatty acids, vacuolar lipids of garden radish, carrot, and red beet contained predominantly palmitic acid (up to 20-24%). Unsaturated fatty acids, petroselinic (C18: 1omega12), cis-vaccenic (C18: 1omega7), hexatrien-7,-10,-13-oic (C16:3omega3) and others, were observed in vacuolar lipids of roots. These acids are usually synthesized in chloroplasts, and their presence in vacuolar lipids can be associated either with the transport of metabolites to the vacuole, or with endocytosis during vacuolar formation in the plant cell. The specific features of fatty acid composition of tonoplast lipids apparently are closely related to the tonoplast unique fluidity and mobility required for running osmotic processes in the cell and for forming transport protein assemblies.

  1. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-06-01

    Full Text Available The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC that are based on micro-electro-mechanical systems (MEMS. The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  2. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  3. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse. PMID:22163556

  4. Proton conducting membranes for the high temperature-polymer electrolyte membrane-fuel cell (HT-PEMFC) based on functionalized polysiloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Jeske, M.; Soltmann, C.; Ellenberg, C.; Wilhelm, M.; Koch, D.; Grathwohl, G. [University of Bremen, Department of Production Engineering, Ceramic Materials and Components, Am Biologischen Garten 2, D-28359 Bremen (Germany)

    2007-02-15

    A new membrane material has been developed, based on a polysiloxane framework with functional proton conducting groups such as sulfonic acid and heterocyclic groups, e.g., imidazole and benzimidazole, covalently bonded at the siloxane backbone. Sulfonated siloxane based block-copolymers are used to improve the flexibility of the membranes at high temperatures, up to 180 C. The new membranes are investigated by measuring their proton conductivity under real conditions, in the temperature range from room temperature to 180 C in the dry state and at full humidification, using impedance spectroscopy in the frequency range from 1 Hz to 100 kHz. The proton conductivities under full humidification are approximately 3 x 10{sup -2} S cm{sup -1}. In the dry state the conductivity increases at elevated temperatures and reaches values of 2 x 10{sup -3} S cm{sup -1} at 180 C. The methanol diffusion coefficients are measured and compared for different membrane materials. They are in the range from 5 to 9 x 10{sup -2} cm{sup 2} s{sup -1} for the new type of bifunctional proton conducting polysiloxane membranes. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Temperature variation of higher-order elastic constants of MgO

    Indian Academy of Sciences (India)

    An effort has been made for obtaining higher-order elastic constants for MgO starting from basic parameters, viz. nearest-neighbor distance and hardness parameter using Coulomb and Börn–Mayer potentials. These are calculated in a wide temperature range (100–1000 K) and compared with available theoretical and ...

  6. Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming

    Science.gov (United States)

    Lee, Sang Moon; Won, Jong Min; Kim, Geo Jong; Lee, Seung Hyun; Kim, Sung Su; Hong, Sung Chang

    2017-10-01

    Palladium was added on the Ni-YSZ catalytic porous membrane by wet impregnation and electroless plating methods. Its surface morphology characteristics and carbon deposition properties for the low temperature steam methane reforming were investigated. The addition of palladium could obviously be enhanced the catalytic activity as well as carbon tolerance of the Ni-YSZ porous membrane. The porous membranes were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), CH4 temperature-programmed reduction (CH4-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that the Pd-Ni-YSZ catalytic porous membrane showed the superior stability as well as the deposition of carbon on the surface during carbon dissociation adsorption at 650 °C was also suppressed.

  7. The Effect of LiCl and Coagulation Bath Temperature on the Structure and Performance of PVDF Membranes

    Directory of Open Access Journals (Sweden)

    Marzieh Sedaghat

    2015-09-01

    Full Text Available Polyvinylidene fluoride (PVDF membranes are widely used in microfiltration and ultrafiltration processes for their excellent mechanical and chemical resistance and thermal stability in comparison with other polymeric membranes. Non-solvent induced phase separation (NIPS is the most important method by which the PVDF membranes are prepared. The structure of the membranes prepared by NIPS method depends on different parameters including the concentration of the polymer solution, polymer molecular weight, the composition and temperature of coagulation bath, type of solvent and the presence of additives in the initial solution. In the present work, the effects of coagulation bath temperature and LiCl content of the dope solution were studied with respect to the structure and performance of PVDF membranes. N-Methyl-2-pyrrolidone and water were used as solvent and coagulation bath, respectively. A set of analytical techniques including: scanning electron microscopy, mechanical test, pure water permeability and mean pore radius of pores was used to characterize the membranes. Moreover, the separation of humic acid, a main biological contaminant in surface water resources, was studied to determine membranes performance. The results show that at constant coagulation bath temperature, presence of LiCl in the dope solution increased the number as well as the mean pore radius of the pores at the surface of membranes and consequently, pure water permeability of the membranes was increased, whereas, the mechanical strength and humic acid rejection of the membranes were dropped. Moreover, at a constant content of LiCl, increasing the coagulation bath temperature decreased the size of macrovoids so that the mechanical strength as well as humic acid rejection of the membranes was increased.

  8. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  9. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  10. HIGH TEMPERATURE REMOVAL OF H{sub 2}S FROM COAL GASIFICATION PROCESS STREAMS USING AN ELECTROCHEMICAL MEMBRANE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jack Winnick; Meilin Liu

    2003-06-01

    A bench scale set-up was constructed to test the cell performance at 600-700 C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO{sub 2}, 35% H{sub 2}, 8% H{sub 2}O, and 450-2000 ppm H{sub 2}S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H{sub 2}S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H{sub 2}S removal. The results identify sulfide diffusion across the membrane as the rate-limiting step in H{sub 2}S removal. The maximum H{sub 2}S removal flux of 1.1 x 10-6 gmol H{sub 2}S min{sup -1} cm{sup -2} (or 3.5 mA cm{sup -2}) was obtained at 650 C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e. cobalt sulfides and Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd{sub 2}TiMoO{sub 7} and La{sub 0.7}Sr{sub 0.3}VO{sub 3} were the compounds that retained their structure best even when exposed to high H{sub 2}S, CO{sub 2}, and H{sub 2}O concentrations.

  11. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2016-10-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  12. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2017-05-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  13. Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator.

    Directory of Open Access Journals (Sweden)

    Walter Arnold

    Full Text Available Polyunsaturated fatty acids (PUFA have a multitude of health effects. Their incorporation into membrane phospholipids (PL is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b, whereas long chain (>C18 n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic

  14. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    Science.gov (United States)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  15. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  16. Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants.

    Science.gov (United States)

    Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław

    2016-07-01

    Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  17. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  18. Aggregation of human sperm at higher temperature is due to hyperactivation.

    Science.gov (United States)

    Keppler, E L; Chan, P J; Patton, W C; King, A

    1999-01-01

    Chemotaxis of sperm cells to chemicals and hormones, such as progesterone, helps us to understand the concept of sperm transport. Here, the hypothesis was that heat increased sperm hyperactive motility, which caused the sperm to aggregate at the higher temperature. The objectives were (1) to determine the concentration of sperm at both halves of an artificial female reproductive tract made from a hermetically sealed cryopreservation straw filled with culture medium and placed with each end at different temperatures, and (2) to analyze the motility or kinematic parameters and hyperactivation of sperm found at the different temperatures. Cryopreserved-thawed human donor sperm (N = 6) were pooled and processed through 2-layer colloid solution. Analyses of the motile sperm were carried out and the washed sperm were homogeneously mixed and pipetted into several 0.5-mL French cryopreservation straws and heat-sealed. The control substance, consisting of acid-treated sperm, was also placed in several straws. The plastic straws of sperm were placed half at 23 degrees C and half was at either 37 or 40 degrees C. After 4 h, sperm at different sections of the straws were analyzed using the Hamilton Thorn motility analyzer (HTM-C). After 4 h of incubation, the concentration of sperm was doubled at the 40 degrees C heated half of the straw when compared with the other half of the straw at 23 degrees C. There were no differences in sperm concentration in the straw kept half at 37 degrees C and half at 23 degrees C. There were significantly higher percent motility, mean average path velocity, straight line velocity, lateral head displacement, and percent hyperactivation in sperm at the 40 degrees C temperature. The aggregation of sperm at the higher temperature of 40 degrees C may be due to enhanced motility, increased sperm velocities, and a 10-fold increase in hyperactivation at that temperature. The 37 degrees C temperature was not sufficient to attract sperm. Sperm cells

  19. Higher Efficiency and Temperature Reliability of Steam Generators at Thermal Power Stations

    Directory of Open Access Journals (Sweden)

    R. F. Kelbaliev

    2010-01-01

    Full Text Available Methods for higher power unit efficiency and decrease of specific fuel consumption for electric-power generation have been considered in the paper. The paper reveals that a heat exchange intensification makes a positive effect on efficiency and temperature reliability of power engineering equipment while using coil and artificially turbulized (contoured pipes. Results of experimental investigations on metal temperature at various mode parameters are proposed in the paper. The paper contains equations for determination of conditions initiating heat-transfer drop.

  20. The higher temperature in the areola supports the natural progression of the birth to breastfeeding continuum.

    Directory of Open Access Journals (Sweden)

    Vincenzo Zanardo

    Full Text Available Numerous functional features that promote the natural progression of the birth to breastfeeding continuum are concentrated in the human female's areolar region. The aim of this study was to look more closely into the thermal characteristics of areola, which are said to regulate the local evaporation rate of odors and chemical signals that are uniquely important for the neonate's 'breast crawl'. A dermatological study of the areolae and corresponding intern breast quadrants was undertaken on the mothers of 70 consecutive, healthy, full-term breastfed infants. The study took place just after the births at the Policlinico Abano Terme, in Italy from January to February 2014. Temperature, pH and elasticity were assessed one day postpartum using the Soft Plus 5.5 (Callegari S.P.A., Parma, Italy. The mean areolar temperature was found to be significantly higher than the corresponding breast quadrant (34.60 ±1.40°C vs. 34.04 ±2.00°C, p<0.001 and the pH was also significantly higher (4.60±0.59 vs. 4.17±0.59, p<0.001. In contrast, the elasticity of the areolar was significantly lower (23.52±7.83 vs. 29.02±8.44%, p<0.003. Our findings show, for the first time, that the areolar region has a higher temperature than the surrounding breast skin, together with higher pH values and lower elasticity. We believe that the higher temperature of the areolar region may act as a thermal signal to guide the infant directly to the nipple and to the natural progression of the birth to breastfeeding continuum.

  1. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature...... is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  2. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel.

  3. The conversion of L-phenylalanine into benzoic acid on the thylakoid membrane of higher plants.

    Science.gov (United States)

    Löffelhardt, W; Kindl, H

    1975-05-01

    The conversion of L-phenylalanine into benzoic acid and other aromatic carboxylic acids was investigated in Nasturtium officinale (watercress), Astilbe chinensis, and Hydrangea macrophylla in vivo and in vitro. Comparative feeding experiments with radioactively labelled L-phenylalanine and cinnamic acid administered to intact leaf discs of A. chinensis indicated a rapid formation of benzoic acid from L-phenylalanine, whereas cinnamic acid was a poor precursor. Using a pulse-chase labelling technique followed by a fractionation of the tissue into subcellular components, chloroplasts could be identified as the predominant, if not exclusive, site of benzoic acid formation in A. chinensis. Experiments in vitro with chloroplasts and thylalkoids of N. officinale, H. macrophylla, and A. chinensis demonstrate the capacity of thylakoid membranes to catalyze the degradation of L-phenylalanine to benzoic acid. The results obtained upon stimultaneous incubation with [4'-3H]L-phenylalanine and [3-14C]cinnamic acid lead to the hypothesis that the reaction of L-phenylalanine to benzoic acid proceeds via a cinnamic acid pool which is different from that of soluble cinnamic acid.

  4. The higher temperature in the areola supports the natural progression of the birth to breastfeeding continuum.

    Science.gov (United States)

    Zanardo, Vincenzo; Straface, Gianluca

    2015-01-01

    Numerous functional features that promote the natural progression of the birth to breastfeeding continuum are concentrated in the human female's areolar region. The aim of this study was to look more closely into the thermal characteristics of areola, which are said to regulate the local evaporation rate of odors and chemical signals that are uniquely important for the neonate's 'breast crawl'. A dermatological study of the areolae and corresponding intern breast quadrants was undertaken on the mothers of 70 consecutive, healthy, full-term breastfed infants. The study took place just after the births at the Policlinico Abano Terme, in Italy from January to February 2014. Temperature, pH and elasticity were assessed one day postpartum using the Soft Plus 5.5 (Callegari S.P.A., Parma, Italy). The mean areolar temperature was found to be significantly higher than the corresponding breast quadrant (34.60 ±1.40°C vs. 34.04 ±2.00°C, pbreast skin, together with higher pH values and lower elasticity. We believe that the higher temperature of the areolar region may act as a thermal signal to guide the infant directly to the nipple and to the natural progression of the birth to breastfeeding continuum.

  5. Mobility and temperature resistance of trehalose mycolates as key characteristics of the outer membrane of Mycobacterium tuberculosis.

    Science.gov (United States)

    Migliardo, Federica; Salmeron, Christophe; Bayan, Nicolas

    2015-01-01

    Trehalose mycolates are fundamental characteristics of the outer membrane (mycomembrane) of Mycobacterium tuberculosis and they are supposed to play a key role in the low permeability and high resistance of mycobacteria to many antibiotics; however, still, the molecular characteristics making mycolates so effective in their biological function are not fully understood. This work aims to investigate by quasi-elastic neutron scattering the diffusive dynamical properties of trehalose mycolates in water mixtures as a function of temperature, energy and exchanged wavevector Q in order to elucidate the dynamics-function relation in the mycomembrane. A comparison with lecithin lipids in water mixtures is performed since they are considered among the most rigid and resistant lipids. From the analysis of the data collected as a function of temperature, a lower temperature dependence of the mobility as well as a higher rigidity of trehalose mycolates in comparison with lecithin lipids are highlighted. The present findings provide detailed molecular information which allows to go ahead in the understanding at a molecular level of the resistance to stress and antibiotics by corynebacteria and mycobacteria.

  6. Membranes

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  7. A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod

    NARCIS (Netherlands)

    Dooremalen, van C.; Ellers, J.

    2010-01-01

    A moderate change in ambient temperature can lead to vital physiological and biochemical adjustments in ectotherms, one of which is a change in fatty acid composition. When temperature decreases, the composition of membrane lipids (phospholipid fatty acids) is expected to become more unsaturated to

  8. A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod.

    NARCIS (Netherlands)

    van Dooremalen, J.A.; Ellers, J.

    2010-01-01

    A moderate change in ambient temperature can lead to vital physiological and biochemical adjustments in ectotherms, one of which is a change in fatty acid composition. When temperature decreases, the composition of membrane lipids (phospholipid fatty acids) is expected to become more unsaturated to

  9. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts"

    DEFF Research Database (Denmark)

    Braccia, Anita; Villani, Maristella; Immerdal, Lissi

    2003-01-01

    function and even existence in vivo. The nonionic detergent Brij 98 was used to isolate lipid rafts from microvillar membrane vesicles of intestinal brush borders at physiological temperature to compare with rafts, obtained by "conventional" extraction using Triton X-100 at low temperature. Microvillar...... at increasing temperature to define a fraction of highly detergent-resistant "superrafts." These were enriched in galectin-4, a beta-galactoside-recognizing lectin residing on the extracellular side of the membrane. Superrafts also harbored the glycosylphosphatidylinositol-linked alkaline phosphatase...

  10. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  11. The dew point temperature as a criterion for optimizing the operating conditions of proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2012-01-01

    In this article an analytical method to calculate the dew point temperatures of the anode and cathode exit gas streams of a proton exchange membrane fuel cell is developed. The results of these calculations are used to create diagrams that show the dew point temperatures as function...... of the operating pressure, the stoichiometric flow ratios and the net drag coefficient of water through the membrane. Then, computational modeling results obtained with a previously published model are analyzed and compared with the dew point charts, and it is demonstrated how cell flooding or membrane dry-out can...... be predicted a priori with the aid of these diagrams. Finally, guidelines for the desired cell operating temperature based on the expected dew point temperatures are developed. In the current work these guidelines are limited to the interdigitated flow field design, and they are likely to be different...

  12. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells

    Science.gov (United States)

    Li, Dazi; Li, Chong; Gao, Zhiqiang; Jin, Qibing

    2015-06-01

    Operating a Proton Exchange Membrane fuel cell (PEMFC) system to maintain the stack temperature stable is one of the key issues in PEMFC's normal electrochemical reaction process. Its temperature characteristic is easily affected by inlet gas humidity, external disturbances, and electrical load changes and so on. Because of the complexity and nonlinearity of the reaction process, it is hard to build a model totally consistent with the real characteristic of the process. If model uncertainty, external disturbances, parameters changes can be regarded as "total disturbance", which is then estimated and compensated, the accurate model is no longer required and the control design can be greatly simplified to meet the practical needs. Based on this idea, an active disturbance rejection control (ADRC) with a switching law is proposed for the problem of precise temperature regulation in PEMFC. Results of the work show that the proposed control system allows the PEMFC to operate successfully at the temperature of 343 K point in the presence of two different disturbances.

  13. Free air breathing proton exchange membrane fuel cell: Thermal behavior characterization near freezing temperature

    Science.gov (United States)

    Higuita Cano, Mauricio; Kelouwani, Sousso; Agbossou, Kodjo; Dubé, Yves

    2014-01-01

    A free air breathing fuel cell thermal model is developed. This proton exchange membrane fuel cell (PEMFC) has been selected as the basis for the study due to its use in automotive applications. The blowers integrated to the stack provide the required air flow for hydrogen oxidation as well as the fluid for the stack thermal regulation. Hence, their controls are a key point for keeping the system to maximum efficiency. Using well-known fuel cell electrochemistry, a dynamic thermal model near freezing temperature, which includes the stack physical parameters, is developed and validated. In addition to these parameters, only the inlet and outlet air temperatures are used to derive the model. Experimental validation with a real 1 kW free air breathing PEMFC has demonstrated that the model can reasonably track the stack internal temperature with a maximum deviation between the observed and the estimated temperatures of 5%. Therefore, the proposed method will allow the development of efficient blower management systems for PEMFC efficiency improvement.

  14. Detection of acidification limit in anaerobic membrane bioreactors at ambient temperature.

    Science.gov (United States)

    Kjerstadius, Hamse; de Vrieze, Jo; la Cour Jansen, Jes; Davidsson, Åsa

    2016-12-01

    High-volume, low-strength industrial wastewaters constitute a large potential for biogas production, which could be realized by membrane bioreactors operating at the ambient temperature of the wastewater. However, the start-up of low-temperature anaerobic processes using unadapted inoculum can be sensitive to overloading, which results in acidification. This study assessed if a novel acidification limit test can be used to identify stable organic loading rates as well as process over-loading. The test is based on easy-to-apply batch experiments for determination of the hydrolysis rate constant and the specific methanogenic activity of the acetotrophic and hydrogenotrophic pathways. For evaluation, two anaerobic membrane bioreactors, treating synthetic dairy wastewater at an ambient temperature of 24 °C, were used with a slow or a rapid start-up regime, respectively. Tests for hydrolysis rate and methanogenic activity were performed throughout the experiment and were used to calculate acidification limits for each system throughout the start-up. The acidification limit test was able to successfully identify both stable operation of one reactor and process failure of the other reactor as the organic loading rate increased. The reactor failure was caused by over-loading the acetotrophic pathway and coincided with microbial changes observed in real-time PCR and moving window analysis. Overall, the acidification limit tests seem promising as an easy applicable method for estimating what organic loading rate can be utilized, without risking acidification of anaerobic systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Seungyoon Han

    2016-01-01

    Full Text Available High-temperature proton exchange membrane fuel cells (HT-PEMFCs utilize a phosphoric acid- (PA- doped polybenzimidazole (PBI membrane as a polymer electrolyte. The PA concentration in the membrane can affect fuel cell performance, as a significant amount of PA can leak from the membrane electrode assembly (MEA by dissolution in discharged water, which is a byproduct of cell operation. Spectrophotometric analysis of PA leakage in PA-doped polybenzimidazole membrane fuel cells is described here. This spectrophotometric analysis is based on measurement of absorption of an ion pair formed by phosphomolybdic anions and the cationoid color reagent. Different color reagents were tested based on PA detection sensitivity, stability of the formed color, and accuracy with respect to the amount of PA measured. This method allows for nondestructive analysis and monitoring of PA leakage during HT-PEMFCs operation.

  16. Higher temperature variability increases the impact of Batrachochytrium dendrobatidis and shifts interspecific interactions in tadpole mesocosms

    Science.gov (United States)

    Hamilton, Phineas T; Richardson, Jean ML; Govindarajulu, Purnima; Anholt, Bradley R

    2012-01-01

    The emergence of amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd) has led to the decline and extinction of numerous amphibian species. Multiple studies have observed links between climatic factors and amphibian declines apparently caused by Bd. Using outdoor experimental mesocosms, we tested the response of red-legged frog (Rana aurora) tadpoles to increased variation in temperature, a component of climate linked to amphibian declines, and Bd exposure. We included tadpoles of a sympatric competitor species, Pacific chorus frog (Pseudacris regilla), in a fully factorial design to test the effects of Bd and temperature on interspecific interactions. We found that higher variation in temperature had numerous effects in mesocosms, including interacting with Bd presence to decrease the condition of R. aurora, shifting the relative performance of competing P. regilla and R. aurora, and accelerating the development of P. regilla relative to R. aurora. Our results demonstrate that increased variation in temperature can affect amphibians in multiple ways that will be contingent on ecological context, including the presence of Bd and competing species. PMID:23145331

  17. Analyzes of students’ higher-order thinking skills of heat and temperature concept

    Science.gov (United States)

    Slamet Budiarti, Indah; Suparmi, A.; Sarwanto; Harjana

    2017-11-01

    High order thinking skills refer to three highest domains of the revised Bloom Taxonomy. The aims of the research were to analyze the student’s higher-order thinking skills of heat and temperature concept. The samples were taken by purposive random sampling technique consisted of 85 high school students from 3 senior high schools in Jayapura city. The descriptive qualitative method was employed in this study. The data were collected by using tests and interviews regarding the subject matters of heat and temperature. Based on the results of data analysis, it was concluded that 68.24% of the students have a high order thinking skills in the analysis, 3.53% of the students have a high order thinking skills in evaluating, and 0% of the students have a high order thinking skills in creation.

  18. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Lara-Curzio, Edgar [ORNL; King Jr, Thomas J [ORNL

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  19. High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams

    OpenAIRE

    Sot, Jesús; Manni, Marco M.; Viguera, Ana R.; Castañeda, Verónica; Cano, Ainara; Alonso, Cristina; Gil, David; Valle, Mikel; Alonso, Alicia; Goñi, Félix M.

    2014-01-01

    The origin of resistance to detergent solubilization in certain membranes, or membrane components, is not clearly understood. We have studied the solubilization by Triton X-100 of binary mixtures composed of egg sphingomyelin (SM) and either ceramide, diacylglycerol, or cholesterol. Solubilization has been assayed in the 4–50°C range, and the results are summarized in a novel, to our knowledge, form of plots, that we have called temperature-solubilization diagrams. Despite using a large deter...

  20. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Science.gov (United States)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  1. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, W. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Peters, J. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Institut de Biologie Structurale, Grenoble (France); Kursula, P. [University of Oulu, Oulu (Finland); CSSB–HZI, DESY, Hamburg (Germany); Gerelli, Y. [Institut Laue–Langevin, Grenoble (France); Natali, F., E-mail: natali@ill.fr [Institut Laue–Langevin, Grenoble (France); CNR–IOM–OGG, c/o Institut Laue–Langevin, Grenoble (France)

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  2. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community.

    Science.gov (United States)

    Seib, M D; Berg, K J; Zitomer, D H

    2016-09-01

    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25°C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10°C. The significant relative abundance of Methanosaeta at 10°C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell

    Science.gov (United States)

    Jespersen, Jesper Lebæk; Schaltz, Erik; Kær, Søren Knudsen

    This work constitutes detailed EIS (Electrochemical Impedance Spectroscopy) measurements on a PBI-based HT-PEM unit cell. By means of EIS the fuel cell is characterized in several modes of operation by varying the current density, temperature and the stoichiometry of the reactant gases. Using Equivalent Circuit (EC) modeling key parameters, such as the membrane resistance, charge transfer resistance and gas transfer resistance are identified, however the physical interpretation of the parameters derived from EC's are doubtful as discussed in this paper. The EC model proposed, which is a modified Randles circuit, provides a reasonably good fit at all the conditions tested. The measurements reveal that the cell temperature is an important parameter, which influences the cell performance significantly, especially the charge transfer resistance proved to be very temperature dependent. The transport of oxygen to the Oxygen Reduction Reaction (ORR) likewise has a substantial effect on the impedance spectra, results showed that the gas transfer resistance has an exponential-like dependency on the air stoichiometry. Based on the present results and results found in recent publications it is still not clear what exactly causes the distinctive low frequency loop occurring at oxygen starvation. Contrary to the oxygen transport, the transport of hydrogen to the Hydrogen Oxidation Reaction (HOR), in the stoichiometry range investigated in this study, shows no measurable change in the impedance data. Generally, this work is expected to provide a basis for future development of impedance-based fuel cell diagnostic systems for HT-PEM fuel cell.

  4. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... in the performance during the H2 continuous tests, because of a decrease in the reaction kinetic resistance mainly in the cathode due to the redistribution of PA between the membrane and electrodes. The performance of both single cells decreased in the following tests, with highest performance decay rate...... to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  5. High temperature seals between ceramic separation membranes and super-alloy housing

    Science.gov (United States)

    Honea, G.; Sridhar, K. R.

