WorldWideScience

Sample records for higher temperature conditions

  1. A generalized conditional heteroscedastic model for temperature downscaling

    Science.gov (United States)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  2. Sensory profiling of Dalmatian dry-cured ham under different temperature conditions

    Directory of Open Access Journals (Sweden)

    Zlatko Janječić

    2010-01-01

    Full Text Available To investigate the influence of the Dalmatian ham processing conditions on weight loss and sensory characteristics, 20 hams were processed following different temperature conditions during salting and ripening. For that purpose, hams were evaluated using quantitative descriptive analysis. The weight loss was higher and all sensory traits except presence of tyrosine and phenylalanine crystals were higher rated for hams processed at higher temperatures. The most significant (P<0.0001 influence of temperature was established on subcutaneous fat color, muscle color and presence of tyrosine and phenylalanine, whereas no influence was established on appearance, marbling, flavor and melting. This concludes that there is overall significant effect of higher temperature on sensory characteristics most likely due to the more intense proteolysis and lipolysis.

  3. NSSEFF Designing New Higher Temperature Superconductors

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-VA-TR-2017-0083 NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS Meigan Aronson THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF...2015 4. TITLE AND SUBTITLE NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-10-1-0191 5c...materials, identifying the most promising candidates. 15. SUBJECT TERMS TEMPERATURE, SUPERCONDUCTOR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  4. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  5. Strain rate effects in nuclear steels at room and higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, G. E-mail: george.solomos@jrc.it; Albertini, C.; Labibes, K.; Pizzinato, V.; Viaccoz, B

    2004-04-01

    An investigation of strain rate, temperature and size effects in three nuclear steels has been conducted. The materials are: ferritic steel 20MnMoNi55 (vessel head), austenitic steel X6CrNiNb1810 (upper internal structure), and ferritic steel 26NiCrMo146 (bolting). Smooth cylindrical tensile specimens of three sizes have been tested at strain rates from 0.001 to 300 s{sup -1}, at room and elevated temperatures (400-600 deg. C). Full stress-strain diagrams have been obtained, and additional parameters have been calculated based on them. The results demonstrate a clear influence of temperature, which amounts into reducing substantially mechanical strengths with respect to RT conditions. The effect of strain rate is also shown. It is observed that at RT the strain rate effect causes up shifting of the flow stress curves, whereas at the higher temperatures a mild downshifting of the flow curves is manifested. Size effect tendencies have also been observed. Some implications when assessing the pressure vessel structural integrity under severe accident conditions are considered.

  6. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  7. Movement influences carambola leaflet chlorophyll fluorescence and temperature under sunny conditions

    International Nuclear Information System (INIS)

    Marler, T.E.; Lawton, P.D.

    1995-01-01

    Leaflets of 'Arkin', 'B-10', 'Kary', and 'Sri Kembangan' carambola (Averrhoa carambola L.) trees were restrained in a horizontal position for 3.5 h during midday under full sun conditions to determine the influence of overriding natural leaflet movement on adaxial chlorophyll fluorescence and temperature. Induced chlorophyll fluorescence obtained after 30 minutes of dark adaptation following the period of full sun exposure was affected by leaflet movement. Restrained leaflets exhibited a variable fluorescence (Fv)/peak fluorescence (Fm) of 0.48, while that of unrestrained leaflets was 0.65. Adaxial leaflet temperature of restrained leaflets was 6C higher than that of leaflets that were allowed to move. The influence of leaflet movement on temperature or chlorophyll fluorescence was not different among the four cultivars. However, mean Fv/Fm of 'Kary' and 'Sri Kembangan' was lower than that of 'B-10'. Our results indicate that the ability of carambola to change leaflet angle leads to lower temperature and higher photochemical efficiency than occurs when leaflets are not allowed to move naturally (vertically orient) under full sun conditions

  8. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  9. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature

    Directory of Open Access Journals (Sweden)

    K. B. Kale

    2012-12-01

    Full Text Available The CO2 adsorption by calcium zirconate was explored at pre- and post- combustion temperature condition. The several samples of the calcium zirconate were prepared by different methods such as sol-gel, solid-solid fusion, template and micro-emulsion. The samples of the calcium zirconate were characterized by measurement of surface area, alkalinity/acidity, and recording the XRD patterns and SEM images. The CO2 adsorptions by samples of the calcium zirconate were studied in the temperature range 100 to 850 oC and the CO2 adsorptions were observed in the ranges of 6.88 to 40.6 wt % at 600 0C and 8 to 16.82 wt% at in between the temperatures 200 to 300 oC. The effect of Ca/Zr mol ratio in the samples of the calcium zirconate on the CO2 adsorption and alkalinity were discussed. The adsorbed moisture by the samples of the calcium zirconate was found to be useful for the CO2 adsorption. The promoted the samples of the calcium zirconate by K+, Na+, Rb+, Cs+, Ag+ and La3+ showed the increased CO2 adsorption. The exposure time of CO2 on the samples of the calcium zirconate showed the increased CO2 adsorption. The samples of the calcium zirconate were found to be regenerable and reusable several times for the adsorption of CO2 for at the post- and pre-combustion temperature condition. Copyright © 2012 by BCREC Undip. All rights reservedReceived: 23rd June 2012, Revised: 28th August 2012, Accepted: 30th August 2012[How to Cite: K. B. Kale, R. Y. Raskar, V. H. Rane and A. G.  Gaikwad (2012. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 124-136. doi:10.9767/bcrec.7.2.3686.124-136] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3686.124-136 ] | View in 

  10. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions

    DEFF Research Database (Denmark)

    Kristensen, Torsten Nygård; Barker, J. Stuart F.; Pedersen, Kamilla Sofie

    2008-01-01

    when compared with non-inbred lines of Drosophila melanogaster under different temperature conditions. Egg-to-adult viability, developmental time and sex ratio of emerging adults are studied under low, intermediate and high temperatures under laboratory as well as semi-natural conditions. The results...... show inbreeding depression for egg-to-adult viability. The level of inbreeding depression is highly dependent on test temperature and is observed only at low and high temperatures. Inbreeding did not affect the developmental time or the sex ratio of emerging adults. However, temperature affected...... the sex ratio with more females relative to males emerging at low temperatures, suggesting that selection against males in pre-adult life stages is stronger at low temperatures. The coefficient of variation (CV) of egg-to-adult viability within and among lines is higher for inbred flies and generally...

  11. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  12. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  13. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  14. Temperature field conduction solution by incomplete boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Petrasinovic, Lj; Djuric, M [Tehnoloski fakultet, Novi Sad (Yugoslavia); Perovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1977-01-01

    The problem of determination of one part boundary conditions temperatures for Fourier partial differential equation when the other part of boundary condition and derivates (heat fluxes) are known is a practical interest as it enables one to determine and accessible temperature by measuring temperatures on other side, of the wall. Method developed and applied here consist of transforming the Fourier partial differential equation by time discretisation in sets of pairs of ordinary differential equations for temperature and heat flux. Such pair of differential equations of first order was solved by Runge-Kutta method. The integration proceeds along space interval simultaneosly for all time intervals. It is interesting to note that this procedure does not require the initial condition.

  15. valuation of Germination Characteristics for Hedysarum Criniferum Boiss in Alternative Temperature and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Shahbazi

    2016-05-01

    24-26 °C day-night and four drought levels (0, -2, -4, and -6 bar with three replications. According to the results, different levels of drought stress and alternative temperature had significant effects on germination percentage and germination speed of the species seeds (α=5%. The study showed that increasing temperature and drought levels leads to reducing the germination percentage and germination speed of the species. Higher germination percentage of H. criniferum seeds in different drought levels compared to alternative temperature levels of 24-26 °C indicated that this species is more sensitive to higher temperature than high levels of drought condition. Therefore, it could partly be concluded that the H. criniferum is a relatively drought resistance species.

  16. Massless representations and admissibility condition for higher spin superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Konstein, S E; Vasiliev, M A

    1989-01-16

    Massless particle representations of various infinite-dimensional higher spin superalgebras proposed previously are constructed. We analyse which of higher spin superalgebras obey the requirement (the admissibility condition) of possessing massless unitary representations with the same spectra of spins as predicted by the structure of gauge fields originating from these superalgebras. It is argued that those higher spin superalgebras, which obey the admissibility condition, can serve as rigid supersymmetries in nontrivial consistent gauge theories of massless fields of all spins.

  17. Comparison of higher irradiance and black panel temperature UV backsheet exposures to field performance

    Science.gov (United States)

    Felder, Thomas C.; Gambogi, William J.; Phillips, Nancy; MacMaster, Steven W.; Yu, Bao-Ling; Trout, T. John

    2017-08-01

    The need for faster PV qualification tests that more accurately match field observations is leading to tests with higher acceleration levels, and validating the new tests through comparison to field data is an important step. We have tested and compared a wide panel of backsheets according to a proposed new backsheet UV exposure qualification standard from the International Electrotechnical Commission (IEC). Weathering Technical Standard IEC 62788-7-2 specifies higher irradiance and higher black panel temperature UV Xenon exposures. We tested PVF, PVDF, PET, PA and FEVEbased backsheets in glass laminates and simple backsheet coupons in UV exposure condition A3 (0.8W/sqmnm@340nm and 90° C BPT) We find mild yellowing with no mechanical loss in the original lower intensity ASTM G155 0.55 W/sqm-nm 70C BPT exposure condition. The new A3 exposures creates mechanical loss in sensitive backsheets, with no effect on known durable backsheets. Results from the new exposure are closer to field mechanical loss data.

  18. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-07-15

    Aqueous solutions of benzene have been irradiated with Co {gamma}-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed.

  19. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    International Nuclear Information System (INIS)

    Christensen, H.

    1964-07-01

    Aqueous solutions of benzene have been irradiated with Co γ-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed

  20. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  1. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  2. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  3. Temperature variation of higher-order elastic constants of MgO

    Indian Academy of Sciences (India)

    series of strains using Taylor's series expansion. The coefficients of quadratic, cu- ... as thermal expansion, specific heat at higher temperature, temperature variation of ultrasonic velocity and attenuation, .... such studies have an impression that linear variation of elastic constant is true. The experimental study shows that ...

  4. Interactive effects of temperature and light during deep convection: a case study on growth and condition of the diatom Thalassiosira weissflogii

    DEFF Research Database (Denmark)

    Walter, B.; Peters, J.; van Beusekom, J. E. E.

    2015-01-01

    pulses of a higher light intensity (120 mmol m22 s21, 2/22 hlight/dark). Both experimental light conditions offered the same daily light dose. No growth was observed at temperatures below 88C. Above 88C, growth rates were significantly higher under low light conditions compared with those of short pulsed...... light exposures, indicating a higher efficiency of light utilization. This could be related to (i) a higher content of Chl a per cell in the lowlight trial and/or (ii) a more efficient transfer of light energy into growth as indicated by constantly low carbohydrate levels.In contrast, pulsed intense...... did not provide sufficient light to reach full light saturation. In general, photosynthesis was more strongly affected by temperature under pulsed light than under low light conditions. Our results indicate that model estimates of primary production in relation to deep convection, which are based...

  5. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    Directory of Open Access Journals (Sweden)

    Kyle Z. Goodman

    2016-12-01

    Full Text Available Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  6. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    Science.gov (United States)

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  7. Experimental effects of immersion time and water temperature on body condition, burying depth and timing of spawning of the tellinid bivalve Macoma balthica

    Science.gov (United States)

    de Goeij, Petra; Honkoop, Pieter J.

    2003-03-01

    The burying depth of many bivalve molluscs on intertidal mudflats varies throughout the year and differs between places. Many factors are known to influence burying depth on a seasonal or spatial scale, with temperature and tidal regime probably being very important. Burying depth, body condition and gonadal development of Macoma balthica were followed throughout winter and spring in an experiment in which water temperature and immersion time were manipulated. Unexpectedly, relative water temperature, in contrast to the prediction, did not generally affect body condition or burying depth. This was probably a consequence of the exceptionally overall low water temperatures during the experimental winter. Differences in temperature did, however, result in different timing of spawning: M. balthica spawned earlier at higher spring temperatures. Longer immersion times led to higher body condition only late in spring, but led to deeper burying throughout almost the whole period. There was no effect of immersion time on the timing of spawning. We conclude that a longer immersion time leads to deeper burying, independent of body condition. We also conclude that burying behaviour of M. balthica is not determined by the moment of spawning.

  8. Aggregation of human sperm at higher temperature is due to hyperactivation.

    Science.gov (United States)

    Keppler, E L; Chan, P J; Patton, W C; King, A

    1999-01-01

    Chemotaxis of sperm cells to chemicals and hormones, such as progesterone, helps us to understand the concept of sperm transport. Here, the hypothesis was that heat increased sperm hyperactive motility, which caused the sperm to aggregate at the higher temperature. The objectives were (1) to determine the concentration of sperm at both halves of an artificial female reproductive tract made from a hermetically sealed cryopreservation straw filled with culture medium and placed with each end at different temperatures, and (2) to analyze the motility or kinematic parameters and hyperactivation of sperm found at the different temperatures. Cryopreserved-thawed human donor sperm (N = 6) were pooled and processed through 2-layer colloid solution. Analyses of the motile sperm were carried out and the washed sperm were homogeneously mixed and pipetted into several 0.5-mL French cryopreservation straws and heat-sealed. The control substance, consisting of acid-treated sperm, was also placed in several straws. The plastic straws of sperm were placed half at 23 degrees C and half was at either 37 or 40 degrees C. After 4 h, sperm at different sections of the straws were analyzed using the Hamilton Thorn motility analyzer (HTM-C). After 4 h of incubation, the concentration of sperm was doubled at the 40 degrees C heated half of the straw when compared with the other half of the straw at 23 degrees C. There were no differences in sperm concentration in the straw kept half at 37 degrees C and half at 23 degrees C. There were significantly higher percent motility, mean average path velocity, straight line velocity, lateral head displacement, and percent hyperactivation in sperm at the 40 degrees C temperature. The aggregation of sperm at the higher temperature of 40 degrees C may be due to enhanced motility, increased sperm velocities, and a 10-fold increase in hyperactivation at that temperature. The 37 degrees C temperature was not sufficient to attract sperm. Sperm cells

  9. Oxidation performance of high temperature materials under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tuurna, Satu; Pohjanne, Pekka; Yli-Olli, Sanni; Kinnunen, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Oxyfuel combustion is widely seen as a major option to facilitate carbon capture and storage (CCS) from future boiler plants utilizing clean coal technologies. Oxyfuel combustion can be expected to differ from combustion in air by e.g. modified distribution of fireside temperatures, much reduced NOx but increased levels of fireside CO{sub 2}, SO{sub 2} and water levels due to extensive flue gas recirculation. Modified flue gas chemistry results in higher gas emissivity that can increase the thermal stresses at the heat transfer surfaces of waterwalls and superheaters. In addition, increased flue gas recirculation can increase the concentration of a number of contaminants in the deposited ash and promote fouling and corrosion. There is relatively little experimental information available about the effects of oxyfuel combustion on the performance of boiler material. In this work, the oxidation performance of steels X20CrMoV11-1 and TP347HFG has been determined at 580 C/650 C under simulated oxyfuel firing conditions. The results are presented and compared to corresponding results from simulated air firing conditions. (orig.)

  10. Investigation of Thermal Comfort Conditions in Higher Education Facilities: A Case Study for Engineering Faculty in Edirne

    Directory of Open Access Journals (Sweden)

    E. Mıhlayanlar

    2017-02-01

    Full Text Available In this study, a higher education institution in Edirne (Trakya University Engineering Faculty is investigated for indoor thermal comfort conditions of the classrooms (indoor temperature, relative humidity, average radiant temperature, “Satisfaction from thermal environment” (PMV and “Dissatisfaction from thermal environment” (PPD. The classrooms in the institution are heated by a central heating system and utilise natural ventilation system. Measurements were taken with the proper devices at the same time of the weekdays during lecture times in winter (heating season in December. The results obtained from measurements are given in graphics and compared with the values given in ASHRAE 55 and ISO 7730 standards.

  11. Experimental study on capacitance void fraction meters for high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Mitsutake, Toru; Shibata, Mitsuhiko; Takase, Kazuyuki

    2010-01-01

    The electro-void fraction meter (Capacitance type meter) was applied to higher pressure conditions of 18 MPa than BWR operating conditions of 7 MPa. The void fraction measurement system has been developed including the electrodes of void fraction measurement, instrumentation cables with mineral insulation and simplified electric circuit to provide good signal-to-noise ratio. It satisfied the performance of thermal and pressure resistance and electric insulating capacity. Calibration function for high temperature and high pressure conditions was confirmed through calibration test with 37-rod bundle against datum 19-rod bundle by the quick-shut valve method respectively under 2 MPa conditions. It was confirmed that the measured data were consistent with those measured by the quick-shut valve method. (author)

  12. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  13. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air

  14. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value.

    The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly

  15. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, KAIST, Daejeon (Korea, Republic of); Jung, Young Suk [Launcher Systems Development Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid.

  16. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    International Nuclear Information System (INIS)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon; Jung, Young Suk

    2014-01-01

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid

  17. Anode-supported SOFC operated under single-chamber conditions at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.; Roa, J.J.; Segarra, M. [Department of Materials Science and Metallurgical Engineering, University of Barcelona, E-08028, Barcelona (Spain); Capdevila, X.G. [Center of Design and Optimization in Avanced Materials, Parc Cientific of Barcelona, E-08028, Barcelona (Spain); Pinol, S. [Institute of Materials Science of Barcelona (CSIC), Campus of the UAB, Bellaterra E-08193, Barcelona (Spain)

    2011-02-15

    Anode-supported SOFC was fabricated using gadolinia doped ceria (GDC) as the electrolyte (15 {mu}m of thickness), Ni-GDC as the anode and La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}}-GDC as the cathode. Catalytic activities of the electrodes and electrical properties of the cell were determined, using mixtures of methane + air, under single-chamber conditions. This work assessed with special and wide emphasis the effect of temperature, gas composition and total flow rate on the cell performance. As a result, operational temperature range of the fuel cell was approximately between 700 and 800 C, which agrees with the results corresponding to the catalytic activities of electrodes. While Ni-GDC anode was enough active towards methane partial oxidation at cell temperatures higher than 700 C, the LSC-GDC cathode was enough inactive towards partial and total oxidation of methane at cell temperatures lower than 800 C. Under optimised gas compositions (CH{sub 4}/O{sub 2}) ratio (1) and total flow rate (530 mL min {sup -1}), power densities of 145 and 235 mW cm {sup -2} were obtained at 705 and 764 C, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation

    Directory of Open Access Journals (Sweden)

    Gregersen Finn

    2010-11-01

    Full Text Available Abstract Background Evaluating the limits of adaptation to temperature is important given the IPCC-predicted rise in global temperatures. The rate and scope of evolutionary adaptation can be limited by low genetic diversity, gene flow, and costs associated with adaptive change. Freshwater organisms are physically confined to lakes and rivers, and must therefore deal directly with climate variation and change. In this study, we take advantage of a system characterised by low genetic variation, small population size, gene flow and between-trait trade-offs to study how such conditions affect the ability of a freshwater fish to adapt to climate change. We test for genetically-based differences in developmental traits indicating local adaptation, by conducting a common-garden experiment using embryos and larvae from replicate pairs of sympatric grayling demes that spawn and develop in natural cold and warm water, respectively. These demes have common ancestors from a colonization event 22 generations ago. Consequently, we explore if diversification may occur under severely constraining conditions. Results We found evidence for divergence in ontogenetic rates. The divergence pattern followed adaptation predictions as cold-deme individuals displayed higher growth rates and yolk conversion efficiency than warm-deme individuals at the same temperature. The cold-deme embryos had a higher rate of muscle mass development. Most of the growth- and development differences occurred prior to hatch. The divergence was probably not caused by genetic drift as there was a strong degree of parallelism in the divergence pattern and because phenotypic differentiation (QST was larger than estimated genetic drift levels (microsatellite FST between demes from different temperature groups. We also document that these particular grayling populations cannot develop successfully at temperatures above 12°C, whereas other European populations can, and that increasing the

  19. Overnight storage of whole blood: cooling and transporting blood at room temperature under extreme temperature conditions.

    Science.gov (United States)

    Thibault, L; Beauséjour, A; Jacques, A; Ducas, E; Tremblay, M

    2014-02-01

    Many countries allow the overnight storage of whole blood (WB) at ambient temperature. Some countries, such as Canada, also require a rapid cooling of WB with an active cooling system. Given the significant operational constraints associated with current cooling systems, an alternative method for cooling and transporting WB at 20-24°C was evaluated. Phase 22 cooling packs (TCP Reliable Inc., USA) were used in combination with vacuum-insulated panel (VIP) boxes. Temperature profiles of simulated WB units were studied in extreme temperatures (-35 and 40°C). The quality of blood components prepared using Phase 22 packs and CompoCool-WB (Fresenius HemoCare, Germany) was studied. Phase 22 packs reduced the temperature of simulated WB bags from 37 to 24°C in 1·7 ± 0·2 h. Used in combination with VIP boxes, Phase 22 packs maintain the temperature of bags between 20 and 24°C for 15 and 24 h, compared to 2 and 11 h with CompoCool-WB, when exposed at -35 and 40°C, respectively. The quality of platelet concentrates and plasma was comparable, regardless of the cooling system used. For red blood cell units, per cent haemolysis on day 42 was slightly higher in products prepared after cooling with Phase 22 packs compared to CompoCool-WB (0·33 ± 0·15% vs. 0·21 ± 0·06%; P environmental conditions. © 2013 International Society of Blood Transfusion.

  20. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    Science.gov (United States)

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety. Copyright © 2015. Published by Elsevier B.V.

  1. Low-temperature conditioning induces chilling tolerance in stored mango fruit.

    Science.gov (United States)

    Zhang, Zhengke; Zhu, Qinggang; Hu, Meijiao; Gao, Zhaoyin; An, Feng; Li, Min; Jiang, Yueming

    2017-03-15

    In this study, mango fruit were pre-treated with low-temperature conditioning (LTC) at 12°C for 24h, followed by refrigeration at 5°C for 25days before removal to ambient temperature (25°C) to investigate the effects and possible mechanisms of LTC on chilling injury (CI). The results showed that LTC effectively suppressed the development of CI in mango fruit, accelerated softening, and increased the soluble solids and proline content. Furthermore, LTC reduced electrolyte leakage, and levels of malondialdehyde, O 2 - and H 2 O 2 , maintaining membrane integrity. To reveal the molecular regulation of LTC on chilling tolerance in mango fruit, a C-repeat/dehydration-responsive element binding factor (CBF) gene, MiCBF1, was identified and its expression in response to LTC was examined using RT-qPCR. LTC resulted in a higher MiCBF1 expression. These findings suggest that LTC enhances chilling tolerance in mango fruit by inducing a series of physiological and molecular responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Creep of concrete under various temperature, moisture, and loading conditions

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1976-01-01

    An investigation was conducted to obtain information on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). Variables included concrete strength, aggregate types, curing history, temperature, and types of loading (uniaxial, hydrostatic, biaxial, and triaxial). There were 66 test conditions for creep tests and 12 test conditions for unloaded or control specimens. Experimental results are presented and discussed. Comparisons are made concerning the effect of the various test conditions on the behavior of concrete, and general conclusions are formulated

  3. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua

    1999-01-01

    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  4. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    Science.gov (United States)

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  6. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    Science.gov (United States)

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  7. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  8. Analysis of education conditions in higher educational institutions of Ukraine

    Directory of Open Access Journals (Sweden)

    Олександр Петрович Бурмістенков

    2016-12-01

    Full Text Available The article deals with some issues related to higher technical education conditions in Ukraine, namely, training and certification of graduates of schools, training of students in higher educational institutions and motivation of students to study and teachers to improve teaching methods and deep research within the walls of institution. The causes of education level reduction are expressed. The propositions are made for improving the higher education quality

  9. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... hypophthalmus inhabits the Mekong river system covering two climate zones during its life cycle and migrating more than 2000 km from hatching in northern Laos to its adult life in the southern delta region. It is a facultative air-breather with well-developed gills and air-breathing organ and an unusual...... circulatory bauplan. Here we examine the question of its optimal temperature through aspects of its cardio respiratory physiology including temperature effects on blood oxygen binding, ventilation and blood gasses, stereological measures of cardiorespiratory system, metabolic rate and growth. Comparing...

  10. Fuel temperature influence on diesel sprays in inert and reacting conditions

    International Nuclear Information System (INIS)

    Payri, Raul; García-Oliver, Jose M.; Bardi, Michele; Manin, Julien

    2012-01-01

    The detailed knowledge of the evaporation–combustion process of the Diesel spray is a key factor for the development of robust injection strategies able to reduce the pollutant emissions and keep or increase the combustion efficiency. In this work several typical measurement applied to the diesel spray diagnostic (liquid length, lift-off length and ignition delay) have been employed in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic test conditions (up to 1000 K and 15 MPa). A step forward in the control of the test boundary conditions has been done employing a special system to study the fuel temperature effect on the evaporation and combustion of the spray. The temperature of the injector body has been controlled with a thermostatic system and the relationship between injector body and fuel temperature has been observed experimentally. Imaging diagnostics have been employed to visualize the liquid phase penetration in evaporative/inert conditions and, lift-off length and ignition delay in reactive condition. The results underline a clear influence of the injector body temperature on both conditions, evaporative and, in a lesser degree, reactive; finally the physical models found in the literature have been compared with the results obtained experimentally. - Highlights: ► The effect of the fuel temperature is substantial on liquid length (up to 15%). ► Fuel temperature has low effect but still appreciable on LOL and ignition delay. ► Theoretical one dimensional spray models are able to reproduce the experimental results with good accuracy.

  11. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  12. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  13. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  14. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures.

    Science.gov (United States)

    Balfagón, Damián; Zandalinas, Sara I; Baliño, Pablo; Muriach, María; Gómez-Cadenas, Aurelio

    2018-06-01

    Usually several environmental stresses occur in nature simultaneously causing a unique plant response. However, most of the studies until now have focused in individually-applied abiotic stress conditions. Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) are two citrus rootstocks with contrasting tolerance to drought and heat stress and have been used in this work as a model for the study of plant tolerance to the combination of drought and high temperatures. According to our results, leaf integrity and photosynthetic machinery are less affected in Carrizo than in Cleopatra under combined conditions of drought and heat stress. The pattern of accumulation of three proteins (APX, HSP101 and HSP17.6) involved in abiotic stress tolerance shows that they do not accumulate under water stress conditions individually applied. However, contents of APX and HSP101 are higher in Carrizo than in Cleopatra under stress combination whereas HSP17.6 has a similar behavior in both types of plants. This, together with a better stomatal control and a higher APX activity of Carrizo, contributes to the higher tolerance of Carrizo plants to the combination of stresses and point to it as a better rootstock than Cleopatra (traditionally used in areas with scare water supplies) under the predictable future climatic conditions with frequent periods of drought combined with high temperatures. This work also provides the basis for testing the tolerance of different citrus varieties grafted on these rootstocks and growing under different field conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Impact of storage conditions on seed germination and seedling growth of wild oat (Avena fatua L. at different temperatures

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2015-12-01

    Full Text Available The influence of seed storage conditions and different temperatures (5˚C, 10˚C, 15˚C, 20˚C, 25˚C, 30˚C and 26˚C/21˚C during germination and seedling development on seed germination, shoot length and germination rate of wild oat (Avena fatua L. was examined. Germinated seeds were counted daily over a period of ten days and shoot length was measured on the last day, while germination rates were calculated from those measurements. The results showed that seed storage under controlled conditions (T1: temperature 24±1°C, humidity 40-50%; T2: temperature 26±1°C, humidity 70-80% and T3: temperature 4˚C for periods of 3 (t1 and 12 (t2 months had a significant influence on germination of wild oat seeds. The percentage of germinated seeds under all examined temperatures was higher when they were stored for 12 months under controlled temperature and humidity. The results also showed that temperature had a significant effect on the percentage of germination and germination rate of A. fatua seeds. The highest total germination occurred at 15˚C temperature (T1: t1 - 41.25%, t2 - 44.37%; T2: t1 - 28.13%, t2 - 34.37%; T3: t1 - 10.63%, t2 - 12.50%. Germination percentage under an alternating day /night photoperiod at 26˚C/21˚C temperature was higher in all treatment variants (T1: t1 - 8.13%, t2 - 10.00%; T2: t1 - 11.87%, t2 - 13.13%; T3: t1 - 2.42%, t2 - 2.70% than germination in the dark at 25˚C, 30˚C and 5˚C.

  16. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  17. Identification of complex model thermal boundary conditions based on exterior temperature measurement

    International Nuclear Information System (INIS)

    Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun

    2012-01-01

    Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)

  18. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    Science.gov (United States)

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.

  19. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  20. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  1. Evaluation of stability of allergen extracts for sublingual immunotherapy during transport under unfavourable temperature conditions with an innovative thermal insulating packaging.

    Science.gov (United States)

    Puccinelli, P; Natoli, V; Dell'albani, I; Scurati, S; Incorvaia, C; Barbieri, S; Masieri, S; Frati, F

    2013-10-01

    Many pharmaceutical and biotechnological products are temperature-sensitive and should normally be kept at a controlled temperature, particularly during transport, in order to prevent the loss of their stability and activity. Therefore, stability studies should be performed for temperature-sensitive products, considering product characteristics, typical environmental conditions, and anticipating environmental extremes that may occur during product transport in a specific country. Staloral products for sublingual immunotherapy are temperature sensitive and are labelled for maintenance under refrigerated conditions (2-8°C). Given the peculiar climatic context of Italy and the great temperature fluctuations that may occur during transport, this study was aimed at evaluating the impact of a new engineered thermal insulating packaging for Staloral. In particular, the purpose was to assess whether the new packaging could create a container condition able to preserve the stability and immunological activity of the product during the transport phase throughout Italy. The results showed that the range of temperatures that can affect the product, in the area surrounding the product packaging, may reach a peak of 63°C during transport under the most unfavourable climatic conditions, i.e. in a non-refrigerated van during the summer season, from the site of production in France to the patient's house in Catania, the city with the highest temperatures in Italy. However, the highest temperature reached inside the vaccine did not exceed 45°C over a period of about 2 h. The ELISA inhibition test on samples subjected to the extreme temperature conditions previously defined (45°C) showed an immunological activity higher than 75% of that initially measured and was comparable to those obtained with samples stored at controlled temperature (5°C). This means that, even in the worst case scenario, the structure of the allergen extracts is not influenced and the vaccine potency is

  2. Increasing Impact of Economic Conditions upon Higher Education Enrollments.

    Science.gov (United States)

    Rusk, James J.; And Others

    1982-01-01

    To assess the impact of economic conditions on enrollment in higher education, researchers used time series analysis on national data for 1966-78 and on 1972-78 data from all eight regions of the country and the University of Arizona. The findings indicate enrollment has gone up during economic downturns. (Author/RW)

  3. Influence of yeast strain, priming solution and temperature on beer bottle conditioning.

    Science.gov (United States)

    Marconi, Ombretta; Rossi, Serena; Galgano, Fernanda; Sileoni, Valeria; Perretti, Giuseppe

    2016-09-01

    Recently, there has been a significant increase in the number of microbreweries. Usually, craft beers are bottle conditioned; however, few studies have investigated beer refermentation. One of the objectives of this study was to evaluate the impacts of different experimental conditions, specifically yeast strain, priming solution and temperature, on the standard quality attributes, the volatile compounds and the sensory profile of the bottle-conditioned beer. The other aim was to monitor the evolution of volatile compounds and amino acids consumption throughout the refermentation process to check if it is possible to reduce the time necessary for bottle conditioning. The results indicate that the volatile profile was mainly influenced by the strain of yeast, and this may have obscured the possible impacts of the other parameters. Our results also confirm that the two yeast strains showed different metabolic activity, particularly with respect to esters production. Moreover, we found the Safbrew S-33® strain when primed with Siromix® and refermented at 30 °C yielded the fastest formation of higher alcohols while maintaining low production of off-flavours. These results suggest a formulation that may reduce the time needed for bottle conditioning without affecting the quality of the final beer which may simultaneously improve efficiency and economic profits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-06-01

    Full Text Available This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts, the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  5. Analysis of the Slab Temperature, Thermal Stresses and Fractures Computed with the Implementation of Local and Average Boundary Conditions in the Secondary Cooling Zones

    Directory of Open Access Journals (Sweden)

    Hadała B.

    2016-12-01

    Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.

  6. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Zongyue Yu

    2014-01-01

    Full Text Available A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testing plan including both the high temperatures and low temperatures is designed, and a statistical analysis method is developed. The reliability function of the product with multiple failure modes under variable working conditions is given by the proposed statistical analysis method. Finally, a numerical example is studied to illustrate the proposed accelerated testing. The results show that the proposed accelerated testing is rather efficient.

  7. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...... at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...

  8. Sclerotial formation of Polyporus umbellatus by low temperature treatment under artificial conditions.

    Science.gov (United States)

    Xing, Yong-Mei; Zhang, Li-Chun; Liang, Han-Qiao; Lv, Jing; Song, Chao; Guo, Shun-Xing; Wang, Chun-Lan; Lee, Tae-Soo; Lee, Min-Woong

    2013-01-01

    Polyporus umbellatus sclerotia have been used as a diuretic agent in China for over two thousand years. A shortage of the natural P. umbellatus has prompted researchers to induce sclerotial formation in the laboratory. P. umbellatus cultivation in a sawdust-based substrate was investigated to evaluate the effect of low temperature conditions on sclerotial formation. A phenol-sulfuric acid method was employed to determine the polysaccharide content of wild P. umbellatus sclerotia and mycelia and sclerotia grown in low-temperature treatments. In addition, reactive oxygen species (ROS) content, expressed as the fluorescence intensity of mycelia during sclerotial differentiation was determined. Analysis of ROS generation and sclerotial formation in mycelia after treatment with the antioxidants such as diphenyleneiodonium chloride (DPI), apocynin (Apo), or vitamin C were studied. Furthermore, macroscopic and microscopic characteristics of sclerotial differentiation were observed. Sclerotia were not induced by continuous cultivation at 25°C. The polysaccharide content of the artificial sclerotia is 78% of that of wild sclerotia. In the low-temperature treatment group, the fluorescent intensity of ROS was higher than that of the room temperature (25°C) group which did not induce sclerotial formation all through the cultivation. The antioxidants DPI and Apo reduced ROS levels and did not induce sclerotial formation. Although the concentration-dependent effects of vitamin C (5-15 mg mL(-1)) also reduced ROS generation and inhibited sclerotial formation, using a low concentration of vitamin C (1 mg mL(-1)) successfully induced sclerotial differentiation and increased ROS production. Exposure to low temperatures induced P. umbellatus sclerotial morphogenesis during cultivation. Low temperature treatment enhanced ROS in mycelia, which may be important in triggering sclerotial differentiation in P. umbellatus. Moreover, the application of antioxidants impaired ROS generation

  9. Minimization of heat slab nodes with higher order boundary conditions

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1992-01-01

    The accuracy of a numerical solution can be limited by the numerical approximation to the boundary conditions rather than the accuracy of the equations which describe the interior. The study presented in this paper compares the results from two different numerical formulations of the convective boundary condition on the face of a heat transfer slab. The standard representation of the boundary condition in a test problem yielded an unacceptable error even when the heat transfer slab was partitioned into over 300 nodes. A higher order boundary condition representation was obtained by using a second order approximation for the first derivative at the boundary and combining it with the general equation used for inner nodes. This latter formulation produced reasonable results when as few as ten nodes were used

  10. A study on low temperature transformation ferrite in ultra low carbon IF steels (I) - effects of manganese and annealing conditions

    International Nuclear Information System (INIS)

    Jeong, Woo Chang; Lee, Jae Yeon; Jin, Young Sool

    2001-01-01

    An investigation was made to determine the effects of Mn content and annealing conditions on the formation of the low temperature transformation products in ultra low carbon interstitial free steels. With increasing the Mn content, yield and tensile strengths increased, but yield ratio decreased. The Mn was found to be effective to decrease the yield point elongation, causing continuous yielding in 3% Mn steel. Low temperature transformation ferrites such as quasi-polygonal ferrite, granular bainitic ferrite, and bainitic ferrite more easily formed with higher Mn content, higher annealing temperature, longer annealing time, and faster cooling rate. Polygonal ferrite grain was readily identified in the light microscope and was characterized by the polyhedral and equiaxed shape while quasi-polygonal ferrite showed the irregular changeful grain boundaries. It was found that both granular bainitic and bainitic ferrites revealed some etching evidence of substructures in the light microscope

  11. Effect of higher temperature exposure on physicochemical properties of frozen buffalo meat

    Directory of Open Access Journals (Sweden)

    M. R. Vishnuraj

    2014-11-01

    Full Text Available Aim: The aim was to study the changes in various physicochemical parameters of frozen buffalo meat undergone temperature abuse at two different isothermal storage temperatures (37±1°C, 25±1°C using a simulated model. Materials and Methods: Frozen buffalo meat was evaluated after exposing to various temperature abuse conditions over selected durations for different meat quality parameters including pH, extract release volume (ERV, flourescein diacetate (FDA hydrolysis, free amino acid (FAA, total volatile basic nitrogen (TVBN and D-glucose value and compared against a control sample maintained at 4±1°C. Results: Of the various meat quality parameters evaluated pH, FDA hydrolysis, FAA content and TVBN content showed a significant (p<0.05 increase in temperature abused samples after temperature abuse and on subsequent refrigerated storage. However, ERV and D-glucose content decreased significantly (p<0.05 in temperature abused buffalo meat during the same period of study. Conclusions: The present study featured the influence of exposure temperature and duration in various physicochemical parameters and the rate of spoilage development in frozen buffalo meat after temperature abuse.

  12. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Science.gov (United States)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  13. An experimental study of soil temperature regimes associated with solar disinfestation techniques under greenhouse conditions in Greece.

    Science.gov (United States)

    Garofalakis, I; Tsiros, I; Frangoudakis, A; Chronopoulos, K; Flouri, F

    2006-01-01

    This paper deals with an experimental study of various techniques that have been applied for soil disinfestation purposes under greenhouse conditions. Various meteorological parameters and soil temperatures were measured for four different experimental soil segments (three associated with different disinfestation techniques and one as a reference) at depths varying between 0-1 m and with a time interval of 5 min in a greenhouse located in the Agricultural University of Athens Campus, Greece. Results showed that plastic polyethylene films such as covers, metallic conductors or a combination of both were able to enhance heat transfer and temperature increase in greenhouse soil. For typical disinfestation conditions, the depth-averaged temperature values for plastic covers, metallic conductors, and the combination of both were found to be higher than those for the reference of about 5 degrees C, 12 degrees C and 15 micro C, respectively. Moreover, the remained population percentages 50 days after the initiation of the experiment were found to be 19.3%, 25.3%, 37.3% Kcat 94% of the initial population, for the combination of metallic conductors and plastic covers, metallic conductors, plastic cover, and for the reference, respectively.

  14. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  15. Comprehensive analysis of an Antarctic bacterial community with the adaptability of growth at higher temperatures than those in Antarctica.

    Science.gov (United States)

    Hosoi-Tanabe, Shoko; Zhang, Hongyan; Zhu, Daochen; Nagata, Shinichi; Ban, Syuhei; Imura, Satoshi

    2010-06-01

    To investigate the adaptability to higher temperatures of Antarctic microorganisms persisting in low temperature conditions for a long time, Antarctic lake samples were incubated in several selection media at 25 degrees C and 30 degrees C. The microorganisms did not grow at 30 degrees C; however, some of them grew at 25 degrees C, indicating that the bacteria in Antarctic have the ability to grow at a wide range of temperatures. Total DNA was extracted from these microorganisms and amplified using the bacteria-universal primers. The amplified fragments were cloned, and randomly selected 48 clones were sequenced. The sequenced clones showed high similarity to the alpha-subdivision of the Proteobacteria with specific affinity to the genus Agrobacterium, Caulobacter and Brevundimonas, the ss-subdivision of Proteobacteria with specific affinity to the genus Cupriavidus, and Bacillus of the phylum Firmicutes. These results showed the presence of universal genera, suggesting that the bacteria in the Antarctic lake were not specific to this environment.

  16. Simulation of temperature conditions on APT of HMA mixes

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2008-10-01

    Full Text Available between these APT data and practical application of the outcomes of the tests. The paper starts with general background on the effect of temperature on the loading conditions and response of HMA materials, methods to manage it during APT testing...

  17. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.

    Science.gov (United States)

    Vu, Henry M; Duman, John G

    2017-08-01

    Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.

  18. A Status of Art-Report on the Fission Products Behavior Released from Spent Fuel at High Temperature Conditions

    International Nuclear Information System (INIS)

    Park, Geun Il; Kim, J. H.; Lee, J. W.

    2003-04-01

    The experiments on the fission products release behavior from spent fuel at high temperature assuming reactor accident conditions have been carried out at Oak Ridge Nation Laboratory of USA in HI/VI tests, CEA of France in HEVA/VERCOS tests, AEA of England and CRNL of Canada in HOX test. The VEGA program to study the fission product release behavior from LWR irradiated fuel was recently initiated at JAERI. The key parameter affecting the fission product(FP) release behavior is temperature. In addition, other parameters such as fuel oxidation, burnup, pre-transient conditions are found to affect the FP releases considerably in the earlier tests. The atmosphere conditions such as oxidizing atmosphere (steam or air) or reducing atmosphere (hydrogen) can cause significant change of FPs release and transport behavior due to chemical forms of the reactive FPs which is dependent on the oxidation potential. The effect of fuel burnup on the Kr-85 or Cs-137 release showed that the release rates of these radionuclides increased with the increase of burnup, meaning that release rates are dominated by the atomic diffusions in the grains and they are primarily a function of temperature. However, the data on FPs release behavior using higher burnups above 50,000 MWD/MTU are not so many reported up to now. This report summarizes the test results of FPs release behavior in reactor accident conditions produced from other countries mentioned above. This review and analysis on earlier studies would be useful for predicting the release characteristics of FPs from domestic spent fuel. The release rates of fission gas or FPs from spent fuel at high temperature conditions during fabrication process of dry recycling fuel were also analyzed using many data obtained from earlier tests

  19. Temperature dependent investigation on optically active process of higher-order bands in irradiated silicon

    International Nuclear Information System (INIS)

    Shi Yi; Nanjing Univ., JS; Wu Fengmei; Nanjing Univ., JS; Zheng Youdou; Nanjing Univ., JS; Suezawa, M.; Imai, M.; Sumino, K.

    1996-01-01

    Optically active processes of the higher-order bands (HOB) are investigated at different temperatures in fast neutron irradiated silicon using Fourier transform infrared absorption measurement. It is shown that the optically active process is nearly temperature independent below 80 K, the slow decay process remains up to a heating temperature of 180 K. The observations are analyzed in terms of the relaxation behavior of photoexcited carriers governed by fast neutron radiation induced defect clusters. (orig.)

  20. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions.

    Science.gov (United States)

    de Rosas, Inés; Ponce, María Teresa; Malovini, Emiliano; Deis, Leonor; Cavagnaro, Bruno; Cavagnaro, Pablo

    2017-05-01

    Malbec and Bonarda are the two most widely cultivated grape varieties in Argentina, and their derived red wines are recognized worldwide, being their intense color a major quality trait. The temperature during fruit ripening conditions berries color intensity. In the main viticulture region of Malbec and Bonarda a 2-3°C increase in temperature has been predicted for the upcoming years as consequence of the global climate change. In the present study, this predicted temperature raise was simulated under field-crop conditions, and its effect on anthocyanin pigmentation in berries of Malbec and Bonarda was monitored by HPLC analysis throughout the ripening process, in two growing seasons. Additionally, expression levels of regulatory (MYBA1 and MYB4) and structural (UFGT and Vv3AT) anthocyanin genes were monitored in Malbec berry skins. Although cultivar-dependent time-course variation was observed for total anthocyanin content, in general, the berries of both cultivars grown under high temperature (HT) conditions had significantly lower total anthocyanins (∼28-41% reduction), and a higher proportion of acylated anthocyanins, than their respective controls. Expression of MYBA1 and UFGT, but not MYB4, was correlated with anthocyanin pigmentation at half ripening and harvest, whereas overexpression of the acyltransferase gene Vv3AT was associated with higher anthocyanin acylation in HT berries. These results suggest that color development and pigment modifications in Malbec berries under HT are regulated at transcriptional level by MYBA1, UFGT, and Vv3AT genes. These data contribute to the general understanding on the effect of high temperatures on anthocyanin biochemistry and genetic regulation, and may have direct implications in the production of high-quality wines from Malbec and Bonarda. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Emotional Memory Formation Under Lower Versus Higher Stress Conditions

    OpenAIRE

    Kogan, Inna; Richter-Levin, Gal

    2010-01-01

    An exposure to stress can enhance memory for emotionally arousing experiences. The phenomenon is suggested to be amygdala-dependent and in accordance with that view the amygdala was found to modulate mnemonic processes in other brain regions. Previously, we illustrated increased amygdala activation and reduced activation of CA1 following spatial learning under higher versus lower stress conditions. When spatial learning was followed by reversal training interference, impaired retention was de...

  2. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    Science.gov (United States)

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature ( 21 degrees C) on each variable. Compared with findings at ambient temperatures 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  3. Investigations to the potential of the high temperature reactor for steam power processes with highest steam conditions and comparison with according conventional power plants

    International Nuclear Information System (INIS)

    Mondry, M.

    1988-04-01

    Already in the fifties conventional power plants with high parameters of the live steam were built to improve the total efficiency. The power plant with the highest steam conditions in the Federal Republic of Germany has 300 bar pressure and 600deg C temperature. Because of high material costs and other problems power plants with such high conditions were not continued to be built. Standard conditions of today's power plants are in the order of 180-250 bar pressure and 535deg C temperature. As the high temperature reactor is partly built up in another way than a conventional power plant, the results regarding the high steam parameters are not transferable. Possibilities for the technical realization of determined HTR-specific components are introduced and discussed. Then different HTR-power plants with steam conditions up to 350 bar pressure and 650deg C temperature are projected. Economical considerations show that an HTR with higher steam parameters brings financial profits. Further efficiency increase, which is possible by the high steam conditions, is shortly presented. The work ends with a technical and economical comparison of corresponding conventional power plants. (orig./UA) [de

  4. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    International Nuclear Information System (INIS)

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-01-01

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed

  5. On the use of temperature for online condition monitoring of geared systems - A review

    Science.gov (United States)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  6. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  7. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  8. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  9. Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM_1_0 exposures

    International Nuclear Information System (INIS)

    Carreras, Hebe; Zanobetti, Antonella; Koutrakis, Petros

    2015-01-01

    Epidemiological investigations regarding temperature influence on human health have focused on mortality rather than morbidity. In addition, most information comes from developed countries despite the increasing evidence that climate change will have devastating impacts on disadvantaged populations living in developing countries. In the present study, we assessed the impact of daily temperature range on upper and lower respiratory infections in Cordoba, Argentina, and explored the effect modification of socio-economic factors and influence of airborne particles We found that temperature range is a strong risk factor for admissions due to both upper and lower respiratory infections, particularly in elderly individuals, and that these effects are more pronounced in sub-populations with low education level or in poor living conditions. These results indicate that socio-economic factors are strong modifiers of the association between temperature variability and respiratory morbidity, thus they should be considered in risk assessments. - Highlights: • Daily temperature range is a strong risk factor for respiratory infections. • Low education level and poor living conditions are strong modifiers of this relationship. • In Cordoba city higher risk for respiratory infections were observed during summertime. - Daily temperature range is a strong risk factor for respiratory infections, particularly for populations with low educational level or poor living conditions.

  10. Kinetics of Quality Changes of Pangasius Fillets at Stable and Dynamic Temperatures, Simulating Downstream Cold Chain Conditions

    Directory of Open Access Journals (Sweden)

    Nga Mai

    2017-01-01

    Full Text Available This study was about the quality changes of Pangasius fillets during storage under simulated temperature conditions of downstream cold chain. Sensory, chemical, and microbiological analyses were conducted over storage time and bacterial growth was modelled. Sensory quality index (QI, at five stable (1, 4, 9, 15, and 19 ± 1°C and three dynamic temperatures, progressed faster at higher temperatures, especially with sooner temperature abuses. Total volatile basic nitrogen remained under the acceptable limit throughout all the storage conditions. Total viable psychrotrophic counts (TVC were around 5.68 ± 0.24 log CFU g−1 at the beginning and exceeded the limit of 6 log CFU g−1 after 216, 96, 36, 16, and 7 h at 1, 4, 9, 15, and 19 ± 1°C, respectively. Meanwhile, Pseudomonas counts started at 3.81 ± 0.53 log CFU g−1 and reached 4.60–6.36 log CFU g−1 by the time of TVC rejection. Since lower shelf lives were given by TVC rather than QI, it should be appropriate to base the product shelf life on the TVC acceptable limit. Kinetics models based on the Baranyi and Roberts and square root models, developed for TVC and Pseudomonas spp., gave acceptable bacterial estimations at dynamic temperatures, with over 80% of observed counts within the acceptable simulation zone, revealing promising model applicability as a supporting tool for cold chain management. However, further improvement and validation of the models are needed.

  11. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  12. Temperature conditions of foundation plates under nuclear power plant reactor compartments

    International Nuclear Information System (INIS)

    Ehsaulov, S.L.

    1990-01-01

    Method for calculation of temperature conditions for foundation plates under reactor compartments located in the main building, used in construction of the second stage of the Kostroma nuclear power plant, is considered. The obtained calculation data can be used for determining the most suitable period of concrete placement, composition, initial temperature, manufacturing technology and ways of delivery of concrete mixture

  13. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  14. Flux Balance Analysis of Escherichia coli under Temperature and pH Stress Conditions

    KAUST Repository

    Xu, Xiaopeng

    2015-01-01

    important roles in specific conditions and are essential genes under those conditions. E. coli is a model organism, which is widely used. It can adapt to many stress conditions, including temperature, pH, osmotic, antibiotic, etc. Underlying mechanisms

  15. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    Science.gov (United States)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  16. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field.