    1991-01-01

    One of the concepts for oxygen production from Martian atmospheric carbon dioxide involves the use of tubular electrochemical membranes for oxygen separation. The tubular configuration offers the advantage of being able to separate the oxygen at pressures of up to 500 psi, thereby eliminating the need for a pre-liquefaction oxygen compressor. A key technology that has to be developed in order for the electrochemical separator to combine as a compressor is a high temperature static seal between the ceramic separation cell and the nickel-based super-alloy tube. Equipment was designed and fabricated to test the seals. Efforts are under way to develop a finite element model to study the thermal stresses at the joints and on the seal, and the optimal shape of the seal. The choice of seal materials and the technique to be used to fabricate the seals are also being investigated.

  6. Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Søndergaard, Stine; Cleemann, Lars Nilausen; Jensen, Jens Oluf

    2017-01-01

    This paper describes the results of adding small amounts of CO gas to the cathode side in a HT-PEM fuel cell with a polybenzimidazole (PBI) membrane running on either oxygen or air. Experimental conditions: Temperature ranges 120–160 °C, constant current either 200 mA/cm2 or 800 mA/cm2 and CO...... ranges 0.1–1.3%. In this case it was found that small amounts of CO under special conditions have a beneficial effect on the potential of the fuel cells, whereas larger amounts can bring the potential down to almost zero. An interesting phenomenon is that after the flow of CO is switched off a temporary...

  7. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Stress and Temperature on the Optical Properties of Silicon Nitride Membranes at 1,550 nm

    Directory of Open Access Journals (Sweden)

    Mark Fletcher

    2018-01-01

    Full Text Available Future gravitational-wave detectors operated at cryogenic temperatures are expected to be limited by thermal noise of the highly reflective mirror coatings. Silicon nitride is an interesting material for such coatings as it shows very low mechanical loss, a property related to low thermal noise, which is known to further decrease under stress. Low optical absorption is also required to maintain the low mirror temperature. Here, we investigate the effect of stress on the optical properties at 1,550 nm of silicon nitride membranes attached to a silicon frame. Our approach includes the measurement of the thermal expansion coefficient and the thermal conductivity of the membranes. The membrane and frame temperatures are varied, and translated into a change in stress using finite element modeling. The resulting product of the optical absorption and thermo-optic coefficient (dn/dT is measured using photothermal common-path interferometry.

  9. High-melting lipid mixtures and the origin of detergent-resistant membranes studied with temperature-solubilization diagrams.

    Science.gov (United States)

    Sot, Jesús; Manni, Marco M; Viguera, Ana R; Castañeda, Verónica; Cano, Ainara; Alonso, Cristina; Gil, David; Valle, Mikel; Alonso, Alicia; Goñi, Félix M

    2014-12-16

    The origin of resistance to detergent solubilization in certain membranes, or membrane components, is not clearly understood. We have studied the solubilization by Triton X-100 of binary mixtures composed of egg sphingomyelin (SM) and either ceramide, diacylglycerol, or cholesterol. Solubilization has been assayed in the 4-50°C range, and the results are summarized in a novel, to our knowledge, form of plots, that we have called temperature-solubilization diagrams. Despite using a large detergent excess (lipid/detergent 1:20 mol ratio) and extended solubilization times (24-48 h) certain mixtures were not amenable to Triton X-100 solubilization at one or more temperatures. DSC of all the lipid mixtures, and of all the lipid + detergent mixtures revealed that detergent resistance was associated with the presence of gel domains at the assay temperature. Once the system melted down, solubilization could occur. In general adding high-melting lipids limited the solubilization, whereas the addition of low-melting lipids promoted it. Lipidomic analysis of Madin-Darby canine kidney cell membranes and of the corresponding detergent-resistant fraction indicated a large enrichment of the nonsolubilized components in saturated diacylglycerol and ceramide. SM-cholesterol mixtures were special in that detergent solubilization was accompanied, for certain temperatures and compositions, by an independent phenomenon of reassembly of the partially solubilized lipid bilayers. The temperature at which lysis and reassembly prevailed was ∼25°C, thus for some SM-cholesterol mixtures solubilization occurred both above and below 25°C, but not at that temperature. These observations can be at the origin of the detergent resistance effects observed with cell membranes, and they also mean that cholesterol-containing detergent-resistant membrane remnants cannot correspond to structures existing in the native membrane before detergent addition. Copyright © 2014 Biophysical Society

  10. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  11. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high...... in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  12. Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Steenberg, Thomas

    2014-01-01

    A new electrode concept was proved with no polymeric binder in the catalyst layer for acid-doped polybenzimidazole (PBI) membrane fuel cells. It shows that a stable interface between the membrane and the catalyst layer can be retained when a proton conducting acid phase is established. The absence...... of the polymer in the catalytic layer turned out to be beneficial for the PBI cell performance particularly under high load operation. The influence on performance of the Pt loading of the cathode was studied in a range from 0.11 to 2.04 mgPt cm−2 showing saturation of the maximum performance for Pt loadings...... higher than 0.5 mgPt cm−2. For fuel cell operation on H2 and air supplied under ambient pressure, a peak power density as high as 471 mW cm−2 was measured. The tolerance to carbon monoxide (CO) was also studied with Pt loadings of the anode ranging from 0.24 to 1.82 mgPt cm−2. Lifetime test for a MEA...

  13. Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C

    OpenAIRE

    Xie, Fei; Wang, Baojun; Wang, Wei; Dong, Tian; Tong, Jianhua; Xia, Shanhong; Wu, Wengang; Li, Zhihong

    2013-01-01

    Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled ...

  14. Properties of polymer electrolyte membranes based on poly(Aryl ether benzimidazole) and sulphonated poly(Aryl ether benzimidazole) for high temperature PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.; Jin, H.; Xiao, S.; Mai, Z. [Laboratory of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, Liaoning (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhong, H.; Li, X. [Laboratory of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, Liaoning (China); Zhang, H.

    2010-10-15

    Membranes based on poly[2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] (OPBI) and their sulphonated derivatives (SOPBI) were prepared and first investigated for high temperature proton exchange membrane fuel cells. OPBI and SOPBI membranes with good chemical stability were prepared by casting from their dimethyl sulphoxide (DMSO) solution and then impregnated in phosphoric acid baths to obtain H{sub 3}PO{sub 4} (PA)-doped membranes. The properties of PA-doped OPBI membranes, including phosphoric acid uptake, swelling ratio, mechanical properties and thermal properties, were fully investigated and compared with PA-doped SOPBI membranes. The fuel cell performances of PA-doped OPBI and SOPBI membranes at different temperatures were first evaluated. When doped in different concentrations of H{sub 3}PO{sub 4} solution, OPBI membranes adsorb more acid than SOPBI membranes. SOPBI membranes exhibit obviously lower swelling ratio in thickness direction than that of OPBI membranes. With an acid uptake of {proportional_to}110 wt.-%, corresponding doping level around 5, PA-doped OPBI and SOPBI membranes keep reasonably high tensile strength. PA-doped OPBI membranes exhibit peak power density of 0.78 W cm{sup -2} at 170 C and 0.25 MPa. With the same acid uptake, PA-doped SOPBI membranes displayed similar fuel cell performance to that of PA-doped OPBI membranes. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ciora, Richard J [Media and Process Technology Inc., Pittsburgh, PA (United States); Liu, Paul KT [Media and Process Technology Inc., Pittsburgh, PA (United States)

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  16. Strain specific variation of outer membrane proteins of wild Yersinia pestis strains subjected to different growth temperatures

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme Coutinho Abath

    1990-03-01

    Full Text Available Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76 were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page. Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.

  17. Molecular simulation and mathematical modelling of glass transition temperature depression induced by CO2 plasticization in Polysulfone membranes

    Science.gov (United States)

    Lock, S. S. M.; Lau, K. K.; Lock Sow Mei, Irene; Shariff, A. M.; Yeong, Y. F.; Bustam, A. M.

    2017-08-01

    A sequence of molecular modelling procedure has been proposed to simulate experimentally validated membrane structure characterizing the effect of CO2 plasticization, whereby it can be subsequently employed to elucidate the depression in glass transition temperature (Tg ). Based on the above motivation, unswollen and swollen Polysulfone membrane structures with different CO2 loadings have been constructed, whereby the accuracy has been validated through good compliance with experimentally measured physical properties. It is found that the presence of CO2 constitutes to enhancement in polymeric chain relaxation, which consequently promotes the enlargement of molecular spacing and causes dilation in the membrane matrix. A series of glass transition temperature treatment has been conducted on the verified molecular structure to elucidate the effect of CO2 loadings to the depression in Tg induced by plasticization. Subsequently, a modified Michealis-Menten (M-M) function has been implemented to quantify the effect of CO2 loading attributed to plasticization towards Tg .

  18. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation.

    Science.gov (United States)

    Mao, Yiyin; shi, Li; Huang, Hubiao; Cao, Wei; Li, Junwei; Sun, Luwei; Jin, Xianda; Peng, Xinsheng

    2013-06-25

    Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.

  19. Widespread occurrence of structurally diverse tetraether membrane lipids : Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Hopmans, E.C.; Pancost, R.D.

    2000-01-01

    Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) and branched glycerol dialkyl diethers are main membrane constituents of cultured hyperthermophilic archaea and eubacteria, respectively, and are found in environments with temperatures >60°C. Recently, we developed a new technique for the

  20. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study.

    Science.gov (United States)

    Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira

    2017-10-01

    Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

  1. Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell

    Science.gov (United States)

    Yan, Xiaoming; Gu, Shuang; He, Gaohong; Wu, Xuemei; Benziger, Jay

    2014-03-01

    A series of imidazolium-functionalized poly(ether ether ketone)s (PEEK-ImOHs) were successfully synthesized by a two-step chloromethylation-Menshutkin reaction followed by hydroxide exchange. PEEK-ImOH membranes with ion exchange capacity (IEC) ranging from 1.56 to 2.24 mmol g-1 were prepared by solution casting. PEEK-ImOHs show selective solubility in aqueous solutions of acetone and tetrahydrofuran, but are insoluble in lower alcohols. PEEK-ImOH membranes with IEC of 2.03 mmol g-1 have high hydroxide conductivity (52 mS cm-1 at 20 °C), acceptable water swelling ratio (51% at 60 °C), and great tensile strength (78 MPa), and surprising flexibility (elongation-to-break of 168%), and high thermal stability (Decomposition temperature: 193 °C). In addition, PEEK-ImOH membranes show low methanol permeability (1.3-6.9 × 10-7 cm2 s-1). PEEK-ImOH membrane was tested in methanol/O2 fuel cell as both the HEM and the ionomer impregnated into the catalyst layer; the open circuit voltage is 0.84 V and the peak power density is 31 mW cm-2.

  2. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures.

    Science.gov (United States)

    Matsuki, Hitoshi; Kato, Kentaro; Okamoto, Hirotsugu; Yoshida, Shuntaro; Goto, Masaki; Tamai, Nobutake; Kaneshina, Shoji

    2017-12-01

    The variation in phase-transition temperatures of dipalmitoylphosphatidylcholine (DPPC) bilayer membrane by adding two membrane-active ligands, a long-chain fatty acid (palmitic acid (PA)) and an inhalation anesthetic (halothane (HAL)), was investigated by light-transmittance measurements and fluorometry. By assuming the thermodynamic colligative property for the bilayer membrane at low ligand concentrations, the partitioning behavior of these ligands into the DPPC bilayer membrane was considered. It was proved from the differential partition coefficients between two phases that PA has strong affinity with the gel (lamellar gel) phase in a micro-molal concentration range and makes the bilayer membrane more ordered, while HAL has strong affinity with the liquid crystalline phase in a milli-molal concentration range and does the bilayer membrane more disordered. The transfer volumes of both ligands from the aqueous solution to each phase of the DPPC bilayer membrane showed that the preferential partitioning of the PA molecule into the gel (lamellar gel) produces about 20% decrease in transfer volume as compared with the liquid crystalline phase, whereas that of the HAL molecule into the liquid crystalline phase does about twice increase in transfer volume as compared with the gel (ripple gel) phase. Furthermore, changes in thermotropic and barotropic phase behavior of the DPPC bilayer membrane by adding the ligand was discussed from the viewpoint of the ligand partitioning. Reflecting the contrastive partitioning of PA and HAL into the pressure-induced interdigitated gel phase among the gel phases, it was revealed that PA suppresses the formation of the interdigitated gel phase under high pressure while HAL promotes it. These results clearly indicate that each phase of the DPPC bilayer membrane has a potential to recognize various ligand molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    Science.gov (United States)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  4. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    Directory of Open Access Journals (Sweden)

    Eli K. Moore

    2015-06-01

    Full Text Available Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS and high resolution accurate mass/mass spectrometry (HRAM/MS. Abundant unknown intact polar lipids (IPLs from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR spectroscopy. Ornithine IPLs (OLs with variable (hydroxy fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologues in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7 and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and p

  5. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    Science.gov (United States)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  6. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    Science.gov (United States)

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties

    OpenAIRE

    Llosa Tanco, Margot A.; David A. Pacheco Tanaka; Mendes, Adelio

    2015-01-01

    The influence of carbonization temperature on the permeation properties and aging of thin (4 mm) supported carbon molecular sieve membranes (c-CMSM), prepared from in house synthesized novolac phenolic resin loaded with boehmite nanoparticles, were studied. Just after membrane carbonization (fresh membrane), high permeance to N2 and O2 and low O2/ N2 permselectivities were observed; the highest permeations were observed for carbonization end temperatures between 500 C and 700 C. After leavi...

  8. Crosslinking of polybenzimidazolemembranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications

    DEFF Research Database (Denmark)

    Aili, David; Li, Qingfeng; Christensen, Erik

    2011-01-01

    Phosphoric acid-doped polybenzimidazole (PBI) has been suggested as a promising electrolyte for proton exchangemembrane fuel cells operating at temperatures up to 200 ◦C. This paper describes the development of a crosslinking procedure for PBI membranes by post-treatment with divinylsulfone....... The crosslinking chemistry was studied and optimized on a low-molecularweight model system and the results were used to optimize the crosslinking conditions of PBI membranes. The crosslinked membraneswere characterized with respect to chemical and physiochemical properties, showing improved mechanical strength...

  9. Pentachlorophenol-induced change of zeta-potential and gel-to-fluid transition temperature in model lecithin membranes.

    Science.gov (United States)

    Smejtek, P; Barstad, A W; Wang, S

    1989-01-01

    We have determined zeta-potentials for dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) membranes by measuring the electrophoretic mobility of multilayered vesicles and the temperatures of the gel-to-ripple-to-fluid phase transitions of sonicated vesicles by a photometric method. Some conclusions are: (1) The zeta-potentials of DMPC and DPPC vesicles become negative due to adsorption of ionized pentachlorophenol (PCP), (2) their magnitude changes, step-like, on gel-to-fluid transition and (3) the temperature of the step-like change in zeta-potential decreases with an increase in PCP concentration. (4) PCP exhibits a large effect on membrane structure: It induces an isothermal phase change from the ordered to disordered state, which is enhanced by monovalent salt in the aqueous phase. (5) Both ionized and unionized PCP decrease the melting phase transition temperature and abolish the pretransition, (6) the unionized species increases the melting transition width and (7) the ionized species is more potent in abolishing the pretransition. (8) The shorter chain lipid (DMPC) is more sensitive to the presence of PCP; the maximum decrease in delta Tt is 13 K (DMPC) and 7 K (DPPC) in the presence of ionized PCP. We have shown experimentally, by comparing the delta Tt from photometric studies with the density of adsorbed PCP derived from zeta-potential isotherms, that (9) the shift of the melting phase transition temperature increases linearly with the density of adsorbed PCP. (10) In contrast to membranes made of negatively charged lipids, the transition temperature of DMPC and DPPC membranes in the presence of PCP further decreases in the presence of monovalent salt. The salt effect is due to screening of the membrane surface leading to enhanced adsorption of ionized PCP and a depression in transition temperature. (11) It is shown that both the adsorption and the changes of gel-to-fluid phase transition temperature can be described in terms

  10. Water freezing at outdoor temperatures higher than 0 °C by the effect of radiative cooling

    Science.gov (United States)

    Sugawara, M.; Tago, M.; Komatsu, Y.; Beer, H.

    2018-01-01

    A numerical analysis is adopted to construct a diagram for estimating freezing of thin water layers at outdoor temperatures higher than 0 °C by the effect of radiative cooling. Freezing is affected significantly by the wind-temperature and - velocity as well as cloud temperature which are encountered in winter seasons. On a fine day, the observed outdoor freezing data show fairly good agreement with the present diagram.

  11. Surface Ordering of Orbitals at a Higher Temperature in LaCoO3 Thin Film

    Science.gov (United States)

    Yamasaki, Yuichi; Fujioka, Jun; Nakao, Hironori; Okamoto, Jun; Sudayama, Takaaki; Murakami, Youichi; Nakamura, Masao; Kawasaki, Masashi; Arima, Takahisa; Tokura, Yoshinori

    2016-02-01

    We report on the distinct surface state of electronic orders, including spin, orbital, and spin-state degrees of freedom of Co3+ ion, in an epitaxially strained thin film of LaCoO3 grown on (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrate. The surface ordered state was detected by the grazing-incidence resonant soft x-ray scattering at Co L-edge, where the probing depth is less than the topmost 4 nm of surface. Comparing with the result of bulk sensitive x-ray diffraction, we revealed that the transition temperature of the orbital order (spin order) at the surface region is about 30 K (20 K) higher (lower) than that of the bulk. A novel phenomenon of the surface order and bulk disorder of the orbital degree of freedom can be attributed to its collective and lattice-coupled nature which is strongly affected by the translational/inversion symmetry breaking at the surface.

  12. The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane.

    Science.gov (United States)

    Murthy, Appala Venkata Ramana; Guyomarc'h, Fanny; Lopez, Christelle

    2016-09-01

    The polar lipid assembly and biophysical properties of the biological membrane enveloping the milk fat globules (the MFGM) are yet poorly known, especially in connection with the temperature history that milk can experience after its secretion. However, bioactive mechanisms depend on biological structure, which itself highly depend on temperature. The objectives of this study were to investigate polar lipid packing in hydrated bilayers, models of the MFGM, and to follow at intermolecular level temperature-induced changes in the range 60-6°C, using the combination of differential scanning calorimetry, X-ray diffraction, atomic force microscopy (AFM) imaging and force spectroscopy. MFGM polar lipids, especially sphingomyelin, contain long chain saturated fatty acids with high phase transition temperatures. On cooling, the liquid disordered ld to solid ordered so (gel) phase transition of MFGM polar lipids started at about 40°C, leading to phase separation and formation of so phase domains protruding by about 1nm from the ld phase. Indentation measurements using AFM revealed that the resistance of the so phase domains to rupture was significantly higher than that of the ld phase and that it increased for both the domain and fluid phases with decreasing temperature. However, packing and stability of the bilayers were adversely affected by fast cooling to 6°C or by cooling-rewarming cycle. This study showed that MFGM polar lipid bilayers are dynamic systems. Heterogeneity in the structure and mechanical properties of the membrane was induced by temperature-dependent so/ld phase immiscibility of the lipid components. This could have consequences on the MFGM technological and biological functions (e.g. immunity and milk lipid digestion). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biological membranes are nanostructures that require internal heat and imaginary temperature as new, unique physiological parameters related to biological catalysts.

    Science.gov (United States)

    Dmitriev, L F

    2011-04-01

    In 1961, Peter Mitchell advanced a new idea for solving the problem of coupling between oxidation and phosphorylation, but some aspects of the relationship between the redox-chain as a potential energy donor and different energy acceptors remain largely unknown. The main structure-function relationships behind catalytic rate optimization in membrane enzymes are highly important, and comparative analyses of the energetics of catalytic reactions from membrane proteins of different destination are needed to advance our understanding. Moreover, the mode of control of primary radicals, such as reactive oxygen species (ROS), should be considered. For example, iron is essential for most organisms because it serves as an electron donor and acceptor in various metabolic processes. However, these chemical properties also allow iron to participate in the formation of ROS that cause substantial damage to lipids; iron can contribute to excess production of damaging ROS through Fenton chemistry. The evidence that iron contributes to various diseases of ageing is to be examined along with the need for low or moderate levels of iron, depending on homeostasis level. If this level in the organs and tissues is close to the optimal amount needed for an initiation of lipid-radical cycles, which may be responsible for the effectiveness of some membrane enzymes, this might minimize the ROS production and retard the processes related to ageing. To my mind, biological membranes possess an internal heat and imaginary temperature that are new, unique physiological parameters related to a role as factors of biological catalysis. This is speculation and additional studies will be needed to determine whether the imaginary temperature has an equal importance with the real temperature in cellular metabolism, membrane energetics (microsomal monooxygenase and ATP synthesis) and ageing.

  14. Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation

    Directory of Open Access Journals (Sweden)

    Elena Simone

    2018-01-01

    Full Text Available In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM; and particle vision and measurement (PVM were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.

  15. Proton conductance at elevated temperature:Formulation and investigation of poly(4-styrenesulfonic acid / 4-aminobenzylamine / phosphoric acid membranes

    Directory of Open Access Journals (Sweden)

    Jalal eJalili

    2014-07-01

    Full Text Available 4-aminobenzylamine and phosphoric acid were blended in various proportions with poly (4-styrenesulfonic acid to form a new group of membranes exhibiting proton conductance under water-free conditions. The 4-aminobenzylamine molecule, possessing an aniline-like and benzylamine-like functional group, can interact both with the phosphoric acid and the poly(4-styrenesulfonic acid via nucleophilic interaction, thereby allowing proton jumping in the structure. Physico-chemical and thermal characteristics of the prepared solid membranes were investigated by IR spectroscopy and thermo-gravimetric analysis, respectively. Electrochemical impedance spectroscopy was employed to investigate their proton-conductance properties. Transparent composite membranes were prepared. However, the membranes are opaque for relatively high content of phosphoric acid. These membranes are thermally stable up to 300°C. The proton conductivity increases with temperature and also with content of phosphoric acid. Values as high as 1.8×10–3 S cm–1 were measured at 190°C in fully anhydrous condition.

  16. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  17. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    This work involves the an experimental characterisation and the development of control strategies for the methanol reformer system used in the Serenergy Serenus H3 E-350 high temperature polymer electrolyte membrane (HTPEM) fuel cell system. The system consists of a fuel evaporator utilizing...... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact...... unit that allows the use of waste heat from the fuel cell stack in the reformer system, and a burner unit is also integrated to supplement provide heat using the stack anode hydrogen. The reformer is initially placed in an experimental system capable of emulating the interfaces to the fuel cell system...

  18. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  19. Urinary microRNA can be concentrated, dried on membranes and stored at room temperature in vacuum bags

    Directory of Open Access Journals (Sweden)

    Fanshuang Zhang

    2015-07-01

    Full Text Available Urine accumulates traces of changes that occur in the body and can potentially serve as a better biomarker source. Urinary microRNA is a promising class of non-invasive disease biomarkers. However, long-term frozen human urine samples are not a good source for the extraction of urinary microRNA. In this paper, we demonstrate that urinary microRNA can be concentrated, dried on membranes and stored in vacuum bags at room temperature for several months. The amount of total RNA on the membranes after storage at room temperature for three months was unchanged. The levels of miR-16 and miR-21 exhibited no significant differences (P = 0.564, 0.386. This simple and economical method makes the large-scale storage of clinical samples of urinary microRNA or other nucleic acids possible.

  20. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell

    OpenAIRE

    Tabe, Yutaka; Saito, Masataka; Fukui, Kaoru; Chikahisa, Takemi

    2012-01-01

    Cold start characteristics of a polymer electrolyte membrane fuel cell are investigated experimentally, and microscopic observations are conducted to clarify the freezing mechanism in the cell. The results show that the freezing mechanism can be classified into two types: freezing in the cathode catalyst layer at very low temperature like -20℃. and freezing due to supercooled water at the interface between the catalyst layer and the gas diffusion layer near 0℃ like -10℃. The amount of water p...

  1. In situ formation and assembly of CdS nanocrystallites into polyhedrons on Eggshell membrane at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Su, Huilan; Xu, Jia; Chen, Jianjun; Zhang, Di [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, Shanghai (China); Moon, Won-Jin [Gwangjun Center, Korea Basic Science Institute, Buk-gu, Gwangju (Korea, Republic of)

    2012-01-15

    A room-temperature soakage procedure was carried out to successfully form and assemble CdS nanocrystallites into polyhedrons on the eggshell membrane (ESM). Based on the biomaterial ESM served as the reactive substrate and some ESM biomacromolecules acted as the surfactants, CdS nanocrystallites were in situ formed, further assembled into well-distributed polyhedrons, and finally performed CdS-ESM hybrid nanocomposites. This moderate bioinspired strategy would also be of great value to prepare novel functional nanocomposites. (orig.)

  2. Direct Microscale Measurement of Mouse Oocyte Membrane Permeability to Water and Ethylene Glycol at Subzero Temperatures Using Cryomicroscopy.