    Science.gov (United States)

    De Ron, Antonio M; Rodiño, Ana P; Santalla, Marta; González, Ana M; Lema, María J; Martín, Isaura; Kigel, Jaime

    2016-01-01

    Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield

  17. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field

    Directory of Open Access Journals (Sweden)

    Antonio M. DE RON

    2016-08-01

    Full Text Available Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L. differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were i to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and ii to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593 and the cultivar Borlotto, with stress-tolerance at emergence and high

  18. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    Science.gov (United States)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  19. Flux Balance Analysis of Escherichia coli under Temperature and pH Stress Conditions

    KAUST Repository

    Xu, Xiaopeng

    2015-05-12

    An interesting discovery in biology is that most genes in an organism are dispensable. That means these genes have minor effects on survival of the organism in standard laboratory conditions. One explanation of this discovery is that some genes play important roles in specific conditions and are essential genes under those conditions. E. coli is a model organism, which is widely used. It can adapt to many stress conditions, including temperature, pH, osmotic, antibiotic, etc. Underlying mechanisms and associated genes of each stress condition responses are usually different. In our analysis, we combined protein abundance data and mutant conditional fitness data into E. coli constraint-based metabolic models to study conditionally essential metabolic genes under temperature and pH stress conditions. Flux Balance Analysis was employed as the modeling method to analysis these data. We discovered lists of metabolic genes, which are E. coli dispensable genes, but conditionally essential under some stress conditions. Among these conditionally essential genes, atpA in low pH stress and nhaA in high pH stress found experimental evidences from previous studies. Our study provides new conditionally essential gene candidates for biologists to explore stress condition mechanisms.

  20. Attenuation of bulk organic matter, nutrients (N and P), and pathogen indicators during soil passage: Effect of temperature and redox conditions in simulated soil aquifer treatment (SAT)

    KAUST Repository

    Abel, Chol D T

    2012-07-22

    Soil aquifer treatment (SAT) is a costeffective natural wastewater treatment and reuse technology. It is an environmentally friendly technology that does not require chemical usage and is applicable to both developing and developed countries. However, the presence of organic matter, nutrients, and pathogens poses a major health threat to the population exposed to partially treated wastewater or reclaimed water through SAT. Laboratory-based soil column and batch experiments simulating SAT were conducted to examine the influence of temperature variation and oxidation-reduction (redox) conditions on removal of bulk organic matter, nutrients, and indicator microorganisms using primary effluent. While an average dissolved organic carbon (DOC) removal of 17.7 % was achieved in soil columns at 5 °C, removal at higher temperatures increased by 10 % increments with increase in temperature by 5 °C over the range of 15 to 25 °C. Furthermore, soil column and batch experiments conducted under different redox conditions revealed higher DOC removal in aerobic (oxic) experiments compared to anoxic experiments. Aerobic soil columns exhibited DOC removal 15 % higher than that achieved in the anoxic columns, while aerobic batch showed DOC removal 7.8 % higher than the corresponding anoxic batch experiments. Ammonium-nitrogen removal greater than 99 % was observed at 20 and 25 °C, while 89.7 % was removed at 15 °C, but the removal substantially decreased to 8.8 % at 5 °C. While ammonium-nitrogen was attenuated by 99.9 % in aerobic batch reactors carried out at room temperature, anoxic experiments under similar conditions revealed 12.1 % ammonium-nitrogen reduction, corresponding to increase in nitrate-nitrogen and decrease in sulfate concentration. © Springer Science+Business Media B.V. 2012.

  1. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  2. Towards a Kieselguhr- and PVPP-Free Clarification and Stabilization Process of Rough Beer at Room-Temperature Conditions.

    Science.gov (United States)

    Cimini, Alessio; Moresi, Mauro

    2018-01-01

    In this work, the main constraint (that is, beer chilling and chill haze removing) of the current beer conditioning techniques using Kieselguhr filtration and Polyvinylpolypyrrolidone (PVPP) treatment was overcome by developing a novel higher-throughput conditioning process, operating at room temperatures with no use of filter aids. The effect of filtration temperature (T F ) in the range of 0 to 40 °C on the hydraulic permeability of ceramic hollow-fiber (HF) membranes with nominal pore size of 0.2 to 1.4 μm, as well as on their limiting permeation flux (J * ) when feeding precentrifuged rough beer, was preliminarily assessed. When using the 1.4-μm HF membrane operating at T F ≥ 20 °C, it was possible to enhance the average permeation flux at values (676 to 1844 L/m 2 /h), noticeably higher than those (250 to 500 L/m 2 /h) characteristics of conventional powder filtration. Despite its acceptable permanent haze, the resulting beer permeate still exhibited colloidal instability. By resorting to the commercial enzyme preparation Brewers Clarex® before beer clarification, it was possible to significantly improve its colloidal stability as measured using a number of European Brewing Convention forcing tests, especially with respect to that of precentrifuged rough beer by itself. By combining the above enzymatic treatment with membrane clarification at 30 °C across the ceramic 1.4-μm HF membrane module, it was possible to limit the haze development due to chilling, sensitive proteins, and alcohol addition to as low as 0.78, 4.1, and 4.0 EBC-U, respectively, the enzymatic treatment being by far more effective than that using PVPP. A novel Kieselguhr- and PVPP-free rough beer conditioning process at room temperatures was set up. By submitting precentrifuged rough beer to commercial preparation Brewers Clarex ® and then to membrane clarification at 30 °C across a ceramic 1.4-μm hollow-fiber membrane module, it was possible to obtain a clear and stable beer with

  3. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  4. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    Science.gov (United States)

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  5. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  6. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  7. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  8. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  9. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Directory of Open Access Journals (Sweden)

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  10. Temperature effect on rose downy mildew development under environmental controlled conditions

    Directory of Open Access Journals (Sweden)

    Juan José Filgueira D.

    2014-04-01

    Full Text Available The rose downy mildew disease, caused by Peronospora sparsa Berkeley, is one of the most important that affect rose crops in Colombia. To manage this disease, flower growers must deal with high-costs due to the excessive application of fungicides, but without good results. Studies on P. sparsa behavior have shown its narrow relationship with environmental conditions. In this study, the temperature effect was evaluated during the infection and sporulation of P. sparsa in Charlotte leaflets, a susceptible commercial variety, through an environmental controlled conditions system. Infection and sporulation were observed at different temperatures in a range of from 4 to 40°C. Infection with the absence of or very low sporulation was observed at 4°C. The most favorable pathogen responses were between 15 and 18°C in terms of inoculum concentration and sporulation percentage. There was no infection or leaflet change above 35°C. According to the results, sporulation can occur from 4 to 33°C, confirming the fact that P. sparsa is able to reproduce throughout a wide temperature range.

  11. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    Science.gov (United States)

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  12. Is higher body temperature beneficial in ischemic stroke patients with normal admission CT angiography of the cerebral arteries?

    Science.gov (United States)

    Kvistad, Christopher Elnan; Khanevski, Andrej; Nacu, Aliona; Thomassen, Lars; Waje-Andreassen, Ulrike; Naess, Halvor

    2014-01-01

    Low body temperature is considered beneficial in ischemic stroke due to neuroprotective mechanisms, yet some studies suggest that higher temperatures may improve clot lysis and outcomes in stroke patients treated with tissue plasminogen activator (tPA). The effect of increased body temperature in stroke patients treated with tPA and with normal computed tomography angiography (CTA) on admission is unknown. We hypothesized a beneficial effect of higher body temperature in the absence of visible clots on CTA, possibly due to enhanced lysis of small, peripheral clots. Patients with ischemic stroke admitted to our Stroke Unit between February 2006 and April 2013 were prospectively registered in a database (Bergen NORSTROKE Registry). Ischemic stroke patients treated with tPA with normal CTA of the cerebral arteries were included. Outcomes were assessed by the modified Rankin Scale (mRS) after 1 week. An excellent outcome was defined as mRS=0, and a favorable outcome as mRS=0-1. A total of 172 patients were included, of which 48 (27.9%) had an admission body temperature ≥37.0°C, and 124 (72.1%) had a body temperature temperature ≥37.0°C was independently associated with excellent outcomes (odds ratio [OR]: 2.8; 95% confidence interval [CI]: 1.24-6.46; P=0.014) and favorable outcomes (OR: 2.8; 95% CI: 1.13-4.98; P=0.015) when adjusted for confounders. We found an association between higher admission body temperature and improved outcome in tPA-treated stroke patients with normal admission CTA of the cerebral arteries. This may suggest a beneficial effect of higher body temperature on clot lysis in the absence of visible clots on CTA.

  13. The higher temperature in the areola supports the natural progression of the birth to breastfeeding continuum.

    Directory of Open Access Journals (Sweden)

    Vincenzo Zanardo

    Full Text Available Numerous functional features that promote the natural progression of the birth to breastfeeding continuum are concentrated in the human female's areolar region. The aim of this study was to look more closely into the thermal characteristics of areola, which are said to regulate the local evaporation rate of odors and chemical signals that are uniquely important for the neonate's 'breast crawl'. A dermatological study of the areolae and corresponding intern breast quadrants was undertaken on the mothers of 70 consecutive, healthy, full-term breastfed infants. The study took place just after the births at the Policlinico Abano Terme, in Italy from January to February 2014. Temperature, pH and elasticity were assessed one day postpartum using the Soft Plus 5.5 (Callegari S.P.A., Parma, Italy. The mean areolar temperature was found to be significantly higher than the corresponding breast quadrant (34.60 ±1.40°C vs. 34.04 ±2.00°C, p<0.001 and the pH was also significantly higher (4.60±0.59 vs. 4.17±0.59, p<0.001. In contrast, the elasticity of the areolar was significantly lower (23.52±7.83 vs. 29.02±8.44%, p<0.003. Our findings show, for the first time, that the areolar region has a higher temperature than the surrounding breast skin, together with higher pH values and lower elasticity. We believe that the higher temperature of the areolar region may act as a thermal signal to guide the infant directly to the nipple and to the natural progression of the birth to breastfeeding continuum.

  14. Biofilm formation capacity of Salmonella serotypes at different temperature conditions

    Directory of Open Access Journals (Sweden)

    Karen A. Borges

    Full Text Available ABSTRACT: Salmonella spp. are one of the most important agents of foodborne disease in several countries, including Brazil. Poultry-derived products are the most common food products, including meat and eggs, involved in outbreaks of human salmonellosis. Salmonella has the capacity to form biofilms on both biotic and abiotic surfaces. The biofilm formation process depends on an interaction among bacterial cells, the attachment surface and environmental conditions. These structures favor bacterial survival in hostile environments, such as slaughterhouses and food processing plants. Biofilms are also a major problem for public health because breakage of these structures can cause the release of pathogenic microorganisms and, consequently, product contamination. The aim of this study was to determine the biofilm production capacity of Salmonella serotypes at four different temperatures of incubation. Salmonella strains belonging to 11 different serotypes, isolated from poultry or from food involved in salmonellosis outbreaks, were selected for this study. Biofilm formation was investigated under different temperature conditions (37°, 28°, 12° and 3°C using a microtiter plate assay. The tested temperatures are important for the Salmonella life cycle and to the poultry-products process. A total of 92.2% of the analyzed strains were able to produce biofilm on at least one of the tested temperatures. In the testing, 71.6% of the strains produced biofilm at 37°C, 63% at 28°C, 52.3% at 12°C and 39.5% at 3°C, regardless of the serotype. The results indicate that there is a strong influence of temperature on biofilm production, especially for some serotypes, such as S. Enteritidis, S. Hadar and S. Heidelberg. The production of these structures is partially associated with serotype. There were also significant differences within strains of the same serotype, indicating that biofilm production capacity may be strain-dependent.

  15. Pedagogical Conditions of Multilevel Foreign Languages Teaching in Pedagogical Higher Education

    Science.gov (United States)

    Kadakin, Vasily V.; Shukshina, Tatiana I.; Piskunova, Svetlana I.; Babushkina, Larisa E.; Falileev, Alexander E.

    2016-01-01

    This article is devoted to pedagogical conditions of multilevel foreign languages teaching in pedagogical higher education. The purpose of the study is to form the students' skills in foreign language mastering, to form the ability to operate independently and autonomously in this activity, both in the specific learning situation, and in the…

  16. A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Harada, Nanase; Herbst, Eric; Wakelam, Valentine

    2010-01-01

    We present a new interstellar chemical gas-phase reaction network for time-dependent kinetics that can be used for modeling high-temperature sources up to ∼800 K. This network contains an extended set of reactions based on the Ohio State University (OSU) gas-phase chemical network. The additional reactions include processes with significant activation energies, reverse reactions, proton exchange reactions, charge exchange reactions, and collisional dissociation. Rate coefficients already in the OSU network are modified for H 2 formation on grains, ion-neutral dipole reactions, and some radiative association reactions. The abundance of H 2 O is enhanced at high temperature by hydrogenation of atomic O. Much of the elemental oxygen is in the form of water at T ≥ 300 K, leading to effective carbon-rich conditions, which can efficiently produce carbon-chain species such as C 2 H 2 . At higher temperatures, HCN and NH 3 are also produced much more efficiently. We have applied the extended network to a simplified model of the accretion disk of an active galactic nucleus.

  17. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  18. Accounting for the temperature conditions during deep prospecting hole drilling

    Energy Technology Data Exchange (ETDEWEB)

    Shcherban, A N; Cheniak, V P; Zolotarenko, U P

    1977-01-01

    A methodology is described for calculating and controlling the temperature in inclined holes in order to establish a non-steady-state heat exchange between the medium circulating in the hole, and the construction components and rock. In order to verify the proposed methodology, the temperature of the drilling fluid is measured directly during the drilling process using a specially-designed automatic device which is lowered into the hole with the drilling string and turned on automatically at a given depth. This device makes it possible to record the drilling fluid temperature on magnetic tape, and convert the sensor signals arriving from the drilling string and the annular space. A comparison of calculation and experimental data confirmed the sufficiently high accuracy of the methods for predicting the thermal conditions in drilling deep prospecting holes.

  19. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  20. Extended Opacity Tables with Higher Temperature-Density-Frequency Resolution

    Science.gov (United States)

    Schillaci, Mark; Orban, Chris; Delahaye, Franck; Pinsonneault, Marc; Nahar, Sultana; Pradhan, Anil

    2015-05-01

    Theoretical models for plasma opacities underpin our understanding of radiation transport in many different astrophysical objects. These opacity models are also relevant to HEDP experiments such as ignition scale experiments on NIF. We present a significantly expanded set of opacity data from the widely utilized Opacity Project, and make these higher resolution data publicly available through OSU's portal with dropbox.com. This expanded data set is used to assess how accurate the interpolation of opacity data in temperature-density-frequency dimensions must be in order to adequately model the properties of most stellar types. These efforts are the beginning of a larger project to improve the theoretical opacity models in light of experimental results at the Sandia Z-pinch showing that the measured opacity of Iron disagrees strongly with all current models.

  1. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  2. Generalized saddle point condition for ignition in a tokamak reactor with temperature and density profiles

    International Nuclear Information System (INIS)

    Mitari, O.; Hirose, A.; Skarsgard, H.M.

    1989-01-01

    In this paper, the concept of a generalized ignition contour map, is extended to the realistic case of a plasma with temperature and density profiles in order to study access to ignition in a tokamak reactor. The generalized saddle point is found to lie between the Lawson and ignition conditions. If the height of the operation path with Goldston L-mode scaling is higher than the generalized saddle point, a reactor can reach ignition with this scaling for the case with no confinement degradation effect due to alpha-particle heating. In this sense, the saddle point given in a general form is a new criterion for reaching ignition. Peaking the profiles for the plasma temperature and density can lower the height of the generalized saddle point and help a reactor to reach ignition. With this in mind, the authors can judge whether next-generation tokamaks, such as Compact Ignition Tokamak, Tokamak Ignition/Burn Experimental Reactor, Next European Torus, Fusion Experimental Reactor, International Tokamak Reactor, and AC Tokamak Reactor, can reach ignition with realistic profile parameters and an L-mode scaling law

  3. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  4. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    Science.gov (United States)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  5. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  6. Relationship of core exit-temperature noise to thermal-hydraulic conditions in PWRs

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1983-01-01

    Core exit thermocouple temperature noise and neutron detector noise measurements were performed at the Loss of Fluid Test Facility (LOFT) reactor and a Westinghouse, 1148 MW(e) PWR to relate temperature noise to core thermal-hydraulic conditions. The noise analysis results show that the RMS of the temperature noise increases linearly with increasing core δT at LOFT and the commercial PWR. Out-of-core test loop temperature noise has shown similar behavior. The phase angle between core exit temperature noise and in-core or ex-core neutron noise is directly related to the core coolant flow velocity. However, if the thermocouple response time is slow, compared to the coolant transit time between the sensors, velocities inferred from the phase angle are lower than measured coolant flow velocities

  7. Considerations from the viewpoint of neoclassical transport towards higher ion temperature heliotron plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Matsuoka, S.; Funaba, H.; Ida, K.; Nagaoka, K.; Yoshinuma, M.; Takeiri, Y.; Kaneko, O.

    2010-01-01

    The neoclassical (NC) transport analyses have been performed to elucidate the plausible approaches towards higher ion-temperature heliotron plasmas. Avoidance of the ripple transport is the key issue, for which the neoclassical ambipolar radial electric field (E r ) can be utilized. The ion-root scenario and the electron-root scenario are expected to be effective according to the experimental situation (especially, the temperature ratio between ions and electrons). The impact of the ion mass on the neoclassical ambipolar E r is also investigated to reveal the easier realization of electron-root E r in heavier ion plasmas. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Analyzes of students’ higher-order thinking skills of heat and temperature concept

    Science.gov (United States)

    Slamet Budiarti, Indah; Suparmi, A.; Sarwanto; Harjana

    2017-11-01

    High order thinking skills refer to three highest domains of the revised Bloom Taxonomy. The aims of the research were to analyze the student’s higher-order thinking skills of heat and temperature concept. The samples were taken by purposive random sampling technique consisted of 85 high school students from 3 senior high schools in Jayapura city. The descriptive qualitative method was employed in this study. The data were collected by using tests and interviews regarding the subject matters of heat and temperature. Based on the results of data analysis, it was concluded that 68.24% of the students have a high order thinking skills in the analysis, 3.53% of the students have a high order thinking skills in evaluating, and 0% of the students have a high order thinking skills in creation.

  9. γ-Radiolysis of benzophenone aqueous solution at elevated temperatures up to supercritical condition

    International Nuclear Information System (INIS)

    Miyazaki, Toyoaki; Katsumura, Yosuke; Lin Mingzhang; Muroya, Yusa; Kudo, Hisaaki; Asano, Masaharu; Yoshida, Masaru

    2006-01-01

    A product analysis study of γ-irradiated benzophenone aqueous solutions from room temperature to 400 deg. C has been carried out by the combination of a flow irradiation system and a liquid chromatographic method. At room temperature, the main decomposition products are phenol and hydroxybenzophenone isomers. In high temperature and supercritical water solutions, 9-fluorenone appears as an important product and the G-value of benzophenone consumption depends significantly on the water density under supercritical conditions

  10. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  11. Development and health status of Centropomus undecimalisparasitized by Rhabdosynochus rhabdosynochus (Monogenea under different salinity and temperature conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Lemos de Mello

    Full Text Available This study evaluated the correlation of hematological parameters with the mean abundance of the monogenean helminth Rhabdosynochus rhabdosynochus in Centropomus undecimalis reared at different temperatures and salinities. The experimental conditions were: 28 °C/0 ppt (parts per thousand; 28 °C/15 ppt; 28 °C/32 ppt; 25 °C/0 ppt; 25 °C/15 ppt; and 25 °C/32 ppt. The prevalence was 100.0% in fish at 28 °C/15 ppt, 28 °C/32 ppt and 25 °C/15 ppt, which was significantly different (p < 0.05 from those at 25 °C/32 ppt. The red blood cell (RBC count, hematocrit and total leukocyte (WBC count were significantly higher in fish at 28 °C/15 ppt and 28 °C/32 ppt. The mean abundance of R. rhabdosynochus, hematocrit and RBC showed positive correlations (P < 0.05 with temperature (ρ= 0.3908; ρ= 0.4771 and ρ = 0.2812. Mean abundance showed negative correlations with hemoglobin (ρ= -0.3567 and mean corpuscular hemoglobin concentration (MCHC (ρ = -0.2684. No correlation between abundance and salinity was detected among the experimental conditions (ρ = -0.0204. The low numbers of monogeneans recorded (min -1 and max -33 explain the few changes to fish health. This suggests that these experimental conditions may be recommended for development of rearing of C. undecimalis in Brazil, without any influence or economic losses from R. rhabdosynochus.

  12. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  13. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar + O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chao; Ming, Zhenxun [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Li, Bing, E-mail: libing70@126.com [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Feng, Lianghuan [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Wu, Judy [Department of Physics and Astronomy, Kansas University, Lawrence 66045 (United States)

    2013-06-20

    Highlights: • CdTe films were deposited by PLD at high substrate temperatures (400 °C, 550 °C). • CdTe films were achieved under the atmosphere (1.2 Torr) of Ar mixed with O{sub 2}. • Deposited CdTe films were cubic phase and had strong (1 0 0) preferred orientation. • Scanning electron microscope (SEM) showed an average grain size of 0.3–0.6 μm. • The ultra-thin film (CdS/PLD-CdTe) solar cell with efficiency of 6.68% was made. -- Abstract: Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures (<300 °C) under vacuum conditions. However, the poor crystallinity of CdTe films prepared in this way renders them not conducive to the preparation of high-efficiency CdTe solar cells. To obtain high-efficiency solar cell devices, better crystallinity and more suitable grain size are needed, which requires the CdTe layer to be deposited by PLD at high substrate temperatures (>400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (T{sub s}). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O{sub 2} (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O{sub 2} (15 Torr) and at the relatively high T{sub s} (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (∼1.5 μm)/HgTe: Cu/Ag) solar cell with an

  14. Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2013-06-01

    Full Text Available AIM:This study reports a comparison between decomposition kinetics of detritus derived from two macrophyte species (Polygonum lapathifolium L.: Polygonaceae; Eichhornia azurea (Sw. Kunth.: Pontederiaceae growing in a neotropical reservoir (Brazil, under laboratory and field conditions, in order to assess hypotheses on the main differences in factors affecting organic matter cycling, including the effect of temperature. METHODS: Plant and water samples were collected from the reservoir in August 2009. In field incubation mass loss was assessed using a litter bag technique and in the laboratory the decay was followed using a decomposition chamber maintained under controlled conditions (i.e. in the dark, at 15 ºC and 25 ºC. A kinetic model was adopted to explain and compare the organic matter decay, ANOVA (Repeated Measures testing was used to describe the differences between the treatments and a linear correlation was used to compare in situ and in vitro experiments. RESULTS: The mass decay was faster in natural conditions with rapid release of the labile-soluble portion. The simulated values of mineralization rates of dissolved organic matter and refractory organic matter were rapid in high temperatures (25 ºC. The high Q10 results (mainly for E. azurea, and experimental conditions, and outcomes of ANOVA testing indicate the temperature variation (10 ºC influence the rates of mass decay. CONCLUSIONS: The results suggested rapid organic matter cycling in warm months (from October to December supporting the microbial loop. Although the particulate organic matter losses are high in field conditions the results are of the same magnitude in both conditions suggesting an equivalence of the mass decay kinetic.

  15. Effect of forming temperature conditions on the properties of radiation laced polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Trizno, M S; Gasparyan, K A; Arutyunyan, G V; Borovko, V N

    1978-11-01

    The effect of radiation lace on the thermomechanical properties of polyethylene films depending on the radiation dose and temperature conditions of their formation was studied. The samples were produced at 160 deg under the pressure of 150 kN/m/sup 2/ with the following cooling in two temperature conditions: 1) cooling of the sample just after pressing in the icy water, and 2) slow cooling of the sample in a press. Films obtained using above conditions were subjected to the radiation lace in the argon medium using ..gamma..-radiation of /sup 60/Co at the exposure dose of 0.8x10/sup 6/ rad/hr. The total radiation dose was from 30 to 200 Mrad. It is shown that the films, obtained under the first cooling conditions have a lower degree of crystallinity. Investigations of gel-fraction content, density, elastic modulus, deformability, modulus of high elasticity, breaking stress, and relative elongation for rupture depending on radiation doze and the degree of crystallinity have shown that minimum degree of crystallinity of initial films provided most uniform adn compact net structure in the laced polyethylene(LP). In this case the material working capacity increases at high temperatures. In order to improve the mechanical properties of LP when exploiting it in the amorphous crystalline state it is recommended to irradiate material with maximum degree of crystallinity.

  16. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition.