    Science.gov (United States)

    Han, X

      BACKGROUND: Investigation of cell osmotic behavior at subzero temperatures is of critical importance to the optimization of cooling procedures for cryopreservation. Based on established thermodynamic models, plasma membrane permeability coefficients for water and cryoprotectant agent (CPA) (Lcpa, Pp) and their activation energies (EaLp, EaPcpa) are essential to predict the change of cell volume and composition of intracellular solutions corresponding to different cooling procedures. However, currently available methods to measure Lp at subzero temperatures suffer from technical difficulties due to ice formation and there are no generalized methods to measure Pcpa at subzero temperatures. The present study aims to investigate cell osmotic behavior at subzero temperatures without ice formation. In the study cells were directly injected into super-cooled CPA solutions mounted on a cryomicroscope, and the corresponding osmotic properties were measured. Using ethylene glycol (EG), the value of PEG for mouse (CD-1) metaphase II oocytes at 0, -5, -10 degree C was determined to be 8.451.20, 7.430.91, 6.401.10, x10-6 cm/min, respectively, and EaPEG was calculated to be 3.9 kCal/mol. Lp in the presence of EG (LpEG) at 0, -5, -10 , -15 degree C was determined to be 7.0 1.15, 4.90 1.20, 2.44 0.31, 1.200.24, x 10-2 µm/min/atm, respectively, and EaLp was calculated to be 15.5 kCal/mol. Comparing these values with those previously measured at superzero temperatures, we concluded that for mouse oocytes, the Arrhenius relationship for LpEG is consistent at superzero and subzero temperatures, but the values of PEG at subzero temperatures are much lower than the extrapolated values from the Arrhenius relationship at superzero temperatures, possibly caused by membrane phase transition at low temperatures.

  3. Evaluation of Cathode Gas Composition and Temperature Influences on Alkaline Anion Exchange Membrane Fuel Cell (AAEMFC Performance

    Directory of Open Access Journals (Sweden)

    Topal Leyla

    2014-02-01

    Full Text Available The effects of different temperatures (55, 65, 75 and 85 °C and cathode gas compositions (O2, synthetic air, air and 90% synthetic air+10% CO2 on alkaline anion exchange membrane fuel cell (AAEMFC were evaluated. Membrane electrode assemblies (MEA were fabricated using commercial anion exchange membrane (AEM in OH- form and Pt catalyst. Polarization curves and voltage responses during constant current were performed in order to describe the influences of temperature and gas composition on the AAEMFC performance. The experimental results showed that the fuel cell performance increases with elevating temperatures for all applied gas compositions. Highest power density of 34.7 mW cm-2 was achieved for pure O2 as cathode feed. A decrease to 20.3 mW cm-2 was observed when cathode gas composition was changed to synthetic air due to reduction of the O2 partial pressure. The presence of CO2 in atmospheric air applied to the cathode stream caused a further drop of the maximum power density to 15.2 mW cm-2 driven by neutralization of OH- ions with CO2.

  4. Effect of higher temperature exposure on physicochemical properties of frozen buffalo meat

    Directory of Open Access Journals (Sweden)

    M. R. Vishnuraj

    2014-11-01

    Full Text Available Aim: The aim was to study the changes in various physicochemical parameters of frozen buffalo meat undergone temperature abuse at two different isothermal storage temperatures (37±1°C, 25±1°C using a simulated model. Materials and Methods: Frozen buffalo meat was evaluated after exposing to various temperature abuse conditions over selected durations for different meat quality parameters including pH, extract release volume (ERV, flourescein diacetate (FDA hydrolysis, free amino acid (FAA, total volatile basic nitrogen (TVBN and D-glucose value and compared against a control sample maintained at 4±1°C. Results: Of the various meat quality parameters evaluated pH, FDA hydrolysis, FAA content and TVBN content showed a significant (p<0.05 increase in temperature abused samples after temperature abuse and on subsequent refrigerated storage. However, ERV and D-glucose content decreased significantly (p<0.05 in temperature abused buffalo meat during the same period of study. Conclusions: The present study featured the influence of exposure temperature and duration in various physicochemical parameters and the rate of spoilage development in frozen buffalo meat after temperature abuse.

  5. Is the boundary layer of an ionic liquid equally lubricating at higher temperature?

    Science.gov (United States)

    Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W

    2016-04-07

    Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

  6. High temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells

    DEFF Research Database (Denmark)

    Plackett, David; Siu, Ana; Li, Qingfeng

    2011-01-01

    dispersion of modified laponite clay was achieved in polybenzimidazole (PBI) solutions which, when cast and allowed to dry, resulted in homogeneous and transparent composite membranes containing up to 20 wt% clay in the polymer. The clay was organically modified using a series of ammonium......, acid doping and swelling, tensile strength, conductivity and hydrogen permeability as well as by fuel cell tests. For the composite membranes, high acid doping levels were achieved with sufficient mechanical strength and improved dimensional stability or reduced membrane swelling. At an acid doping...... level of 12 mol H3PO4 per monomer unit, proton conductivity as high as 0.12 S cm−1 was obtained at 150 °C and 12% relative humidity. The composite membranes exhibited hydrogen permeability ranging from 0.6 to 1.2 × 10−10 mol cm−1 s−1 bar−1 from 100 to 200 °C, which was five times lower than that of acid...

  7. Membranes produced by plasma enhanced chemical vapor deposition technique for low temperature fuel cell applications

    OpenAIRE

    Ennajdaoui, Aboubakr; Roualdes, Stéphanie; Brault, Pascal; Durand, Jean

    2009-01-01

    International audience; A plasma polymerization process using a continuous glow discharge has been implemented for preparing proton conducting membranes from trifluoromethane sulfonic acid and styrene. The chemical and physical structure of plasma membranes has been investigated using FTIR and SEM. The films are homogeneous with a good adhesion on commercial gas diffusion layer (E-Tek®). Their deposition rate can be increased with increasing flow rate and input power. The thermogravimetric an...

  8. Temperature-induced plasticity in membrane and storage lipid composition: Thermal reaction norms across five different temperatures.

    NARCIS (Netherlands)

    van Dooremalen, J.A.; Koekkoek, J.; Ellers, J.

    2011-01-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or

  9. Temperature-induced plasticity in membrane and storage lipid composition: Thermal reaction norms across five different temperatures

    NARCIS (Netherlands)

    Dooremalen, van C.; Koekkoek, J.; Ellers, J.

    2011-01-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or

  10. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    Science.gov (United States)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  11. Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing.

    Science.gov (United States)

    Chapman, Daniel S

    2013-11-01

    Mountain plants are considered among the species most vulnerable to climate change, especially at high latitudes where there is little potential for poleward or uphill dispersal. Satellite monitoring can reveal spatiotemporal variation in vegetation activity, offering a largely unexploited potential for studying responses of montane ecosystems to temperature and predicting phenological shifts driven by climate change. Here, a novel remote-sensing phenology approach is developed that advances existing techniques by considering variation in vegetation activity across the whole year, rather than just focusing on event dates (e.g. start and end of season). Time series of two vegetation indices (VI), normalized difference VI (NDVI) and enhanced VI (EVI) were obtained from the moderate resolution imaging spectroradiometer MODIS satellite for 2786 Scottish mountain summits (600-1344 m elevation) in the years 2000-2011. NDVI and EVI time series were temporally interpolated to derive values on the first day of each month, for comparison with gridded monthly temperatures from the preceding period. These were regressed against temperature in the previous months, elevation and their interaction, showing significant variation in temperature sensitivity between months. Warm years were associated with high NDVI and EVI in spring and summer, whereas there was little effect of temperature in autumn and a negative effect in winter. Elevation was shown to mediate phenological change via a magnification of temperature responses on the highest mountains. Together, these predict that climate change will drive substantial changes in mountain summit phenology, especially by advancing spring growth at high elevations. The phenological plasticity underlying these temperature responses may allow long-lived alpine plants to acclimate to warmer temperatures. Conversely, longer growing seasons may facilitate colonization and competitive exclusion by species currently restricted to lower

  12. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  13. Analog and Power Microelectronics to Higher Radiation Levels and Lower Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A study was done to examine low-temperature effects and radiation damage properties of bipolar integrated circuits.   Anticipated benefits:  useful in...

  14. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    Science.gov (United States)

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  15. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    OpenAIRE

    Myles, Timothy D.; Kim, Siwon; Maric, Radenka; Mustain, William E.

    2015-01-01

    In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs) were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs) manufactu...

  16. Oxygen transport and degradation properties of high-temperature membranes for CO{sub 2}-free power plants; Sauerstofftransport und Degradationsverhalten von Hochtemperaturmembranen fuer CO{sub 2}-freie Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Schlehuber, Dominic

    2010-07-01

    This thesis deals with membranes for oxygen separation from air for high temperature application in fossil power plants within the scope of the oxyfuel-process. Different perovskite membrane materials (ABO3-ae) were investigated concerning the oxygen transport and their chemical stability under operation condition. The association between oxygen transport properties and both the thermodynamic boundary conditions as well as the material properties (membrane thickness and surface properties) was studied. One possibility to achieve higher oxygen fluxes through the membrane is to reduce the thickness. In this case the influence of surface processes on the overall permeation becomes noteworthy. The effect of different membrane surface modifications on the permeation rate was investigated. For example it could be confirmed, that a porous layer on the membrane surface significantly increases the permeation flux due to the compensation of surface exchange limitations. Beyond that, degradation processes during the operation under power plant condition were investigated. Special attention was attached to the influence of degradation on the permeation flux during long term operation. Thereby kinetic demixing of the membrane material was observed. (orig.)

  17. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.

    Science.gov (United States)

    Asensio, Juan Antonio; Sánchez, Eduardo M; Gómez-Romero, Pedro

    2010-08-01

    The development of high-temperature PEM fuel cells (working at 150-200 degrees C) is pursued worldwide in order to solve some of the problems of current cells based on Nafion (CO tolerance, improved kinetics, water management, etc.). Polybenzimidazole membranes nanoimpregnated with phosphoric acid have been studied as electrolytes in PEMFCs for more than a decade. Commercially available polybenzimidazole (PBI) has been the most extensively studied and used for this application in membranes doped with all sorts of strong inorganic acids. In addition to this well-known polymer we also review here studies on ABPBI and other polybenzimidazole type membranes. More recently, several copolymers and related derivatives have attracted many researchers' attention, adding variety to the field. Furthermore, besides phosphoric acid, many other strong inorganic acids, as well as alkaline electrolytes have been used to impregnate benzimidazole membranes and are analyzed here. Finally, we also review different hybrid materials based on polybenzimidazoles and several inorganic proton conductors such as heteropoly acids, as well as sulfonated derivatives of the polymers, all of which contribute to a quickly-developing field with many blooming results and useful potential which are the subject of this critical review (317 references).

  19. Does maternal exposure during pregnancy to higher ambient temperature increase the risk of hypospadias?

    Science.gov (United States)

    Kilinc, Muhammet Fatih; Cakmak, Sedat; Demir, Demirhan Orsan; Doluoglu, Omer Gokhan; Yildiz, Yildiray; Horasanli, Kaya; Dalkilic, Ayhan

    2016-12-01

    The association between ambient temperature that the mother is exposed to during pregnancy and hypospadias has not been investigated by the studies, although the recent studies showed the correlation between some congenital malformations (congenital heart disease, neural tube defect, etc.) and ambient temperature. The aim was to investigate the relation between hypospadias and the ambient temperatures that the mother is exposed to during her pregnancy. The data of patients with hypospadias that had their gestational periods in Ankara and Istanbul regions, and had other urological treatments (circumcision, urinary tract infection, pyeloplasty, nephrolithotomy, etc.) between January 2000 and November 2015 were analyzed retrospectively. The ambient temperature at 8-14 weeks of gestation was investigated for each patient by reviewing the data of the General Directorate of Meteorology, since this period was risky for development of hypospadias. The data including ambient temperature that the pregnant mother was exposed to, maternal age, parity, economical status, gestational age at birth, and birth weight were compared between two groups. The retrospective nature of the study may be a potential source for selection bias. The data of 1,709 children that had hypospadias repair and 4,946 children that had other urological treatments between 2000 and 2015 were retrospectively analyzed. There were no differences between the groups for maternal age, parity, economical status, gestational age at birth, and birth weight (Table). Analysis of exposed maximum and average ambient temperatures at 8-14 weeks of gestation revealed that July and August, hot periods in summer time, were more prevalent in the hypospadias group (p = 0.01). The average and maximum monthly ambient temperatures during summer increased the risk for hypospadias (OR, 1.32; 95% CI, 1.08-1.52; and OR, 1.22; 95% CI, 0.99-1.54, respectively. In this paper, we evaluated the relation between hypospadias and the

  20. Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C.

    Science.gov (United States)

    Xie, Fei; Wang, Baojun; Wang, Wei; Dong, Tian; Tong, Jianhua; Xia, Shanhong; Wu, Wengang; Li, Zhihong

    2013-01-01

    Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled by a small microchannel based on a delicate hydrodynamic design. Combined with micro heater and temperature sensor that integrated in a single chip by utilizing silicon-based microfabrication techniques, this pressure regulating microchannel generated a high-pressure/high-temperature environment in the upstream reaction zone when the reagents continuously flow through the chip. As a preliminary demonstration, thermal digestion of aqueous total phosphorus sample was achieved in this continuous flowing micro-reactor at a working pressure of 990 kPa (under the working flow rate of 20 nl/s) along with a reaction temperature of 145 °C. This continuous flowing microfluidic solution for high-temperature reaction may find applications in various micro total analysis systems.

  1. n-Alcohol Length Governs Shift in Lo-Ld Mixing Temperatures in Synthetic and Cell-Derived Membranes.

    Science.gov (United States)

    Cornell, Caitlin E; McCarthy, Nicola L C; Levental, Kandice R; Levental, Ilya; Brooks, Nicholas J; Keller, Sarah L

    2017-09-19

    A persistent challenge in membrane biophysics has been to quantitatively predict how membrane physical properties change upon addition of new amphiphiles (e.g., lipids, alcohols, peptides, or proteins) in order to assess whether the changes are large enough to plausibly result in biological ramifications. Because of their roles as general anesthetics, n-alcohols are perhaps the best-studied amphiphiles of this class. When n-alcohols are added to model and cell membranes, changes in membrane parameters tend to be modest. One striking exception is found in the large decrease in liquid-liquid miscibility transition temperatures (Tmix) observed when short-chain n-alcohols are incorporated into giant plasma membrane vesicles (GPMVs). Coexisting liquid-ordered and liquid-disordered phases are observed at temperatures below Tmix in GPMVs as well as in giant unilamellar vesicles (GUVs) composed of ternary mixtures of a lipid with a low melting temperature, a lipid with a high melting temperature, and cholesterol. Here, we find that when GUVs of canonical ternary mixtures are formed in aqueous solutions of short-chain n-alcohols (n ≤ 10), Tmix increases relative to GUVs in water. This shift is in the opposite direction from that reported for cell-derived GPMVs. The increase in Tmix is robust across GUVs of several types of lipids, ratios of lipids, types of short-chain n-alcohols, and concentrations of n-alcohols. However, as chain lengths of n-alcohols increase, nonmonotonic shifts in Tmix are observed. Alcohols with chain lengths of 10-14 carbons decrease Tmix in ternary GUVs of dioleoyl-PC/dipalmitoyl-PC/cholesterol, whereas 16 carbons increase Tmix again. Gray et al. observed a similar influence of the length of n-alcohols on the direction of the shift in Tmix. These results are consistent with a scenario in which the relative partitioning of n-alcohols between liquid-ordered and liquid-disordered phases evolves as the chain length of the n-alcohol increases

  2. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat

    DEFF Research Database (Denmark)

    Rashid, Muhammad Adil; Andersen, Mathias Neumann; Wollenweber, Bernd

    2018-01-01

    . Treatments included hot humid (HH: 36° C; 1.96 kPa VPD), hot dry (HD: 36° C; 3.92 kPa VPD) and normal (NC: 24° C; 1.49 kPa VPD). Difference between HH and HD was considered as the indirect effect of temperature through increased VPD. HD increased transpiration by 2–22% and decreased photosynthetic water......Adapting to climate change and minimizing its negative impact on crop production requires detailed understanding of the direct and indirect effects of different climate variables (i.e. temperature, VPD). We investigated the direct (via heat stress) and indirect effects (through increased VPD......) of high temperature on growth, physiology and yield of two wheat cultivars (Taifun and Vinjett) at two watering levels; well-watered: WW (100% evapotranspiration (ET)) and drought stress: DS (50% of WW ET). Three climate treatments were applied for five days, starting at one week after anthesis...

  3. The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature

    Science.gov (United States)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Linares, José J.; Piuleac, Ciprian-George; Curteanu, Silvia

    Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.

  4. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  5. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Hjuler, Hans Aage; Terkelsen, Carina

    2012-01-01

    low cost paper or plastic based carrier substrate and dried using a hot air oven with a length of 1 m at 140 °C. A web width of 305 mm, a working width of 250 mm and a web speed of 0.2 m min−1 were explored to ensure efficient drying of the thick wet film. A large air flow was found to efficiently...... characterization with respect to solubility, phosphoric acid doping and fuel cell performance. Our results showed that the PBI membranes prepared in this work have identical properties compared to traditionally cast membranes while enabling an increase of a factor of 100 in manufacturing speed....

  6. Screen level temperature increase due to higher atmospheric carbon dioxide in calm and windy nights revisited

    NARCIS (Netherlands)

    Steeneveld, G.J.; Holtslag, A.A.M.; McNider, R.T.; Pielke sr., R.A.

    2011-01-01

    Long-term surface observations over land have shown temperature increases during the last century, especially during nighttime. Observations analyzed by Parker [2004] show similar long-term trends for calm and windy conditions at night, and on basis of this it was suggested that the possible effect

  7. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    Science.gov (United States)

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  8. In-situ experimental characterization of the clamping pressure effects on low temperature polymer electrolyte membrane electrolysis

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Frensch, Steffen Henrik

    2017-01-01

    The recent acceleration in hydrogen production’s R&D will lead the energy transition. Low temperature polymer electrolyte membrane electrolysis (LT-PEME) is one of the most promising candidate technologies to produce hydrogen from renewable energy sources, and for synthetic fuel production. LT......-PEME splits water into hydrogen and oxygen when the voltage is applied between anode and cathode. Electrical current forces the positively charged ions to migrate to negatively charged cathode through PEM, where hydrogen is produced. Meanwhile, oxygen is produced at the anode side electrode and escapes...... as a gas with the circulating water. The effects of clamping pressure (Pc) on the LT-PEME cell performance, polarization resistances, and hydrogen and water crossover through the membrane, and hydrogen and oxygen production rate are studied. A 50 cm2 active area LT-PEME cell designed and manufactured...

  9. Fabrication and room temperature operation of semiconductor nano-ring lasers using a general applicable membrane transfer method

    Science.gov (United States)

    Fan, Fan; Yu, Yueyang; Amiri, Seyed Ebrahim Hashemi; Quandt, David; Bimberg, Dieter; Ning, C. Z.

    2017-04-01

    Semiconductor nanolasers are potentially important for many applications. Their design and fabrication are still in the early stage of research and face many challenges. In this paper, we demonstrate a generally applicable membrane transfer method to release and transfer a strain-balanced InGaAs quantum-well nanomembrane of 260 nm in thickness onto various substrates with a high yield. As an initial device demonstration, nano-ring lasers of 1.5 μm in outer diameter and 500 nm in radial thickness are fabricated on MgF2 substrates. Room temperature single mode operation is achieved under optical pumping with a cavity volume of only 0.43λ03 (λ0 in vacuum). Our nano-membrane based approach represents an advantageous alternative to other design and fabrication approaches and could lead to integration of nanolasers on silicon substrates or with metallic cavity.

  10. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought

    National Research Council Canada - National Science Library

    Yin, Dongqin; Roderick, Michael L; Leech, Guy; Sun, Fubao; Huang, Yuefei

    2014-01-01

    .... The second states that the decline in precipitation ( P ) during drought reduces the available water thereby decreasing E , and in turn the consequent reduction in evaporative cooling causes higher...

  11. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  12. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Hopmans, E.C.; Schefuß, E.

    2002-01-01

    It has recently been shown that membrane lipids of marine crenarchaeota, a ubiquitous and abundant component of plankton, occur in relatively high concentrations in recent and ancient sediments. In this study we investigated the environmental controls on the relative distribution of these lipids in

  13. Fabricating porous, photo-crosslinked poly(trimethylene carbonate) membranes using temperature-induced phase separation

    NARCIS (Netherlands)

    Pasman, Thijs; Grijpma, Dirk W.; Stamatialis, Dimitrios; Poot, Andreas A.

    2016-01-01

    The recent development of lungs-on-chips is a major advancement in lung disease research. However, the materials used for the membranes in these chips, e.g. poly(dimethyl siloxane) and silicon, are not ideal. This study uses the more biocompatible and mechanically favorable polymer poly(trimethylene

  14. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  15. Higher number of hospital admissions for bronchiolitis with lower mean ambient temperature

    OpenAIRE

    Casha, Frank C.; Farrugia Preca, Justine; Pisani, Rebecca

    2016-01-01

    Background During our work as general practitioners (GPs) in Malta and during attachments in the Paediatric Department of the main hospital in Malta, we encountered children with bronchiolitis. Bronchiolitis has been described as a seasonal viral illness characterised by breathing difficulties, cough, poor feeding, irritability and lethargy and, in the very young, apnoea (SIGN, 2006). We speculated that there were more bronchiolitis-related admissions to hospital during colder temperature...

  16. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    Science.gov (United States)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  17. The 3rd CARISMA international conference on medium and high temperature proton exchange membrane fuel cells: Three approaches to better platinum catalysts at biannual conference

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Cleemann, Lars Nilausen; Li, Qingfeng

    2013-01-01

    The 3rd CARISMA International Conference was held at the Axelborg venue in Copenhagen, Denmark, from September 3-5, 2012. The CARISMA conference series was specifically devoted to challenges in the development and testing of fuel cell materials and membrane electrode assemblies (MEAs) for proton...... exchange membrane fuel cells (PEMFCs) to be operated at intermediate and high temperatures. The conference series was initiated by the European CARISMA Coordination Action for Research on Intermediate and High Temperature Specialized Membrane Electrode Assemblies. The 2012 event in Copenhagen had around...

  18. Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell

    OpenAIRE

    Su, H.; Xu, Q.; Chong, J.; Li, H.; Sita, C.; Pasupathi, S.

    2016-01-01

    In this work, we report a simple strategy to improve the performance of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) by eliminating the micro-porous layer (MPL) from its gas diffusion electrodes (GDEs). Due to the absence of liquid water and the general use of high amount of catalyst, the MPL in a HT-PEMFC system works limitedly. Contrarily, the elimination of the MPL leads to an interlaced micropore/macropore composited structure in the catalyst layer (CL), which favors...

  19. Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hyuk Chang

    2013-01-01

    Full Text Available Elevated-temperature (100~200 °C polymer electrolyte membrane (PEM fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures is essential, and phosphoric-acid-containing polymeric material synthesized from cross-linked polybenzoxazine has demonstrated feasible characteristics. This paper reviews the design rules, synthesis schemes, and characteristics of this unique polymeric material. Additionally, a membrane electrode assembly (MEA utilizing this polymer membrane is evaluated in terms of its power density and lifecycle by an in situ accelerated lifetime test. This paper also covers an in-depth discussion ranging from the polymer material design to the cell performance in consideration of commercialization requirements.

  20. Effects of coupling a UF membrane with a mesh screen and elevating temperature in the methanogenic digester of a two-phased anaerobic system.

    Science.gov (United States)

    Kim, Min Ho; Park, Chul-Hwi; Han, Gee-Bong

    2017-06-07

    This study was conducted to investigate coupling of UF with a mesh screen under thermophilic temperatures and compare the effectiveness of membrane filtration and temperature change in the methanogenic digester. A two-phased anaerobic digester coupled with an ultrafiltration (UF) membrane system was used for anaerobic sludge digestion. The overall average chemical oxygen demand (COD) removal efficiency achieved in the two-phased anaerobic digester coupled with the UF membrane system was 97.9 ± 0.8%. In the methanogenic digester, 10.5% improvement of methane production rate was obtained by the increased microbial population and metabolic activity due to coupling with a UF membrane and a mesh screen and elevating the temperature from mesophilic to thermophilic conditions. The average methane production per VS loading and unit volume (m3) was 477.14 ± 31.5 and 567.15 ± 43.3 mL CH4g-1 VS before and after elevating the temperature, respectively. The optimal operating pressure for the UF membrane system was less than 3 kgf cm-2, and the mesh screen saved 19.0% of the operating cost and 17.3% of energy consumption. As a result, the UF membrane system enhanced the digestion of sewage sludge, where the elevation of temperature improved the methane production rate in the thermophilic methanogenic digester.

  1. Borrelia burgdorferi RevA Antigen Is a Surface-Exposed Outer Membrane Protein Whose Expression Is Regulated in Response to Environmental Temperature and pH

    Science.gov (United States)

    Carroll, James A.; El-Hage, Nazira; Miller, Jennifer C.; Babb, Kelly; Stevenson, Brian

    2001-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, produces RevA protein during the early stages of mammalian infection. B. burgdorferi apparently uses temperature as a cue to its location, producing proteins required for infection of warm-blooded animals at temperatures corresponding to host body temperature, but does not produce such virulence factors at cooler, ambient temperatures. We have observed that B. burgdorferi regulates expression of RevA in response to temperature, with the protein being synthesized by bacteria cultivated at 34°C but not by those grown at 23°C. Tissues encountered by B. burgdorferi during its infectious cycle vary in their pH values, and the level of RevA expression was also found to be dependent upon pH of the culture medium. The cellular localization of RevA was also analyzed. Borrelial inner and outer membranes were purified by isopycnic centrifugation, and membrane fractions were conclusively identified by immunoblot analysis using antibodies raised against the integral inner membrane protein MotB and outer membrane-associated Erp lipoproteins. Immunoblot analyses indicated that RevA is located in the B. burgdorferi outer membrane. These analyses also demonstrated that an earlier report (H. A. Bledsoe et al., Infect. Immun. 176:7447–7455, 1994) had misidentified such B. burgdorferi membrane fractions. RevA was further demonstrated to be exposed to the external environment, where it could facilitate interactions with host tissues. PMID:11500397

  2. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Li, Qingfeng; Pan, Chao

    2011-01-01

    . The performance loss was recovered when switching from the HCl solution back to pure water in the air humidifier. Under an accelerated aging performance test conducted through potential cycling between 0.9 V and 1.2 V, the PBI-based fuel cell initially containing 0.5 NaCl mg cm−2 on the cathode catalyst layer......The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations...... temperatures in 85% phosphoric acid containing chloride ions showed both increase in oxidation and reduction current densities. The fuel cell performance, i.e. the current density at a constant voltage of 0.4 V and 0.5 V was found to be degraded as soon as HCl was introduced in the air humidifier...