    Science.gov (United States)

    Davies, Craig; Coetzee, Maureen; Lyons, Candice L

    2016-06-14

    Constant and fluctuating temperatures influence important life-history parameters of malaria vectors which has implications for community organization and the malaria disease burden. The effects of environmental temperature on the hatch rate, survivorship and development rate of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition are studied. The eggs and larvae of laboratory established colonies were reared under controlled conditions at one constant (25 °C) and two fluctuating (20-30 °C and 18-35 °C) temperature treatments at a ratio of 1:0 or 1:1 (An. arabiensis: An. quadriannulatus). Monitoring of hatch rate, development rate and survival was done at three intervals, 6 to 8 h apart depending on developmental stage. Parametric ANOVAs were used where assumptions of equal variances and normality were met, and a Welch ANOVA where equal variance was violated (α = 0.05). Temperature significantly influenced the measured life-history traits and importantly, this was evident when these species co-occurred. A constant temperature resulted in a higher hatch rate in single species, larval treatments (P competitor (P < 0.05). The influence of temperature treatment on the development rate and survival from egg/larvae to adult differed across species treatments. Fluctuating temperatures incorporating the extremes influence the key life-history parameters measured here with An. arabiensis outcompeting An. quadriannulatus under these conditions. The quantification of the response variables measured here improve our knowledge of the link between temperature and species interactions and provide valuable information for modelling of vector population dynamics.

  17. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  18. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    Science.gov (United States)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines

  19. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  20. THE CONCEPT OF STUDENTS SELF-REALIZATION IN THE CONDITIONS OF INFORMATIZATION OF HIGHER SCHOOL EDUCATION

    Directory of Open Access Journals (Sweden)

    Elena Nikolaevna Shutenko

    2016-02-01

    Full Text Available In article author states the phenomenological aspect of use of modern information technologies in higher education, which opens modalities of students’ self-realization (cognitive, communicative, creative, pragmatical, influential, dedicative etc., describes the personal-focused concept of informatization within two contours-components: subjective and conditional. The first component covers attributive signs of students self-realization over it the relevant requirements of application of information technologies are built on, these requirements form the second conditional component. Such approach gives the chance of more adequate interrelation technological and personal factors of the modern higher school.

  1. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231,13397 Marseille Cedex 20, (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344, (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol, (Belgium); Saenger, Richard [Schlumberger, Clamart, (France); Lyoussi, Abadallah [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  2. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples.

    Science.gov (United States)

    Tobias, Karen M; Serrano, Leslie; Sun, Xiaocun; Flatland, Bente

    2016-01-01

    Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Canine EDTA whole blood samples cool most

  3. A simplified parsimonious higher order multivariate Markov chain model with new convergence condition

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.

  4. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    Science.gov (United States)

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may

  5. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  6. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  7. Influence of Pyrolysis Temperature and Production Conditions on Switchgrass Biochar for Use as a Soil Amendment

    Directory of Open Access Journals (Sweden)

    Amanda Joy Ashworth

    2014-10-01

    Full Text Available Biochars form recalcitrant carbon and increase water and nutrient retention in soils; however, the magnitude is contingent upon production conditions and thermo-chemical conversion processes. Herein we aim at (i characterizing switchgrass (Panicum virgatum L.-biochar morphology, (ii estimating water-holding capacity under increasing ratios of char: soil; and, (iii determining nutrient profile variation as a function of pyrolysis conversion methodologies (i.e. continuous, auger pyrolysis system versus batch pyrolysis systems for terminal use as a soil amendment. Auger system chars produced at 600°C had the greatest lignin portion by weight among the biochars produced from the continuous system. On the other hand, a batch pyrolysis system (400 °C – 3h yielded biochar with 73.10% lignin (12 fold increases, indicating higher recalcitrance, whereas lower production temperatures (400 °C yielded greater hemicellulose (i.e. greater mineralization promoting substrate. Under both pyrolysis methods, increasing biochar soil application rates resulted in linear decreases in bulk density (g cm-3. Increases in auger-char (400 °C applications increased soil water-holding capacities; however, application rates of >2 Mt ha-1 are required. Pyrolysis batch chars did not influence water-holding abilities (P>0.05. Biochar macro and micronutrients increased, as the pyrolysis temperature increased in the auger system from 400 to 600 °C, and the residence time increased in the batch pyrolysis system from 1 to 3 h. Conversely, nitrogen levels tended to decrease under the two previously mentioned conditions. Consequently, not all chars are inherently equal, in that varying operation systems, residence times, and production conditions greatly affect uses as a soil amendment and overall rate of efficacy.

  8. TO THE QUESTION OF MODELS OF ANALYSIS ASSESSING FINANCIAL CONDITION OF THE EDUCATIONAL ORGANIZATION OF HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    A. Galushkin

    2016-01-01

    Full Text Available In this article, author discusses model of analysis assessing the financial condition of the educational organization of higher education. Author analyzes the sequence (algorithm analysis of fi nancial and economic activity of the educational organization of higher education in the process of separating the analysis of questions of the analysis of the state educational institutions of higher education and non-state educational institutions of higher education. Author also deals with the determination of the average annual values of indicators of educational institution of higher education. In conclusion, the author makes a scientifi cally-based own conclusions and gives a number of suggestions.Goal / task. Aim of the article is to identify further ways of optimizing the financial condition of the educational organization of higher education.Methodology. Author started his research with the setting and the formulation of research objectives. The author defined the subject of the study, prepared by the empirical basis of the study.Results. According to the results of the study produced five research-based fi ndings presented in the article.Conclusions / signifi cance. 1. Analysis of the financial condition of the educational institutions of higher education can be defi ned as a complex and complex economic studies to identify patterns of the system factors in the financial well-being, the subject of analysis of educational, teaching, research and related activities.2. Integral assessment of the conditions of the financial analysis of the educational institution of higher education leads to the conclusion that it should include a number of stages.3. Analysis of the financial condition of the educational institution of higher education should be characterized as a specific type of analytical work. However, it is obvious that it can not be a simple kind of financial analysis of its object, and is a special form of research. The most significant

  9. Relationships between individual behaviour and morphometry under different experimental conditions of temperature and feeding in glass eels (Anguilla anguilla

    Directory of Open Access Journals (Sweden)

    A. Bardonnet

    2008-01-01

    Full Text Available After Anguilla anguilla larvae reach the European coast, metamorphosing glass eels exhibit an estuarine migration phase and can potentially colonize the continental area. Associated behaviours to upstream movement in estuary and river basin differ strongly: passive tidal transport in estuary, active swimming beyond the upstream tidal limit. Moreover, the migratory behaviour may shift towards a density-dependent dispersal beyond this limit. A positive relationship has previously been established between glass eels’ body condition and migratory behaviour in estuary and also higher in the river basin. An experiment was settled to test for the density-dependent versus migratory behaviour under controlled conditions. The relationships between some behaviours (swimming, grouping, feeding, and aggressiveness and body condition was investigated at the individual level. Two controlled factors were crossed, leading to four combinations of high and low levels of food and temperature. The high level of food led to a lesser loss in body condition. Swimming activity was positively related to initial body condition and loss in body condition, but these two variables were not related to aggressiveness. We conclude that the density-dependent dispersal hypothesis was not reinforced by these present results.

  10. Relationships between individual behaviour and morphometry under different experimental conditions of temperature and feeding in glass eels (Anguilla anguilla

    Directory of Open Access Journals (Sweden)

    Bardonnet A.

    2009-02-01

    Full Text Available After Anguilla anguilla larvae reach the European coast, metamorphosing glass eels exhibit an estuarine migration phase and can potentially colonize the continental area. Associated behaviours to upstream movement in estuary and river basin differ strongly: passive tidal transport in estuary, active swimming beyond the upstream tidal limit. Moreover, the migratory behaviour may shift towards a density-dependent dispersal beyond this limit. A positive relationship has previously been established between glass eels’ body condition and migratory behaviour in estuary and also higher in the river basin. An experiment was settled to test for the density-dependent versus migratory behaviour under controlled conditions. The relationships between some behaviours (swimming, grouping, feeding, and aggressiveness and body condition was investigated at the individual level. Two controlled factors were crossed, leading to four combinations of high and low levels of food and temperature. The high level of food led to a lesser loss in body condition. Swimming activity was positively related to initial body condition and loss in body condition, but these two variables were not related to aggressiveness. We conclude that the density-dependent dispersal hypothesis was not reinforced by these present results.

  11. Low temperature conditioning of garlic (Allium sativum L. "seed" cloves induces alterations in sprouts proteome

    Directory of Open Access Journals (Sweden)

    Miguel David Dufoo-Hurtado

    2015-05-01

    Full Text Available Low-temperature conditioning of garlic seed cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that seed bulbs from ‘Coreano’ variety conditioned at 5 °C for five weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic seed cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23 °C, and the other was conditioned at low temperature (5 °C for five weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic seed cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous

  12. Life cycle and reproductive patterns of Triatoma rubrovaria (Blanchard, 1843 (Hemiptera: Reduviidae under constant and fluctuating conditions of temperature and humidity

    Directory of Open Access Journals (Sweden)

    Damborsky Miryam P.

    2005-01-01

    Full Text Available The aim of this study was to evaluate the temperature and relative humidity influence in the life cycle, mortality and fecundity patterns of Triatoma rubrovaria. Four cohorts with 60 recently laid eggs each were conformed. The cohorts were divided into two groups. In the controlled conditions group insects were maintained in a dark climatic chamber under constant temperature and humidity, whereas triatomines of the ambiental temperature group were maintained at room temperature. Average incubation time was 15.6 days in the controlled conditions group and 19.1 days in the ambiental temperature. In group controlled conditions the time from egg to adult development lasted 10 months while group ambiental temperature took four months longer. Egg eclosion rate was 99.1% and 98.3% in controlled conditions and ambiental temperature, respectively. Total nymphal mortality in controlled conditions was 52.6% whereas in ambiental temperature was 51.8%. Mean number of eggs/female was 817.6 controlled conditions and 837.1 ambiental temperature. Fluctuating temperature and humidity promoted changes in the life cycle duration and in the reproductive performance of this species, although not in the species mortality.

  13. Effect of different seed treatments on maize seed germination parameters under optimal and suboptimal temperature conditions

    Directory of Open Access Journals (Sweden)

    Vujošević Bojana

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of different seed treatments on germination parameters of three maize genotypes under optimal and suboptimal temperature conditions. Seed was treated with recommended doses of three commercial pesticide formulations: metalaxyl-m 10 g/L + fludioxonil 25 g/L, metalaxyl 20 g/kg + prothioconazole 100 g/kg and thiacloprid 400 g/L. Testing was conducted at 25°C and 15°C. Results of the study indicate that there are differences in response of maize genotypes to applied seed treatments, as well as to a specific treatment at optimal and suboptimal temperatures. Some treatments, depending on the mixing partner and temperature conditions, can affect final germination. In other cases, germination rate can be accelerated or prolonged, but with no effect on final germination. In order to provide fast and uniform emergence under different temperature conditions, further examination of the response of maize genotypes to specific seed treatments would be beneficial.

  14. Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms

    Science.gov (United States)

    David Froning, H.; Meholic, Gregory V.

    2010-01-01

    This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.

  15. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  16. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    treatment as well as by changes in the abundance of thylakoid membrane proteins compared to the summer condition. We conclude that photoperiod control of dormancy in Jack pine appears to negate any potential for an increased carbon gain associated with higher temperatures during the autumn season.

  17. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    Science.gov (United States)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  18. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures

    Science.gov (United States)

    Fernandes, Kátia; Verchot, Louis; Baethgen, Walter; Gutierrez-Velez, Victor; Pinedo-Vasquez, Miguel; Martius, Christopher

    2017-05-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July-October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.

  19. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  20. ASPECTS OF THE DESTRUCTIVE CHANGES IN THE MAIN NUTRIENTS OF CANNED MEAT IN PIECES «STEWED BEEF OF THE TOP GRADE» UNDER THE NON-NORMATIVE TEMPERATURE AND HUMIDITY CONDITIONS OF STORAGE

    Directory of Open Access Journals (Sweden)

    V. B. Krylova

    2016-01-01

    Full Text Available The scientifically substantiated and established temperature and humidity conditions of storage of sterilized canned meat are a temperature in a range from 0 to + 20 °С and the air relative humidity not more than 75%. However, in the harsh and extreme climateconditions of the Russian regions, it is extremely difficult or practically impossible to ensure the normative temperature and humidity conditions when transporting canned foods to a consumer, as well as at short-term storage. Therefore, obtaining new experimental data on an effect of the non-normative temperature and humidityconditions of the sterilized canned foods on the indicators of product safety and quality are topical and important for understanding the character and depth of the destructive processes occurring in a product.It was noted that an abrupt change in the climatic conditions did not have a stimulating effect on microflora development in the tested samples. All samples were commercially sterile. The histological investigations proved an increase in the degree of muscle tissue destruction in the unregulated storage conditions: microfractures and narrow cross fractions had a multiple character, an amount of fine-grained proteinous mass  increased. It was established that freezing and subsequent storage had a stronger negative effect on the degree of protein destruction and aroma of the broth and meat of the canned foods compared to the unregulated temperature and humidity storage conditions. For example, the mass fraction of protein nitrogen and essential amino acids decreased on average by 7.8%. The preservation of the fatty constituent of the canned foods in the stably freezing condition was considerably higher than in case of alternating freezing and defrosting. The degree of a decrease in the sum content of monounsaturated fatty acids in the canned foods in the unregulated conditionswas on average more than 20%, those of polyunsaturated fatty acids was more than 31%. It

  1. The Effect of Peak Temperatures and Hoop Stresses on Hydride Reorientations of Zirconium Alloy Cladding Tubes under Interim Dry Storage Condition

    International Nuclear Information System (INIS)

    Cha, Hyun Jin; Jang, Ki Nam; Kim, Kyu Tae

    2016-01-01

    In this study, the effect of peak temperatures and hoop tensile stresses on hydride reorientation in cladding was investigated. It was shown that the 250ppm-H specimens generated larger radial hydride fractions and longer radial hydrides than the 500ppm-H ones. The precipitated hydride in radial direction severely degrades mechanical properties of spent fuel rod. Hydride reorientation is related to cladding material, cladding temperature, hydrogen contents, thermal cycling, hoop stress and cooling rate. US NRC established the regulation on cladding temperature during the dry storage, which is the maximum fuel cladding temperature should not exceed 400 .deg. C for all fuel burnups under normal conditions of storage. However, if it is proved that the best estimate cladding hoop stress is equal to or less than 90MPa for the temperature limit proposed, a higher short-term temperature limit is allowed for low burnup fuel. In this study, 250ppm and 500ppm hydrogen-charged Zr-Nb alloy cladding tubes were selected to evaluate the effect of peak temperatures and hoop tensile stresses on the hydride reorientation during the dry storage. In order to evaluate threshold stresses in relation to various peak temperatures, four peak temperatures of 250, 300, 350, and 400 .deg. C and three tensile hoop stresses of 80, 100, 120MPa were selected.

  2. Possible higher order phase transition in large-N gauge theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically different behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical

  3. CONDITIONS FOR OVERCOMING COMMUNICATION-LANGUAGE BARRIERS IN THE SYSTEM OF NON-LINGUISTIC HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Lidiya Olegovna Polyakova

    2016-01-01

    Results. Results of our scientific work are such conditions should be implemented based on the principle of «vertical integration», covering the social levels of the customer of higher education (economic sector, national systems of higher education, the University, the faculty, the chair. Practical implications. Presents a set of tools that is effective in solving problems of communication-language barriers of future specialists of non-linguistic profile.

  4. Oberbeck–Boussinesq free convection of water based nanoliquids in a vertical channel using Dirichlet, Neumann and Robin boundary conditions on temperature

    Directory of Open Access Journals (Sweden)

    Nur Asiah Mohd Makhatar

    2016-09-01

    Full Text Available A numerical investigation is carried out into the flow and heat transfer within a fully-developed mixed convection flow of water–alumina (Al2O3–water, water–titania (TiO2–water and water–copperoxide (CuO–water in a vertical channel by considering Dirichlet, Neumann and Robin boundary conditions. Actual values of thermophysical quantities are used in arriving at conclusions on the three nanoliquids. The Biot number influences on velocity and temperature distributions are opposite in regions close to the left wall and the right wall. Robin condition is seen to favour symmetry in the flow velocity whereas Dirichlet and Neumann conditions skew the flow distribution and push the point of maximum velocity to the right of the channel. A reversal of role is seen between them in their influence on the flow in the left-half and the right-half of the channel. This leads to related consequences in heat transport. Viscous dissipation is shown to aid flow and heat transport. The present findings reiterate the observation on heat transfer in other configurations that only low concentrations of nanoparticles facilitate enhanced heat transport for all three temperature conditions. Significant change was observed in Neumann condition, whereas the changes are too extreme in Dirichlet condition. It is found that Robin condition is the most stable condition. Further, it is also found that all three nanoliquids have enhanced heat transport compared to that by base liquid, with CuO–water nanoliquid shows higher enhancement in its Nusselt number, compared to Al2O3 and TiO2.

  5. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  6. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  7. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon

    2015-11-02

    Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions. An attempt to scale the effect of pressure on total ignition delay was undertaken and the equivalence ratio exponent and activation energy in the Arrhenius expression of total ignition delay were determined. Ignition delay results indicated that there were strong correlations of pressure, temperature, and equivalence ratio under most conditions studied except at relatively low pressures. Diesel (DCN 52.5) and n-heptane (DCN 54) fuels exhibited reasonably similar ignition delay characteristics, while iso-octane showed a distinct behavior under low temperature regime having a two-stage ignition, which substantiate the adoption of the gradient method in determining ignition delay.

  8. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  9. Lactating performance, water and feed consumption of rabbit does reared under a Mediterranean summer circadian cycle of temperature v. comfort temperature conditions.

    Science.gov (United States)

    Bakr, M H; Tusell, L; Rafel, O; Terré, M; Sánchez, J P; Piles, M

    2015-07-01

    The general aim of this research was to study the effect of high ambient temperature on the performance of does during lactation, specifically the following factors: average daily feed (ADFI) and water (ADWI) intakes, daily milk yield (DMY); milk composition: dry matter (DM), CP and gross energy (GE); doe BW (DW); individual kit weaning weight (IWW) and litter survival rate during lactation (SR). The study was undertaken comparing the performance of two groups of contemporary does reared under the same management, feeding regime and environmental conditions, except the environmental temperature and humidity. A total of 80 females were randomly allocated, at 60 days of age, into two identical and continuous rooms. In one room, the temperature was maintained permanently within the thermo-neutral zone (between 18°C to 22°C); thus, environmental conditions in this room were considered as comfort conditions. In the second room, the environmental temperature pattern simulated the daily temperature cycles that were characteristic of the summer in Mediterranean countries (24°C at 0800 h, increasing up to 29°C until 1100 h; maintenance at 29°C to 31°C for 4 h and decreasing to about 24°C to 26°C around 1700 h until 0800 h of the following day), which were considered as thermal stress conditions. Females followed a semi-intensive reproductive rhythm, first artificial insemination at 4.5 months of age, with subsequent 42-day reproductive cycles. Traits were recorded from a total of 138 lactations. Does were controlled up to the 5th lactation. Data were analyzed using linear and linear mixed models. High ambient temperature led to a lower ADFI (-9.4%), DW (-6.2%) and IWW (-8%), but it did not affect ADWI. No significant difference was found either for DMY, milk composition (DM, CP and GE) and SR during the lactation period. Heat stress was moderate, and does were able to adapt to it behaviorally by decreasing feed intake (to reduce heat production), but also live

  10. Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy

    2012-01-01

    Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.

  11. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  12. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  13. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  14. Temperature condition in decreasing heat transfer zone for NPP steam generators

    International Nuclear Information System (INIS)

    Kudryavtsev, I.S.; Paskar', B.L.; Sudakov, A.V.

    1985-01-01

    An experimental set-up is described and the results of temperature pulsation investigation are presented for coil steam generating channel surfaces of the NPP helium and sodium cooled HTGR. The investigations are carried out at the heat flux density of 350-900 kW/m 3 , the mass rate of 350-2000 kg/(m 2 Xs), the pressUre of 15 MPa. Temperature pulsations occur due to instability of heat transfer in the near-wall region. The results show that the critical region of burnout has a local character. Pulsation dependences on operating conditions are given. The required resource for the steam generating channel may be provided by chosing the ratio of heat flux to the mass rate, the ratio being equal to 0.5 kJ/kg for the channel with the internal diameter of 19 mm, made of the 12Kh2M steel, the wall thickness of 3 mm. In this case the maximum span of temperature pulsations doesn't exceed 25-30 K

  15. Low-temperature strain ageing in In-Pb alloys under stress relaxation conditions

    International Nuclear Information System (INIS)

    Fomenko, L.S.

    2000-01-01

    The dynamic strain ageing (DSA) of In-Pb (6 and 8 at. % Pb) substitutional solid solution single crystals is studied at temperatures 77-205 K under stress relaxation conditions. The dependences of the stress increment after relaxation connected with DSA on stress relaxation time, stress relaxation rate at the end of the relaxation, temperature, alloy content, flow stress, and strain are determined. It is shown that the DSA kinetic is described by a Harper-type equation with the exponent equal to 1/3 and a low activation energy value (0.3-0.34 eV). This provides a low temperature of the DSA onset (∼ 0.17 T m , where T m is the melt temperature) and is evidence of pipe-mode diffusion. It is supposed that the obstacles to dislocation motion in the crystals studied consist of the groups of solutes, and the strength of the obstacles increases during the DSA due to the pipe diffusion of the solute atoms along the dislocations

  16. Cell cycle analysis of brain cells as a growth index in larval cod at different feeding conditions and temperatures

    Directory of Open Access Journals (Sweden)

    Rafael González-Quirós

    2007-09-01

    Full Text Available The percentage of cells dividing in a specific tissue of individual larvae can be estimated by analyzing DNA per cell by flow cytometry. An experimental test was carried out with cod (Gadus morhua larvae, with brain as the target tissue, to validate this technique as an appropriate growth index for larval fish. Standard length (SL, myotome height, and %S-phase (% of cells in the S-phase of the cell-division cycle variability were analyzed, with temperature (6 and 10°C, food level (high- and no-food and larval developmental stage (first feeding, pre-metamorphosis and post-metamorphosis as independent factors. Cod larvae grew faster (in SL and presented a higher %S-phase under high-food conditions. Larval SL increased with temperature in rearing and experimental tanks. However, there was a significant interaction between temperature and food in the %S-phase. There were no significant differences in the %S-phase between 6 and 10°C at high-food levels. We suggest that this result is a consequence of temperature-dependency of the duration of the cell cycle. In the absence of food, larvae at 10ºC had a lower %S-phase than larvae at 6°C, which may be related to increased metabolic costs with increasing temperature. Considering the effect of temperature, the mean % S-phase explained 74% of the variability in the estimated standard growth rate.

  17. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW_t_h, while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  18. On higher-order boundary conditions at elastic-plastic boundaries in strain-gradient plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    are suppressed by using a very high artificial hardening modulus. Through numerical studies of pure bending under plane strain conditions, it is shown that this method predicts the build-up of higher order stresses in the pseudo-elastic regime. This has the effect of delaying the onset of incipient yield......, as well as extending the plastic zone further toward the neutral axis of the beam, when compared to conventional models. Arguments supporting the present method are presented that rest on both mathematical and physical grounds. The results obtained are compared with other methods for dealing with higher...

  19. Finite temperature LGT in a finite box with BPS monopole boundary conditions

    International Nuclear Information System (INIS)

    Ilgenfritz, E.-M.; Molodtsov, S.V.; Mueller-Preussker, M.; Veselov, A.I.

    1999-01-01

    Finite temperature SU(2) lattice gauge theory is investigated in a 3D cubic box with fixed boundary conditions (b.c.) provided by a discretized, static BPS monopole solution with varying core scale μ. For discrete μ-values we find stable classical solutions either of electro-magnetic ('dyon') or of purely magnetic type inside the box. Near the deconfinement transition we study the influence of the b.c. on the quantized fields inside the box. In contrast to the purely magnetic background field case, for the dyon case we observe confinement for temperatures above the usual critical one

  20. Low temperature conditioning of garlic (Allium sativum L.) “seed” cloves induces alterations in sprouts proteome

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D.; Huerta-Ocampo, José Á.; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P.; Mercado-Silva, Edmundo M.

    2015-01-01

    Low-temperature conditioning of garlic “seed” cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that “seed” bulbs from “Coreano” variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic “seed” cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic “seed” cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies

  1. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    DEFF Research Database (Denmark)

    Man, E. A.; Sera, D.; Mathe, L.

    2016-01-01

    of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated...