  3. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Ozcan, Nuran; Ejsing, Christer S.; Shevchenko, Andrej

    2007-01-01

    The gram-positive soil bacterium Corynebacterium glutamicum, a major amino acid-producing microorganism in biotechnology, is equipped with several osmoregulated uptake systems for compatible solutes, which is relevant for the physiological response to osmotic stress. The most significant carrier......, BetP, is instantly activated in response to an increasing cytoplasmic K(+) concentration. Importantly, it is also activated by chill stress independent of osmotic stress. We show that the activation of BetP by both osmotic stress and chill stress is altered in C. glutamicum cells grown at and adapted......P activity. We further correlated the change in BetP regulation properties in cells grown at different temperatures to changes in the lipid composition of the plasma membrane. For this purpose, the glycerophospholipidome of C. glutamicum grown at different temperatures was analyzed by mass spectrometry using...

  4. Development of next generation micro-CHP system: Based on high temperature proton exchange membrane fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Arsalis, A.

    2012-01-15

    Novel proposals for the modeling and operation of a micro-CHP (combined-heat-and-power) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology are described and analyzed to investigate the technical feasibility of such systems. The proposed systems must provide electricity, hot water, and space heating for an average single-family household in Denmark. A complete fuel processing subsystem, with all necessary BOP (balance-of-plant) components, is modeled and coupled to the fuel cell stack subsystem. The research project is divided into five main study topics: (a) Modeling, simulation and validation of the system in LabVIEW environment to provide the ability of Data Acquisition of actual components, and thereby more realistic design in the future; (b) Modeling, parametric study, and sensitivity analysis of the system in EES (Engineering Equation Solver). The parametric study is conducted to determine the most viable system/component design based on maximizing total system efficiency; (c) An improved operational strategy is formulated and applied in an attempt to minimize operational implications, experienced when using conventional operational strategies; (d) Application of a GA (Genetic Algorithm) optimization strategy. The objective function of the single-objective optimization strategy is the net electrical efficiency of the micro-CHP system. The implemented optimization procedure attempts to maximize the objective function by variation of nine decision variables; (e) The micro-CHP system is optimized by formulating and applying a process integration methodology. The methodology involves system optimization targeting in net electrical efficiency maximization. Subsequently a MINLP (Mixed Integer Non-Linear Programming) problem optimization strategy is applied to minimize the annual cost of the HEN (Heat Exchanger Network). The results obtained throughout this research work indicate the high potential of the proposed

  5. Type-II InAs/GaSb strain layer superlattice detectors for higher operating temperatures

    Science.gov (United States)

    Rodriguez, J. B.; Plis, E.; Lee, S. J.; Kim, H.; Bishop, G.; Sharma, Y. D.; Dawson, L. R.; Krishna, S.; Jones, C.

    2007-04-01

    Type-II InAs/GaSb superlattice photodiodes for mid-IR (3-5μm) region grown by solid-source molecular beam epitaxy are reported. Different approaches for realization of high quality interfaces between compositionally abrupt GaSb and InAs layers during the growth of the SLs are discussed. Mid wave infrared (λc~ 4.5 µm at T=300K) P-on-N designs of SLs detectors were developed to ensure compatibility with most present day readout integrated circuits (ROICs). Variable size diode arrays were fabricated using standard photolithography technique and hybridized to silicon fanout chip. The sizes of the detector mesas were varied from 29μm x 29μm to 804μm x 804μm. The single pixel characterization was undertaken at Santa Barbara Focal Plane. Temperature-dependent IV measurements revealed dark current density below 1 x 10 -8 A/cm2 at 82K and below 2 x 10 -5 A/cm2 at 240K. (V bias = 0V). Dynamic resistance-area product at zero bias was found to be ~ 1 x 10 5 Ωcm2 at 82K and 0.24 Ωcm2 at 240K. Influence of protective silicon nitride coating on reduction surface leakage currents of detectors was investigated. We found that r surface was equal to ~ 3 x 10 6 Ωcm indicating the proper surface preparation followed by room temperature Si 3N 4 deposition is effective in reduction of leakage currents in type-II MWIR InAs/GaSb superlattice photodiodes.

  6. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Hu, Yuh-Chung; Shih, Wen-Pin; Fan, Wei-Yuan; Chuang, Chih-Wei

    2009-01-01

    Silicon micro-hole arrays (Si-MHA) were fabricated as a gas diffusion layer (GDL) in a micro fuel cell using the micro-electro-mechanical-systems (MEMS) fabrication technique. The resistance temperature detector (RTD) sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10−3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C. PMID:22573963

  7. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chuang

    2009-03-01

    Full Text Available Silicon micro-hole arrays (Si-MHA were fabricated as a gas diffusion layer (GDL in a micro fuel cell using the micro-electro-mechanical-systems (MEMS fabrication technique. The resistance temperature detector (RTD sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10-3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C.

  8. Platinum-cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells - Long term behavior under ex-situ and in-situ conditions

    Science.gov (United States)

    Schenk, Alexander; Grimmer, Christoph; Perchthaler, Markus; Weinberger, Stephan; Pichler, Birgit; Heinzl, Christoph; Scheu, Christina; Mautner, Franz-Andreas; Bitschnau, Brigitte; Hacker, Viktor

    2014-11-01

    Platinum cobalt catalysts (Pt-Co) have attracted much interest as cathode catalysts for proton exchange membrane fuel cells (PEMFCs) due to their high activity toward oxygen reduction reaction (ORR). Many of the reported catalysts show outstanding performance in ex-situ experiments. However, the laborious synthesis protocols of these Pt-Co catalysts disable an efficient and economic production of membrane electrode assemblies (MEAs). We present an economic, flexible and continuous Pt-M/C catalyst preparation method as part of a large scale membrane electrode assembly manufacturing. In comparison, the as-prepared Pt-Co/C based high temperature (HT)-PEM MEA showed an equal performance to a commercially available HT-PEM MEA during 600 h of operation under constant load, although the commercial one had a significantly higher Pt loading at the cathode.

  9. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Drought and cooler temperatures are associated with higher nest survival in Mountain Plovers

    Science.gov (United States)

    Dreitz, V.J.; Conrey, R.Y.; Skagen, S.K.

    2012-01-01

    Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  11. Drought and Cooler Temperatures Are Associated with Higher Nest Survival in Mountain Plovers

    Directory of Open Access Journals (Sweden)

    Victoria J. Dreitz

    2012-06-01

    Full Text Available Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus. Nest survival averaged 27.2% over a 7-yr period (n = 936 nests and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  12. Effects of a higher incubation temperature between embryonic day 9 and 12 on growth and meat quality characteristics of turkeys.

    Science.gov (United States)

    Krischek, C; Gerken, M; Wicke, M

    2013-01-01

    1. The study investigated the influence of manipulating incubation temperature for a short period on the post-hatch development up to week 16 in male and female BUT Big 6 turkeys. 2. Eggs were incubated at a control temperature of 37·5°C and 55% RH until d 18 when transferred to a hatcher at 37·5°C and 85% RH. For a 4 d period between embryonic day 9 (ED 9) and 12, eggs were incubated at 38·5°C and 55% RH (HT). 3. Birds were slaughtered at 16 weeks of age to analyse meat quality parameters of the Musculus pectoralis superficialis (MPS). 4. Across both incubation treatments, the turkey males had significantly higher live and breast weights, but lower breast yields than the females. The sex of the animals only influenced the yellowness of the MPS with lower values in the males. 5. Temperature manipulation resulted in significantly decreased live weights of HT birds compared with the control animals across all ages in both sexes. No impact of incubation treatment on meat quality characteristics was found. 6. The results indicate a negative effect of higher incubation temperature on the post-hatch growth, possibly by influencing the mechanisms that regulate the hypertrophic growth of the muscle fibres.

  13. Proton content and nature in perovskite ceramic membranes for medium temperature fuel cells and electrolysers.

    Science.gov (United States)

    Colomban, Philippe; Zaafrani, Oumaya; Slodczyk, Aneta

    2012-07-25

    Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS), thermogravimetric analysis (TGA), Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1-5 × 10-3 mole/mole), but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  14. Proton Content and Nature in Perovskite Ceramic Membranes for Medium Temperature Fuel Cells and Electrolysers

    Directory of Open Access Journals (Sweden)

    Aneta Slodczyk

    2012-07-01

    Full Text Available Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS, thermogravimetric analysis (TGA, Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1–5 × 10−3 mole/mole, but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  15. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  16. Kidney Transplant Recipients With Primary Membranous Glomerulonephritis Have a Higher Risk of Acute Rejection Compared With Other Primary Glomerulonephritides

    Directory of Open Access Journals (Sweden)

    Tripti Singh, MD

    2017-11-01

    Conclusions. Patients with MN have higher incidence of acute rejection after kidney transplant but have similar 10-year allograft survival in comparison to the other glomerular diseases like IgAN, FSGS, and LN.

  17. Testing the potential of bacterial branched tetraether membrane lipids as temperature proxy in peat and immature coal deposits

    Science.gov (United States)

    Weijers, J. W. H.; Steinmann, P.; Hopmans, E. C.; Basiliko, N.; Finkelstein, S. A.; Johnson, K. R.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-04-01

    Branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids occur ubiquitously in peat and soil. In soil, the degree of methylation and cyclisation of branched tetraethers (MBT index and CBT ratio, respectively) has shown to relate to both soil pH and annual mean air temperature (MAT). Using this relation, past annual MATs can be reconstructed by analysing brGDGTs in marine sediment records near large river outflows. More recently, the potential of this MBT/CBT proxy is also being explored in lakes. Despite being more abundant in peat than soils, however, the utility of the proxy has not yet been fully explored in peat records. Present day peat records generally extent back to the early Holocene, but if the MBT/CBT proxy were shown to be applicable in peat deposits, there is also potential to apply it to immature coal deposits like lignites, which could provide valuable snapshots of continental climate back to the early Cenozoic. Here results are presented of analyses of different peats in south eastern Canada, showing that the pH of peat along a nutrient gradient is rather well reflected by the CBT. Annual MAT reconstructions based on the MBT/CBT soil calibration, however, tend to overestimate measured MAT. This is also the case for peat analysed from the surface of Etang de la Gruère peat bog in the Swiss Jura Mountains. Along the 6m depth profile of this bog (~13ka), CBT-reconstructed pH is compared with in-situ measured pore water pH showing that the brGDGT composition does not reflect present-day in-situ conditions. Instead, it reflects a stratigraphic boundary between Carex and Sphagnum dominated peat at 4 m depth that is not present in the pore water profile, testifying to a 'fossil' nature of the brGDGTs down the peat bog. Analyses of three immature coals of the Argonne Premium Coal Series reveal that branched GDGTs are present in the most immature coal, the Beulah Zap lignite (Ro = 0.25%), and only just above detection limit in the Wyodak

  18. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  19. Molecular dynamics simulations of certain RGD-based peptides from Kistrin provide insight into the higher activity of REI-RGD34 protein at higher temperature.

    Science.gov (United States)

    Upadhyay, Sanjay K

    2014-05-01

    To determine the bioactive conformation required to bind with receptor aIIbb3, the peptide sequence RIPRGDMP from Kistrin was inserted into CDR 1 loop region of REI protein, resulting in REI-RGD34. The activity of REI-RGD34 was observed to increase at higher temperature towards the receptor aIIbb3. It could be justified in either way: the modified complex forces the restricted peptide to adapt bioactive conformation or it unfolds the peptide in a way that opens its binding surface with high affinity for receptor. Here, we model the conformational preference of RGD sequence in RIPRGDMP at 25 and 42 °C using multiple MD simulations. Further, we model the peptide sequence RGD, PRGD and PRGDMP from kistrin to observe the effect of flanking residues on conformational sampling of RGD. The presence of flanking residues around RGD peptide greatly influenced the conformational sampling. A transition from bend to turn conformation was observed for RGD sequence at 42 °C. The turn conformation shows pharmacophoric parameters required to recognize the receptor aIIbb3. Thus, the temperaturedependent activity of RIPRGDMP when inserted into the loop region of REI can be explained by the presence of the turn conformation. This study will help in designing potential antagonist for the receptor aIIbb3.

  20. Geothermal Thermoelectric Generation (G-TEG) with Integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Renew, Jay [Southern Research Inst., Birmingham, AL (United States); Hansen, Tim [Southern Research Inst., Birmingham, AL (United States)

    2017-06-01

    Southern Research Institute (Southern) teamed with partners Novus Energy Technologies (Novus), Carus Corporation (Carus), and Applied Membrane Technology, Inc. (AMT) to develop an innovative Geothermal ThermoElectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium (Li) from low-temperature geothermal brines. The process combined five modular technologies including – silica removal, nanofiltration (NF), membrane distillation (MD), Mn-oxide sorbent for Li recovery, and TEG. This project provides a proof of concept for each of these technologies. The first step in the process is silica precipitation through metal addition and pH adjustment to prevent downstream scaling in membrane processes. Next, the geothermal brine is concentrated with the first of a two stage MD system. The first stage MD system is made of a high-temperature material to withstand geothermal brine temperatures up to 150C.° The first stage MD is integrated with a G-TEG module for simultaneous energy generation. The release of energy from the MD permeate drives heat transfer across the TE module, producing electricity. The first stage MD concentrate is then treated utilizing an NF system to remove Ca2+ and Mg2+. The NF concentrate will be disposed in the well by reinjection. The NF permeate undergoes concentration in a second stage of MD (polymeric material) to further concentrate Li in the NF permeate and enhance the efficiency of the downstream Li recovery process utilizing a Mn-oxide sorbent. Permeate from both the stages of the MD can be beneficially utilized as the permeates will contain less contaminants than the feed water. The concentrated geothermal brines are then contacted with the Mn-oxide sorbent. After Li from the geothermal brine is adsorbed on the sorbent, HCl is then utilized to regenerate the sorbent and recover the Li. The research and development project showed that the Si removal goal (>80%) could

  1. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Schaltz, Erik; Kær, Søren Knudsen

    2009-01-01

    This work constitutes detailed EIS (Electrochemical Impedance Spectroscopy) measurements on a PBIbased HT-PEM unit cell. By means of EIS the fuel cell is characterized in several modes of operation by varying the current density, temperature and the stoichiometry of the reactant gases. Using...

  2. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different heat...

  3. Role of temperature-independent lipoplex-cell membrane interactions in the efficiency boost of multicomponent lipoplexes.

    Science.gov (United States)

    Marchini, C; Pozzi, D; Montani, M; Alfonsi, C; Amici, A; Candeloro De Sanctis, S; Digman, M A; Sanchez, S; Gratton, E; Amenitsch, H; Fabbretti, A; Gualerzi, C O; Caracciolo, G

    2011-08-01

    Multicomponent lipoplexes have recently emerged as especially promising transfection candidates, as they are from 10 to 100 times more efficient than binary complexes usually employed for gene delivery purposes. Previously, we investigated a number of chemical-physical properties of DNA-lipid complexes that were proposed to affect transfection efficiency (TE) of lipoplexes, such as nanoscale structure, size, surface potential, DNA-protection ability and DNA release from complexes upon interaction with cellular lipids. Although some minor differences between multicomponent and binary lipoplexes were found, they did not correlate clearly with efficiency. Instead, here we show that a marked difference between the cell internalization mechanism of binary and multicomponent lipoplexes does exist. Multicomponent lipoplexes significantly transfect cells at 4 °C, when endocytosis does not take place suggesting that they can enter cells via a temperature-independent mechanism. Confocal fluorescence microscopy experiments showed the existence of a correlation between endosomal escape and TE. Multicomponent lipoplexes exhibited a distinctive ability of endosomal escape and release DNA into the nucleus, whereas, poorly efficient binary lipoplexes exhibited minor, if any, endosomal rupture ability and remained confined in perinuclear late endosomes. Stopped-flow mixing measurements showed that the fusion rates of multicomponent cationic liposomes with anionic vesicles, used as model systems of cell membranes, were definitely shorter than those of binary liposomes. As either lipoplex uptake and endosomal escape involve fusion between lipoplex and cellular membranes, we suggest that a mechanism of lipoplex-cellular membrane interaction, driven by lipid mixing between cationic and anionic cellular lipids, does explain the TE boost of multicomponent lipoplexes.

  4. High-temperature membranes for H{sub 2}S and SO{sub 2} separations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winnick, J.

    1995-01-01

    Electrochemical cells which separate H{sub 2}S and S0{sub 2} from hot gas streams have two important materials issues that limit their successful industrial application: (1) membranes and (2) electrodes. These were the focus of the present study. For the H{sub 2}S work, experimental analysis incorporated several membrane and electrode materials; densified zirconia provided the best matrices for entrainment of electrolytic species, ionic mobility, and a process-gas barricade hindering the capabilities of gas cross-over, alternate reactions. Electrode materials of lithiated Ni converted to NiO in-situ were successful in polishing applications; however H{sub 2}S levels >100 ppM converted the NiO cathode to a molten nickel sulfide necessitating the use of Co. Lithiated NiO for the anode material remained morphologically stable and conductive in all experimentation. High temperature electrochemical removal of H{sub 2}S from coal gasification streams has been shown on the bench scale level at the Georgia Institute of Technology utilizing the aforementioned materials. Experimental removals from 1000 ppM to 100 ppM H{sub 2}S and 100 ppM to 10 ppM H{sub 2}S proved over 90% removal with applied current was economically feasible due to high current efficiencies ({approximately}100%) and low polarizations. For the S0{sub 2}work, an extensive search was conducted for a suitable membrane material for use in the S0{sub 2} removal system. The most favorable material found was Si{sub 3}N{sub 4}, proven to be more efficient than other possible materials. New lithiated NiO electrodes were also developed and characterized, proving more stable than previously used pervoskite electrodes. The combination of these new components led to 90% removal at near 100% current efficiency over a wide range of current densities.

  5. The inner membrane protein YhiM is necessary for Escherichia coli growth at high temperatures and low osmolarity.

    Science.gov (United States)

    Anderson, M A; Mann, M D; Evans, M A; Sparks-Thissen, R L

    2017-01-01

    To survive, Escherichia coli must be able to survive in rapidly changing environmental conditions including changes in temperature and osmolarity. We have studied the role of the inner membrane protein YhiM in changing environmental conditions. Our data indicate that YhiM is required for normal growth at 37 and 41 °C but not 21 °C. YhiM-deficient cells grown at high temperatures spend more time in lag phase and stop growing at lower cell densities in comparison with their wild-type counterparts. They also have growth defects in low NaCl medium at 37 °C and do not grow at all at 41 °C. The effects of low NaCl can be rescued by addition of KCl or sucrose to the low salt medium. Finally, YhiM-deficient cells fail to grow in dilute medium at 41 °C. These data suggest that YhiM may be important in protecting the cells from changes in temperature and osmolarity.

  6. The Effects of Bore Fluid Composition and Coagulation Bath Temperature on the Structure and Performance of Polysulfone Hollow Fiber Membranes in Collagen Separation

    Directory of Open Access Journals (Sweden)

    Nasrin Attari

    2017-01-01

    Full Text Available The effects of N-methylpyrrolidone (NMP concentration contained in bore fluid and coagulation bath temperature were studied with respect to the structure as well as the performance of the polysulfone hollow fiber membranes. In order to determine the structural characteristics of prepared membranes, a set of analyses including scanning electron microscopy (SEM, mechanical strength test, pure water permeability and mean pore radius of surface pores were used and separation of 1 g/L solution of collagen protein was studied to determine the performance of the membranes. The obtained results from SEM analysis showed that at constant coagulation bath temperature, the increase in NMP concentration in bore fluid increased the number of pores in the inner surface of membranes, decreased the formation of finger-like voids and increased the mean pore radius of the pores and also sponge-like pores near the inner radius of hollow fiber membranes. Moreover, pure water permeability and mechanical strength of the prepared membranes increased about 160% and 44%, respectively with increases in the content of NMP in bore fluid. In addition, at constant NMP content of 40% in bore fluid, pure water permeability increased by above 92% as the coagulation bath temperature increased from 30°C to 50°C, whereas the mechanical strength decreased by 32%. Finally, it was revealed that the rejection of the prepared membranes in the separation of collagen protein solution decreased by increasing NMP content in the bore fluid at constant coagulation bath temperature and also deacreased by increasing coagulation bath temperature at constant NMP content in the bore fluid.

  7. Influences of the calcination temperature and polymethyl methacrylate templates to characteristic pore membrane of bioceramic titanium dioxide

    Science.gov (United States)

    Ady, Jan; Viandari, Eka; Hasanah, Dewi W.

    2017-05-01

    The synthesis of the bioceramics titanium dioxide on its template by polymethyl methacrylate to be a sample with forming TiO2/PMMA was made with sol-gel process, and its pore membrane characteristics has also been studied. Different calcination temperatures 500°C, 550°C, and 600°C were given to sample for 17 hours. This purpose themselves was to fill TiO2 fissures with PMMA on different concentrations of 0.0, 2.0 wt%, 3.0 wt%, 4.0 wt%. Template leaching technique was used to remove PMMA from samples, and it was then sequentially found of the pore size of the membrane in approximate ranges (1900 nm - 2000 nm), (860.5 nm - 1669 nm), (312.8 nm-382.5 nm), and (136.1 nm - 269.7 nm). SEM test using and fourth it has average thickness in about 6.7 nm with Ellipsometer measurement. The percentage values of titanium and oxygen atoms are found by SEM-EDX from 3.03 at.% up to 66.81 at.% and there is amount 99.99% of the sample in anatase phase forming at 550 0C with angle of diffraction is 25.410 and it was prepared by XRD measurement.

  8. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    Science.gov (United States)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  9. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer

    Science.gov (United States)

    Barron, Olivia; Su, Huaneng; Linkov, Vladimir; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-03-01

    Zirconium hydrogen phosphate (ZHP) together with polytetrafluoroethylene (PTFE) polymer binder is incorporated into the catalyst layers (CLs) of ABPBI (poly(2,5-benzimidazole))-based high temperature polymer electrolyte membrane fuel cell (HT-PEMFCs) to improve its performance and durability. The influence of ZHP content (normalised with respect to dry PTFE) on the CL properties are structurally characterised by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) are performed by recording polarisation curves and impedance spectra at 160 °C, ambient pressure and humidity. The result show that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel cell performance, the resultant MEA delivers a peak power of 592 mW cm-2 at a cell voltage of 380 mV. Electrochemical impedance spectra (EIS) indicate that 30% ZHP in the CL can increase the proton conductivity compared to the pristine PTFE-gas diffusion electrode (GDE). A short term stability test (∼500 h) on the 30 wt.% ZHP/PTFE-GDE shows a remarkable high durability with a degradation rate as low as ∼19 μV h-1 at 0.2 A cm-2, while 195 μV h-1 was obtained for the pristine GDE.

  10. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Polverino, Pierpaolo; Andreasen, Søren Juhl

    2017-01-01

    This work presents a comprehensive mapping of electrochemical impedance measurements under the influence of CO and methanol vapor contamination of the anode gas in a high temperature proton exchange membrane fuel cell, at varying load current. Electrical equivalent circuit model parameters based...... in an increase in the high frequency and intermediate frequency impedances. When adding CO and methanol to the anode gas, the low frequency part of the impedance spectrum is especially affected at high load currents, which is clearly seen as a result of the high load current resolution used in this work....... The negative effects of methanol vapor are found to be more pronounced on the series resistance. When CO and methanol vapor are both present in anode gas, the entire frequency spectrum and thereby all the equivalent circuit model parameters are affected. It is also shown that the trends of contamination...

  11. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  12. Effects of Temperature and Dietary Lipids on Phospholipid Fatty Acids and Membrane Fluidity in Steinernema carpocapsae

    OpenAIRE

    Fodor, A.; Dey, I; Farkas, T; Chitwood, D. J.

    1994-01-01

    The phospholipid composition of Steinernema carpocapsae was studied in relation to diet and culture temperature. When reared at 18 and 27.5 C on Galleria mellonella or on an artificial diet supplemented with lard, linseed oil, or fish oil as lipid sources, nematode phospholipids contained an abundance of 20-carbon polyunsaturated fatty acids, with eicosapentaenoic acid (20:5(n - 3)) predominant, regardless of the fatty acid composition of the diet. Because the level of linolenic acid (18:3(n ...

  13. A Composite Membrane of Caesium Salt of Heteropolyacids/Quaternary Diazabicyclo-Octane Polysulfone with Poly (Tetrafluoroethylene for Intermediate Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Keith Scott

    2012-07-01

    Full Text Available Inorganic-organic composite electrolyte membranes were fabricated from CsXH3−XPMo12O40 (CsPOMo and quaternary diazabicyclo-octane polysulfone (QDPSU using a polytetrafluoroethylene (PTFE porous matrix for the application of intermediate temperature fuel cells. The CsPOMo/QDPSU/PTFE composite membrane was made proton conducting by using a relatively low phosphoric acid loading, which benefits the stability of the membrane conductivity and the mechanical strength. The casting method was used in order to build a thin and robust composite membrane. The resulting composite membrane films were characterised in terms of the elemental composition, membrane structure and morphology by EDX, FTIR and SEM. The proton conductivity of the membrane was 0.04 S cm−1 with a H3PO4 loading level of 1.8 PRU (amount of H3PO4 per repeat unit of polymer QDPSU. The fuel cell performance with the membrane gave a peak power density of 240 mW cm−2 at 150 °C and atmospheric pressure.

  14. High temperature polybenzimidazole membrane electrode assemblies using pyridine-polybenzimizazole as catalyst layer binder

    Science.gov (United States)

    Su, Po-Hao; Cheng, Joy; Li, Jia-Fen; Liao, Yi-Hsiang; Yu, T. Leon

    2014-08-01

    We synthesize four pyridine-polybenzimidazoles (PyPBIs) and one polybenzimidazole (PBI) from a tetramin monomer (i.e., 3,3‧-diamino benzidine (DABZ)) and two dicarboxylic acid monomers (i.e., isophthalic acid (IPA) and 2,6-pyridinedicarboxylic acid (PyA)) with PyA/IPA molar ratios of 6/4 (i.e., PyPBI-64), 5/5 (i.e., PyPBI-55), 4/6 (i.e., PyPBI-46), 3/7 (i.e., PyPBI-37), and 0/1 (i.e., PBI-11). The PyPBIs and PBI with molecular weight of ∼1.0-1.3 × 10-4 g mol-1 are used as Pt-C (Pt on carbon support) binders for fabricating gas diffusion electrodes (GDEs) and are doped with H3PO4 to prepare membrane electrode assemblies (MEAs). We demonstrate that both the H3PO4 loading of the GDE and the fuel cell performance of the MEA at 160 °C with unhumidified H2/O2 fuel increase with the increase of PyA monomer content of the PyPBI (or PBI) binder in the GDEs according to the sequence of PBI-11 cell performance.

  15. Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alcaide, Francisco; Alvarez, Garbine; Miguel, Oscar [Dpto. de Energia, CIDETEC, Paseo Miramon, 196, 20009 Donostia/San Sebastian (Spain); Lazaro, Maria Jesus; Moliner, Rafael [Instituto de Carboquimica, CSIC, Miguel Luesma Castan 4, 50018 Zaragoza (Spain); Lopez-Cudero, Ana; Solla-Gullon, Jose; Herrero, Enrique; Aldaz, Antonio [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2009-05-15

    Carbon nanofibers synthesized via the thermo catalytic decomposition of methane were investigated for the first time as an electrocatalyst support in PEMFC cathodes. Their textural and physical properties make them a highly efficient catalyst support for cathodic oxygen reduction in low temperature PEMFC. Tests performed in MEAs showed that Pt supported on carbon nanofibers exhibited an enhancement of ca. 94% in power density at 0.600 V, in comparison with a commercial catalyst supported on conventional carbon black, Pt/Vulcan XC-72R. (author)

  16. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  17. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  18. The extent of the temperature-induced membrane remodeling in two closely relatedBordetellaspecies reflects their adaptation to diverse environmental niches.

    Science.gov (United States)

    Seydlova, Gabriela; Beranova, Jana; Bibova, Ilona; Dienstbier, Ana; Drzmisek, Jakub; Masin, Jiri; Fiser, Radovan; Konopasek, Ivo; Vecerek, Branislav

    2017-05-12

    Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Application of room-temperature ionic liquids in preparation of highly porous polymer membranes and microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of); Seo, Jae Won; Shin, Ueon Sang [Dept. of Nanobiomedical Science and BK21 PlUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of)

    2015-02-15

    Polylactic acid (PLA) and polycaprolactone (PCL) devices with diverse morphologies, such as particulate structure, porous structures, and microspheres, were prepared using imidazolium- or ammonium-based room-temperature ionic liquids [bmim]X or [toma]X (X = NTf{sub 2} , PF{sub 6} , OTf, BF{sub 4} , Cl). Their morphological transformations could be induced by diverse approaches, including the changes of polymer type, the cationic or counter-anionic change of ionic liquid, the concentration change of ionic liquid, as well as the type and the quantity change of organic solvent. The results are likely to provide useful information for the production of diverse devices (or scaffolds) with particulate or porous structure and beads with various sizes and surface morphologies in fields such as biomedical tissue engineering, drug delivery, gas storage and separation, heterogeneous catalysis, and polymer gel electrolytes.

  20. Volatile metabolites of higher plants cenoses as photosynthesizing LSS component under optimum conditions and temperature stress at different light intensities

    Science.gov (United States)

    Gitelson, J.; Tikhomirov, A.; Parshina, O.; Ushakova, S.; Kalacheva, G.

    One of major yet still poorly known functions of the photosynthesizing component in life support system (LSS) is to improve the quality of air through volatile emissions (VE) of plants capable of accumulating in closed volumes, interacting between themselves and having favorable or adverse impact on humans. In all likelihood, the effect of stress changing the functional condition of plants is to be accompanied with alteration in composition and quantity of VE. There are practically no works dealing with effect of such environmental factors as light intensity and elevated air temperature on qualitative and quantitative composition of VE by higher plants' cenoses. Meanwhile experimental modeling and investigation of stability of man-made human life support systems make this problem of very important. The aim of this work is to experimentally evaluate relationship between qualitative and quantitative composition of VE and the functional condition of wheat cenoses as the basic culture of LSS photosynthesizing component under normal conditions and under temperature stress against light of different intensity. Effect of elevated temperature 35 and 45°C (with the light intensity of 70, 150 or 240 W/m2 PAR) on photosynthesis, respiration, qualitative and quantitative composition of VE of wheat (Triticum aestuvi L., variety 232) cenoses was studied in the atmosphere of growth chambers. More than 20 volatile compounds (terpenoids - a pinene, +3 carene, limonene, benzene, a - and trans-caryophylene, a - and ?-terpinene, their derivatives, aromatic hydrocarbons, etc.) were qualitatively and quantitatively estimated by chromatomassspectroscopy (GC-MS). The light intensity of 240 W/m2 PAR at 35° increase, and at 45° - decrease of thermal stability of photosynthesis and respiration. Elevated temperatures resulted in non- uniform variation of the rate and direction of VE synthesis. VE was highest at irradiance 70 W/m 2 and lowest at 240 W/m2 and 35° . During the reparation

  1. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    Science.gov (United States)

    Malik, Ashish A.; Dannert, Helena; Griffiths, Robert I.; Thomson, Bruce C.; Gleixner, Gerd

    2015-01-01

    Using a pulse chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of rhizosphere soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h) and DNA (30 h) turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 days), while phospholipid fatty acids (PLFAs) had the slowest turnover (42 days). PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings. PMID:25914679

  2. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2015-04-01

    Full Text Available Using a pulse-chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of root-associated soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h and DNA (30 h turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 d, while phospholipid fatty acids (PLFAs had the slowest turnover (42 d. PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings.

  3. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G

    2008-01-01

    Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance...

  4. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  5. Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinmei, E-mail: houxinmei@ustb.edu.cn; Yu, Ziyou; Li, Yang; Chou, Kuo-Chih

    2014-01-01

    Graphical abstract: - Highlights: • h-BN fibers were successfully fabricated using H{sub 3}BO{sub 3} and C{sub 3}H{sub 6}N{sub 6} as raw materials. • The obtained BN fibers were polycrystalline and uniform in morphology. • It exhibited good oxidation resistance and low thermal expansion coefficient. - Abstract: Hexagonal boron nitride fibers were synthesized via polymeric precursor method using boric acid (H{sub 3}BO{sub 3}) and melamine (C{sub 3}H{sub 6}N{sub 6}) as raw materials. The precursor fibers were synthesized by water bath and BN fibers were prepared from the precursor at 1873 K for 3 h in flowing nitrogen atmosphere. The crystalline phase and microstructures of BN fibers were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized BN fibers were polycrystalline with 0.4–1.5 μm in diameter and 200–500 μm in length. The as-prepared samples exhibited good oxidation resistance and low thermal expansion coefficient at high temperature.

  6. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  7. Influence of Process Temperatures on Blister Creation in Micro Film Insert Molding of a Dual Layer Membrane

    DEFF Research Database (Denmark)

    Wöhner, Timo; R. Whiteside, Ben; Tosello, Guido

    2016-01-01

    In this work the suitability of a dual layer membrane, consisting of a non-woven Polypropylene (PP) support and a membrane layer made out of Polyethylene Terephthalate (PET) for Micro Film Insert Molding (μFIM) was investigated. The emergence of blisters at the surface of the PET-membrane layer...

  8. Boundary model-based reference control of blower cooled high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Kær, Søren Knudsen

    2011-01-01

    Fuel cells have, by design, a limited effective life time, which depends on how they are operated. The general consent is that operation of the fuel cell at the extreme of the operational range, or operation of the fuel cell without sufficient reactants (a.k.a. starvation), will lower the effective...... life time of a fuel cell significantly. On air cooled HTPEMFCs, the blower, which supplies the fuel cell with oxygen for the chemical process, also functions as the cooling system. This makes the blower bi-functional and as a result a higher supply of oxygen is often available, hence changes...... in the fuel cell output can be optimised by the knowledge of how much oxygen is supplied to the fuel cell at any given time, without reducing the effective life time of a fuel cell by starvation....

  9. The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H-2-fed membrane bioreactor

    NARCIS (Netherlands)

    Nevatalo, L.M.; Bijmans, M.F.M.; Lens, P.N.L.; Kaksonen, A.H.; Puhakka, J.A.

    2010-01-01

    The sulfidogenic activity of two mesophilic sulfate reducing enrichment cultures was studied in H-2-fed membrane bioreactors. The two enrichment cultures had different origins; one of them was a mesophilic and the other a psychrotolerant mesophilic culture. The operational temperatures of the

  10. In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures

    DEFF Research Database (Denmark)

    Zhang, Jin; Aili, David; Bradley, John

    2017-01-01

    Most recently, we developed a phosphotungstic acid impregnated mesoporous silica (PWA-meso-silica) and phosphoric acid doped polybenzimidazole (PA/PBI) composite membrane for use in high temperature fuel cells and achieved exceptional durability under a constant current load of 200 mA cm−2 at 200...

  11. In-situ experimental characterization of the clamping pressure effects on low temperature polymer electrolyte membrane electrolysis International Journal of Hydrogen Energy

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Frensch, Steffen Henrik

    2017-01-01

    The recent acceleration in hydrogen production’s R&D will lead the energy transition. Low temperature polymer electrolyte membrane electrolysis (LT-PEME) is one of the most promising candidate technologies to produce hydrogen from renewable energy sources, and for synthetic fuel production. LT-PE...

  12. Nanofibrous membrane-based absorption refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature, and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.

  13. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... impedance spectroscopy (EIS) technique has been used, allowing the performance of a fuel cell diagnostic when the fuel cell stack does not contain any hydrogen, which would otherwise not be possible. The results appeared to confirm that measuring the impedance of an entire fuel cell stack could be a viable...

  14. Adaptation of microorganisms and their transport systems to high temperatures

    NARCIS (Netherlands)

    Tolner, B; Poolman, B.; Konings, W.N

    1997-01-01

    Growth of Bacteria and Archaea has been observed at temperatures up to 95 and 110 degrees C, respectively. These thermophiles are adapted to environments of high temperature by changes in the membrane lipid composition, higher thermostabilities of the (membrane) proteins, higher turnover rates of

  15. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    temperature and high relative humidity can cause excessive swelling of the membranes, yielding insufficient mechanical properties and breakdown of membrane function. Moreover, in the case of the Direct Methanol Fuel Cell (DMFC), their significant methanol permeability causes loss of efficiency. Higher...... operating temperatures (>100 °C) are desired as they improve reaction kinetics and reduce the problem of CO poisoning the catalyst, thus allowing reduced noble metal loading in the catalyst layers of the membrane electrode assembly of the fuel cell. Moreover water and heat management can be simplified......Perfluorosulfonic acid membranes (e.g. Nafion®) are the most widely applied electrolytes in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) because of their good chemical stability, mechanical properties and high proton conductivity, when well hydrated. The upper limit of operating temperature...

  16. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    Science.gov (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  17. Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Su, Huaneng; Xu, Qian; Chong, Junjie; Li, Huaming; Sita, Cordellia; Pasupathi, Sivakumar

    2017-02-01

    In this work, we report a simple strategy to improve the performance of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) by eliminating the micro-porous layer (MPL) from its gas diffusion electrodes (GDEs). Due to the absence of liquid water and the general use of high amount of catalyst, the MPL in a HT-PEMFC system works limitedly. Contrarily, the elimination of the MPL leads to an interlaced micropore/macropore composited structure in the catalyst layer (CL), which favors gas transport and catalyst utilization, resulting in a greatly improved single cell performance. At the normal working voltage (0.6 V), the current density of the GDE eliminated MPL reaches 0.29 A cm-2, and a maximum power density of 0.54 W cm-2 at 0.36 V is obtained, which are comparable to the best results yet reported for the HT-PEMFCs with similar Pt loading and operated using air. Furthermore, the MPL-free GDE maintains an excellent durability during a preliminary 1400 h HT-PEMFC operation, owing to its structure advantages, indicating the feasibility of this electrode for practical applications.

  18. High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature.

    Science.gov (United States)

    Ma, Cong; Yu, Shuili; Shi, Wenxin; Tian, Wende; Heijman, S G J; Rietveld, L C

    2012-06-01

    In this study, different concentrations of PAC combined with MBR were carried out to treat slightly polluted surface water (SPSW) at low temperature (10°C). Effects of PAC on the efficiencies of operation, treatment, and the performance of the process were investigated. It was found that the effluent quality, performance efficiency, resistance of shock load were all enhanced and chemical irreversible membrane fouling was reduced with increasing dosage of PAC in MBR. Only when the concentration of PAC which acted as biological carriers was high enough (i.g., 50 g/L), nitrification without initial inoculation in the filtration tank could start within 19 days and be completed within 35 days at 10°C. Fifty grams per liter PAC was the optimal dosage in MBR for stable and extended operation. Under this condition, mean removal efficiencies of ammonia nitrogen (NH(3)-N), dissolved organic carbon (DOC) and UV(254) were 93%, 75%, and 85%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    DEFF Research Database (Denmark)

    Noye, Pernille; Li, Qingfeng; Pan, Chao

    2008-01-01

    Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produ...

  20. Joint influence of temperature and ions of metals on level of activity alkaline phosphatase the mucous membrane of intestines beluga, the starlet and their hybrid

    Directory of Open Access Journals (Sweden)

    D. A. Bednyakov

    2010-01-01

    Full Text Available In work joint influence of ions of bivalent metals (Mn, Fe, Co, Ni, Cu and Zn and temperatures on level of activity alkaline phosphatase mucous membrane beluga, starlet and their hybrid is shown. Dependence of response of enzyme on action of ions of metals according to their position in a periodic table of chemical elements is shown. The given dependence remains and at temperature change incubation, only at low temperatures the activating effect of metals being in the period beginning is maximum, and at high, is maximum inhibiting effect of metals being in the period end.

  1. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  2. Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    Science.gov (United States)

    Steven L. Voelker; Michael C. Stambaugh; J. Renée Brooks; Frederick C. Meinzer; Barbara Lachenbruch; Richard P. Guyette

    2017-01-01

    To test tree growth-sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional...

  3. H{sub 2} separation from binary gas mixture using coated alumina-titania membrane by sol-gel technique at high-temperature region

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, A.L.; Othman, M.R. [Universiti Sains Malaysia, Penang (Malaysia). School of Chemical Engineering; Mukhtar, H. [University Technology of Petronas, Perak (Malaysia). Chemical Engineering Program

    2004-07-01

    A commercial tubular titania membrane was coated by alumina oxide using sol-gel technique. The membrane was used to separate pure gases of H{sub 2}, N{sub 2}, CO and CO{sub 2}. The permeabilities of H{sub 2} from a binary mixture of H{sub 2}/N{sub 2}, H{sub 2}/CO and H{sub 2}/CO{sub 2} were measured using the membrane at high-temperature region (1073 K). An experimental rig was designed and fabricated to perform the permeability studies of H{sub 2} from the binary gas mixture. Effect of feed rate, feed concentration and average pressure on permeability of pure gas and a binary mixture of H{sub 2} were studied. Results showed that the H{sub 2} separation factor for binary mixture of H{sub 2}/CO{sub 2} is the highest followed by H{sub 2}/CO and H{sub 2}/N{sub 2} for all feed concentration. The permeability of gases across the simple alumina-titania composite membrane increased slightly with increase of average pressure. Experimental data were compared with the theoretical values using complete mixing model and the separation factor was calculated experimentally and theoretically. The results showed a good agreement between experimental data and the theoretical predictions. The permeability of gases across the coated alumina-titania composite membrane increased slightly with increase of average pressure. (Author)

  4. A compact membrane-driven diamond anvil cell and cryostat system for nuclear resonant scattering at high pressure and low temperature

    Science.gov (United States)

    Zhao, J. Y.; Bi, W.; Sinogeikin, S.; Hu, M. Y.; Alp, E. E.; Wang, X. C.; Jin, C. Q.; Lin, J. F.

    2017-12-01

    A new miniature panoramic diamond anvil cell (mini-pDAC) as well as a unique gas membrane-driven mechanism is developed and implemented to measure electronic, magnetic, vibrational, and thermodynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the synchrotron Mössbauer spectroscopy (SMS) simultaneously at high pressure (over Mbar) and low temperature (T Advanced Photon Source, for NRIXS and SMS studies. The same instrument can easily be used for other X-ray techniques, such as X-ray radial diffraction, X-ray Raman scattering, X-ray emission spectroscopy, and X-ray inelastic scattering under high pressure and low temperature. In this paper, technical details of the mini-pDAC, membrane engaging mechanism, and the cryostat system are described, and some experimental results are discussed.

  5. EFFECTS OF SINTERING TEMPERATURE ON THE PERFORMANCE OF SrSc0.1Co0.9O3-δOXYGEN SEMIPERMEABLE MEMBRANE

    Directory of Open Access Journals (Sweden)

    P. Zeng

    2015-09-01

    Full Text Available AbstractOur study investigates the influence of sintering temperature on the microstructure (grain size distribution, grain boundary length, electrical conductivity, and oxygen permeation properties of permeation membranes. For this purpose, SrSc0.1Co0.9O3-δ samples with different microstructures were prepared by varying the sintering temperature from 1100 to 1250 ˚C. The average grain sizes were gradually increased, thus the grain boundary lengths decreased with increased sintering temperatures. The influence of the ceramic microstructure on total electrical conductivity was found to be negligible. The oxygen transport properties of the samples were characterized by permeation measurements as a function of temperature in an air/helium oxygen partial pressure gradient. The decrease of the sintering temperature, meaning a decrease of grain size and thus the increase of grain boundary length, leads to an enhanced oxygen permeation flux and a reduced activation energy. This implies that oxygen exchange and transport in the SrSc0.1Co0.9O3-δ membranes occur more rapidly along grain boundaries than in the grain bulk.

  6. Advanced Manufacturing of Intermediate Temperature, Direct Methane Oxidation Membrane Electrode Assemblies for Durable Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation builds on the successes of the Phase I program by integrating our direct oxidation membrane electrode assembly (MEA) into a monolithic solid...

  7. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  8. Evidence that higher CO2 increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    Science.gov (United States)

    Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatia...

  9. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  10. Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning.

    Science.gov (United States)

    Oliveira, Gabriela; Beezer, Anthony E; Hadgraft, Jonathan; Lane, Majella E

    2011-11-28

    The role of solvents in drug transport has not been properly addressed in the literature, despite its well known influence on drug permeation. Previously we have conducted thermodynamic and kinetic analyses to probe the molecular mechanisms of alcohol enhanced permeation. In the present study, the influence of temperature on the partitioning of methyl paraben into silicone membranes is investigated. In line with previous membrane transport studies of methyl paraben in silicone membranes, butanol and heptanol are used as representative alcohols. The results show higher amounts of methyl paraben extracted from the silicone membrane following equilibration with butanol, at all experimental temperatures. This was in line with alcohol uptake data. In fact, a linear correlation (r(2) ∼0.97) was found between the amount of methyl paraben in the silicone membrane and the corresponding alcohol uptake. Calculated "specific" vehicle-membrane partition coefficients for both alcohols were approximately one, suggesting that the effective concentrations of methyl paraben inside and outside the membrane were the same. Thermodynamic analysis of the alcohol-membrane partition coefficients as a function of temperature showed no apparent trend for butanol, with an associated enthalpy change of approximately zero. Conversely, there was a positive trend in the van't Hoff plot for methyl paraben in heptanol, indicative of an exothermic process. Moreover, the partitioning trends of methyl paraben in silicone membranes obtained from membrane transport and equilibrium experiments were not the same. This reflects the fundamental differences between the calculated vehicle-membrane partition coefficients in the two studies. Finally, the findings from membrane transport and equilibrium experiments support a model of alcohol enhanced permeation where high solvent sorption promotes high solute concentrations in the overall volume of the membrane (i.e. K), thus leading to modified solute

  11. Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature.

    Science.gov (United States)

    Zhai, Yong; Chong, Parkson Lee-Gau; Taylor, Leeandrew Jacques-Asa; Erlkamp, Mirko; Grobelny, Sebastian; Czeslik, Claus; Watkins, Erik; Winter, Roland

    2012-03-20

    The polar lipid fraction E (PLFE) is a major tetraether lipid component in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Using differential scanning and pressure perturbation calorimetry as well as ultrasound velocity and density measurements, we have determined the compressibilities and volume fluctuations of PLFE liposomes derived from different cell growth temperatures (T(g) = 68, 76, and 81 °C). The compressibility and volume fluctuation values of PLFE liposomes, which are substantially less than those detected from diester lipid membranes (e.g., DPPC), exhibit small but significant differences with T(g). Among the three T(g)s employed, 76 °C leads to the least compressible and most tightly packed PLFE membranes. This temperature is within the range for optimal cell growth (75-80 °C). It is known that a decrease in T(g) decreases the number of cyclopentane rings in archael tetraether lipids. Thus, our data enable us to present the new view that membrane packing in PLFE liposomes varies with the number of cyclopentane rings in a nonlinear manner, reaching maximal tightness when the tetraether lipids are derived from cells grown at optimal T(g)s. In addition, we have studied the effects of pressure on total layer thickness, d, and neutron scattering length density, ρ(n), of a silicon-D(2)O interface that is covered with a PLFE membrane using neutron reflectometry (NR). At 55 °C, d and ρ(n) are found to be rather insensitive to pressure up to 1800 bar, suggesting minor changes of the thickness of the membrane's hydrophobic core and headgroup orientation upon compression only.

  12. Manufacturing and characterisation of electrode membrane assemblies for low temperature fuel cells; Herstellung und Charakterisierung von Membran-Elektroden-Einheiten fuer Niedertemperatur Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kaz, Till

    2008-08-22

    The high cost for a Polymer electrolyte Fuel Cell (PEFC) System is still a barrier for commercial breakthrough, which cannot be compensated by the advantages of being pollution free, or nearly noiseless. The most effective way of saving costs is to reduce expensive materials, because the material costs only for the Membrane Electrode Assemblies (MEAs) is more than 70% of the total costs of a PEFC Stack. Within the MEA a main part of the costs is due to the catalyst. It is one of the main goals to decrease the catalyst loading by simultaneously increasing the performance or keeping it at least constant. Because in most electrodes only 20-50% of the catalyst in the electrodes is used, enlarging the electrochemical active area is one of the key problems of the PEFC. For being electrochemical active, the catalyst must be reachable for the gases, he must have a good ionic conductivity to the membrane and he must be attached to the Gas Diffusion Layer (GDL) by electron conductivity. In literature often an inferior ionic contact of the catalyst to the membrane is responsible for the low catalyst utilization. In the first part of the work, model electrodes with different kinds of catalysts and different amounts of electrolyte in the electrodes were investigated to explore the interrelationship between platinum and electrolyte content. Three different catalysts, unsupported Pt- black, 60 wt.% Pt carbon-supported and 20 wt.% Pt carbon-supported with an addition of Nafion powder of 0%, 20%, 40%, 60 wt.%, and 80 wt.% were used. The electrodes were prepared by spraying the electrode material with the DLR dry spray technique directly onto the membrane and then rolling them while hot. Because material solutions were not used, the structure of the electrodes are determinable and predictable. Numerous different in- and ex-situ characterization methods like impedance spectroscopy, U-i characteristic, cyclic voltammetry, proton conductivity measurements, half-cell measurements and

  13. Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared three highly conserved histidine boxes, except for GrFAD2.1, which lost the third histidine box in the C-terminal region. In the G. raimondii genome, tandem duplication might have led to the increasing size of the FAD2 cluster in the Omega Desaturase subfamily, whereas segmental duplication appeared to be the dominant mechanism for the expansion of the Sphingolipid and Front-end Desaturase subfamilies. Gene expression analysis showed that seven membrane-bound FAD genes were significantly up-regulated and that five genes were greatly suppressed in G. raimondii leaves exposed to low temperature conditions.

  14. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower...... for oxidant and coolant supply, which reduces the overall size of the stack, power losses, and results in a lower system volume. In the present study, we present unique designs for an open-cathode system which offers uniform temperature distribution with a minimum temperature gradient and a uniform flow...... distribution through each cell. Design studies were carried out to increase power density. An experimental and simulation approach was carried out to design the novel open-cathode system. Two unique parallel serpentine flow designs were developed to yield a low pressure drop and uniform flow distribution, one...

  15. Lamb waves propagation along 3C-SiC/AlN membranes for application in temperature-compensated, high-sensitivity gravimetric sensors.