  2. Conditions for lowering the flue gas temperature; Foerutsaettning foer saenkning av roekgastemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-02-15

    In heat and power production, the efficiency of the power plant increases the larger share of heat from the flue gas that is converted to power. However, this also implies that the temperature of the heat exchanging surfaces is lowered. If the temperature is lowered to a temperature below the dew point of the flue gas, this would result in condensation of the gas, which in turn elevates the risk of serious corrosion attack on the surfaces where condensation occurs. Thus, it is important to determine the dew point temperature. One way of determining the dew point temperature is to use data on composition of the fuel together with operation parameters of the plant, thus calculating the dew point temperature. However, this calculation of the dew point is not so reliable, especially if hygroscopic salts are present. Therefore, for safety reasons, the temperature of the flue gas is kept well above the dew point temperature. This results in lowered over-all efficiency of the plant. It could also be expected that for a certain plant, some construction materials under certain operation conditions would have corrosion characteristics that may allow condensation on the surface without severe and unpredictable corrosion attack. However, by only using operation parameters and fuel composition, it is even harder to predict the composition of the condensate at different operation temperatures than to calculate the dew point temperature. If the dew point temperature was known with a greater certainty, the temperature of the flue gas could be kept lower, just above the estimated value of the dew point, without any increased risk for condensation. If, in addition, also the resulting composition of the condensate at different temperatures below the dew point is known, it can be predicted if the construction materials of the flue gas channel were compatible with the formed condensate. If they are compatible, the flue gas temperature can be further lowered from the dew point

  3. Measurements of Sheath Temperature Profiles in Bruce LVRF Bundles Under Post-Dryout Heat Transfer Conditions in Freon

    International Nuclear Information System (INIS)

    Guo, Y.; Bullock, D.E.; Pioro, I.L.; Martin, J.

    2006-01-01

    An experimental program has been completed to study the behaviour of sheath wall temperatures in the Bruce Power Station Low Void Reactivity Fuel (shortened hereafter to Bruce LVRF) bundles under post-dryout (PDO) heat-transfer conditions. The experiment was conducted with an electrically heated simulator of a string of nine Bruce LVRF bundles, installed in the MR-3 Freon heat transfer loop at the Chalk River Laboratories (CRL), Atomic Energy of Canada Limited (AECL). The loop used Freon R-134a as a coolant to simulate typical flow conditions in CANDU R nuclear power stations. The simulator had an axially uniform heat flux profile. Two radial heat flux profiles were tested: a fresh Bruce LVRF profile and a fresh natural uranium (NU) profile. For a given set of flow conditions, the channel power was set above the critical power to achieve dryout, while heater-element wall temperatures were recorded at various overpower levels using sliding thermocouples. The maximum experimental overpower achieved was 64%. For the conditions tested, the results showed that initial dryout occurred at an inner-ring element at low flows and an outer-ring element facing internal subchannels at high flows. Dry-patches (regions of dryout) spread with increasing channel power; maximum wall temperatures were observed at the downstream end of the simulator, and immediately upstream of the mid-bundle spacer plane. In general, maximum wall temperatures were observed at the outer-ring elements facing the internal subchannels. The maximum water-equivalent temperature obtained in the test, at an overpower level of 64%, was significantly below the acceptable maximum temperature, indicating that the integrity of the Bruce LVRF will be maintained at PDO conditions. Therefore, the Bruce LVRF exhibits good PDO heat transfer performance. (authors)

  4. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Wongchang, Thawatchai; Patumsawad, Suthum

    2010-01-01

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH 4 ) and ethylene (C 2 H 4 ) between 600 to 800 degree Celsius and enhanced production ethane (C 2 H 6 ) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  5. Effect of the crack-starter weld condition on the nil-ductility transition temperature

    International Nuclear Information System (INIS)

    Satoh, Masanobu; Funada, Tatsuo; Tomimatsu, Minoru

    1985-01-01

    In ASME Code Sec. III, the value of the reference nil-ductility temperature RT sub(EDT) has an important significance to determine the result of the fracture mechanics evaluation. While in the standard both the drop-weight test and Charpy impact test are required to determine the RT sub(NDT), in practice it is normally determined only by the nil-ductility transition temperature (T sub(EDT)) obtained by the drop-weight test. The cases of data scatter in T sub(NDT) were investigated to establish appropriate conditions of crack-starter bead welding. Drop-weight tests were carried out for nuclear vessel steels by changing welding conditions to examine the effects of welding amperage and shapes of welding table on T sub(NDT). The results show that the preparation of crack-starter bead by small welding amperage should not be allowed, because it makes the measured T sub(NDT) non-conservative, and that it is important to use a welding table which increases the cooling rate of specimen. Furthermore, the authors proposed methods for estimating T sub(NDT) of nuclear vessel steels by using Charpy transition temperatures. (author)

  6. Calculation of the fuel temperature field under heat release and heat conductance transient conditions

    International Nuclear Information System (INIS)

    Kazakov, E.K.; Chernukhina, G.M.

    1974-01-01

    Results of calculation of the temperature distribution in an annular fuel element at transient thermal conductivity and heat release values are given. The calculation has been carried out by the mesh technique with the third-order boundary conditions for the inner surface assumed and with heat fluxes and temperatures at the zone boundaries to be equal. Three variants of solving the problem of a stationary temperature field are considered for failed fuel elements with clad flaking or cracks. The results obtained show the nonuniformity of the fuel element temperature field to depend strongly on the perturbation parameter at transient thermal conductivity and heat release values. In case of can flaking at a short length, the core temperature rises quickly after flaking. While evaluating superheating, one should take into account the symmetry of can flaking [ru

  7. Effect of fast pyrolysis conditions on biomass solid residues at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    Fast pyrolysis of wood and straw was conducted in a drop tube furnace (DTF) and compared with corresponding data from a wire mesh reactor (WMR) to study the influence of temperature (1000-1400)°C, biomass origin (pinewood, beechwood, wheat straw, alfalfa straw), and heating rate (103 °C/s, 104 °C...... in its half-width with respect to the parental fuel, whereas the alfalfa straw char particle size remained unaltered at higher temperatures. Soot particles in a range from 60 to 300 nm were obtained during fast pyrolysis. The soot yield from herbaceous fuels was lower than from wood samples, possibly due...

  8. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    the abundance of thylakoid membrane proteins compared to the summer condition. We conclude that photoperiod control of dormancy in Jack pine appears to negate any potential for an increased carbon gain associated with higher temperatures during the autumn season. PMID:17259287

  9. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Cha, Junepyo

    2015-01-01

    -octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel

  10. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  11. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  12. Influence of deposits quantity and air temperature on 137Cs accumulation by the higher mushrooms

    International Nuclear Information System (INIS)

    Zarubina, N.E.

    2012-01-01

    Researches of the influence of weather conditions (amount of precipitation, air temperature) on 137 Cs content magnitude in fruit bodies of mushrooms: Boletus edulis Bull.: Fr., Suillus luteus (L.: Fr.) S.F.Gray, Xerocomus badius (Fr.) Kuhn. ex Gilb., Tricholoma flavovirens (Pers.: Fr.) Lund., Cantharellus cibarius Fr. at the territory of Chernobyl alienation zone and 'southern trace are performed. Correlation factors, determination factors between specific activity 137 Cs at mushrooms and quantity of deposits (mm) and the maximum temperature of air ( o C) are calculated. At calculations the decrease of the content of 137 Cs in mushrooms at the expense of disintegration of this isotope has been considered. As a result of researches the authentic dependence of specific activity 137 Cs in fruit bodies of the studied kinds of mushrooms from quantity of deposits and from air temperature has not been established.

  13. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study

    Science.gov (United States)

    Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R. J.

    The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 °C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO 2 formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO 2. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials (∼90% current efficiency for CO 2 formation at 100 °C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO 2 formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO 2 (68 ± 2 kJ mol -1 at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 ± 2 kJ mol -1 at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed.

  14. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-05-01

    The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO{sub 2} formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO{sub 2}. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials ({proportional_to}90% current efficiency for CO{sub 2} formation at 100 C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO{sub 2} formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO{sub 2} (68 {+-} 2 kJ mol{sup -1} at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 {+-} 2 kJ mol{sup -1} at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed. (author)

  15. A research on thermoelectric generator's electrical performance under temperature mismatch conditions for automotive waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Z.B. Tang

    2015-03-01

    Full Text Available The thermoelectric generators recover useful energy by the function of thermoelectric modules which can convert waste heat energy into electricity from automotive exhaust. In the actual operation, the electrical connected thermoelectric modules are operated under temperature mismatch conditions and then the problem of decreased power output causes due to the inhomogeneous temperature gradient distribution on heat exchanger surface. In this case study, an individual module test system and a test bench have been carried out to test and analyze the impact of thermal imbalance on the output electrical power at module and system level. Variability of the temperature difference and clamping pressure are also tested in the individual module measurement. The system level experimental results clearly describe the phenomenon of thermoelectric generator's decreased power output under mismatched temperature condition and limited working temperature. This situation is improved with thermal insulation on the modules and proved to be effective.

  16. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  17. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  18. Temperature and precipitation records from stalagmites grown under disequilibrium conditions: A model approach.

    Science.gov (United States)

    Mühlinghaus, C.; Scholz, D.; Mangini, A.

    2009-04-01

    To reconstruct past variations in Earth's climate, a variety of climate archives are studied. During the last decades stalagmites came into focus due to their long, continuous growth and absolute dating techniques. In this study a numerical model was developed, which calculates variations in temperature and precipitation during the growth period of stalagmites grown under isotopic disequilibrium conditions using the isotope profiles both along the growth axis and individual growth layers as well as the growth depth relation. The model is based on the inversion and combination of existing models (Dreybrodt 1999, Kaufmann et al. 2004, Mühlinghaus et al. 2007, Scholz et al. 2008, Mühlinghaus et al. 2008b) and incorporates important parameters describing the cave and the overlying soil. Beside the dependence on temperature and water supply it depends on the isotopic composition of the drip water, the pCO2 pressure of the soil and the cave atmosphere as well as on the mixing coefficient, which describes mixing between the impinging drop and the existing solution layer. To determine the characteristics of temperature and precipitation, in a first step all other parameters are assumed to remain constant over the whole growth period to simplify calculations. This allows to run the model with only two input variables: the isotopic composition ^13C of the drip water and a temperature information at any point of time during the growth period of the stalagmite (e.g. the recent cave temperature). All other parameters are determined by the model. The CSM (Combined Stalagmite Model, Mühlinghaus et al. 2008a) was applied to three stalagmites from the Marcelo Arévalo cave in Southern Patagonia, Chile (Schimpf 2005, Kilian et al. 2006, Schimpf et al. in prep). These stalagmites grew in a small cave next to each other during the last 4500 years. However, their isotopic profiles along the growth axis show different kinetic influences. Despite these conditions, the temperature

  19. Influence of deposits quantity and air temperature on 137Cs accumulation by the higher mushrooms

    Directory of Open Access Journals (Sweden)

    N. E. Zarubina

    2012-12-01

    Full Text Available Researches of the influence of weather conditions (amount of precipitation, air temperature on 137Cs content’s magnitude in fruit bodies of mushrooms: Boletus edulis Bull.: Fr., Suillus luteus (L.: Fr. S.F.Gray, Xerocomus badius (Fr. Kuhn. ex Gilb., Tricholoma flavovirens (Pers.: Fr. Lund., Cantharellus cibarius Fr. at the territory of Chernobyl alienation zone and «southern trace» are performed. Correlation factors, determination factors between specific activity 137Cs at mushrooms and quantity of deposits (mm and the maximum temperature of air (0С are calculated. At calculations the decrease of the content of 137Cs in mushrooms at the expense of disintegration of this isotope has been considered. As a result of researches the authentic dependence of specific activity 137Cs in fruit bodies of the studied kinds of mushrooms from quantity of deposits and from air temperature has not been established.

  20. Certification testing at low temperatures

    International Nuclear Information System (INIS)

    Noss, P.W.; Ammerman, D.J.

    2004-01-01

    Regulations governing the transport of radioactive materials require that most hypothetical accident condition tests or analyses consider the effects of the environmental temperature that most challenges package performance. For many packages, the most challenging temperature environment is the cold condition (-29 C according to U.S. regulations), primarily because the low temperature causes the highest free drop impact forces due to the higher strength of many energy-absorbing materials at this temperature. If it is decided to perform low temperature testing, it is only necessary that the relevant parts of the package have the required temperature prior to the drop. However, the details of performing a drop at low temperature can have a large influence on testing cost and technical effectiveness. The selection of the test site, the chamber and type of chilling equipment, instrumentation, and even the time of year are all important. Control of seemingly minor details such as the effect on internal pressure, placement of monitoring thermocouples, the thermal time constant of the test article, and icing of equipment are necessary to ensure a successful low temperature test. This paper will discuss these issues and offer suggestions based on recent experience

  1. Design of automatic control system of temperature in radon chamber controlled by air-condition based on 485 BUS

    International Nuclear Information System (INIS)

    Man Zaigang; Wang Renbo; Zhang Xiongjie; Zhu Zhifu; Tang Bin

    2009-01-01

    Radon chamber can be widely used in various radon measurement instruments for calibration, testing and radon environment experiment. According to requisition, radon chamber temperature should be controllable from +10 degree C to +30 degree C, and the temperature control accuracy of the system reaches ±1 degree C. The design of automatic temperature controlled by air-condition based on 485 BUS is introduced. The software and hardware techniques of how the ATMEL89S52 micro controller controls air-condition and communicates with computer are elaborated on. (authors)

  2. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Tchernycheva, M; Harmand, J C; Patriarche, G; Travers, L; Cirlin, G E

    2006-01-01

    Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320 deg. C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620 deg. C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires

  3. The dissolution rate constant of magnetite in water at different temperatures and neutral or ammoniated chemistry conditions

    International Nuclear Information System (INIS)

    Mohajery, K.; Lister, D.H.

    2012-01-01

    In this study, the dissolution rate constants of magnetite were measured at various water chemistry conditions and different temperatures, corresponding to several feedwater conditions of water-cooled reactors. Sintered magnetite pellets were used as the dissolving material and these were mounted in a jet-impingement apparatus in a recirculating water loop. Exposures were carried out at temperatures of 25, 55 and 140 o C and pHs of neutral and 9.2 in which many FAC (Flow Accelerated Corrosion) studies have been conducted. Average dissolution rate constants were estimated by measuring the volume of lost material with a profilometry technique. The excellent correspondent between the calculated value of dissolution rate constant of 2.20 mm/s for the synthesized magnetite and 2.05 mm/s for the single crystal of magnetite at neutral condition shows that the particle removal from the synthesized pellets is not an obstruction in this technique. Also, good agreement between the values calculated in duplicated runs at neutral condition at room temperature supports the accuracy of the method. (author)

  4. Numerical Analysis on Temperature Rise of a Concrete Arch Dam after Sealing Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Qingbin Li

    2014-01-01

    Full Text Available The thermal boundary conditions in the construction and operation phases of a concrete arch dam are always complex. After sealing, differences between the arch dam temperature and its sealing temperature can cause compressive or tensile stresses. Based on measured temperature of an arch dam located in China, a temperature rise phenomenon (TRP is found in the after-sealed regions of the arch dam. By mining and analyzing the temperature data of various monitoring apparatus embedded in the arch dam, higher environment temperature is considered to be the main cause for the occurrence of the TRP. Mathematical methods for complex thermal boundary conditions, including external boundary conditions and internal heat source conditions, are proposed in this paper. A finite element model is implemented with the concern of the construction phase and operation phase of the arch dam. Results confirm good agreement with the measured temperature and verify the conjecture that the TRP occurs mainly because the external temperature of the arch dam is higher than its sealing temperature.

  5. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    Science.gov (United States)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  6. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination

    Directory of Open Access Journals (Sweden)

    Lluvia Flores-Rentería

    2018-04-01

    Full Text Available High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1 higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2 high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3 pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that

  7. Temperature effect on rose downy mildew development under environmental controlled conditions

    OpenAIRE

    Filgueira D., Juan José; Zambrano, Angélica

    2014-01-01

    The rose downy mildew disease, caused by Peronospora sparsa Berkeley, is one of the most important that affect rose crops in Colombia. To manage this disease, flower growers must deal with high-costs due to the excessive application of fungicides, but without good results. Studies on P. sparsa behavior have shown its narrow relationship with environmental conditions. In this study, the temperature effect was evaluated during the infection and sporulation of P. sparsa in Charlotte leaflets, a ...

  8. Fires in Non-drought Conditions in Indonesia: the Role of Increasing Temperatures

    Science.gov (United States)

    Fernandes, K.; Verchot, L. V.; Baethgen, W.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.; Martius, C.

    2017-12-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  9. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    Science.gov (United States)

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection...Temperature (K) 363 Ambient temperature (K) 900 Nozzle Diameter (mm) 0.09 Ambient density (kg/m3) 22.8 Injection Duration (ms) 1.5 Number of injector holes

  10. Conditions of viscosity measurement for detecting irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-01-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)

  11. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  12. Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures

    International Nuclear Information System (INIS)

    Chauhan, R.S.; Gopinath, S.; Razdan, P.; Delattre, C.; Nirmala, G.S.; Natarajan, R.

    2008-01-01

    Expanded polystyrene is one of the polymers produced in large quantities due to its versatile application in different fields. This polymer is one of the most intractable components in municipal solid waste. Disposal of polymeric material by pyrolysis or catalytic cracking yields valuable hydrocarbon fuels or monomers. Literature reports different types of reactors and arrangements that have uniform temperatures during pyrolysis and catalytic cracking. The present study focuses on reducing the temperature to maximize the quantity of styrene monomer in the liquid product. A bench scale reactor has been developed to recover the styrene monomer and other valuable chemicals. Experiments were carried under partial oxidation and vacuum conditions in the temperature range of 300-500 deg. C. In the pyrolysis optimization studies, the best atmospheric condition was determined to be vacuum, the pyrolysis temperature should be 500 deg. C, yield of liquid product obtained was 91.7% and yield of styrene obtained was 85.5%. In the characterization studies, distillation and IR spectroscopy experiments were carried out. The remaining of the liquid product comprises of benzene, ethyl benzene, and styrene dimers and trimers

  13. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  14. Temperature effects on egg development and larval condition in the lesser sandeel, Ammodytes marinus

    Science.gov (United States)

    Régnier, Thomas; Gibb, Fiona M.; Wright, Peter J.

    2018-04-01

    Understanding the influence of temperature on egg development and larval condition in planktonic fish is a prerequisite to understanding the phenological impacts of climate change on marine food-webs. The lesser sandeel, Ammodytes marinus (Raitt 1934), is a key trophic link between zooplankton and many piscivorous fish, sea birds and mammals in the northeast Atlantic. Temperature-egg development relationships were determined for batches of lesser sandeel eggs. Hatching began as early as 19 days post fertilisation at 11 °C and as late as 36 days post fertilisation at 6 °C, which is faster than egg development rates reported for closely related species at the lower end of the tested temperature range. The average size of newly hatched larvae decreased with increasing incubation temperatures in early hatching larvae, but this effect was lost by the middle of the hatching period. While the study revealed important temperature effects on egg development rate, predicted variability based on the range of temperatures eggs experience in the field, suggests it is only a minor contributor to the observed inter-annual variation in hatch date.

  15. Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors

    Science.gov (United States)

    Lykov, A. N.

    2008-06-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.

  16. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  17. Physical properties of concrete under 3-years exposure to high temperatures up to 110degC

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Kanazu, T.; Ishida, H.

    1990-01-01

    Concrete structural members in a storehouse of high level radioactive wastes are designed assuming that they may be subjected to elevated temperature for a long term. So, in this study, concrete properties under temperature conditions (between 65degC-temperature limitation specified in design and 110degC-vaporing temperature of gel water in concrete) and possibility of raising this temperature limitation has been investigated from the view point of long term concrete properties. In this experiment, many properties of concrete were examined, such as compressive strength, tensile strength. Young's modulus, weight loss, pore size distribution under combined conditions (temperature conditions, mix proportions of concrete, moisture conditions). Followings are the main conclusions obtained within the limit of the experiment. 1. Compressive strength of concrete becomes smaller according as temperature becomes high, but there is little difference between the compressive strength at 65degC and 85degC. 2. Young's modulus of concrete decreases linearly according as temperature becomes higher. 3. Weight loss of concrete increases according as temperature becomes higher. 4. Judging from the decreasing rate of physical properties of concrete, it seems possible to raise temperature limitation from 65degC to 85degC. (author)

  18. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  19. Predicting plant performance under simultaneously changing environmental conditions – the interplay between temperature, light and internode growth

    Directory of Open Access Journals (Sweden)

    Katrin eKahlen

    2015-12-01

    Full Text Available Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system’s analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modelling temperature effects on plant development and growth is discussed.

  20. Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran

    Science.gov (United States)

    Daneshvar, Mohammad Reza Mansouri; Bagherzadeh, Ali; Tavousi, Taghi

    2013-03-01

    In this study thermal comfort conditions are analyzed to determine possible thermal perceptions during different months in Iran through the Physiologically Equivalent Temperature (PET). The monthly PET values produced using the RayMan Model ranged from -7.6°C to 46.8°C. Over the winter months the thermal comfort condition (18-23°C) were concentrated in southern coastal areas along the Persian Gulf and Oman Sea. Most of the country experienced comfort conditions during the spring months, in particular in April, while during the summer months of July and August no thermal comfort conditions were observed. In November coastal areas of the Caspian Sea had the same physiological stress level of thermal comfort as April. The map produced showing mean annual PET conditions demonstrated the greatest spatial distribution of comfortable levels in the elevation range from 1000 to 2000 meter a.s.l., with annual temperatures of 12-20°C and annual precipitation of under 200 mm. The statistical relationship between PET conditions and each controlling parameter revealed a significant correlation in areas above 2000 meter, annual temperature over 20°C and annual precipitation of 200-400 mm with a correlation coefficient ( R 2) of 0.91, 0.97 and 0.96, respectively.

  1. Photosynthesis and Rubisco kinetics in spring wheat and meadow fescue under conditions of simulated climate change with elevated CO2 and increased temperatures

    Directory of Open Access Journals (Sweden)

    K. HAKALA

    2008-12-01

    Full Text Available Spring wheat (Triticum aestivum L.cv.Polkkaand meadow fescue (Festuca pratensis Hudson cv. Kalevicwere grown in ambient and elevated (700 µl l -1 carbon dioxide concentration both at present ambient temperatures and at temperatures 3°C higher than at present simulating a future climate.The CO2 concentrations were elevated in large (3 m in diameteropen top chambers and the temperatures in a greenhouse built over the experimental field.The photosynthetic rate of both wheat and meadow fescue was 31 –37%higher in elevated carbon dioxide (eCO2 than in ambient CO 2 (aCO2 throughout the growing season.The enhancement in wheat photosynthesis in eCO2 declined 10 –13 days before yellow ripeness,at which point the rate of photosynthesis in both CO 2 treatments declined.The stomatal conductance of wheat and meadow fescue was 23–36% lower in eCO2 than in aCO2 .The amount and activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco in wheat were lower under conditions of eCO2 ,except at elevated temperatures in 1993 when there was a clear yield increase.There was no clear change in the amount and activity of Rubisco in meadow fescue under eCO2 at either elevated or ambient temperature.This suggests that adaptation to elevated CO2 at biochemical level occurs only when there is insufficient sink for photosynthetic products.While the sink size of wheat can be increased only by introducing new,more productive genotypes,the sink size of meadow fescue can be regulated by fitting the cutting schedule to growth.;

  2. Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2008-01-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors

  3. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    International Nuclear Information System (INIS)

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  4. Analysis of influence of heat exchange conditions on the outer surface of the lithium-ion battery to electrolyte temperature under the conditions of high current loads

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a lithium-ion battery using the software package ANSYS Electric and ANSYS Fluent has been carried out. Time dependence of the electrolyte temperature on the various heat exchange conditions on the outer surface has been obtained.

  5. Temperature factor for magnetic instability conditions of type – II superconductors

    International Nuclear Information System (INIS)

    Romanovskii, V.

    2014-01-01

    Highlights: • Electrodynamics and thermal diffusion phenomena in superconductors have the fission-chain-reaction nature. • There exist nontrivial relations between stability conditions, allowable losses and stable superconductor’s overheating. • The magnetic stability conditions are direct consequence of the states when the heat releases exceeds the critical energy. • The critical energy of magnetic instability depends on the nature of an external disturbance. • The non-isothermal magnetic instability conditions of the critical state are formulated. - Abstract: The macroscopic development of interrelated electrodynamics and thermal states taking place both before and after instability onset in type-II superconductors are studied using the critical state and the flux creep concepts. The physical mechanisms of the non-isothermal formation of the critical state are discussed solving the set of unsteady thermo-electrodynamics equations taking into consideration the unknown moving penetration boundary of the magnetic flux. To make it, the numerical method, which allows to study diffusion phenomena with unknown moving phase-two boundary, is developed. The corresponding non-isothermal flux jump criteria are written. It is proved for the first time that, first, the diffusion phenomena in superconductors have the fission-chain-reaction nature, second, the stability conditions, losses in superconductor and its stable overheating before instability onset are mutually dependent. The results are compared with those following from the existing magnetic instability theory, which does not take into consideration the stable temperature increase of superconductor before the instability onset. It is shown that errors of isothermal approximation are significant for modes closed to adiabatic ones. Therefore, the well-known adiabatic flux jump criterion limits the range of possible stable superconducting states since a correct determination of their stability states must

  6. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex.

    Science.gov (United States)

    Tenhunen, J D; Lange, O L; Braun, M

    1981-08-01

    Shrubs of the Mediterranean sclerophyllous species Arbutus unedo and Quercus ilex were studied under simulated habitat conditions in an environmental chamber. Temperature, humidity, and light intensity were altered stepwise to simulate diurnal changes in conditions similar to those measured in an evergreen macchia in Sobreda, Portugal. Leaves were enclosed in cuvettes which reproduced the growth chamber climate and which allowed measurement of gas exchange. Increasing atmospheric stress in the form of higher temperature and lower humidity on successive days gradually results in midday depression of transpiration rate and net photosynthesis rate of leaves due to midday stomatal closure.

  7. Metal-semiconductor interface in extreme temperature conditions

    International Nuclear Information System (INIS)

    Bulat, L.P.; Erofeeva, I.A.; Vorobiev, Yu.V.; Gonzalez-Hernandez, J.

    2008-01-01

    We present an investigation of electrons' and phonons' temperatures in the volume of a semiconductor (or metal) sample and at the interface between metal and semiconductor. Two types of mismatch between electrons' and phonons' temperatures take place: at metal-semiconductor interfaces and in the volume of the sample. The temperature mismatch leads to nonlinear terms in expressions for heat and electricity transport. The nonlinear effects should be taken into consideration in the study of electrical and heat transport in composites and in electronic chips

  8. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Lara-Curzio, Edgar [ORNL; King Jr, Thomas J [ORNL

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  9. Interactive effects of food quality, temperature and rearing time on condition of juvenile black bream Acanthopagrus butcheri.

    Science.gov (United States)

    Walther, B D; Elsdon, T S; Gillanders, B M

    2010-06-01

    A laboratory experiment was conducted to determine the interactive effects of temperature and diet on condition indices of juvenile black bream Acanthopagrus butcheri, reared for time periods ranging from 2 to 42 days. After fish were reared for varying periods, growth, morphometric (Fulton's K) and biochemical [RNA:DNA (R:D) ratios] indices were measured. Fulton's K responded primarily to temperature, with progressive decrease in condition over time for fish reared at high temperatures. In contrast, R:D ratios were primarily affected by diet composition, with the highest values observed for fish reared on fish-based diets as opposed to vegetable-based diets. Significant effects of rearing time were also observed for Fulton's K and R:D ratios, as were some interactive treatment effects. In addition, Fulton's K and R:D ratios were not significantly correlated, perhaps due to the different periods of time integrated by each index or their relative sensitivity to lipid and protein deposition. These results highlight the complex responses of these condition indices to environmental variables and nutritional status.

  10. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  11. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  12. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  13. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  14. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  15. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  16. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    Science.gov (United States)

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  17. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.

    2009-01-01

    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on

  18. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  20. Breakup, instabilities, and dynamics of high-speed droplet under transcritical conditions

    Directory of Open Access Journals (Sweden)

    Yanfei Gao

    2015-06-01

    Full Text Available A droplet breakup model is developed for a single droplet introduced into transcritical and strong convective environments. The numerical model takes into account variable thermophysical properties, gas solubility in the liquid phase, and vapor–liquid interfacial thermodynamics. The influences of ambient conditions on droplet breakup characteristics are investigated. The results indicate that (1 the drag acceleration decreases slowly at first and then increases drastically with the initial droplet temperature increasing, but always increases at a constant rate with ambient pressure; (2 the pressure and the drop temperature have similar effects on the Kelvin–Helmholtz and Rayleigh–Taylor wave growth at high pressures (reduced pressure higher than 1.2 and high temperatures (reduced temperature higher than 0.7, but the impact of pressure on the wave growth is relatively stronger than that of droplet temperature at relatively low pressures (reduced pressure lower than 0.8 and low temperatures (reduced temperature lower than 0.63; (3 the temperature significantly affects the surface instability growth at high drop temperatures (reduced temperature higher than 0.7, but has no effect on the instability growth at low temperatures (reduced temperature lower than 0.63.

  1. Progress report on the influence of higher interpass temperatures on the integrity of austenitic stainless steel welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Yarmuch, M.; Choi, L. [Alberta Research Council, Edmonton, AB (Canada); Armstrong, K.; Radu, I. [PCL Industrial Constructors Inc., Nisku, AB (Canada)

    2008-07-01

    This report discussed the progress of the Welding Productivity Group (TWPG) interpass temperature assessment project (ITAP). The project was initiated to evaluate the influence of interpass temperatures on the metallurgical, corrosive, and mechanical properties of austenitic stainless steel, carbon steel, and low-alloy pressure weldments. To date, the project has conducted experiments to determine if interpass temperatures in austenitic stainless steel weldments are higher than temperatures recommended by API requirements. Elevated interpass temperatures for various base materials have been evaluated. Preliminary metallurgical, mechanical, and laboratory corrosion data from 3 experiments with 304/304L and 316/316L stainless steel weldment test specimens has shown that no significant changes occur as a result of elevated interpass temperatures. Results from side bend specimens have demonstrated that elevated interpass temperatures produce acceptable weldment ductility. No intergranular cracking was observed during oxalic acid etch tests conducted for the 316/316L samples. Huey tests performed on the 304/304L specimens indicated that elevated interpass temperatures did not adversely affect the intergranular corrosion resistance of weldments with less than 3 weld passes. Huey tests performed on the 316 specimens showed a marked increase in corrosion rates and normalized weight losses. It was concluded that rates of attack correlate with the maximum interpass temperature and not the average weld metal ferrite number. 22 refs., 11 tabs., 12 figs.

  2. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  3. Hydrothermal carbonization of biomass waste under low temperature condition

    Directory of Open Access Journals (Sweden)

    Putra Herlian Eriska

    2018-01-01

    Full Text Available In this paper, the use of banana peel for energy purposes was investigated. Banana peel is a lignocellulosic waste since it is the most widely produced and consumed fruit in Indonesia. Among the others, hydrothermal carbonization (HTC was chosen as alternative themochemical process, suitable for high moisture biomass. Through a 1 L stirred reactor, hydrothermal treatments were performed under low temperature condition (190, 210 and 230 °C, residence times (30 and 60 min, and biomass to water ratio (1:3, 1:5, and 1:10. Three of product were collected from the process with primary material balance. Solid phase (hydrochar was evaluated in terms of calorific value, proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of banana peel gave high heating value (HHV of 20.09 MJ/kg for its char after dried naturally.

  4. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhalim I. A. Mohamed

    2017-01-01

    Full Text Available Emulsified water-in-oil (W/O systems are extensively used in the oil industry for water control and acid stimulation. Emulsifiers are commonly utilized to emulsify a water-soluble material to form W/O emulsion. The selection of a particular surfactant for such jobs is critical and certainly expensive. In this work, the impact of surfactant structure on the stability of W/O emulsions is investigated using the hydrophilic-lipophilic balance (HLB of the surfactant. Different commercial surfactants were evaluated for use as emulsifiers for W/O systems at high-temperature (up to 120°C high-salinity (221,673 ppm HTHS conditions. Diverse surfactants were examined including ethoxylates, polyethylene glycols, fluorinated surfactants, and amides. Both commercial Diesel and waste oil are used for the oleic phase to prepare the emulsified system. Waste oil has shown higher stability (less separation in comparison with Diesel. This work has successfully identified stable emulsified W/O systems that can tolerate HTHS environments using HLB approach. Amine Acetate family shows higher stability in comparison with Glycol Ether family and at even lower concentration. New insights into structure-surfactant stability relationship, beyond the HLB approach, are provided for surfactant selection.

  5. Effects of stress conditions on the generation of negative bias temperature instability-associated interface traps

    International Nuclear Information System (INIS)

    Zhang Yue; Pu Shi; Lei Xiao-Yi; Chen Qing; Ma Xiao-Hua; Hao Yue

    2013-01-01

    The exponent n of the generation of an interface trap (N it ), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent's time evolution are investigated by simulations with varying the stress voltage V g and temperature T. It is found that the exponent n in the diffusion-limited phase of the degradation process is irrelevant to both V g and T. The time evolution of the exponent n is affected by the stress conditions, which is reflected in the shift of the onset of the diffusion-limited phase. According to the diffusion profiles, the generation of the atomic hydrogen species, which is equal to the buildup of N it , is strongly correlated with the stress conditions, whereas the diffusion of the hydrogen species shows V g -unaffected but T-affected relations through the normalized results

  6. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  7. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  8. Thermal properties of bentonite under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasicek, R. [Czech Technical Univ., Centre of Experimental Geotechnics, Faculty of Civil Engineering, Prague (Czech Republic)

    2005-07-01

    Centre of Experimental Geotechnics (CEG) deals with the research of the behaviour of bentonite and clays. The measurement of thermal properties is not so frequent test in geotechnical laboratory but in relation to deep repository it is a part which should not be overlooked. The reason is the heat generated by canister with spent nuclear fuel and possible influence of the heat on the materials of the engineered barrier. In the initial stages following the burial of canister with the waste the barrier materials will be exposed to elevated temperature. According to existing information, these temperatures should not exceed 90 C. That heat can induce a creation of cracks and opening of joint between highly compacted blocks. It will predispose the bentonite barrier to penetration of water from surrounding towards to canister. Therefore easy removal of heat through the barrier is required. It is essential that the tests aimed at determining the real values of measured parameters are carried out in conditions identical with those anticipated in a future disposal system. These relatively complicated thermophysical tests are logical continuation of the simple ones, carried out under laboratory temperature and on not fully saturated samples without possibility to measure the swelling pressure. Thermophysical properties and swelling pressure are dominantly influenced by water content (which is influenced by temperature). Therefore is important to realize the tests under different moisture and thermal conditions. These tests are running at the APT-PO1 Analyser, designed to fulfill mentioned requirements - it allows measurement of thermal properties under temperature up to 200 C and swelling pressure up to 20 MPa. The device is capable to register the evolution of temperature, swelling and vapor pressure. The measurement of thermal conductivity and volume heat capacity is realized by the dynamic impulse method with point source of heat. Four types of tests are possible: at

  9. Development of Atlantic salmon (Salmo salar) eggs and alevins under varied temperature regimes

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R H; Spinney, H C.E.; Sreedharan, A

    1977-01-01

    Atlantic salmon (Salmo salar) eggs and alevins were raised under conditions where the temperature was systematically varied either at fertilization, at the eyed egg stage, or at hatching. Mortality was more than 20% in eggs started immediately after fertilization at constant incubation temperatures <4/sup 0/C as compared with 5% or less at temperatures >4/sup 0/C. Alevins that eyed at 8/sup 0/C and higher were progressively smaller the higher the temperature. The optimum temperature from fertilization to eye pigmentation was near 6/sup 0/C. Eyed eggs reared at lower temperatures until hatching were larger than those hatched at higher temperatures. This size differential was maintained until the yolk was completely absorbed at all posthatching temperatures investigated. Sudden decreases in temperature at the eyed egg and hatching stages induced severe edema of the alevin yolk sac, resulting in slower growth and increased mortality.

  10. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions.

    Science.gov (United States)

    Dunne, Alan; Crampton, David; Egaña, Mikel

    2013-09-01

    Despite the widespread use of cold water immersion (CWI) in normothermic conditions, little data is available on its effect on subsequent endurance performance. This study examined the effect of CWI as a recovery strategy on subsequent running performance in normothermic ambient conditions (∼22°C). Nine endurance-trained men completed two submaximal exhaustive running bouts on three separate occasions. The running bouts (Ex1 and Ex2) were separated by 15min of un-immersed seated rest (CON), hip-level CWI at 8°C (CWI-8) or hip-level CWI at 15°C (CWI-15). Intestinal temperature, blood lactate and heart rate were recorded throughout and V˙O2, running economy and exercise times were recorded during the running sessions. Running time to failure (min) during Ex2 was significantly (p<0.05, ES=0.7) longer following CWI-8 (27.7±6.3) than CON (23.3±5) but not different between CWI-15 (26.3±3.4) and CON (p=0.06, ES=0.7) or CWI-8 and CWI-15 (p=0.4, ES=0.2). Qualitative analyses showed a 95% and 89% likely beneficial effect of CWI-8 and CWI-15 during Ex2 compared with CON, respectively. Time to failure during Ex2 was significantly shorter than Ex1 only during the CON condition. Intestinal temperature and HR were significantly lower for most of Ex2 during CWI-8 and CWI-15 compared with CON but they were similar at failure for the three conditions. Blood lactate, running economy and V˙O2 were not altered by CWI. These data indicate that a 15min period of cold water immersion applied between repeated exhaustive exercise bouts significantly reduces intestinal temperature and enhances post-immersion running performance in normothermic conditions. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Endangerment of thermophilous flora even under conditions of increasing environmental temperatures

    Directory of Open Access Journals (Sweden)

    Vladimír Růžička

    2004-01-01

    Full Text Available As mentioned earlier, it is not true that some bulbous species from the family Orchidaceae are able to survive only mycotrophically, i. e. without formation of stalk. Our observations, especially of Ophrys apifera, have demonstrated (in the Czech Republic that the durability of adult plants is very short so that their numbers are fluctuating. The dying can be caused by several factors. Frost damages followed by rotting of underground parts (roots and bulbs are relatively frequent. The leaf rosette, which is the most resistant, dies as the last, usually later in the spring of the following year. This means that the frost damage is often not identified during the cursory visually control in the spring. We observated very extensive damaging and dying of the Orchidaceae after the winter of 2002/03 - on the turn of November and December 2002, there was a rapid onset of very strong black frost after a long, wet and relatively mild autumn. Consequently 80% of population perished. None specimens of Ophrys apifera and/or Himantoglossum adriaticum came into blossom in 2003 and other species were strongly damaged. Our observations document that the general increase in air temperatures need not result in the occurrence of generally expected better growing conditions for some thermophilous species. It is very probable that the extremes climatic conditions could show greater effects than the general increase in average temperatures. Such phenomena are well-known but in practice they are not noticed and/or are explained in a different way. Such risks can exist in the whole Central European region. Negative effects of frosts in winter 2002/03 were further intensified by long and extreme droughts in the growing season of the year 2003. Combination of these extremes was crucial for the species Gentianella bohemica: In average, 95% of specimens in each population perished. If the fluctuations in climatic conditions will be more frequent, some species can become

  12. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature

    International Nuclear Information System (INIS)

    Dapoigny, L.; Tourdonnet, S. de; Roger-Estrade, G.; Jeuffroy, M.H.; Fleury, A.

    2000-01-01

    A better understanding of the effect of environmental factors on growth and nitrate accumulation in plants is necessary to develop cultivation practices, and in particular for providing lettuces with a low nitrate content. This study was conducted to analyse the effect of nitrogen supply on the interception and conversion of the PAR in dry matter, and on the nitrate and water accumulations in fresh tissues of the lettuce, for various conditions of temperature and radiation. The growth, and water and nitrate concentrations of two soilless cultures of lettuce (summer and autumn) were measured for two levels of radiation and two levels of nitrogen supply. RUE ranged from 2.12 to 3.50 gMJ -1 , being higher for a low radiation level and for a high nitrogen supply. There was a positive correlation between the lettuce nitrate and water contents. The slope of this relationship was not affected by environmental conditions, indicating a strong interdependance between nitrate and water accumulation in lettuce. (author) [fr

  14. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature

    OpenAIRE

    Irena Januskaitiene; Jūratė Žaltauskaitė; Austra Dikšaitytė; Gintarė Sujetovienė; Diana Miškelytė; Giedrė Kacienė; Sandra Sakalauskienė; Jurga Miliauskienė; Romualdas Juknys

    2018-01-01

    This work focuses on the investigation of competition interaction between C3 crop barley (Hordeum vulgare L.) and C4 weed barnyard grass (Echinochloa crus-galli L.) at 2 times higher than ambient [CO2] and +4 0C higher ambient temperature climate conditions. It was hypothesized that interspecific competition will change the response of the investigated plants to increased [CO2] and temperature. The obtained results showed that in the current climate conditions, a higher biomass and photosynth...

  15. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  16. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  17. Influence of the boundary conditions on a temperature field in the turbulent flow near the heated wall

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2002-01-01

    Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in the two-dimensional turbulent channel flow was performed for friction Reynolds number Reτ = 150 and Prandtl number Pr 0.71. Two thermal boundary conditions (BCs), isothermal and isoflux, were carried out. The main difference between two ideal types of boundary conditions is in temperature fluctuations, which retain a nonzero value on the wall for isoflux BC, and zero for isothermal BC. Very interesting effect is seen in streamwise temperature auto-correlation functions. While the auto-correlation function for isothermal BC decreases close to zero in the observed computational domain, the decrease of the auto-correlation function for the isoflux BC is slower and remains well above zero. Therefore, another DNS at two times longer computational domain was performed, but results did not show any differences larger than the statistical uncertainty.(author)

  18. Higher acclimation temperature modulates the composition of muscle fatty acid of Tor putitora juveniles

    Directory of Open Access Journals (Sweden)

    M.S. Akhtar

    2014-08-01

    Full Text Available A 30-day acclimation trial was conducted using golden mahseer, Tor putitora juveniles to study its muscle fatty acid composition at five acclimation temperatures (AT. Ninety juveniles of T. putitora were distributed among five treatment groups (20, 23, 26, 29 and 32±0.5 °C. At the end of 30 days trial, highest percentage of monounsaturated fatty acids was found at 20 °C and lowest at 26 °C. The highest percentage of n-6 polyunsaturated fatty acid (PUFA was found at 23 °C and a decreasing trend was observed with increase in AT. However, highest percentage of n-3 PUFA was found at 32 °C and lowest at 29 °C. The maximum n-6 to n-3 ratio was observed at 23 °C and ratio decreased to a minimum at 32 °C. The results revealed that T. putitora juveniles could adapt to higher acclimation temperatures by altering its muscle fatty acid composition mainly by increasing its total saturated fatty acids especially stearic acid.

  19. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast

    Science.gov (United States)

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  20. Selection of process conditions by risk assessment for apple juice pasteurization by UV-heat treatments at moderate temperatures.

    Science.gov (United States)

    Gayán, E; Torres, J A; Alvarez, I; Condón, S

    2014-02-01

    The effect of bactericidal UV-C treatments (254 nm) on Escherichia coli O157:H7 suspended in apple juice increased synergistically with temperature up to a threshold value. The optimum UV-C treatment temperature was 55 °C, yielding a 58.9% synergistic lethal effect. Under these treatment conditions, the UV-heat (UV-H55 °C) lethal variability achieving 5-log reductions had a logistic distribution (α = 37.92, β = 1.10). Using this distribution, UV-H55 °C doses to achieve the required juice safety goal with 95, 99, and 99.9% confidence were 41.17, 42.97, and 46.00 J/ml, respectively, i.e., doses higher than the 37.58 J/ml estimated by a deterministic procedure. The public health impact of these results is that the larger UV-H55 °C dose required for achieving 5-log reductions with 95, 99, and 99.9% confidence would reduce the probability of hemolytic uremic syndrome in children by 76.3, 88.6, and 96.9%, respectively. This study illustrates the importance of including the effect of data variability when selecting operational parameters for novel and conventional preservation processes to achieve high food safety standards with the desired confidence level.

  1. CO2-gas-exchange and transpiration of open-grown Norway spruce during the year in higher elevations of the Southern Black Forest under local air-conditions with and without ozone

    International Nuclear Information System (INIS)

    Abetz, P.; Kuenstle, E.; Wolfart, A.

    1993-03-01

    Aim and method: CO 2 -gas-exchange and transpiration of open-grown Norway spruce (about 12 m high) on the top of the Black Forest (1230 m a.s.l.) near Freiburg under local conditions with and without ozone are being continiously measured through the whole year. In the same intensity are registered the temperature of soil, needles, twigs, stem and air, the humidity in soil and air and the diameter-changes of the stem. Nearby other institutions measure the quality of air and depositions. Results: In winter with less snowfall, higher temperature and higher insolation, the youngest twigs of the spruce had a lower net-photosynthesis but a higher respiration at night on the southern part versus nothern part (with more shade). Perhaps it happened an inactivity of the photosynthesis-apparatus because of too high insolation. In the same time the colour of the needles on the southern part changed to yellowish green (on the northern part they remained dark green). During dry summer periods the photosynthesis dropped earlier and deeper. The 'radial-increment' stagnated. There was no difference in the gas-exchange when the ozone concentration had been enlarged, neither in winter nor in summertime. (orig.). 57 figs., 12 tabs., 178 refs [de

  2. A multi-tier higher order Conditional Random Field for land cover classification of multi-temporal multi-spectral Landsat imagery

    CSIR Research Space (South Africa)

    Salmon, BP

    2015-07-01

    Full Text Available In this paper the authors present a 2-tier higher order Conditional Random Field which is used for land cover classification. The Conditional Random Field is based on probabilistic messages being passed along a graph to compute efficiently...

  3. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    Science.gov (United States)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  4. FEATURES OF THE INDEPENDENT WORK OF STUDENTS OF HIGHER EDUCATIONAL INSTITUTIONS IN THE CONDITIONS OF THE CORRESPONDENCE FORM OF TRAINING

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Dyvak

    2013-03-01

    Full Text Available The article is devoted to the issues of introduction of information and communication technologies in educational process of higher educational institutions in the conditions of implementation of the correspondence form of training. Examples of the use of information and communication technologies in educational process of higher educational institutions, in particular in the preparation of specialists in pedagogics of higher school in the conditions of the correspondence form of training are presented. Discussed the basic didactic principles of distance and traditional forms of education. The theoretical substantiation of a choice of a virtual learning environment compass for the needs of training of specialists in pedagogics of higher school is presented. Determined the location of independent work of students in the educational process of higher education. Outputed the main functional modules of modern management systems of distance learning.

  5. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  6. Effect of feed intake level and dietary protein content on the body temperature of pigs housed under thermo neutral conditions.

    Science.gov (United States)

    Morales, A; Ibarra, N; Chávez, M; Gómez, T; Suárez, A; Valle, J A; Camacho, R L; Cervantes, M

    2018-04-01

    Feed intake and diet composition appear to affect the body temperature of pigs. Two trials were conducted to analyse the effect of feed intake level and dietary protein content on the intestinal temperature (IT) of pigs housed under thermo neutral conditions. Ten pigs (64.1 ± 1.3 kg initial body weight) fitted with an ileal cannula were used. A thermometer set to register the IT at 5-min intervals was implanted into the ileum through the cannula. In both trials, the ambient temperature ranged from 19.1 to 21.6°C and the pigs were fed at 07:00 and 19:00 hr (same amount each time). In trial 1, the pigs were fed daily 1.2 or 1.8 kg of a wheat-soybean meal diet. The IT followed a similar pattern along a 24-hr period regardless the feed intake level. The IT rapidly increased up to 0.61 and 0.74°C after the morning meal and up to 0.53 and 0.47°C after the evening meal in pigs fed 1.2 and 1.8 kg/d respectively. The postprandial IT was higher in pigs fed 1.8 kg after each meal (p level. The postprandial IT did not differ between pigs fed the low protein or the high protein (p > .10). The IT rapidly increased up to 0.66 and 0.62°C after the morning meal in pigs fed the high- and low-protein diet (p  .10). In conclusion, the feed intake level affected the IT of pigs housed under TN conditions, but the dietary protein content had no effect. © 2017 Blackwell Verlag GmbH.

  7. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  8. Clofibric acid degradation in UV254/H2O2 process: effect of temperature.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2010-04-15

    The degradation of clofibric acid (CA) in UV(254)/H(2)O(2) process under three temperature ranges, i.e. T1 (9.0-11.5 degrees C), T2 (19.0-21.0 degrees C) and T3 (29.0-30.0 degrees C) was investigated. The effects of solution constituents including NO(3)(-) and HCO(3)(-) anions, and humic acid (HA) on CA degradation were evaluated in Milli-Q waters. CA degradation behaviors were simulated with the pseudo-first-order kinetic model and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated. The results showed that higher temperature would favor CA degradation, and CA degradation was taken place mostly by indirect oxidation through the formation of OH radicals in UV(254)/H(2)O(2) process. In addition, the effects of both NO(3)(-) and HCO(3)(-) anions at two selected concentrations (1.0x10(-3) and 0.1 mol L(-1)) and HA (20 mg L(-1)) on CA degradation were investigated. The results showed that HA had negative effect on CA degradation, and this effect was much more apparent under low temperature condition. On the other hand, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. While, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions. Moreover, when using a real wastewater treatment plant (WWTP) effluent spiked with CA over 99% of CA removal could be achieved under 30 degrees C within only 15 min compared with 40 and 80 min under 20 and 10 degrees C respectively, suggesting a significant promotion in CA degradation under higher temperature condition. Therefore, it can be concluded that temperature plays an

  9. Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination?