    Science.gov (United States)

    Caliendo, Cinzia; D'Amico, Arnaldo; Lo Castro, Fabio

    2013-01-02

    The propagation of the fundamental quasi-symmetric Lamb mode S(0) travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S(0) mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes.

  16. Lamb Waves Propagation along 3C-SiC/AlN Membranes for Application in Temperature-Compensated, High-Sensitivity Gravimetric Sensors

    Science.gov (United States)

    Caliendo, Cinzia; D'Amico, Arnaldo; Castro, Fabio Lo

    2013-01-01

    The propagation of the fundamental quasi-symmetric Lamb mode S0 travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S0 mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes. PMID:23282585

  17. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803.

    Science.gov (United States)

    Vigh, L; Los, D A; Horváth, I; Murata, N

    1993-10-01

    One of the well-characterized phenomena associated with the acclimation of organisms to changes in ambient temperature is the regulation of the molecular motion or "fluidity" of membrane lipids via changes in the extent of unsaturation of the fatty acids of membrane lipids. The enzymes responsible for this process when the temperature is decreased are the desaturases, the activities of which are enhanced at low temperature. To examine whether the change in the fluidity of membrane lipids is the first event that signals a change in temperature, we studied the effect of the Pd-catalyzed hydrogenation of membrane lipids on the expression of the desA gene, which is responsible for the desaturation of fatty acids of membrane lipids in the cyanobacterium Synechocystis PCC6803. The Pd-catalyzed hydrogenation of plasma membrane lipids stimulated the expression of the desA gene. We also found that, for unexplained reasons, the hydrogenation was much more specific to a minor phospholipid, phosphatidylglycerol, than to members of other lipid classes. These results suggest that the organism perceives a decrease in the fluidity of plasma membrane lipids when it is exposed to a decrease in temperature.

  18. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    Science.gov (United States)

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from

  19. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane.

    Science.gov (United States)

    Bandara, Wasala M K R T W; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2011-05-01

    In this study, we investigated the efficiency of dissolved methane (D-CH(4)) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH(4) discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH(4) concentration could be reduced from 63 mg COD L(-1) to 15 mg COD L(-1); this, in turn, resulted in an increase in total methane (CH(4)) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH(4) concentration was as high as 104 mg COD L(-1) at 15 °C because of the higher solubility of CH(4) gas in liquid; the average D-CH(4) concentration was reduced to 14 mg COD L(-1) by degasification. Accordingly, total CH(4) recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH(4) concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L(-1)) regardless of the HRT value, the CH(4) discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH(4) concentration could be reduced down to 12 ± 1 mg COD L(-1) by degasification at an HRT of 6.7 h, the CH(4) recovery rate was 1.5 times higher under degasification than under normal operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  1. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Raja Abid

    2013-01-01

    A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell...

  2. Multiplication of Salmonella Enteritidis in egg yolks after inoculation outside, on, and inside vitelline membranes and storage at different temperatures

    Science.gov (United States)

    Prompt refrigeration to restrict bacterial growth is important for reducing egg-borne transmission of Salmonella enterica serovar Enteritidis (SE). The nutrient-rich yolk interior is a relatively infrequent location for initial SE deposition in eggs, but migration across the vitelline membrane can ...

  3. Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures.

    Science.gov (United States)

    Chauhan, R S; Gopinath, S; Razdan, P; Delattre, C; Nirmala, G S; Natarajan, R

    2008-11-01

    Expanded polystyrene is one of the polymers produced in large quantities due to its versatile application in different fields. This polymer is one of the most intractable components in municipal solid waste. Disposal of polymeric material by pyrolysis or catalytic cracking yields valuable hydrocarbon fuels or monomers. Literature reports different types of reactors and arrangements that have uniform temperatures during pyrolysis and catalytic cracking. The present study focuses on reducing the temperature to maximize the quantity of styrene monomer in the liquid product. A bench scale reactor has been developed to recover the styrene monomer and other valuable chemicals. Experiments were carried under partial oxidation and vacuum conditions in the temperature range of 300-500 degrees C. In the pyrolysis optimization studies, the best atmospheric condition was determined to be vacuum, the pyrolysis temperature should be 500 degrees C, yield of liquid product obtained was 91.7% and yield of styrene obtained was 85.5%. In the characterization studies, distillation and IR spectroscopy experiments were carried out. The remaining of the liquid product comprises of benzene, ethyl benzene, and styrene dimers and trimers.

  4. Thermodynamic Studies at Higher Temperatures of the Phase Relationships of Substoichiometric Plutonium and Uranium/Plutonium Oxides

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in non-stoichiometric Pu and U/Pu oxides were determined by thermogravimetric measurements in CO/CO2 mixtures in the temperature range 900-1450°C. A detailed analysis of the thermodynamic data obtained, as well as data previously published...

  5. Cadmium sulfide membranes

    Science.gov (United States)

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  6. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  7. Higher temperature sensitivity for stable than for labile soil organic carbon - Evidence from incubations of long-term bare fallow soils

    DEFF Research Database (Denmark)

    Lefèvre, Romain; Barré, Pierre; Moyano, Fernando E.

    2014-01-01

    The impact of climate change on the stability of soil organic carbon (SOC)remains a major source of uncertainty in predicting future changes in atmospheric CO2 levels. One unsettled issue is whether the mineralization response to temperature depends on SOC mineralization rate. Long-term (>25 years......) bare fallow experiments (LTBF) in which the soil is kept free of any vegetation and organic inputs, and their associated archives of soil samples represent a unique research platform to examine this issue as with increasing duration of fallow, the lability of remaining total SOC decreases. We retrieved....... The apparent activation energy (Ea) of SOC was then calculated for similar loss of CO2 at the different temperatures. The Ea was always higher for samples taken at the end of the bare-fallow period, implying a higher temperature sensitivity of stable C than of labile C. Our results provide strong evidence...

  8. Survival and growth of Salmonella enterica serovar enteritidis in membrane-processed liquid egg white with pH, temperature, and storage conditions as controlling factors.

    Science.gov (United States)

    Mukhopadhyay, Sudarsan; Ukuku, Dike; Phillips, John G; Juneja, Vijay K

    2012-07-01

    Processing temperature and pH are known to influence the lethality and cell injury in many microbial interventions. A study was undertaken to determine the effects of variations in solution pH and process temperature on the removal and growth of Salmonella enterica serovar Enteritidis in liquid egg white (LEW) by microfiltration (MF) membrane process. The effects of various storage conditions on the growth of Salmonella in membrane-separated LEW were evaluated. Pretreated and pH-adjusted (pH 6 to pH 9) LEW was inoculated with a five-strain composite of S. enterica serovar Enteritidis at ca. 7 log CFU/ml, microfiltered at 25 or 40°C, and stored at 4 or 10°C. Temperature had a greater influence on Salmonella reduction than did pH. The maximum reduction of Salmonella and background microflora in LEW by MF was observed at 40°C and pH 8 and 9. However, the influence of temperature on permeate flow was less than that of pH. The mean permeate flow increased by 180% at 25°C as the pH decreased from 9 to 6, while flow increased merely by 18% at pH 6 as temperature increased from 25 to 40°C. Salmonella populations in processed LEW at 4°C storage remained quite stable (0.01 to 0.55 log CFU/ml), irrespective of MF experimental conditions. At 10°C the population was greater, but no major outgrowth was observed. Findings from this study would be advantageous to liquid egg processing industries.

  9. Effect of different surface treatments on the stability of stainless steels for use as bipolar plates in low and high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.; Schmidt, K. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Wolfsburg (Germany); Tuebke, J.; Cremers, C. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    The stability of different stainless steels against corrosion under simulated low and high temperature proton exchange membrane fuel cell (PEMFC) operating conditions was studied. These investigations showed a moderate corrosion resistance for a couple of steels under LT-PEMFC conditions. However, for the HT-PEMFC conditions all specimens except one exhibit visible corrosion traces. With regards to their corrosion resistance after different surface treatments results show a minor improvement in corrosion resistance after the electro polishing process for most of the tested stainless steel samples. (orig.)

  10. Development and characterization of proton conductive membranes and membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Jiang, Ruichun

    Polymer electrolyte membrane fuel cells (PEMFCs), including hydrogen fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), are considered as attractive electrical power sources. However, there are some technical obstacles that impede the commercialization of PEMFCs. For instance, in H 2-PEMFCs, carbon monoxide (CO) poisoning of the anode catalyst causes serious performance loss; in DMFCs, methanol crossover through the membrane reduces the overall fuel cell efficiency. This work focused on: (1) developing high performance membrane electrode assemblies (MEAs) and investigating their behavior at higher temperature H2-PEMFC with H2+CO as the fuel; (2) improving DMFCs efficiency by preparing low methanol crossover/good proton conductivity membranes based on NafionRTM matrix; (3) synthesizing and modifying low cost sulfonated hydrocarbon (SPEEK) membranes for both H2-PEMFCs and DMFCs applications. High performance membrane electrode assemblies (MEAs) with composite NafionRTM-TeflonRTM-Zr(HPO 4)2 membranes were prepared, optimized and characterized at higher temperature (> 100°C)/lower relative humidity (oxidation mechanism of H2/CO in higher temperature PEMFC was investigated and simulated. Two type of membranes based on NafionRTM matrix were prepared: silica/NafionRTM membrane and palladium impregnated NafionRTM (Pd-NafionRTM) membrane. The composite silica/NafionRTM membrane was developed by in-situ sol-gel reaction followed by solution casting, while the Pd-NafionRTM was fabricated via a supercritical fluid CO2 (scCO 2) route. Reduced methanol crossover and enhanced efficiency was observed by applying each of the two membranes to DMFCs. In addition, the research demonstrated that scCO2 is a promising technique for modifying membranes or depositing nano-particle electrocatalysts onto electrolyte. Sulfonated poly(ether ether ketone) (SPEEK) was synthesized by a sulfonation reaction using poly(ether ether ketone) (PEEK). Multilayer structure SPEEK membranes with

  11. Impairment of Barrier Properties of Erythrocyte Membranes Caused by Low Temperatures is a Result of Disorganization of Hemoglobin Supramolecular Structure.

    Science.gov (United States)

    Gulevskvy, A K; Repin, N V; Schenvavsky, I I

    The antecedence of impairment of plasmatic membrane structure and functions forms the basis of the dominative concept about mechanisms of cell cryoinjuries. A role of alterations of hemoglobin supramolecular structure in erythrocytes remains unclear. Comparison of continuity of membranes of native erythrocytes and resealed ghosts after freeze-thawing with a cryoprotectant at a low concentration (4%). Cryoresistance of native erythrocytes and resealed ghosts with and without low concentrations of cryoprotectants (4% glycerol) was compared according to egress of the following markers: hemoglobin, 14С-sucrose and K+ as well as by scanning electron microscopy. It was found that resealed erythrocyte ghosts, where hemoglobin content was 4-5 times lower than in erythrocytes, were much more cryoresistant than native erythrocytes, which was especially noticeable when a low concentration of cryoprotectant (4% glycerol) was used. These data confirm an earlier proposed hypothesis on the role of supramolecular hemoglobin structure in cryoinjury mechanisms of erythrocytes.

  12. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C

    2004-01-01

    by the extraction of cholesterol, an effect not observed upon extraction of the surfactant proteins. Furthermore, the spreading properties of the native surfactant material at the air-liquid interface were also greatly affected by cholesterol extraction, suggesting a connection between the observed lateral...... part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where...... of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected...

  13. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  14. Volatile metabolites of higher plant crops as a photosynthesizing life support system component under temperature stress at different light intensities

    Science.gov (United States)

    Gitelson, I. I.; Tikhomirov, A. A.; Parshina, O. V.; Ushakova, S. A.; Kalacheva, G. S.

    The effect of elevated temperatures of 35 and 45°C (at the intensities of photosynthetically active radiation 322, 690 and 1104 μmol·m -2·s -1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat ( Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids-α-pinene, Δ3 carene, limonene, benzene, α-and trans-caryophyllene, α- and γ-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 μmol·m -2·s -1 heat resistance of photosynthesis and respiration increased at 35°C and decreased at 45°C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 μmol·m -2·s -1 and the smallest under 1104 μmol·m -2·s -1, at 35°C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revaled the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.

  15. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  16. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Science.gov (United States)

    Mostafa, M. G.; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip

    2017-01-01

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability. PMID:28961203

  17. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  18. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  19. Hydrogen Purification Using Natural Zeolite Membranes

    Science.gov (United States)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  20. Novel Approaches to Immobilized Heteropoly Acid Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Andrew M; Horan, James L; Aieta, Niccolo V; Sachdeva, Sonny; Kuo, Mei-Chen; Ren, Hui; Lingutla, Anitha; Emery, Michael; Haugen, Gregory M; Yandrasits, Michael A; Sharma, Neeraj; Coggio, William D; Hamrock, Steven J; Frey, Matthew H

    2012-05-20

    Original research was carried out at the CSM and the 3M Company from March 2007 through September 2011. The research was aimed at developing new to the world proton electrolyte materials for use in hydrogen fuel cells, in particular with high proton conductivity under hot and dry conditions (>100mS/cm at 120°C and 50%RH). Broadly stated, the research at 3M and between 3M and CSM that led to new materials took place in two phases: In the first phase, hydrocarbon membranes that could be formed by photopolymerization of monomer mixtures were developed for the purpose of determining the technical feasibility of achieving the program's Go/No-Go decision conductivity target of >100mS/cm at 120°C and 50%RH. In the second phase, attempts were made to extend the achieved conductivity level to fluorinated material systems with the expectation that durability and stability would be improved (over the hydrocarbon material). Highlights included: Multiple lots of an HPA-immobilized photocurable terpolymer derived from di-vinyl-silicotungstic acid (85%), n-butyl acrylate, and hexanediol diacrylate were prepared at 3M and characterized at 3M to exhibit an initial conductivity of 107mS/cm at 120°C and 47%RH (PolyPOM85v) using a Bekktech LLC sample fixture and TestEquity oven. Later independent testing by Bekktech LLC, using a different preheating protocol, on the same material, yielded a conductivity value of approximately 20mS/cm at 120°C and 50%RH. The difference in measured values is likely to have been the result of an instability of properties for the material or a difference in the measurement method. A dispersed catalyst fuel cell was fabricated and tested using a 150¼m thick HPA-based photocurable membrane (above, PolyPOM75v), exhibiting a current density of greater than 300mA/cm2 at 0.5V (H2/Air 800/1800sccm 70°C/75%RH ambient outlet pressure). Multiple lots of a co-polymer based on poly-trifluorovinylether (TFVE) derived HPA were synthesized and fabricated into

  1. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance.

    Science.gov (United States)

    Snider, John L; Choinski, John S; Wise, Robert R

    2009-05-01

    We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.

  2. Amoxicillin Separation from Pharmaceutical Wastewater by High Permeability Polysulfone Nanofiltration Membrane

    Directory of Open Access Journals (Sweden)

    Reza Derakhsheshpoor

    2013-06-01

    Full Text Available In this study, high permeability flat sheet polysulfone nanofiltration membranes were prepared for amoxicillin (AMX recovery from pharmaceutical wastewater. Membrane fabrication includes two steps: raw ultrafiltration membrane synthesis by phase inversion method and nanaofiltration membrane synthesis by surface photopolymerization. Raw ultrafiltration membranes were synthesized using different molecular weights of polyethylene glycol (PEG as pore former and different coagulation bath temperatures (CBTs. The synthesized ultrafiltration membranes were modified using UV-assisted polymerization technique and their performance in the separation of AMX at different pHs, were studied. The results showed that the more irradiation time, the smaller surface pore size. Moreover, the membranes made with higher molecular weight of PEG and coagulation bath temperatures were more susceptible for UV-modification at these conditions; fabricated membranes had higher flux as well as relatively high AMX separation. Moreover, pH enhancement increased AMX rejection by 85%. The effect of irradiation on membrane surface morphology was studied by SEM surface images and the morphological effects of pore former and coagulation bath temperatures on membrane structure were confirmed by SEM cross section images. A fairly comprehensive discussion about the effects of PEG, coagulation bath temperature and irradiation time on membrane structure and AMX recovery performance was represented in this study.

  3. Pyrolysis of Lantana camara and Mimosa pigra: Influences of temperature, other process parameters and incondensable gas evolution on char yield and higher heating value.

    Science.gov (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2017-11-01

    Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg(-1) (525°C) and 31.01MJkg(-1) (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg(-1) for LC and 31.61MJkg(-1) for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterisation of perovskite-type high-temperature membranes used for oxygen supply in fossil fuelled power plant processes; Charakterisierung perowskitischer Hochtemperaturmembranen zur Sauerstoffbereitstellung fuer fossil gefeuerte Kraftwerksprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Moebius, Sigrid Annett

    2010-03-12

    In this thesis thermochemical properties of mixed conducting perovskite-type materials were investigated. Those materials are assumed to be applicable as gas separation membranes in the oxyfuel process. Here, the materials are aimed to produce the required oxygen for the combustion more energy-efficient than using cryogenic air separation. High-temperature materials which are applicable for this purpose must be gastight and should exhibit a high oxygen permeation rate and a preferably low thermal expansion coefficient. Moreover, the materials need to be long-term stable under power plant relevant conditions. The aim of this work is a better understanding of the material behaviour. Furthermore, on the basis of the results it should be possible to draw conclusions concerning the suitability of the material for application in oxyfuel power plant processes. Therefor, the influence of the chemical composition (doping elements and stoichiometry) of the perovskites, the temperature and the oxygen content in the ambient atmosphere on the thermochemical properties are studied systematically. In the framework of this thesis it could be stated that the thermochemical behaviour of prospective membrane materials strongly depends on the above mentioned parameters. In addition, the degradation behaviour (thermochemical stability) of the materials was investigated. The degradation behaviour influences the suitability of the material to be used in oxyfuel power plant processes. Here, the influence of the chemical composition of the perovskites, the temperature and the CO{sub 2}-concentration in dry and humid atmospheres was also studied. On the basis of the results it could be stated that the thermochemical stability strongly depends on the surrounding atmosphere and on the chemical composition of the perovskites. (orig.)

  5. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  6. Development and application of new membranes at high temperatures in order to get hydrogen from fossil fuel. Final report. Entwicklung und Einsatz neuer Membranen bei hohen Temperaturen zur Wasserstoffgewinnung aus fossilen Energietraegern. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, F.; Luecke, L.; Oertel, M.; Pavlidis, S.; Schmitz, J.

    1990-06-01

    The use of membranes in dehydration reactions allows hydrogen to be extracted in one process step; at the same time the yield from the reactions is increased by the product extraction. Metallic membranes of titanium/nickel and coated vanadium as well as ceramic membranes have been developed on the basis of separation layers of aluminium oxide and zeolites. Whereas the permeation rates through TiNi are around one magnitude below those of palladium, the figures for vanadium are equal to, and in some cases even exceed those of Pd. When ceramic membranes are used no high-purity hydrogen is produced, but rather the feed gas is enriched with H{sub 1} Separation factors for H{sub 1}/N{sub 2} of between 2 and 3 are achieved with {gamma}-Al{sub 2}O{sub 3} membranes, and between 3 and 6 with zeolite membranes. The use of metal membranes in a steam reforming plant results in increases in the yield of between 10 and 45% depending on the reaction pressure. The service lives of the membrane modules developed when used in a test plant are currently around 2500 hours. The calculations carried out parallel to this are a good reflection of the test results for commercial plants without membranes and laboratory system with integrated membranes. An economic appraisal has shown that the hydrogen production costs in a conventional steam reforming plant are around 5% lower than those of a system using membranes; the relationship does, however, change in favour of the steam reformer with integrated membranes if high temperatures are used as a source of heat. (orig.) With 61 refs., 16 tabs., 55 figs.

  7. Impact of the 3 °C temperature rise on bacterial growth and carbon transfer towards higher trophic levels: Empirical models for the Adriatic Sea

    Science.gov (United States)

    Šolić, Mladen; Krstulović, Nada; Šantić, Danijela; Šestanović, Stefanija; Kušpilić, Grozdan; Bojanić, Natalia; Ordulj, Marin; Jozić, Slaven; Vrdoljak, Ana

    2017-09-01

    The Mediterranean Sea (including the Adriatic Sea) has been identified as a 'hotspot' for climate change, with the prediction of the increase in water temperature of 2-4 °C over the next few decades. Being mainly oligotrophic, and strongly phosphorus limited, the Adriatic Sea is characterized by the important role of the microbial food web in production and transfer of biomass and energy towards higher trophic levels. We hypothesized that predicted 3 °C temperature rise in the near future might cause an increase of bacterial production and bacterial losses to grazers, which could significantly enlarge the trophic base for metazoans. This empirical study is based on a combined 'space-for-time substitution' analysis (which is performed on 3583 data sets) and on an experimental approach (36 in situ grazing experiments performed at different temperatures). It showed that the predicted 3 °C temperature increase (which is a result of global warming) in the near future could cause a significant increase in bacterial growth at temperatures lower than 16 °C (during the colder winter-spring period, as well as in the deeper layers). The effect of temperature on bacterial growth could be additionally doubled in conditions without phosphorus limitation. Furthermore, a 3 °C increase in temperature could double the grazing on bacteria by heterotrophic nanoflagellate (HNF) and ciliate predators and it could increase the proportion of bacterial production transferred to the metazoan food web by 42%. Therefore, it is expected that global warming may further strengthen the role of the microbial food web in a carbon cycle in the Adriatic Sea.

  8. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    . Given the current challenges for production and storage of the H2, it is more practical to use a liquid fuel such as methanol as the energy carrier. However, the reformate gas produced from methanol contains impurities such as CO, CO2 and unconverted methanol. For stationary applications, especially...... of the HT-PEM fuel cell are studied in the current work. Both in-situ and ex-situ characterization techniques are conducted to gain insight into the degradation mechanisms of the HT-PEM fuel cell under these operating conditions. The experimental results in this work suggest that the presence of methanol......The Polymer electrolyte membrane (PEM) fuel cells are promising fuel cell technology which can convert the chemical energy in for example hydrogen into electricity efficiently and environmentally friendly. In this work, some degradation issues of the HT-PEM fuel cell are experimentally investigated...

  9. Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-CBT temperature proxy for climate reconstruction

    NARCIS (Netherlands)

    Weijers, J.W.H.; Steinmann, P.; Hopmans, E.C.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Peatlands are widespread and important natural archives of environmental change. Here we explore the potential of the recently introduced MBT-CBT proxy (methylation index and cyclisation ratio of branched tetraethers) to estimate past annual mean air temperature (MAT) based on the distribution of

  10. Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-CBT temperature proxy for climate reconstruction

    NARCIS (Netherlands)

    Weijers, J.W.H.; Steinmann, P.; Hopmans, E.C.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Peatlands are widespread and important natural archives of environmental change. Here we explore the potential of the recently introduced MBT–CBT proxy (methylation index and cyclisation ratio of branched tetraethers) to estimate past annual mean air temperature (MAT) based on the distribution of

  11. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneousl...

  12. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  13. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  14. Strategy towards cost-effective low-temperature solid oxide fuel cells: A mixed-conductive membrane comprised of natural minerals and perovskite oxide

    Science.gov (United States)

    Xia, Chen; Cai, Yixiao; Wang, Baoyuan; Afzal, Muhammad; Zhang, Wei; Soltaninazarlou, Aslan; Zhu, Bin

    2017-02-01

    Our previous work has revealed the feasibility of natural hematite as an electrolyte material for solid oxide fuel cells (SOFCs), tailoring SOFCs to be a more economically competitive energy conversion technology. In the present work, with the aim of exploring more practical uses of natural minerals, a novel composite hematite/LaCePrOx-La0.6Sr0.4Co0.2Fe0.8O3-δ (hematite/LCP-LSCF) has been developed from natural hematite ore, rare-earth mineral LaCePr-carbonate, and perovskite oxide LSCF as a functional membrane in SOFCs. The heterogeneity, nanostructure and mixed-conductive property of the composite were investigated. The results showed that the hematite/LCP-30 wt% LSCF composite possessed balanced ionic and electronic conductivities, with an ionic conductivity as high as 0.153 S cm-1 at 600 °C. The as-designed fuel cell using the hematite/LCP-LSCF membrane exhibited encouraging power outputs of 303 - 662 mW cm-2 at 500 - 600 °C. These findings show that the hematite/LCP-LSCF based fuel cell is a viable strategy for developing cost-effective and practical low-temperature SOFCs (LTSOFCs).

  15. Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Chia-Chieh Ko

    2017-04-01

    Full Text Available This study develops a micro-structured hydrophobic alumina hollow fiber with a high permeate flux of 60 Lm−2h−1 and salt rejection over 99.9% in a vacuum membrane distillation process. The fiber is fabricated by phase inversion and sintering, and then modified with fluoroalkylsilanes to render it hydrophobic. The influence of the sintering temperature and feeding temperature in membrane distillation (MD on the characteristics of the fiber and MD performance are investigated. The vacuum membrane distillation uses 3.5 wt % NaCl aqueous solution at 70 °C at 0.03 bar. The permeate flux of 60 Lm−2h−1 is the highest, compared with reported data and is higher than that for polymeric hollow fiber membranes.

  16. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles

    Science.gov (United States)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef

    2016-04-01

    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  17. Cooled membrane for high sensitivity gas sampling.