    Science.gov (United States)

    Freitas, Rosa; Coppola, Francesca; Henriques, Bruno; Wrona, Fredrick; Figueira, Etelvina; Pereira, Eduarda; Soares, Amadeu M V M

    2017-12-01

    The degree to which marine invertebrate populations can tolerate extreme weather events, such as short-term exposure to high temperatures, and the underlying biochemical response mechanisms are not yet fully understood. Furthermore, scarce information is available on how marine organisms respond to the presence of pollutants after exposure to heat stress conditions. Therefore, the present study aimed to understand how the mussel Mytilus galloprovincialis responds to Hg pollution after pre-exposure to warming conditions. Mussels were exposed to control (17°C) and warming (21°C) conditions during 14days, followed by Hg contamination during 28days under different temperature regimes (17 and 21°C). The results obtained demonstrated significantly higher Hg concentrations in mussels under 17°C during the entire experiment than in organisms exposed to 21°C during the same period, which resulted in higher oxidative stress in mussels under control temperature. Significantly higher Hg concentrations were also observed in mussels pre-exposed to 21°C followed by a 17°C exposure comparing with organisms maintained the entire experiment at 21°C. These results may be explained by higher metabolic capacity in organisms exposed to 17°C after pre-exposure to 21°C that although induced antioxidant defences were not enough to prevent oxidative stress. No significant differences in terms of Hg concentration were found between mussels exposed to 17°C during the entire experiment and organisms pre-exposed to 21°C followed by a 17°C exposure, leading to similar oxidative stress levels in mussels exposed to both conditions. Therefore, our findings demonstrated that pre-exposure to warming conditions did not change mussels' accumulation and tolerance to Hg in comparison to Hg contaminated mussels maintained at control temperature. Furthermore, the present study indicate that organisms maintained under warming conditions for long periods may prevent the accumulation of

  10. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  11. Micrometeorological function of paddy fields that control temperature conditions; Suiden no ondo kankyo kanwa kino

    Energy Technology Data Exchange (ETDEWEB)

    Oue, H; Fukushima, T [Ehime University, Ehime (Japan). Faculty of Agriculture; Maruyama, T [Kyoto University, Kyoto (Japan). Faculty of Agriculture

    1994-10-01

    A verification was conducted on the micrometeorological function of paddy fields that control temperature conditions. A movement measurement was executed in order to elucidate air temperature distribution in the paddy field area. The observation revealed the following matters: air temperatures over paddy fields and farm lands are lower than those at bare lands and paved areas; air temperatures downwind the paddy fields are lower than those in residential areas; and air temperatures on the paddy fields are lower than those on the farm lands. Measurement of the air temperature distribution in paddy fields revealed that a paddy field becomes a heat absorbing source in the process of breeze blowing over the paddy field, and alleviates the temperature environment in the downwind area. A discussion was given on the specificity of surface temperature of the paddy field from the above result. It is the feature of paddy fields in summer that the energy exceeding the radiated amount is distributed into latent heat around the noon of a day. The surface temperatures are in the decreasing order of non-irrigated bare land > irrigated bare land > atmometer water surface > farm land > paddy field. The upper limit for the paddy field surface was around 28{degree}C. Surface temperature forming factors were discussed, and the surface temperature parameters (relative humidity, evaporation efficiency, etc.) were derived on each type of the land surface. The surface temperatures on each land surface were calculated using the parameter values. The result revealed that a paddy field having high relative humidity and evaporation efficiency has an effect to suppress the surface temperatures. 6 refs., 10 figs., 1 tab.

  12. Temperature behavior of 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levine, S H; Geisler, G C; Totenbier, R E [Pennsylvania State University (United States)

    1974-07-01

    Stainless steel clad 12 wt % U TRIGA fuel elements have been used to refuel the Penn State University's Breazeale Reactor (PSBR). When 12 wt % U fuel containing nominally 55 gms of {sup 235}U per fuel element is substituted for the 8.5 wt % U fuel containing nominally 38 gms {sup 235}U, higher fuel temperatures were produced in the 12 wt % U fuel than in the 8.5 wt % U fuel at the same reactor powers. The higher fuel temperature can be related to the higher power densities in the 12 wt % U fuel. The power density is calculated to be 35% higher in the 12 wt % U fuel when 6 of these fuel elements are substituted for 8.5 wt % U fuel in the innermost ring, the B ring. Temperatures have been calculated for the 12 wt % U fuel in the above configuration for both steady state and pulse conditions, assuming a 35% higher fuel density in the 12 wt % U fuel and the results compare favorably with the experimental measurements. This is particularly true when the comparison is made with temperature data taken after exposing the new fuel elements to a series of pulses. These calculations and data will be presented at the meeting. (author)

  13. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    Science.gov (United States)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  14. Creep behavior of Zircaloy cladding under variable conditions

    International Nuclear Information System (INIS)

    Matsuo, Y.

    1989-01-01

    Various creep tests of Zircaloy cladding tubes under variable conditions were conducted to investigate which hardening rule can be applicable for the creep behavior associated with condition changes. The results show that the strain-hardening rule is applicable in general when either the stress or temperature conditions change, provided that a certain amount of creep strain recovery is observed in case of stress drop. In stress reversal conditions, however, softening of the material was observed. Strain rate after stress reversal is much higher than that predicted by the strain-hardening rule. In this case, the modified strain-hardening model, considering a recoverable creep-hardening range together with the strain recovery, predicts the creep behavior well. The applicability of the model is ascertained through a verification test that includes stress reversal, strain recovery, stress changes, and temperature changes

  15. Research on infrared radiation characteristics of Pyromark1200 high-temperature coating

    Science.gov (United States)

    Song, Xuyao; Huan, Kewei; Dong, Wei; Wang, Jinghui; Zang, Yanzhe; Shi, Xiaoguang

    2014-11-01

    Pyromark 1200 (Tempil Co, USA), which is a type of high-temperature high-emissivity coating, is silicon-based with good thermal radiation performance. Its stably working condition is at the temperature range 589~922 K thus a wide range of applications in industrial, scientific research, aviation, aerospace and other fields. Infrared emissivity is one of the most important factors in infrared radiation characteristics. Data on infrared spectral emissivity of Pyromark 1200 is in shortage, as well as the reports on its infrared radiation characteristics affected by its spray painting process, microstructure and thermal process. The results of this research show that: (1) The coating film critical thickness on the metal base is 10μm according to comparison among different types of spray painting process, coating film thickness, microstructure, which would influence the infrared radiation characteristics of Pyromark 1200 coating. The infrared spectral emissivity will attenuate when the coating film thickness is lower or much higher than that. (2) Through measurements, the normal infrared radiation characteristics is analyzed within the range at the temperature range 573~873 K under normal atmospheric conditions, and the total infrared spectral emissivity of Pyromark 1200 coating is higher than 0.93 in the 3~14 μm wavelength range. (3) The result of 72-hour aging test at the temperature 673 K which studied the effect of thermal processes on the infrared radiation characteristics of the coating shows that the infrared spectral emissivity variation range is approximately 0.01 indicating that Pyromark 1200 coating is with good stability. Compared with Nextel Velvet Coating (N-V-C) which is widely used in optics field, Pyromark 1200 high-temperature coating has a higher applicable temperature and is more suitable for spraying on the material surface which is in long-term operation under high temperature work conditions and requires high infrared spectral emissivity.

  16. Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.

    2018-01-01

    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.

  17. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  18. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Directory of Open Access Journals (Sweden)

    Kil-Mo Koo

    2012-01-01

    Full Text Available Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard requires that the normal signal level for pressure, flow, and resistance temperature detector sensors be in the range of 4~20 mA for most instruments. Whereas, in the case that an abnormal signal is expected from an instrument, such a signal should be refined through a signal validation process so that the refined signal could be available in the control room. For some abnormal signals expected under severe accident conditions, to date, diagnostics and response analysis have been evaluated with an equivalent circuit model of real instruments, which is regarded as the best method. The main objective of this paper is to introduce a program designed to implement a diagnostic and response analysis for equivalent circuit modeling. The program links signal analysis tool code to abnormal signal simulation engine code not only as a one body order system, but also as a part of functions of a PC-based ASSA (abnormal signal simulation analysis module developed to obtain a varying range of the R-C circuit elements in high temperature conditions. As a result, a special function for abnormal pulse signal patterns can be obtained through the program, which in turn makes it possible to analyze the abnormal output pulse signals through a response characteristic of a 4~20 mA circuit model and a range of the elements changing with temperature under an accident condition.

  19. Sensing disks for slug-type calorimeters have higher temperature stability

    Science.gov (United States)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  20. Solar cell degradation under open circuit condition in out-doors-in desert region

    Directory of Open Access Journals (Sweden)

    M. Boussaid

    Full Text Available The reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330 days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50% in a condition of an open-circuit in the desert region could be reduced to 4 years, and that has a significant impact on economy. Keywords: WEIBULL, Photovoltaic, Degradation, Open-circuit, Single-crystal, Silicon

  1. Relation between temperature and mortality in thirteen Spanish cities

    OpenAIRE

    Iñiguez, Carmen; Ballester, Ferran; Ferrándiz, Juan; Pérez Hoyos, Santiago; Sáez Zafra, Marc; López Estudillo, Antonio

    2010-01-01

    In this study we examined the shape of the association between temperature and mortality in 13 Spanish cities representing a wide range of climatic and socio-demographic conditions. The temperature value linked with minimum mortality (MMT) and the slopes before and after the turning point (MMT) were calculated. Most cities showed a V-shaped temperature-mortality relationship. MMTs were generally higher in cities with warmer climates. Cold and heat effects also depended on climate: effects wer...

  2. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  3. Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

    Science.gov (United States)

    Kim, Young-Jae; Lee, Chanam; Kim, Jun-Hyun

    2018-01-01

    Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking. PMID:29346312

  4. TEMPERATURE REQUIREMENTS FOR THE DEVELOPMENT AND SURVIVAL OF RICE STEMBORERS IN LABORATORY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Md.TouhidurRahman; Khalequzzamant

    2004-01-01

    The effect of seven constant temperatures from 10 to 40℃ (10, 15, 20, 25 30, 35 and 40℃) on the development of eggs, larvae and pupae of rice stemborers viz., Chilo polychrysa (Meyrick), C. suppressalis (Walker), C. partellus (Swinhoe), Scirpophaga incertulas (Walker) ,S. innotata (Walker) and Sesamia inferens (Walker) were studied. The mean developmental period among constant temperatures (in days) of egg, larva and pupa of six borers differed significantly (P < 0.0001). The mean percent of development per day of egg, larva and pupa of all borers gradually increased with the increase of constant temperatures. The total developmental period was inversely decreased with the increase of constant temperatures. The lower threshold temperature was found between 10-15℃and higher threshold temperature between 35-40℃, where no development took place. The mean developmental zero was 8.57+1.71, 7.70+1.01, 8.56+3.25, 10.19+2.19, 8.64+2.68 and 7.91+0.82 for egg, larva and pupa of above-mentioned borers respectively. The total thermal constant of egg, larva and pupa was 705.56, 725.32, 703.30, 556.59, 655.34 and 837.95 degree- days for C. polychrysa, C. suppressalis, C. partellus, S. incertulas, S. innotata and S. inferens respectively. The degree- days required for oviposition of female moths of the six borers was calculated as 99.06, 90.85, 99.29, 75.16, 92.25 and 80.41 respectively. The total degree- days required completing a generation was 804.62, 816.17, 802.59, 631.75, 648.84 and 918.36 respectively.

  5. Differences in the heat stress associated with white sportswear and being semi-nude in exercising humans under conditions of radiant heat and wind at a wet bulb globe temperature of greater than 28 °C

    Science.gov (United States)

    Tsuji, Michio; Kume, Masashi; Tuneoka, Hideyuki; Yoshida, Tetsuya

    2014-08-01

    This study investigated whether wearing common white sportswear can reduce heat stress more than being semi-nude during exercise of different intensities performed under radiant heat and wind conditions, such as a hot summer day. After a 20-min rest period, eight male subjects performed three 20 min sessions of cycling exercise at a load intensity of 20 % or 50 % of their peak oxygen uptake (VO2peak) in a room maintained at a wet bulb globe temperature (WBGT) of 28.7 ± 0.1 °C using two spot lights and a fan (0.8 m/s airflow). Subjects wore common white sportswear (WS) consisting of a long-sleeved shirt (45 % cotton and 55 % polyester) and short pants (100 % polyester), or only swimming pants (SP) under the semi-nude condition. The mean skin temperature was greater when subjects wore SP than WS under both the 20 % and 50 % exercise conditions. During the 50 % exercise, the rating of perceived exertion (RPE) and thermal sensation (TS), and the increases in esophageal temperature (ΔTes) and heart rate were significantly higher ( P < 0.001-0.05), or tended to be higher ( P < 0.07), in the WS than SP trials at the end of the third 20-min exercise session. The total sweat loss ( m sw,tot) was also significantly higher in the WS than in the SP trials ( P < 0.05). However, during the 20 % exercise, the m sw,tot during exercise, and the ΔTes, RPE and TS at the end of the second and third sessions of exercise did not differ significant between conditions. The heat storage (S), calculated from the changes in the mean body temperature (0.9Tes + 0.1 ), was significantly lower in the WS trials than in the SP trials during the 20 min resting period before exercise session. However, S was similar between conditions during the 20 % exercise, but was greater in the WS than in the SP trials during 50 % exercise. These results suggest that, under conditions of radiant heat and wind at a WBGT greater than 28 °C, the heat stress associated with wearing common WS is similar to that

  6. Drought and Cooler Temperatures Are Associated with Higher Nest Survival in Mountain Plovers

    Directory of Open Access Journals (Sweden)

    Victoria J. Dreitz

    2012-06-01

    Full Text Available Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus. Nest survival averaged 27.2% over a 7-yr period (n = 936 nests and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  7. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  8. Properties of raw meat and meat curry from spent goat in relation with post-mortem handling conditions.

    Science.gov (United States)

    Narayan, Raj; Mendiratta, S K; Mane, B G

    2013-04-01

    The properties of raw meat and meat curry from spent goat meat in relation with post-mortem handling conditions were evaluated. The conditions evaluated were: cooking of meat within 1-2 h post-slaughter (condition 1); deboning meat storage at 25 ± 2 °C for 5-6 h and cooking (condition 2); post-slaughter storage of carcass at room temperature for 5-6 h, then deboning followed by storage of meat at refrigeration temperature for 5-6 h and cooking (condition 3); deboning and storage of meat at 25 ± 2 °C for 10-12 h and cooking (condition 4). Significant difference was observed in pH values in condition 1 (p meat as compared to the conditions 2, 3 and 4. However, the moisture content of cooked meat was significantly higher (p meat chunks, that is, the mean value was significantly higher (p < 0.01) for condition 2 and significantly lower for condition 1. Sensory scores were significantly higher in condition 1 and significantly lower in condition 2. However, sensory scores for condition 4 were almost similar to the condition 1.

  9. Evaluation procedure of creep-fatigue defect growth in high temperature condition and application

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2003-12-01

    This study proposed the evaluation procedure of creep-fatigue defect growth on the high-temperature cylindrical structure applicable to the KALIMER, which is developed by KAERI. Parameters used in creep defect growth and the evaluation codes with these parameters were analyzed. In UK, the evaluation procedure of defect initiation and growth were proposed with R5/R6 code. In Japan, simple evauation method was proposed by JNC. In France, RCC-MR A16 code which was evaluation procedure of the creep-fatigue defect initiation and growth related to leak before break was developed, and equations related to load conditions were modified lately. As an application example, the creep-fatigue defect growth on circumferential semi-elliptical surface defect in high temperature cylindrical structure was evaluated by RCC-MR A16

  10. Jatropha curcasand Ricinus communisdisplay contrasting photosynthetic mechanisms in response to environmental conditions

    Directory of Open Access Journals (Sweden)

    Milton Costa Lima Neto

    2015-06-01

    Full Text Available Higher plants display different adaptive strategies in photosynthesis to cope with abiotic stress. In this study, photosynthetic mechanisms and water relationships displayed byJatropha curcasL. (physic nuts andRicinus communisL. (castor bean, in response to variations in environmental conditions, were assessed.R. communis showed higher CO2 assimilation, stomatal and mesophyll conductance thanJ. curcas as light intensity and intercellular CO2 pressure increased. On the other hand,R. communis was less effective in stomatal control in response to adverse environmental factors such as high temperature, water deficit and vapor pressure deficit, indicating lower water use efficiency. Conversely,J. curcas exhibited higher photosynthetic efficiency (gas exchange and photochemistry and water use efficiency under these adverse environmental conditions.R. communisdisplayed higher potential photosynthesis, but exhibited a lowerin vivo Rubisco carboxylation rate (Vcmax and maximum electron transport rate (Jmax. During the course of a typical day, in a semiarid environment, with high irradiation, high temperature and high vapor pressure deficit, but exposed to well-watered conditions, the two studied species presented similar photosynthesis. Losing potential photosynthesis, but maintaining favorable water status and increasing non-photochemical quenching to avoid photoinhibition, are important acclimation mechanisms developed byJ. curcas to cope with dry and hot conditions. We suggest thatJ. curcas is more tolerant to hot and dry environments thanR. communis but the latter species displays higher photosynthetic efficiency under well-watered and non-stressful conditions.

  11. Dual direction blower system powered by solar energy to reduce car cabin temperature in open parking condition

    Science.gov (United States)

    Hamdan, N. S.; Radzi, M. F. M.; Damanhuri, A. A. M.; Mokhtar, S. N.

    2017-10-01

    El-nino phenomenon that strikes Malaysia with temperature recorded more than 35°C can lead to extreme temperature rise in car cabin up to 80°C. Various problems will arise due to this extreme rising of temperature such as the occupant are vulnerable to heat stroke, emission of benzene gas that can cause cancer due to reaction of high temperature with interior compartments, and damage of compartments in the car. The current solution available to reduce car cabin temperature including tinted of window and portable heat rejection device that are available in the market. As an alternative to reduce car cabin temperature, this project modifies the car’s air conditioning blower motor into dual direction powered by solar energy and identifies its influence to temperature inside the car, parked under scorching sun. By reducing the car cabin temperature up to 10°C which equal to 14% of reduction in the car cabin temperature, this simple proposed system aims to provide comfort to users due to its capability in improving the quality of air and moisture in the car cabin.

  12. Temperature Impact on the Forage Quality of Two Wheat Cultivars with Contrasting Capacity to Accumulate Sugars

    Directory of Open Access Journals (Sweden)

    Máximo Lorenzo

    2015-08-01

    Full Text Available Wheat is increasingly used as a dual-purpose crop (for forage and grain production worldwide. Plants encounter low temperatures in winter, which commonly results in sugar accumulation. High sugar levels might have a positive impact on forage digestibility, but may also lead to an increased risk of bloat. We hypothesized that cultivars with a lower capacity to accumulate sugars when grown under cold conditions may have a lower bloat risk than higher sugar-accumulating genotypes, without showing significantly lower forage digestibility. This possibility was studied using two wheat cultivars with contrasting sugar accumulation at low temperature. A series of experiments with contrasting temperatures were performed in controlled-temperature field enclosures (three experiments and growth chambers (two experiments. Plants were grown at either cool (8.1 °C–9.3 °C or warm (15.7 °C–16.5 °C conditions in field enclosures, and at either 5 °C or 25 °C in growth chambers. An additional treatment consisted of transferring plants from cool to warm conditions in the field enclosures and from 5 °C to 25 °C in the growth chambers. The plants in the field enclosure experiments were exposed to higher irradiances (i.e., 30%–100% than those in the growth chambers. Our results show that (i low temperatures led to an increased hemicellulose content, in parallel with sugar accumulation; (ii low temperatures produced negligible changes in in vitro dry matter digestibility while leading to a higher in vitro rumen gas production, especially in the higher sugar-accumulating cultivar; (iii transferring plants from cool to warm conditions led to a sharp decrease in in vitro rumen gas production in both cultivars; and (iv light intensity (in contrast to temperature appeared to have a lower impact on forage quality.

  13. The use of a DNA stabilizer in human dental tissues stored under different temperature conditions and time intervals

    Science.gov (United States)

    TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves

    2014-01-01

    Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206

  14. Assessing the Environmental Conditions of Higher Education: In a Theoretical Approach Using Porter’s Five Forces Model

    Directory of Open Access Journals (Sweden)

    Oya TAMTEKİN AYDIN

    2017-08-01

    Full Text Available Increased demand for higher education and the change and competition it has brought have been a subject for many studies. In Porter’s five forces model, forces termed as the threat of new entrants, threat of substitute products, bargaining power of suppliers, bargaining power of customers, and established rivals between the companies are used to understand the threats and opportunities posed by the industry’s environmental circumstances. The five forces model has been extensively used as an analytical tool to determine the intensity of rivalry and levels of profitability. Thus, managers can develop strategies and discover ways to defend their companies against competitive forces. Although there have been numerous studies conducted with this model for various sectors, the studies implementing this theory to higher education are very scarce due to uncertainty about whether higher education could be regarded as an industry together with its profitability and rivalry components. Specifically, in Turkey, with the idea of considering higher education to be an industry being disputable compared with western countries and even regarded as unmannerly and disloyal to academia explains the lack of studies on this subject. In this study, within the scope of the related literature, the five forces model will be discussed in conjunction with higher education. Subsequently, the factors and evaluations that are shown within this scope will be associated with the external environmental conditions of Turkish higher education. Since there is a lack of well-written sources and sufficient data, the association with Turkish higher education will not be deeply detailed. To perceive the threats and opportunities to higher education from external environmental conditions, an overall approach will be achieved. The theoretical substructure introduced by this study will bring a different viewpoint to politicians, university directors and academicians, along with being

  15. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  16. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    KAUST Repository

    Sun, Shuyu

    2013-06-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  17. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    KAUST Repository

    Sun, Shuyu; Kadoura, Ahmad Salim; Salama, Amgad

    2013-01-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  18. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Guo, T.; Wang, H.X.; Zhang, S.J.

    2011-01-01

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller T P value, higher η t value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔT P (pinch temperature difference in heat exchangers) and η t (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔT P , η t and η rp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔT P value, higher η t value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  19. Thermocouples for conditions of aggressive environments

    International Nuclear Information System (INIS)

    Blanc, J.Y.

    1988-01-01

    Two new kinds of thermocouples have been chosen for temperature measurements in the in-pile safety program for light water reactors performed in France. They must give fuel centerline or roc cladding temperatures and withstand steam oxidation between 1000 0 C and 1800 0 C or higher, under severe fuel damage conditions. We describe briefly both types, then we emphasize on improvements under way concerning the tungsten-rhenium legs, the hafnia insulation and the sheaths materials. Oxidation resistance is achieved mainly by silicides layers, but other possibilities are considered, such as iridium coatings. Some details of insulators manufacturing or sensor assembly are given, as well as other high temperature applications for these thermocouples

  20. Temperature Condition and Spherical Shell Shape Variation of Space Gauge-Alignment Spacecraft

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available A high precision spherical shell is one of the geometrical shape embodiments of a gaugealignment spacecraft to determine and control a radar channel energy potential of the ground-based complex for the traffic control of space objects. Passive relays of signals and some types of smallsized instrumentation standard reflectors used for radar gauge and alignment have the same shape. Orbits of the considered spacecraft can be either circular with a height of about 1000 km, including those close to the polar, or elliptical with an apogee of up to 2200 km.In case there is no thermal control system in spacecrafts of these types the solar radiation is a major factor to define the thermal state of a spherical shell in the illuminated orbit area. With the shell in fixed position with respect to direction towards the Sun an arising uneven temperature distribution over its surface leads to variation of the spherically ideal shell shape, which may affect the functional characteristics of the spacecraft. The shell rotation about an axis perpendicular to the direction towards the Sun may reduce an unevenness degree of the temperature distribution.The uneven temperature distribution over the spherical shell surface in conditions of the lowEarth space and this unevenness impact on the shell shape variation against its spherical shape can be quantively estimated by the appropriate methods of mathematical modeling using modification of a previously developed mathematical model to describe steady temperature state of such shell on the low-Earth orbit. The paper considers the shell made from a polymeric composite material. Its original spherical shape is defined by rather low internal pressure. It is assumed that equipment in the shell, if any, is quite small-sized. This allows us to ignore its impact on the radiative transfer in the shell cavity. Along with defining the steady temperature distribution over the shell surface at its fixed orientation with respect to

  1. The use of cutting temperature to evaluate the machinability of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi

    2009-02-01

    This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.

  2. Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions

    Science.gov (United States)

    Grinblat, Mila; Fine, Maoz; Tikochinski, Yaron; Loya, Yossi

    2018-03-01

    Ocean acidification is thought to exert a major impact on calcifying organisms, including corals. While previous studies have reported changes in the physiological response of corals to environmental change, none have described changes in expression of the ubiquitous host pigments—fluorescent proteins (FPs)—to ocean acidification. The function of FPs in corals is controversial, with the most common consideration being that these primarily regulate the light environment in the coral tissue and protect the host from harmful UV radiation. Here, we provide for the first time experimental evidence that increased fluorescence of colonies of the coral Stylophora pistillata is independent of stress and can be regulated by a non-stressful decrease in pH. Stylophora pistillata is the most abundant and among the most resilient coral species in the northern Gulf of Eilat/Aqaba (GoE/A). Fragmented "sub-colonies" ( n = 72) incubated for 33 days under three pH treatments (ambient, 7.9, and 7.6), under ambient light, and running seawater showed no stress or adverse physiological performance, but did display significantly higher fluorescence, with lower pH. Neither the average number of planulae shed from the experimental sub-colonies nor planulae green fluorescent protein (GFP) expression changed significantly among pH treatments. Sub-colonies incubated under the lower-than-ambient pH conditions showed an increase in both total protein and GFP expression. Since extensive protein synthesis requires a high level of transcription, we suggest that GFP constitutes a UV protection mechanism against potential RNA as well as against DNA damage caused by UV exposure. Manipulating the regulation of FPs in adult corals and planulae, under controlled and combined effects of pH, light, and temperature, is crucial if we are to obtain a better understanding of the role played by this group of proteins in cnidarians.