    Science.gov (United States)

    Jiang, Ruifen; Pawliszyn, Janusz

    2014-04-18

    A novel sample preparation method that combines the advantages of high surface area geometry and cold surface effect was proposed to achieve high sensitivity gas sampling. To accomplish this goal, a device that enables the membrane to be cooled down was developed for sampling, and a gas chromatograph-mass spectrometer was used for separation and quantification analysis. Method development included investigation of the effect of membrane temperature, membrane size, gas flow rate and humidity. Results showed that high sensitivity for equilibrium sampling, such as limonene sampling in the current study could be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity could be obtained by using thinner membranes with a larger surface and/or a higher sampling flow rate. In addition, humidity showed no significant influence on extraction efficiency, due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) was found, and the reproducibility of the developed cooled membrane gas sampling method was evaluated. Results showed that LODs with a membrane diameter of 19mm at room temperature sampling were 9.2ng/L, 0.12ng/L, 0.10ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility revealed RSD% lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooled membrane device could serve as an alternative powerful tool for future gas sampling. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water

    KAUST Repository

    Xu, Jingli

    2016-04-07

    In this study, ten different commercially available PTFE, PP and PVDF membranes were tested in desalination of highly saline water by air gap membrane distillation (AGMD). Process performance was investigated under different operating parameters, such as feed temperatures, feed flow velocities and salt concentrations reaching 120 g/L, and different membrane characteristics, such as membrane material, thickness, pore size and support layer, using a locally designed and fabricatd AGMD module and spacer. Results showed that increasing feed temperature increases permeate flux regardless of the feed concentration. However, feed flow velocity does not significantly affect the flux, especially at low feed temperatures. The PP membrane showed a better performance than the PVDF and PTFE membranes. Permeate flux decreases with the increase of salt concentration of feed solution, especially at higher concentrations above 90 g/L. The existence of membrane support layer led to a slight decrease of permeate flux. Membranes with pore sizes of 0.2 and 0.45 μm gave the best performance. Smaller pore size led to lower flux and larger pore size led to pore wetting due to lower LEP values. The effect of concentration polarization and temperature polarization has also been studied and compared.

  19. Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

    KAUST Repository

    Alsaery, Salim A.

    2017-05-01

    With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature

  20. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells...... methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%....

  1. Measuring device for synchrotron X-ray imaging and first results of high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kuhn, R.; Scholta, J.; Krüger, Ph.; Hartnig, Ch.; Lehnert, W.; Arlt, T.; Manke, I.

    In this paper, a measurement cell for recording synchrotron X-ray images of low and high temperature PEM fuel cells is described. The experimental setup allows for recording of cross-sectional images, as well as for radiograms in through-plane direction, with limited signal degradation. First results on H 3PO 4 concentration and distribution as a function of the operating conditions are presented. This basic cell design is optimized for liquid water detection. To visualize water in an operating cell the energy of the synchrotron X-ray beam has been chosen in a range between 7 and 30 keV where high resolution images can be obtained. The cell design is described in detail, and references to results obtained with LT-PEMFC applications focusing on liquid water evolution are given. For HT-PEMFC applications, the method of synchrotron X-ray imaging can provide an insight on electrolyte concentration and distribution. These investigations show that significant information can be collected on electrolyte distribution and concentration as a function of operating parameters such as temperature, media utilization and humidification degree. First results for the dependence of electrolyte distribution on operating conditions are presented.

  2. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael

    2009-05-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  3. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  4. Fabrication of porous chitosan membranes composed of nanofibers by low temperature thermally induced phase separation, and their adsorption behavior for Cu2.

    Science.gov (United States)

    Qin, Wang; Li, Jixiang; Tu, Jianbing; Yang, Hongqin; Chen, Qinhui; Liu, Haiqing

    2017-12-15

    Low temperature thermally induced phase separation (LT-TIPS) of chitosan solution was developed to fabricate porous chitosan membranes (p-CSMs), which were composed of short nanofibers with diameter of 40-60nm. Compared to the conventional acetic acid/water solvent, a mixed solvent of acetic acid/ethanol/water was used to prepare chitosan solution. The effect of solvent composition, quenching temperature and time, and coagulant on the p-CSM morphology were systematically explored. The optimum conditions for fabricating p-CSM was to quench 2% chitosan/2% acetic acid in water/ethanol (70/30) at -20°C for 12h, followed by coagulating in 1% Na2CO3 in water/ethanol (50/50). The p-CSM was an effective adsorbent for Cu2+ and had a Langmuir adsorption capacity of 2.57mmol/g, which is close to the adsorption capacity of natural and electrospun chitosan nanofibers. The p-CSM maintained 90% adsorption efficiency for Cu2+ even after six cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell

    Science.gov (United States)

    Kazdal, Timur J.; Lang, Sebastian; Kühl, Frank; Hampe, Manfred J.

    2014-03-01

    The fuel cell technology is a key element for the hydrogen energy economy and therefore crucial for sustainable development. High temperature proton exchange membrane (HT-PEM) fuel cells (FC) can be operated with reformate gas and thus represent an important bridging technology for the energy transition to a renewable energy based system. HT-PEM FCs based on phosphoric acid (PA) are still subject to intense research, investigating the electrolyte behaviour. By enhancing state of the art 2D FEM simulations of FCs with the vapour liquid equilibrium of water-phosphoric acid and evaporation kinetics, a model was created in which the local concentration of PA can be calculated. Knowledge of the concentration field yields the basis for calculating the locally varying ionic conductivity and other physical properties. By describing the volume expansion behaviour of PA it was possible to predict the catalyst particle deactivation due to the swelling of PA. The in situ concentration predicted by the simulation ranges from 96 to 111 wt%. The model was validated using measured data of a single cell design for different temperatures and pressures. By varying the PA content flooding of the simulated fuel cell could be observed and was linked to humidification effects.

  6. Porous ceramic membranes

    OpenAIRE

    Biesheuvel, P. M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined with micro-electronic devices. Ceramic membranes have a large potential over their polymer counterparts for applications at high temperature, pressure and in aggressive environments. Ceramic membra...

  7. Dry Reforming of Methane Using a Nickel Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Jonas M. Leimert

    2017-12-01

    Full Text Available Dry reforming is a very interesting process for synthesis gas generation from CH 4 and CO 2 but suffers from low hydrogen yields due to the reverse water–gas shift reaction (WGS. For this reason, membranes are often used for hydrogen separation, which in turn leads to coke formation at the process temperatures suitable for the membranes. To avoid these problems, this work shows the possibility of using nickel self-supported membranes for hydrogen separation at a temperature of 800 ∘ C. The higher temperature effectively suppresses coke formation. The paper features the analysis of the dry reforming reaction in a nickel membrane reactor without additional catalyst. The measurement campaign targeted coke formation and conversion of the methane feedstock. The nickel approximately 50% without hydrogen separation. The hydrogen removal led to an increase in methane conversion to 60–90%.

  8. Tolerance of chufa (Cyperus esculentus L.) plants, representing the higher plant compartment in bioregenerative life support systems, to super-optimal air temperatures

    Science.gov (United States)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2013-01-01

    Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop's mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m-2 s-1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m-2 s-1 and 1150 μmol m-2 s-1. The exposure to the damaging air temperature for 44 h at 690 μmol m-2 s-1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m-2 s-1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m-2 s-1 PAR, respiration rate was higher than photosynthesis rate, but after 3-4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure

  9. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  10. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    Science.gov (United States)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  11. Characterization of direct methanol fuel cell (DMFC) applications with H{sub 2}SO{sub 4} modified chitosan membrane

    Energy Technology Data Exchange (ETDEWEB)

    Osifo, Peter O.; Masala, Aluwani [Department of Chemical Engineering, Vaal University of Technology, Andries Potgieter Bolevald, P/Bag X021, Vanderbijlpark 1900, Gauteng (South Africa)

    2010-08-01

    Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H{sub 2}SO{sub 4}. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 C whereas Nafion 117 membranes were stable to 320 C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm{sup -1} than Chs membranes of 204 s cm{sup -1}. The proton fluxes across the membranes were 2.73 mol cm{sup -2} s{sup -1} for Chs- and 1.12 mol cm{sup -2} s{sup -1} Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 x 10{sup -6} cm{sup 2} s{sup -1} for Chs membranes and 3.9 x 10{sup -6} cm{sup 2} s{sup -1} for Nafion 117 membranes at 20 C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm{sup -2} was 2.7 times higher than in the case of Chs MEA. (author)

  12. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  13. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  14. Sulfate influx on band 3 protein of equine erythrocyte membrane (Equus caballus) using different experimental temperatures and buffer solutions.

    Science.gov (United States)

    Casella, S; Piccione, D; Ielati, S; Bocchino, E G; Piccione, G

    2013-06-01

    The aim of this study was to assess the anion transport in equine erythrocytes through the measurement of the sulfate uptake operating from band 3 using different experimental temperatures and buffer solutions. Blood samples of six clinically healthy horses were collected via jugular vein puncture, and an emochrome-citometric examination was performed. The blood was divided into four aliquots and by centrifugation and aspiration the plasma and buffy coat were carefully discarded. The red blood cells were washed with an isosmotic medium and centrifuged. The obtained cell suspensions were incubated with two different experimental buffer solutions (buffer A: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM glucose; and buffer B: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM MgCl2) in a water bath for 1 h at 25 °C and 37 °C. Normal erythrocytes, suspended at 3% hematocrit, were used to measure the SO4= influx by absorption spectrophotometry at 425 nm wavelength. Unpaired Student's t-test showed a statistically significant decrease (P buffer solutions. Comparing the buffer A with buffer B unpaired Student's t-test showed statistically lower values (P < 0.0001) for A solution versus B solution both at 25 °C and at 37 °C. The greater inhibition of SO4 (=) influx measured in equine erythrocytes indicates the increased formation of the sulfydryl bonds in band 3 and the modulation of the sulfydryl groups, culminating in the conformational changes in band 3. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.

    Science.gov (United States)

    Yan, Shuiping; Zhao, Shuaifei; Wardhaugh, Leigh; Feron, Paul H M

    2015-02-17

    The gas-liquid membrane contactor generally used as a nonselective gas absorption enhancement device is innovatively proposed as a condenser for heat recovery in liquid-absorbent-based carbon capture. The membrane condenser is used as a heat exchanger to recover the latent heat of the exiting vapor from the desorber, and it can help achieve significant energy savings when proper membranes with high heat-transfer coefficients are used. Theoretical thermodynamic analysis of mass and heat transfer in the membrane condensation system shows that heat recovery increases dramatically as inlet gas temperature rises and outlet gas temperature falls. The optimal split mass flow rate is determined by the inlet gas temperature and the overall heat-transfer coefficient in the condensation system. The required membrane area is also strongly dependent on the overall heat-transfer coefficient, particularly at higher inlet gas temperatures. Mass transfer across the membrane has an insignificant effect on heat transfer and heat recovery, suggesting that membrane wetting may not be an issue when a membrane condenser is used for heat recovery. Our analysis provides important insights into the energy recovery performance of the membrane condensation system as well as selection of operational parameters, such as split mass flow rate and membrane area, thickness, and thermal conductivity.

  16. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  17. Effects of electrolytes on ion transport in Chitosan membranes

    Science.gov (United States)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  18. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  19. Pengaruh Rasio Aditif Polietilen Glikol Terhadap Selulosa Asetat pada Pembuatan Membran Selulosa Asetat Secara Inversi Fasa

    Directory of Open Access Journals (Sweden)

    Cut Meurah Rosnelly

    2012-06-01

    Full Text Available Preparation of cellulose acetate (CA membranes with ultrafiltration process had be done by phase inversion using dimethylformamide (DMF as solvent. Poliethylene glycol (PEG 1450 Da, as additive, was added with 10, 20, and 30% rasio of celluose acetate. The thin film of polymer solution was immersed on water bath coagulation at room temperature. The analysis of membrane morphology structure by Scanning Electron Microscope (SEM JSM – 5310 LV, Jeol-Japan showed the asymetric of membrane. The addition of PEG can improve the performance of the membrane. In resulting flux is higher than membranes without PEG. Increasing of PEG/CA ratio resulted in the higher flux with lower of rejection. The higher fluxes of water, dextran, and BSA are 146, 114, and 96 L/m2hr with 52,938 and 75,716% rejection for dextran and BSA. Keywords: cellulose acetate membranes, polyethylene glycol, ultrafiltration

  20. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes

    Science.gov (United States)

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  1. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  2. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo [Massachusetts Institute of Technology, Department of Chemistry (United States); Sergeyev, Ivan V. [Bruker Biospin (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2016-03-15

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes.

  3. Applications of membrane computing

    CERN Document Server

    Ciobanu, Gabriel; Păun, Gheorghe

    2006-01-01

    Membrane computing is a branch of natural computing which investigates computing models abstracted from the structure and functioning of living cells and from their interactions in tissues or higher-order biological structures. The models considered, called membrane systems (P systems), are parallel, distributed computing models, processing multisets of symbols in cell-like compartmental architectures. In many applications membrane systems have considerable advantages - among these are their inherently discrete nature, parallelism, transparency, scalability and nondeterminism. In dedicated cha

  4. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  5. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  6. Thermophilic membrane bioreactors: A review.

    Science.gov (United States)

    Duncan, Josh; Bokhary, Alnour; Fatehi, Pedram; Kong, Fangong; Lin, Hongjun; Liao, Baoqiang

    2017-11-01

    This study undertakes a state-of-the-art review on thermophilic membrane bioreactors (ThMBRs). Thermophilic aerobic membrane bioreactors (ThAeMBR) and thermophilic anaerobic membrane bioreactors (ThAnMBR) have been widely tested for various high-temperature industrial wastewater treatments at lab- and pilot-scale studies and full-scale applications. The biological and membrane performances of the ThAeMBRs and ThAnMBRs could be better, comparable or poorer, as compared to the mesophilic ones. In general, sludge yield was much lower, biodegradation kinetic was higher, and microbial community was less diversity in the ThAeMBR and ThAnMBR systems. The results from the literature show that ThMBR technology has demonstrated many advantages and is a promising technology for industrial wastewater treatment and sludge digestion. Furthermore, challenges and opportunities of various ThMBRs for industrial applications are identified and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity

    Science.gov (United States)

    Kura, Chiharu; Kunisada, Yuji; Tsuji, Etsushi; Zhu, Chunyu; Habazaki, Hiroki; Nagata, Shinji; Müller, Michael P.; De Souza, Roger A.; Aoki, Yoshitaka

    2017-10-01

    The production of pure hydrogen for use in energy applications and related industries often relies on the permeation of hydrogen through palladium-based membranes. However, the scarcity of Pd reserves necessitates the development of affordable alternatives with high hydrogen permeability. Here we report room-temperature hydrogen permeability of titanium nitrides (widely used as tough and inert coating materials) enabled by mixed hydride ion-electron conductivity. Combined spectroscopic, permeability and microgravimetric measurements reveal that nanocrystalline TiNx membranes feature enhanced grain-boundary diffusion of hydride anions associated with interfacial Ti cations on nanograins. Since the corresponding activation energies are very low (kJ mol-1), these membranes yield a considerably higher room-temperature hydrogen flux than Pd membranes of equivalent thickness. Overall, the current study establishes general guidelines for developing hydride ion transport membranes based on a simple transition metal nitride for hydrogen purification, membrane reactors and other applications.

  8. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  9. Membrane tension and membrane fusion

    OpenAIRE

    Kozlov, Michael M.; Chernomordik, Leonid V.

    2015-01-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  10. Ethylene Production by ODHE in Catalytic Modified Ba0.5Sr0.5Co0.8Fe0.2O3 Membrane Reactors

    OpenAIRE

    Lobera González, Maria Pilar; Escolástico Rozalén, Sonia; García Fayos, Julio; Serra Alfaro, José Manuel

    2012-01-01

    [EN] Process intensification by the integration of membranes and high-temperature reactors offers several advantages with regard to conventional process schemes, that is, energy saving, safe operation, reduced plant/unit size, and higher process performance, for example, higher productivity, catalytic activity, selectivity, or stability. We present the study of oxidative dehydrogenation of ethane at 850 8C on a catalytic membrane reactor based on a mixed ionic¿electronic conducting membrane....

  11. HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shanfu [School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore (Singapore); School of Chemistry and the Environment, Beihang University Beijing (China); Wang, Deli; Jiang, San Ping; Lu, Jinlin; Zeng, Jie [School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore (Singapore); Xiang, Yan [School of Chemistry and the Environment, Beihang University Beijing (China)

    2010-03-05

    A novel inorganic proton-conducting membrane based on highly ordered MCM-41 mesoporous silica with phosphotungstic acid (HPW) nanoparticles assembled within is successfully fabricated by a vacuum-assisted impregnation method (VIM). The results of HPW impregnation by VIM and a conventional method (CIM) are compared, and the performance of the membranes in fuel cells is reported. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. Superconducting transition temperature of MgB_2 H_0.03 is higher than that of MgB_2

    OpenAIRE

    Flambaum, V. V.; Stewart, G. A.; Russell, G J; Horvat, J.; Dou, S.X

    2001-01-01

    Hydrogenation of MgB_2 powder has lead to an increase in the superconducting temperature, as determined by ac susceptibility. Applied dc fields reduce the transition temperature in the same ratio as for the pure powder.

  14. Browning of subcutaneous fat and higher surface temperature in response to phenotype selection for advanced endurance exercise performance in male DUhTP mice.

    Science.gov (United States)

    Brenmoehl, J; Ohde, D; Albrecht, E; Walz, C; Tuchscherer, A; Hoeflich, A

    2017-02-01

    For the assessment of genetic or conditional factors of fat cell browning, novel and polygenic animal models are required. Therefore, the long-term selected polygenic mouse line DUhTP originally established in Dummerstorf for high treadmill performance is used. DUhTP mice are characterized by increased fat accumulation in the sedentary condition and elevated fat mobilization during mild voluntary physical activity. In the present study, the phenotype of fat cell browning of subcutaneous fat and a potential effect on oral glucose tolerance, an indicator of metabolic health, were addressed in DUhTP mice. Analysis of peripheral fat pads revealed increased brite (brown-in-white) subcutaneous adipose tissues and in subcutaneous fat from DUhTP mice higher levels of irisin and different markers of fat cell browning like T-box transcription factor (Tbx1), PPARα, and uncoupling protein (UCP1) (P surface temperature of DUhTP mice was increased when compared to controls indicating a physiological effect of increased UCP1 expression. The present study suggests that DUhTP mice exhibit different markers of mitochondrial biogenesis and fat browning without external stimuli. At an age of 43 days, sedentary DUhTP mice have improved metabolic health as judged from lower levels of blood glucose after an oral glucose tolerance test. Consequently, the non-inbred mouse model DUhTP represents a novel model for the identification of fat cell browning mechanisms in white adipose tissues.

  15. Evidence for higher-than-average air temperatures after the 8.2 ka event provided by a Central European δ18O record

    Science.gov (United States)

    Andersen, Nils; Lauterbach, Stefan; Erlenkeuser, Helmut; Danielopol, Dan L.; Namiotko, Tadeusz; Hüls, Matthias; Belmecheri, Soumaya; Dulski, Peter; Nantke, Carla; Meyer, Hanno; Chapligin, Bernhard; von Grafenstein, Ulrich; Brauer, Achim

    2017-09-01

    The so-called 8.2 ka event represents one of the most prominent cold climate anomalies during the Holocene warm period. Accordingly, several studies have addressed its trigger mechanisms, absolute dating and regional characteristics so far. However, knowledge about subsequent climate recovery is still limited although this might be essential for the understanding of rapid climatic changes. Here we present a new sub-decadally resolved and precisely dated oxygen isotope (δ18O) record for the interval between 7.7 and 8.7 ka BP (103 calendar years before AD 1950), derived from the calcareous valves of benthic ostracods preserved in the varved lake sediments of pre-Alpine Mondsee (Austria). Besides a clear reflection of the 8.2 ka event, showing a good agreement in timing, duration and magnitude with other regional stable isotope records, the high-resolution Mondsee lake sediment record provides evidence for a 75-year-long interval of higher-than-average δ18O values directly after the 8.2 ka event, possibly reflecting increased air temperatures in Central Europe. This observation is consistent with evidence from other proxy records in the North Atlantic realm, thus most probably reflecting a hemispheric-scale climate signal rather than a local phenomenon. As a possible trigger we suggest an enhanced resumption of the Atlantic meridional overturning circulation (AMOC), supporting assumptions from climate model simulations.

  16. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    Science.gov (United States)

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effectiveness of Water Desalination by Membrane Distillation Process

    Science.gov (United States)

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  18. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2012-07-01

    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  19. Recent Advances in Pd-Based Membranes for Membrane Reactors.

    Science.gov (United States)

    Arratibel Plazaola, Alba; Pacheco Tanaka, David Alfredo; Van Sint Annaland, Martin; Gallucci, Fausto

    2017-01-01

    Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.

  20. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  1. Zinc-nanosystem-structure formation using anodic-oxidized aluminum membranes

    Science.gov (United States)

    Kornyushchenko, A. S.; Perekrestov, V. I.; Natalich, V. V.; Zagaiko, I. V.

    2017-02-01

    We propose a new method for the formation of zinc nanosystems by condensation of a weakly supersaturated Zn vapor in pores of the anodic-oxidized aluminum membrane (AOA)-silicon substrate system. For this purpose, a weak Zn vapor flow is created by magnetron sputtering of Zn target in a high-purity inert gas atmosphere and maintaining a temperature of the porous AOA membrane outer surface higher than that of the substrate. This drives a directional Zn vapor flow inward membrane parallel to the pore generatrix and favors effective penetration of Zn vapor into the membrane.

  2. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  3. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  4. Water transport through graphene oxide membranes: the roles of driving forces.

    Science.gov (United States)

    Chong, J Y; Wang, B; Li, K

    2018-02-21

    Graphene oxide (GO) membranes have shown excellent selectivities in nanofiltration and pervaporation. However, the water transport mechanisms in the unique membrane laminar structure are still not well understood, especially in pervaporation which involves selective permeation and evaporation. Herein, water transport in GO membranes was tested under two different modes: pressure-driven permeation and pervaporation. The pure water flux was found to be 1-2 orders of magnitude higher in pervaporation due to the large capillary pressure induced by evaporation. The water flux in pervaporation was suggested to be limited by evaporation at room temperature but surface diffusion at high temperature.

  5. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  6. Water and proton transport properties of hexafluorinated sulfonated poly(arylenethioethersulfone) copolymers for applications to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Khalfan, Amish N.; Sanchez, Luz M.; Kodiweera, Chandana; Greenbaum, Steve G. [Hunter College of the City University of New York, Physics Department, 695 Park Avenue, New York, NY 10021 (United States); Bai, Zongwu [University of Dayton Research Institute, University of Dayton, 300 College Park Drive, Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory/MLBP, Material and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States)

    2007-11-15

    In the present study, we examine the water and proton transport properties of hexafluorinated sulfonated poly(arylenethioethersulfone) (6F-SPTES) copolymer membranes for applications to proton exchange membrane fuel cells (PEMFCs). The 6F-SPTES copolymer membranes build upon the structures of previously studied sulfonated poly(arylenethioethersulfone) (SPTES) copolymer membranes to include CF{sub 3} functional groups in efforts to strengthen water retention and extend membrane performance at elevated temperatures (above 120 C). The 6F-SPTES copolymer membranes sustain higher water self-diffusion and greater proton conductivities than the commercial Nafion {sup registered} membrane. Water diffusion studies of the 6F-SPTES copolymer membranes using the pulsed-field gradient spin-echo NMR technique reveal, however, the fluorinated membranes to be somewhat unfavorable over their non-fluorinated counterparts as high temperature membranes. In addition, proton conductivity measurements of the fluorinated membranes up to 85 C show comparable results with the non-fluorinated SPTES membranes. (author)

  7. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens).

    Science.gov (United States)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-11-01

    The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9°C and 28°C) and exposed either to Cd or Ni (respectively 4μg/L and 600μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9°C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28°C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is responsible for the thermal acclimation of phospholipid fatty acid profiles. However, this response was altered under Ni and Cd exposure: PUFA decreased (specifically n-6 PUFA) while the proportion of saturated fatty acids increased at 9°C, whereas at 28°C, PUFA increased to proportions exceeding those observed at 9°C. Lipid peroxidation could be observed under all experimental conditions. Both enzymatic and non-enzymatic antioxidant defense systems acted cooperatively to cope with oxidative stress leading to lipid peroxidation, which was not affected by temperature acclimation as indicated by malondialdehyde concentration, in spite of a higher polyinsaturation in cold-acclimated fish which would be predicted to increase their vulnerability to

  8. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  9. Dimensional analysis of membrane distillation flux through fibrous membranes

    Science.gov (United States)

    Mauter, Meagan

    We developed a dimensional-analysis-based empirical modeling method for membrane distillation (MD) flux that is adaptable for novel membrane structures. The method makes fewer simplifying assumptions about membrane pore geometry than existing theoretical (i.e. mechanistic) models, and allows selection of simple, easily-measureable membrane characteristics as structural parameters. Furthermore, the model does not require estimation of membrane surface temperatures; it accounts for convective heat transfer to the membrane surface without iterative fitting of mass and heat transfer equations. The Buckingham-Pi dimensional analysis method is tested for direct contact membrane distillation (DCMD) using non-woven/fibrous structures as the model membrane material. Twelve easily-measured variables to describe DCMD operating conditions, fluid properties, membrane structures, and flux were identified and combined into eight dimensionless parameters. These parameters were regressed using experimentally-collected data for multiple electrospun membrane types and DCMD system conditions, achieving R2 values >95%. We found that vapor flux through isotropic fibrous membranes can be estimated using only membrane thickness, solid fraction, and fiber diameter as structural parameters. Buckingham-Pi model DCMD flux predictions compare favorably with previously-developed empirical and theoretical models, and suggest this simple yet theoretically-grounded empirical modeling method can be used practically for predicting MD vapor flux from membrane structural parameters.

  10. Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors.

    Science.gov (United States)

    Mika, Jacek T; Thompson, Alexander J; Dent, Michael R; Brooks, Nicholas J; Michiels, Jan; Hofkens, Johan; Kuimova, Marina K

    2016-10-04

    The viscosity is a highly important parameter within the cell membrane, affecting the diffusion of small molecules and, hence, controlling the rates of intracellular reactions. There is significant interest in the direct, quantitative assessment of membrane viscosity. Here we report the use of fluorescence lifetime imaging microscopy of the molecular rotor BODIPY C10 in the membranes of live Escherichia coli bacteria to permit direct quantification of the viscosity. Using this approach, we investigated the viscosity in live E. coli cells, spheroplasts, and liposomes made from E. coli membrane extracts. For live cells and spheroplasts, the viscosity was measured at both room temperature (23°C) and the E. coli growth temperature (37°C), while the membrane extract liposomes were studied over a range of measurement temperatures (5-40°C). At 37°C, we recorded a membrane viscosity in live E. coli cells of 950 cP, which is considerably higher than that previously observed in other live cell membranes (e.g., eukaryotic cells, membranes of Bacillus vegetative cells). Interestingly, this indicates that E. coli cells exhibit a high degree of lipid ordering within their liquid-phase plasma membranes. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Performance comparison of low and high temperature polymer electrolyte membrane fuel cells. Experimental examinations, modelling and numerical simulation; Leistungsvergleich von Nieder- und Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen. Experimentelle Untersuchungen, Modellierung und numerische Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Loehn, Helmut

    2010-11-03

    The experimental part of this thesis essentially comprises the performance comparison of low temperature (LT) - polymer electrolyte membrane fuel cells (PEMFCs) on basis of Nafion {sup registered} and high temperature (HT)- PEMFCs on basis of Polybenzimidazol (PBI)/phosphoric acid (H{sub 3}PO{sub 4}). The performance characteristic of commercially available Nafion {sup registered} - LT - (E-TEK-Series 12 W) and PBI/H{sub 3}PO{sub 4} - HT -(Celtec P 1000) membrane electrode assemblies (MEAs) were examined with a single cell in dependence of cell temperature (LT-MEA: 50 - 80 C, HT-MEA: 120 - 190 C), anode and cathode pressure (1 - 3 bar), stoichiometry of gas supply streams and relative humidity (only LT-MEA). Because of the same active cell area of both MEAs (45.16 cm{sup 2}) and the fact, that the flow field for the gas distribution of the test cell can be used universally, the performance tests with both MEA-types could be carried out with the same single test cell. When comparing the performance of both MEAs under similar test conditions - except increased temperature and deactivated humidification of the HT-MEA - at 0.7 A/cm{sup 2} with both MEA-types nearly equal performance densities of 0.3 - 0.45 W/cm{sup 2} can be reached. Since there is no liquid process water present in the HT-MEA the operation is not limited by concentration losses; therefore the HT-MEA can be operated in a wider range with higher current densities and because of the not required water management the operation of the HT-MEA is essentially simplified. Further advantages of the HT-MEA exist in the relative high tolerance against the catalyst poison carbon monoxide - the operation with reformat gas and hydrogen rich gases is facilitated - and an improved heat management because of the elevated operation temperature. However, a disadvantage of the Celtec-P-1000-MEA exists in the degradation at deep temperatures. At operating conditions, in which liquid process water is present, there is the

  12. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation

    KAUST Repository

    Xu, Sheng

    2015-12-01

    © 2015 Elsevier B.V. In this work, two novel carboxyl-containing polyimides, 2,2\\'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (6FDA-MDA/DABA, FMD) and 3,3\\',4,4\\'-benzophenone tetracarboxylic dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (BTDA-MDA/DABA, BMD), are synthesized via chemical and thermal imidization methods, respectively, and employed as pervaporation membranes for ethanol dehydration. Chemical structures of the two polyimides are examined by FTIR and TGA to confirm the successful synthesis. A post thermal treatment of the polyimide membranes with the temperature range of 250 to 400. °C is applied, and its effects on the membrane morphology and separation performance are studied and characterized by FTIR, TGA, WXRD, solubility and sorption test. It is believed that the thermal treatment of the carboxyl-containing polyimide membrane at a relative low temperature only leads to the physical annealing, while it may cause the decarboxylation-induced cross-linking at a higher temperature. In addition, the operation temperature in pervaporation is also varied and shown to be an important factor to affect the final membrane performance. Performance benchmarking shows that the developed polyimide membranes both have superior pervaporation performance to most other flat-sheet dense membranes. This work is believed to shed useful insights on polyimide membranes for pervaporation applications.

  13. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  14. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  15. PLASMA SURFACE MODIFICATION OF POLYETHYLENE TEREPHTALATE MEMBRANES

    Directory of Open Access Journals (Sweden)

    В.В. Трачевський

    2012-10-01

    Full Text Available  The influence of low-temperature plasma membrane surface of polyethylene terephtalate. The possibility of a polyethylene terephtalate membranes with the required surface properties.

  16. Membrane lateral phase separations and chlortetracycline transport by Bacillus megaterium

    Science.gov (United States)

    Dockter, Michael E.; Trumble, William R.; Magnuson, James A.

    1978-01-01

    Chlortetracycline, a fluorescent probe of its own active transport, has been used to study lateral phase separations of membrane lipid in Bacillus megaterium cells. Arrhenius plots of initial accumulation rates are triphasic, with transitions or characteristic temperatures of 20° and 9.5°. At the higher temperature, the mobility of the chloretracycline, as measured by fluorescence polarization, is markedly altered. Chlortetracycline transport exhibits saturation kinetics, and fluorescence energy transfer from protein to bound antibiotic can be observed. N-Phenyl-1-naphthylamine, a lipophilic fluorescent probe, responds to changes in the hydrophobic regions of the membrane that are distinct from membrane protein. The fluorescent properties of N-phenylnaphthylamine in partitioning and polarization experiments are altered most significantly at the lower characteristic temperature. No fluorescence energy transfer between N-phenylnaphthylamine and membrane protein or bound tetracycline can be detected. In correlative electron spin resonance experiments on the partitioning of a lipid-soluble spin label, the same characteristic temperatures detected in the fluorescence studies were measured. These data suggest that different probes may respond to either or both of the characteristic temperatures describing the lateral phase separation. Between these characteristic temperatures the chlortetracycline transport system is most intimately associated with relatively immobile lipids that are surrounded by a more mobile lipid phase. PMID:418409

  17. A comparison study on membrane fouling in a sponge-submerged membrane bioreactor and a conventional membrane bioreactor.

    Science.gov (United States)

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Jian; Liang, Shuang; Xia, Siqing; Zhang, Zhiqiang; Li, Jianxin

    2014-08-01

    This study compared membrane fouling in a sponge-submerged membrane bioreactor (SSMBR) and a conventional membrane bioreactor (CMBR) based on sludge properties when treating synthetic domestic wastewater. In the CMBR, soluble microbial products (SMP) in activated sludge were a major contributor for initial membrane fouling and presented higher concentration in membrane cake layer. Afterwards, membrane fouling was mainly governed by bound extracellular polymeric substances (EPS) in activated sludge, containing lower proteins but significantly higher polysaccharides. Sponge addition could prevent cake formation on membrane surface and pore blocking inside membrane, thereby alleviating membrane fouling. The SSMBR exhibited not only less growth of the biomass and filamentous bacteria, but also lower cake layer and pore blocking resistance due to lower bound EPS concentrations in activated sludge. Less membrane fouling in SSMBR were also attributed to larger particle size, higher zeta potential and relative hydrophobicity of sludge flocs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  19. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  20. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  1. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein

  2. The hotline in the grid. Higher temperatures with overhead lines can help to transport additional electricity; Der heisse Draht im Netz. Hoehere Temperaturen bei Freileitungen koennen helfen, Stromueberschuesse zu transportieren

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Andreas; Friedrich, Uwe

    2016-11-01

    The electricity grid that has been used for decades reaches its limits when transporting increasing amounts of electricity over long distances. There are already limiting bottlenecks. One way to integrate more wind and solar power into the grid is provided by overhead lines with a higher maximum temperature. These can transport more electricity, enabling grid congestion to be avoided. One problem, though, is that metals expand more at high temperatures. As a result the line lengthens and sags more. However, special high-temperature conductors can provide a remedy here.

  3. Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in two-liquid-phase continuous cultures

    NARCIS (Netherlands)

    Chen, Qi; Nijenhuis, Atze; Preusting, Hans; Dolfing, Jan; Janssen, Dick B.; Witholt, Bernard

    Growth of Pseudomonas oleovorans GPol in continuous culture containing a bulk n-octane phase resulted in changes of the fatty acid composition of the membrane lipids. Compared to citrate-grown cells, the ratio of C-18 to C-16 fatty acids and the ratio of unsaturated to saturated fatty acids

  4. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Xu, Yixin; Zhou, Lu

    2013-01-01

    at 180°C without humidifying. In addition, an improved tensile modulus at elevated temperatures was observed for acid doped OHPyPBI membranes. Fuel cell tests demonstrated the technical feasibility of acid doped OHPyPBI membranes for high temperature proton exchange membrane fuel cells. © 2013 Elsevier B.V....

  6. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L

    DEFF Research Database (Denmark)

    Frenck, Georg; van der Linden, Leon Gareth; Mikkelsen, Teis Nørgaard

    2011-01-01

    in existing genotypes is vital. In this study, the responses in yield and biomass production of four different cultivars of oilseed rape (Brassica napus L.) were tested under five different combinations of increased [CO2] (700 ppm), temperature (+5 °C) and [O3] (+40 ppb). Especially the multifactor treatments....... Our results suggest that future breeding of B. napus should be based on old cultivars, since more modern varieties seem to have lower potentials to respond to CO2 and thus counteract the detrimental effects of yield reducing environmental factors such as temperature and O3....

  7. The effects of oxygen on the evolution of microbial membranes

    Science.gov (United States)

    Jahnke, L. L.

    1991-01-01

    One prokaryote, Methylococcus capsulatus, synthesizes both hopanoids and sterols and, thus, provides a unique opportunity to study the evolution of membrane function. When M. capsulatus was grown at different temperatures, lipid analysis of the whole cells showed that both sterol and unsaturated fatty acid levels decreased at higher growth temperatures; sterol concentrations were 0.116 micro mole/micro mole phospholipid at 30 C and 0.025 micro mole/mirco mole phospholipid at 45 C, while the saturated to unsaturated fatty acid ratio increased from 0.397 to 1.475. Hopane polyol levels were constant over this range; however, methylation of the A-ring decreased markedly in cells grown at 30 C. These results imply that sterol and hopane molecules are required for enhancement of some specific membrane function, potentially by modulating membrane fluidity.

  8. Application of Inorganic Membrane Technology to Hydrogen-hydrocarbon Separations

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D.

    2003-06-30

    Separation efficiency for hydrogen/light hydrocarbon mixtures was examined for three inorganic membranes. Five binary gas mixtures were used in this study: H{sub 2}/CH{sub 4} , H{sub 2}/C{sub 2}H{sub 6}, H{sub 2}/C{sub 3}H{sub 8}, He/CO{sub 2}, and He/Ar. The membranes examined were produced during a development program at the Inorganic Membrane Technology Laboratory in Oak Ridge and provided to us for this testing. One membrane was a (relatively) large-pore-diameter Knudsen membrane, and the other two had much smaller pore sizes. Observed separation efficiencies were generally lower than Knudsen separation but, for the small-pore membranes, were strongly dependent on temperature, pressure, and gas mixture, with the most condensable gases showing the strongest effect. This finding suggests that the separation is strongly influenced by surface effects (i.e., adsorption and diffusion), which enhance the transport of the heavier and more adsorption-prone component and may also physically impede flow of the other component. In one series of experiments, separation reversal was observed (the heavier component preferentially separating to the low-pressure side of the membrane). Trends showing increased separation factors at higher temperatures as well as observations of some separation efficiencies in excess of that expected for Knudsen flow suggest that at higher temperatures, molecular screening effects were observed. For most of the experiments, surface effects were stronger and thus apparently overshadow molecular sieving effects.

  9. Membranes for Enhanced Emulsification Processes

    NARCIS (Netherlands)

    Güell, Carme; Ferrando, Montse; Schroen, C.G.P.H.

    2016-01-01

    The use of membrane technology for the production of single and double emulsions has been proven feasible for a wide range of systems. The low energy requirements and mild process conditions (shear stress and temperature) of membrane emulsification (ME) compared to conventional processes makes it of

  10. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  11. Multicomponent membranes

    Science.gov (United States)

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  12. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  13. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.

    Science.gov (United States)

    Qiu, Wulin; Zhang, Kuang; Li, Fuyue Stephanie; Zhang, Ke; Koros, William J

    2014-04-01

    6FDA-mPDA/DABA (3:2) polyimide was synthesized and characterized for uncross-linked, thermally crosslinked, and carbon molecular sieve (CMS) membranes. The membranes were characterized with thermogravimetric analysis, FTIR spectroscopy, wide-angle X-ray diffraction, and gas permeation tests. Variations in the d spacing, the formation of pore structures, and changes in the pore sizes of the CMS membranes were discussed in relation to pyrolysis protocols. The uncross-linked polymer membranes showed high CO2 /CH4 selectivity, whereas thermally crosslinked membranes exhibited significantly improved CO2 permeability and excellent CO2 plasticization resistance. The CMS membranes showed even higher CO2 permeability and CO2 /CH4 selectivity. An increase in the pyrolysis temperature resulted in CMS membranes with lower gas permeability but higher selectivity. The 550 °C pyrolyzed CMS membranes showed CO2 permeability as high as 14 750 Barrer with CO2 /CH4 selectivity of approximately 52. Even 800 °C pyrolyzed CMS membranes still showed high CO2 permeability of 2610 Barrer with high CO2 /CH4 selectivity of approximately 118. Both polymer membranes and the CMS membranes are very attractive in aggressive natural gas purification applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of thin film inorganic membranes for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyo Jeong

    2012-08-22

    NDCGO. With decrease in cooling rate for sintering process and high molecular weight binder for higher concentration of NDCGO, crack-free layers were achieved. He leak rates of sintered and reduced membranes reached the range of 10{sup -4} and 10{sup -3} mbar.l.sec{sup -1}.cm{sup -2}, respectively. For PVD, CGO membranes were deposited by reactive magnetron sputtering. According to the substrate properties and applied bias power, different deposition behavior was observed. Particularly for 8YSZ (8 mol% Y{sub 2}O{sub 3} stabilized ZrO{sub 2}) substrate, four-zone-model of membrane was derived related to substrate strength and bias power. Without bias assist only porous films were deposited. Applying bias power enabled compact membrane but caused delamination at the same time. Adopting higher presintering temperature of substrate improved substrate strength and thus realized delamination-free compact membranes. LSCF membranes were deposited by magnetron sputtering without bias assist. LSCF membranes were porous on 8YSZ substrates, but gastight on CGO interlayers. Concentration of CGO nano-dispersion and presintering temperature of CGO interlayers rarely influenced the gastightness of deposited LSCF membrane. He leak rates of CGO and LSCF membranes reached the range of 10{sup -4} and 10{sup -3} mbar.l.sec{sup -1}.cm{sup -2}, respectively.

  15. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane

    OpenAIRE

    Bandara, Wasala M.K.R.T.W.; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2011-01-01

    In this study, we investigated the efficiency of dissolved methane (D-CH4) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH4 discharged from the UASB reac...

  16. Separation of tritiated water using graphene oxide membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Motkuri, Radha K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Frost, Anthony P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bratton, Wesley [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  17. Synthesis and performance of antifouling and self-cleaning polyethersulfone/graphene oxide composite membrane functionalized with photoactive semiconductor catalyst.

    Science.gov (United States)

    Dizge, Nadir; Gonuldas, Hakan; Ozay, Yasin; Ates, Hasan; Ocakoglu, Kasim; Harputlu, Ersan; Yildirimcan, Saadet; Unyayar, Ali

    2017-02-01

    This study was performed to synthesize membranes of polyethersulfone (PES) blended with graphene oxide (GO) and PES blended with GO functionalized with photoactive semiconductor catalyst (TiO 2 and ZnO). The antifouling and self-cleaning properties of composite membranes were also investigated. The GO was prepared from natural graphite powder by oxidation method at low temperature. TiO 2 and ZnO nanopowders were synthesized by anhydrous sol-gel method. The surface of TiO 2 and ZnO nanopowders was modified by a surfactant (myristic acid) to obtain a homogeneously dispersed mixture in a solvent, and then GO was functionalized by loading with these metal oxide nanopowders. The PES membranes blended with GO and functionalized GO into the casting solution were prepared via phase inversion method and tested for their antifouling as well as self-cleaning properties. The composite membranes were synthesized as 14%wt. of PES polymer with three different concentrations (0.5, 1.0, and 2.0%wt.) of GO, GO-TiO 2 , and GO-ZnO. The functionalization of membranes improved hydrophilicity property of membranes as compared to neat PES membrane. However, the lowest flux was obtained by functionalized membranes with GO-TiO 2 . The results showed that functionalized membranes demonstrated better self-cleaning property than neat PES membrane. Moreover, the flux recovery rate of functionalized membranes over five cycles was higher than that of neat membrane.

  18. Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing

    Directory of Open Access Journals (Sweden)

    Guozhao Ji

    2013-08-01

    Full Text Available This work shows the application of a validated mathematical model for gas permeation at high temperatures focusing on demonstrated scale-up design for H2 processing. The model considered the driving force variation with spatial coordinates and the mass transfer across the molecular sieve cobalt oxide silica membrane to predict the separation performance. The model was used to study the process of H2 separation at 500 °C in single and multi-tube membrane modules. Parameters of interest included the H2 purity in the permeate stream, H2 recovery and H2 yield as a function of the membrane length, number of tubes in a membrane module, space velocity and H2 feed molar fraction. For a single tubular membrane, increasing the length of a membrane tube led to higher H2 yield and H2 recovery, owing to the increase of the membrane area. However, the H2 purity decreased as H2 fraction was depleted, thus reducing the driving force for H2 permeation. By keeping the membrane length constant in a multi-tube arrangement, the H2 yield and H2 recovery increase was attributed to the higher membrane area, but the H2 purity was again compromised. Increasing the space velocity avoided the reduction of H2 purity and still delivered higher H2 yield and H2 recovery than in a single membrane arrangement. Essentially, if the membrane surface is too large, the driving force becomes lower at the expense of H2 purity. In this case, the membrane module is over designed. Hence, maintaining a driving force is of utmost importance to deliver the functionality of process separation.

  19. Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozyme adsorption

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Ion exchange (IEX chromatography is commonly used in separation and purification systems. However, micropore blockage within its resin structure can easily lead to a reduction in the effectiveness of purification. To tackle this problem, we adopted the concept of membrane separation by combining electrospinning techniques with rapid alkaline hydrolysis to prepare a weak acid IEX nanofibrous membrane (AEA-COOH, consisting of polyethyleneterephthalate (PET meltblown fabric as a supporting layer, with upper and lower IEX layers consisting of polyacrylonitrile (PAN nanofibrous membranes. To determine the characteristics of the AEA-COOH membrane, we used the commercial product Sartobind© C IEX membrane as the standard of comparison. Results showed that the base weight and thickness of AEACOOH were 33 and 64%, relative to Sartobind© C membrane. The thermo-degradable temperature of AEA-COOH membrane (320°C was far higher than that of Sartobind© C (115°C, indicating high thermal stability. Finally, comparisons between the lysozyme adsorption rates and capacity of various IEX membranes confirmed that AEA-COOH was lighter, thinner, faster, possessing higher protein adsorption efficiency than Sartobind© C membrane.

  20. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus

    Directory of Open Access Journals (Sweden)

    Anaïs eCario

    2015-10-01

    Full Text Available The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80MPa. We analyzed the membrane lipids of T. barophilus by HPLC-MS as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol and, reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of non-polar lipids with an irregular polyisoprenoid carbon skeleton (polyunsaturated lycopane derivatives, suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other archaeon harboring a mixture of di- and tetraether lipids.

  1. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  2. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.

    2012-02-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane\\'s water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane\\'s structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  3. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Surface Tension and Viscosity of SCN and SCN-acetone Alloys at Melting Points and Higher Temperatures Using Surface Light Scattering Spectrometer

    Science.gov (United States)

    Tin, Padetha; deGroh, Henry C., III.

    2003-01-01

    Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.

  6. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  7. A Comparative Study of Phosphoric Acid-doped m-PBI Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Kelly A [ORNL; More, Karren Leslie [ORNL; Payzant, E Andrew [ORNL; Meisner, Roberta A [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Sumpter, Bobby G [ORNL; Benicewicz, Brian [ORNL

    2014-01-01

    Phosphoric acid (PA)-doped m-polybenzimidazole (PBI) membranes used in high temperature fuel cells and hydrogen pumps were prepared by a conventional imbibing process and a sol-gel fabrication process. A comparative study was conducted to investigate the critical properties of PA doping levels, ionic conductivities, mechanical properties, and molecular ordering. This systematic study found that sol-gel PA-doped m-PBI membranes were able to absorb higher acid doping levels and to achieve higher ionic conductivities than conventionally imbibed membranes when treated in an equivalent manner. Even at similar acid loadings, the sol-gel membranes exhibited higher ionic conductivities. Heat treatment of conventionally imbibed membranes with 29wt% solids caused a significant reduction in mechanical properties; conversely, sol-gel membranes exhibited an enhancement in mechanical properties. From X-ray structural studies and atomistic simulations, both conventionally imbibed and sol-gel membranes exhibited d-spacings of 3.5 and 4.6 , which were tentatively attributed to parallel ring stacking and staggered side-to-side packing, respectively, of the imidazole rings in these aromatic hetercyclic polymers. An anisotropic staggered side-to-side chain packing present in the conventional membranes may be root to the reduction in mechanical properties.

  8. Formation of asymmetric cellulose acetate membranes

    NARCIS (Netherlands)

    Bokhorst, H.; Altena, F.W.; Smolders, C.A.

    1981-01-01

    Cellulose acetate membranes were prepared from casting solutions containing dioxane as a solvent and varying concentrations (up to 6%) of maleic acid as an additive. Coagulation took place in water at different temperatures. The effect of these variables on membrane structure and membrane properties

  9. 5 prime -Azido-(3,6- sup 3 H sub 2 )-1-naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, R.; Feldwisch, J.; Schell, J.; Palme, K. (Max-Planck-Inst. fuer Zuechtungsforschung, Koeln (West Germany)); Boland, W. (Univ. Karlsruhe (West Germany))

    1992-01-15

    1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks carrier mediated auxin efflux from plant cells. To allow identification of the NPA receptor thought to be part of the auxin efflux carrier, the authors have synthesized a tritiated, photolabile NPA analogue, 5{prime}-azido-(3,6-{sup 3}H{sub 2})NPA (({sup 3}H{sub 2})N{sub 3}NPA). This analogue was used to identify NPA-binding proteins in fractions highly enriched for plasma membrane vesicles isolated from maize coleoptiles (Zea mays L.). Competition studies showed that binding of ({sup 3}H{sub 2})N{sub 3}NPA to maize plasma membrane vesicles was blocked by nonradioactive NPA but not by benzoic acid. After incubation of plasma membrane vesicles with ({sup 3}H{sub 2})N{sub 3}NPA and exposure to UV light, they observed specific photoaffinity labeling of a protein with an apparent molecular mass of 23 kDa. Pretreatment of the plasma membrane vesicles with indole-3-acetic acid or with the auxin-transport inhibitors NPA and 2,3,5-triiodobenzoic acid strongly reduced specific labeling of this protein. This 23-kDa protein was also labeled by addition of 5-azido-(7-{sup 3}H)indole-3-acetic acid to plasma membranes prior to exposure to UV light. The 23-kDa protein was solubilized from plasma membranes by 1% Triton X-100. The possibility that this 23-kDa polypeptide is part of the auxin efflux carrier system is discussed.

  10. Gas separations using inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Egan, B.Z.; Singh, S.P.N. [Oak Ridge National Lab., TN (United States); Fain, D.E.; Roettger, G.E.; White, D.E. [Oak Ridge K-25 Site, TN (United States)

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  11. Modeling bioaugmentation with nitrifiers in membrane bioreactors.

    Science.gov (United States)

    Mannucci, Alberto; Munz, Giulio; Mori, Gualtiero; Makinia, Jacek; Lubello, Claudio; Oleszkiewicz, Jan A

    2015-01-01

    Bioaugmentation with nitrifiers was studied using two pilot-scale membrane bioreactors, with the purpose of assessing the suitability of state-of-the-art activated sludge models (ASMs) in predicting the efficiency of bioaugmentation as a function of operating conditions. It was demonstrated that the temperature difference between seeding and seeded reactors (ΔT) affects bioaugmentation efficiency. Experimental data were accurately predicted when ΔT was within a range of up to 10 °C at the higher range, and when the temperature was significantly lower in the seeded reactor compared to the seeding one, standard ASMs overestimated the efficiency of bioaugmentation. A modified ASM, capable of accurately representing the behavior of seeded nitrifying biomass in the presence of high ΔT, would require the inclusion of the effect of temperature time gradients on nitrifiers. A simple linear correlation between ΔT and the Arrhenius coefficient was proposed as a preliminary step.

  12. Higher education

    OpenAIRE

    Wolter, Andrä

    2009-01-01

    During the last five years higher education research in Germany seems to be in a significant upturn. This is a side effect partly of the obvious boom of empirical educational research in general and partly of the reform movement that has affected the German higher education system since middle of the 1990s. The demand for data in the field of higher education will increase considerably in future. The available data infrastructure for higher education research in Germany consists of two comple...