  3. Influence of Slip Condition on Unsteady Free Convection Flow of Viscous Fluid with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Sami Ul Haq

    2015-01-01

    Full Text Available The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform technique. Graphical results to see the effects of Prandtl number Pr, time t, and slip parameter η on velocity and skin friction for the case of ramped and constant temperature of the plate are provided and discussed.

  4. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  5. Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water

    International Nuclear Information System (INIS)

    Yasuda, Keita; Oto, Yuya; Shen, Renkai; Uchida, Tsutomu; Ohmura, Ryo

    2013-01-01

    Highlights: • Phase equilibrium conditions in the nitrogen and modelled air hydrate forming systems are measured. • Measurements are conducted at temperatures below the freezing point of water. • Results have relevance to the air hydrate formation in the ice sheets. • Measured data are quantitatively compared with the previously reported values. • Range of the equilibrium measurements was from (242 to 268) K. -- Abstract: Contained in this paper are the three phase equilibrium conditions of the (ice + clathrate hydrate + guest-rich) vapour in the (nitrogen + water) and the modelled (air + water) systems at temperatures below the freezing point of water. The precise determination of the equilibrium conditions in those systems are of importance for the analysis of the past climate change using the cored samples from the ice sheets at Antarctica and Greenland because the air hydrates keep the ancient climate signals. The mole ratio of the modelled air composed of nitrogen and oxygen is 0.790:0.210. The equilibrium conditions were measured by the batch, isochoric procedure. The temperature range of the measurements in the nitrogen hydrate forming system is (244.05 < T < 266.55) K and the corresponding equilibrium pressure range is (7.151 < p < 12.613) MPa. The temperature range of the measurements in the modelled air hydrate forming system is (242.55 < T < 267.85) K, and the corresponding equilibrium pressure range is (6.294 < p < 12.144) MPa. The data obtained quantitatively compared with the previously reported data

  6. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    Science.gov (United States)

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and

  7. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  8. Engineered Photorespiratory Bypass Pathways Improve Photosynthetic Efficiency and Growth as Temperature Increases

    Science.gov (United States)

    Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.

    2017-12-01

    In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.

  9. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  10. Effect of temperature on the effectiveness of artificial reproduction of dace [Cyprinidae (Leuciscus leuciscus (L.))] under laboratory and field conditions.

    Science.gov (United States)

    Nowosad, Joanna; Targońska, Katarzyna; Chwaluczyk, Rafał; Kaszubowski, Rafał; Kucharczyk, Dariusz

    2014-10-01

    This study sought to determine the effect of water temperature on the effectiveness of artificial reproduction of dace brooders under laboratory and field conditions. Three temperatures were tested in the laboratory: 9.5, 12 and 14.5 °C (± 0.1 °C). The water temperature under field conditions was 11.0 ± 0.3 °C (Czarci Jar Fish Farm) and 13.2 ± 1.4 °C (Janowo Fish Farm). The study showed that artificial reproduction of dace is possible in all the temperature ranges under study and an embryo survival rate of over 87% can be achieved. Dace has also been found to be very sensitive to rapid temperature changes, even within the temperature ranges optimal for the species. Such changes have an adverse effect on the outcome of the reproduction process, such as a decrease in the percentage of reproducing females, a decrease in the pseudo-gonado-somatic index (PGSI) and a decrease in the embryo survival rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Seoung; Y Jang; J Bai; Y Lee

    2011-12-31

    We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6% and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged

  12. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Calculated and experimental definition of neutron-physical and temperature conditions of material testing in the SM reactor

    International Nuclear Information System (INIS)

    Toporova, V.G.; Pimenov, V.V.

    2004-01-01

    Full text: Reactor material science is one of the main scientific directions of the RIAR activities. Particularly, a wide range of materials and products testing under irradiation is performed in reactor facility SM (RF SM). To solve the tasks specified in the technical specification for an experiment, previously, the test conditions are chosen. At the minimum a space-energy distribution of neutrons and heating rate in the materials under test are important as well as temperature conditions of irradiation. The up-to-date software and libraries of nuclear data allow modeling of neutron-material interaction processes to a considerable degree of details and also obtaining a true neutron distribution by calculation methods. As a result of a great scope of work on verification, a calculation model, developed on the basis of a package of applied software MCU (option MCU-4/SM22) and analogue Monte-Carlo method, is widely used at RIAR. The MCU geometric module makes it possible to model the SM core and reflector in three-dimensional geometry with sufficient accuracy and to describe all elements of the channel structure and irradiation device with specimens. The calculation model of RF SM is tested using the results of activation experiments performed in its critical assembly, geometric parameters and structural materials of which correspond completely with the prototype. The difference in the calculated and experimental values is less than 2.5%. Possibilities of the calculated estimation of operating temperature conditions of absorbing elements under irradiation should be considered separately. As the conducted calculations and their analysis show, to define the fuel column temperature correctly, one needs reliable data on thermal-physical parameters of materials, especially ceramic ones, such as titanium, dysprosium or boron carbide. This is very important for boron carbide-absorbing elements for actually all their operation parameters (such as: gas release, swelling

  14. Dopamine mediated iron release from ferritin is enhanced at higher temperatures: Possible implications for fever-induced Parkinson's disease

    International Nuclear Information System (INIS)

    Babincova, Melania; Babinec, Peter

    2005-01-01

    A new molecular mechanism is proposed to explain the pathogenesis of fever-induced Parkinson's disease. This proposal is based on dopamine and 6-hydroxydopamine-mediated free iron release from ferritin magnetic nanoparticles, which is enhanced at higher temperatures, and which may lead to substantial peroxidation and injury of lipid biomembranes of the substantia nigra in the brain

  15. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  16. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  17. Effects of Length of Shipping Distance and Season of the Year Temperature Stress on Death Rates and Physiological Condition of Broilers on Arrival to Slaughterhouse

    International Nuclear Information System (INIS)

    Elsayed, M.A.

    2014-01-01

    The current study was done to evaluate effects of length of shipping distance (15, 50, and 150 km) and season of the year temperature stress (winter, fall and summer) on death rates and physiological condition of broilers on arrival to slaughterhouse. Mortality rate, serum triglyceride (Trig), uric acid (UA), glucose (Gluc), lactate dehydrogenase (LacDH), heterophil:lymphocyte ratio (H:L ratio) and corticosterone (Cort) were determined. The results showed that mortality rates among broilers grow higher with longer travel distances. The highest mortality was found in the summer months of June, July, and August and in winter months of December, January, and February. Triglyceride concentrations decreased with travel distances increase, especially, when transportation took place between 10-20°C ambient temperatures. Transportation of broilers for distances of 15, 50 and 150 km during fall and winter temperatures conditions increased the level of uric acid in broilers as compared to the broilers sampled before transport. Glucose level decreased in broilers on arrival to slaughterhouse from a distance of during 150 km at fall and winter season’s ambient temperature. Lactate dehydrogenase level decreased as travel distance increased, and this decrease was significant in broilers transported over all distances as compared to the broilers sampled before transport. The H:L ratio increased with travel distance increase. Finally, after 50 km of transport corticosterone level increased significantly in comparison with broilers sampled before transport at all monitored ambient temperatures, and after 150 km of transport it was highly increased at winter and summer seasons as compared to the broilers sampled before transport. It is concluded from the results of this study that the longer the distance of the farm from slaughterhouse the greater the stress on the birds, especially during summer months

  18. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  19. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions

    Directory of Open Access Journals (Sweden)

    Mirim Shin

    2015-01-01

    Full Text Available There were no validation studies on portable sleep devices under different ambient temperature, thus this study evaluated the validity of wrist Actiwatch2 (AW2 or SenseWear armband (SWA against polysomnography (PSG in different ambient temperatures. Nine healthy young participants (6 males, aged 23.3±4.1 y underwent nine nights of study at ambient temperature of 17 °C, 22 °C and 29 °C in random order, after an adaptation night. They wore the AW2 and SWA while being monitored for PSG simultaneously. A linear mixed model indicated that AW2 is valid for sleep onset latency (SOL, total sleep time (TST and sleep efficiency (SE but significantly overestimated wake after sleep onset (WASO at 17 °C and 22 °C. SWA is valid for WASO, TST and SE at these temperatures, but severely underestimates SOL. However, at 29 °C, SWA significantly overestimated WASO and underestimated TST and SE. Bland–Altman plots showed small biases with acceptable limits of agreement (LoA for AW2 whereas, small biases and relatively wider LoA for most sleep variables were observed in SWA. The kappa statistic showed a moderate sleep–wake epoch agreement, with a high sensitivity but poor specificity; wake detection remains suboptimal. AW2 showed small biases for most of sleep variables at all temperature conditions, except for WASO. SWA is reliable for measures of TST, WASO and SE at 17–22 °C but not at 29 °C, and SOL approximates that of PSG only at 29 °C, thus caution is needed when monitoring sleep at different temperatures, especially in home sleep studies, in which temperature conditions are more variable.

  20. High and low temperatures have unequal reinforcing properties in Drosophila spatial learning.

    Science.gov (United States)

    Zars, Melissa; Zars, Troy

    2006-07-01

    Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.

  1. Transition temperature and fracture mode of as-castand austempered ductile iron.

    Science.gov (United States)

    Rajnovic, D; Eric, O; Sidjanin, L

    2008-12-01

    The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.

  2. Shock-darkening in ordinary chondrites: Determination of the pressure-temperature conditions by shock physics mesoscale modeling

    Czech Academy of Sciences Publication Activity Database

    Moreau, J.; Kohout, Tomáš; Wünnemann, K.

    2017-01-01

    Roč. 52, č. 11 (2017), s. 2375-2390 ISSN 1086-9379 Institutional support: RVO:67985831 Keywords : chondrites * pressure-temperature conditions * astrophysics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.391, year: 2016

  3. Conditions for enhanced performance of segmented thermoelectrics under load

    Science.gov (United States)

    Angst, Sebastian; Wolf, Dietrich E.

    2017-08-01

    The Onsager-de Groot-Callen transport theory is used to investigate the performance of double segmented thermoelectrics as generators. We show that such an inhomogeneous device usually performs worse than predicted by the effective transport coefficients. This is caused by the difference of the open circuit Seebeck voltage and the Seebeck voltage under operating conditions. The electrical current and the related interface Peltier effect cause a self-organization of the temperature profile such that the temperature drop across the material with the higher absolute Seebeck coefficient is reduced. However, including Joule heating we derive conditions for the opposite effect resulting in an enhanced power.

  4. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  5. Effects of environmental temperature on life tables of Rhodnius neivai Lent, 1953 (Hemiptera: Reduviidae under experimental conditions

    Directory of Open Access Journals (Sweden)

    Daniel R Cabello

    1999-09-01

    Full Text Available Changes in life tables of Rhodnius neivai due to variations of environmental temperature were studied, based on nine cohorts. Three cohorts were kept at 22°C, three at 27°C and three at 32°C. Cohorts were censused daily during nymphal instars and weekly in adults. Nine complete horizontal life tables were built. A high negative correlation between temperature and age at first laying was registered (r=-0,84. Age at maximum reproduction was significantly lower at 32°C. Average number of eggs/female/week and total eggs/female on its life time were significantly lower at 22°C. Total number of egg by cohort and total number of reproductive weeks were significantly higher at 27°C. At 32°C, generational time was significantly lower. At 27°C net reproductive rate and total reproductive value were significantly higher. At 22°C, intrinsic growth, finite growth and finite birth rates were significantly lower. At 22°C, death instantaneous rate was significantly higher.

  6. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  7. Changing conditions require a higher level of entrepreneurship by farmers: use of an interactive strategic management tool

    NARCIS (Netherlands)

    Beldman, A.C.G.; Lakner, D.; Smit, A.B.

    2013-01-01

    Changing conditions require a higher level of entrepreneurship by farmers. The method of interactive strategic management (ISM) has been developed to support farmers in developing strategic skills. The method is based on three principles: (1) emphasis is on the entrepreneur; (2) interaction with the

  8. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, B.; Wang, Xiaoshuai; Zhang, Guoqiang

    Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...... to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on farm animals in warm conditions includes several thermal indices which incorporate the effect of air velocities. But, surprisingly none of them predicts a decreased influence of air velocity when the air temperature approaches the animal body temperature. This study reviewed published investigations...

  9. Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

    Science.gov (United States)

    Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.

    2018-03-01

    The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

  10. Novel temperature compensation technique for force-sensing piezoresistive devices

    International Nuclear Information System (INIS)

    Scott, Joshua; Enikov, Eniko T

    2011-01-01

    A novel stress-insensitive piezoresistor in the shape of an annulus has been developed to be used in conjunction with a piezoresistive bridge for temperature-compensated force measurements. Under uniform stress conditions, the annular resistor shows near-zero stress sensitivity and a linear response to temperature excitation within test conditions of 24–34 °C. Annular resistors were placed in close proximity to stress-sensitive elements in order to detect local temperature fluctuations. Experiments evaluating the performance of the temperature compensator while testing force sensitivity showed a thermal rejection ratio of 37.2 dB and near elimination of low-frequency noise (drift) below 0.07 Hz. Potential applications of this annular resistor include use in multi-axis force sensors for force feedback microassembly, improvements in the simplicity and robustness of high precision microgram sensitive balances, higher accuracy for silicon diaphragm-based pressure sensors and simple temperature compensation for AFM cantilevers.

  11. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  12. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris).

    Science.gov (United States)

    Koriyama, Takako; Sato, Yoko; Iijima, Kumiko; Kasai, Midori

    2017-07-01

    The influences of soaking treatment and storage conditions on the softening of cooked beans, namely, soybeans and red kidney beans, were investigated. It was revealed that the softening of fresh soybeans and fresh red kidney beans was suppressed during subsequent boiling after soaking treatment at 50 and 60 °C. Furthermore, in treated aged soybeans and red kidney beans that were subjected to storage at 30 °C/75% relative humidity for 6 mo and soaking treatment at 50 to 60 °C, the hardness during cooking was further amplified. This suggested that the mechanism of softening suppression differs depending on the influences of soaking and storage. Analysis of the pectin fraction in alcohol insoluble solid showed insolubilization of metal ions upon storage at high temperature and high humidity in both soybeans and red kidney beans, which suggests interaction between Ca ions and hemicellulose or cellulose as cell wall polysaccharides. The results of differential scanning calorimetry (DSC) showed that aged soybeans exhibited a shift in the thermal transition temperature of glycinin-based protein to a higher temperature compared with fresh soybeans. From the results of DSC and scanning electron microscopy for aged red kidney beans, damaged starch is not conspicuous in the raw state after storage but is abundant upon soaking treatment. As for the influence of soaking at 60 °C, it can be suggested that its influence on cell wall crosslinking was large in soybeans and red kidney beans in both a fresh state and an aged state. © 2017 Institute of Food Technologists®.

  13. The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Yılmaz

    2017-01-01

    Full Text Available Vacuum, cabinet and open air drying of pomegranate fruit leather were carried out at various drying conditions to monitor the drying kinetics together with bionutrient degradation of the product. Drying curves exhibited first order drying kinetics and effective moisture diffusivity values varied between 3.1 × 10−9 and 52.6 × 10−9 m2/s. The temperature dependence of the effective moisture diffusivity was satisfactorily described by an Arrhenius-type relationship. Drying conditions, product thickness and operation temperature had various effects on drying rate and final quality of the product. In terms of drying kinetics and final quality of product, vacuum drying had higher drying rate with higher conservation of phenolic, anthocyanin and ascorbic acid that is connected to faster drying condition and oxygen deficient medium. Anthocyanin content was significantly affected by drying method, drying temperature and product thickness. Scatter plot using principle component analysis enabled better understanding of moisture transfer rate and anthocyanin change under various drying conditions.

  14. Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions

    International Nuclear Information System (INIS)

    Jeon, Seung Won; Cha, Dowon; Kim, Hyung Soon; Kim, Yongchan

    2016-01-01

    Highlights: • System efficiency of PEMFC is evaluated at elevated temperature and humidity. • Operating parameters are optimized using response surface methodology. • The optimal operating parameters are T = 90.6 °C, RH = 100.0%, and ζ = 2.07. • The power output and system efficiency are 1.28 W and 15.8% at the optimum. • The system efficiency can be effectively improved by increasing relative humidity. - Abstract: Humidification of the membrane is very important in a proton exchange membrane fuel cell (PEMFC), to maintain high ionic conductivity. At an elevated temperature, a large amount of thermal energy is required for humidification because of the exponentially increased saturation vapor pressure. In this study, the system efficiency of a PEMFC was evaluated by considering the heat required for preheating/humidification and compression work. Three-dimensional steady-state simulations were conducted using Fluent 14 to simulate the electrochemical reactions. The operating conditions were optimized using response surface methodology by considering both the fuel cell output and system efficiency. In addition, the effects of operating parameters such as the temperature, relative humidity, and stoichiometric ratio were investigated. The system efficiency can be improved more effectively by increasing relative humidity rather than increasing operating temperature because the ionic conductivity of the membrane was strongly influenced by the relative humidity.

  15. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4

    OpenAIRE

    Ma, Chao; Wen, Hanquan; Xing, Defeng; Pei, Xuanyuan; Zhu, Jiani; Ren, Nanqi; Liu, Bingfeng

    2017-01-01

    Background Simultaneous wastewater treatment and lipid production by oleaginous microalgae show great potential to alleviate energy shortage and environmental pollution, because they exhibit tremendous advantages over traditional activated sludge. Currently, most research on wastewater treatment by microalgal are carried out at optimized temperature conditions (25?35??C), but no information about simultaneous wastewater treatment and lipid production by microalgae at low temperatures has been...

  16. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  17. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  18. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  19. A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions

    International Nuclear Information System (INIS)

    Botto, D.; Zucca, S.; Gola, M.M.

    2003-01-01

    In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions

  20. Relation between Temperature and Mortality in Thirteen Spanish Cities

    Directory of Open Access Journals (Sweden)

    Marc Sáez

    2010-08-01

    Full Text Available In this study we examined the shape of the association between temperature and mortality in 13 Spanish cities representing a wide range of climatic and socio-demographic conditions. The temperature value linked with minimum mortality (MMT and the slopes before and after the turning point (MMT were calculated. Most cities showed a V-shaped temperature-mortality relationship. MMTs were generally higher in cities with warmer climates. Cold and heat effects also depended on climate: effects were greater in hotter cities but lesser in cities with higher variability. The effect of heat was greater than the effect of cold. The effect of cold and MMT was, in general, greater for cardio-respiratory mortality than for total mortality, while the effect of heat was, in general, greater among the elderly.

  1. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  2. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  3. Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation.

    Science.gov (United States)

    Sureda-Vives, Macià; Morell-Garcia, Daniel; Rubio-Alaejos, Ana; Valiña, Laura; Robles, Juan; Bauça, Josep Miquel

    2017-09-01

    Osmolality reflects the concentration of all dissolved particles in a body fluid, and its measurement is routinely performed in clinical laboratories for the differential diagnosis of disorders related with the hydrolytic balance regulation, the renal function and in small-molecule poisonings. The aim of the study was to assess the stability of serum, plasma and urine osmolality through time and under different common storage conditions, including delayed centrifugation. Blood and urine samples were collected, and classified into different groups according to several preanalytical variables: serum or plasma lithium-heparin tubes; spun or unspun; stored at room temperature (RT), at 4°C or frozen at -21°C. Aliquots from each group were assayed over time, for up to 14days. Statistical differences were based on three different international performance criteria. Whole blood stability was higher in the presence of anticoagulant. Serum osmolality was stable for 2days at RT and 8days at 4°C, while plasma was less stable when refrigerated. Urine stability was 5days at RT, 4days at 4°C and >14days when frozen. Osmolality may be of great interest for the management of several conditions, such as in case of a delay in the clinical suspicion, or in case of problems in sample collection or processing. The ability to obtain reliable results for samples kept up to 14days also offers the possibility to retrospectively assess baseline values for patients which may require it. Copyright © 2017. Published by Elsevier Inc.

  4. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions

    Directory of Open Access Journals (Sweden)

    F. Michael Williams-Bell

    2017-10-01

    Full Text Available Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON.Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span assessed at baseline (cog 1 and during the final 20-min of each hour (cog 2, 3, and 4. Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol.Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01, core temperature declined during the cognitive assessments in both conditions (at a rate of −0.15 ± 0.20°C·hr−1 and −0.63 ± 0.12°C·hr−1 in the HOT and CON trial respectively. Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration.Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study.

  5. On the importance of telemetric temperature sensor location during intraperitoneal implantation in rats.

    Science.gov (United States)

    Chapon, P A; Bulla, J; Gauthier, A; Moussay, S

    2014-04-01

    This study aims to assess the thermal homogeneity of the intraperitoneal (IP) cavity and the relevance of using a fixed telemetric temperature sensor at a given location in studying rodents. Ten rats were intraperitoneally implanted with three Jonah® capsules each; after assessing the accuracy and reliability of the sensors. Two capsules were attached, one to the right iliac fossa (RIF) and the other to the left hypochondrium (LH), and another was placed between the intestines but not attached (Free). In the ex vivo condition, the differences between sensors and reference values remained in the range of ±0.1. In the in vivo condition, each sensor enabled the observation of temperature patterns. However, sensor location affected mean and median temperature values while the rats were moving freely. Indeed, temperature data collected in the LH were 0.1 significantly higher than those collected in the RIF and temperature data collected in the LH were 0.11 significantly higher than those collected with the Free capsules. In in vivo conditions, intra-sensor variability of temperature data was not affected by sensor location. Taking into account sensor accuracy, similar intra-sensor variability, and mean differences observed between the three locations, the impact of sensor location within the IP cavity could be considered negligible. In in vivo conditions, temperature differences between locations regularly exceeded ±0.2 and reached up to 2.5. These extreme values could be explained by behavioral factors such as food or water intake. Finally, considering the good thermal homogeneity of the IP cavity and possible adverse consequences of sensor attachment, it seems better to let sensors range free within the cavity.

  6. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    Science.gov (United States)

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  7. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    Science.gov (United States)

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Stability of poly(N-isopropylacrylamide-co-acrylic acid polymer microgels under various conditions of temperature, pH and salt concentration

    Directory of Open Access Journals (Sweden)

    Zahoor H. Farooqi

    2017-03-01

    Full Text Available This research article describes the colloidal stability of poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] polymer microgels with different acrylic acid contents in aqueous medium under various conditions of temperature, pH and sodium chloride concentrations. Three samples of multi-responsive P(NIPAM-co-AAc polymer microgels were synthesized using different amounts of acrylic acid by free radical emulsion polymerization. Dynamic laser light scattering was used to investigate the responsive behavior and stability of the prepared microgels under various conditions of pH, temperature and ionic strength. The microgels were found to be stable at all pH values above the pKa value of acrylic acid moiety in the temperature range from 15 to 60 °C in the presence and absence of sodium chloride. Increase in temperature, salt concentration and decrease in pH causes aggregation and decreases the stability of microgels due to the decrease in hydrophilicity.

  9. The effect of temperature and a herbicide mixture on freshwater periphytic algae.

    Science.gov (United States)

    Larras, Floriane; Lambert, Anne-Sophie; Pesce, Stéphane; Rimet, Frédéric; Bouchez, Agnès; Montuelle, Bernard

    2013-12-01

    Temperature is a strong driver of biofilm formation and of the dynamics of microalgae in freshwater. Moreover, exposure to herbicides is a well-known stressor of periphytic communities in anthropized aquatic environments. We tested these two environmental factors on periphytic communities that had been sampled from the littoral zone of Lake Geneva and acclimatized in the lab for 3 weeks at 18, 21, 24 and 28 °C. After this acclimation period, differences in the composition of the diatom community and decreases in cell density were observed corresponding to the temperature gradient. These acclimated communities were then exposed to 23 and 140 nM of a mixture composed of equitoxic quantities of atrazine, terbutryn, diuron and isoproturon. The periphytic community was more sensitive to the herbicide mixture at 18 °C than at higher temperatures, suggesting that higher temperature reduced its toxicity. Small and pioneer diatom species known to be promoted by contamination also appeared to benefit from higher temperatures. Temperature therefore appears to condition the herbicide sensitivity of periphytic communities. © 2013 Elsevier Inc. All rights reserved.

  10. Potential host number in cuckoo bees (Psithyrus subgen. increases toward higher elevations

    Directory of Open Access Journals (Sweden)

    Jean-Nicolas Pradervand

    2013-07-01

    Full Text Available In severe and variable conditions, specialized resource selection strategies should be less frequent because extinction risks increase for species that depend on a single and unstable resource. Psithyrus (Bombus subgenus Psithyrus are bumblebee parasites that usurp Bombus nests and display inter‐specific variation in the number of hosts they parasitize. Using a phylogenetic comparative framework, we show that Psithyrus species at higher elevations display a higher number of hosts species compared with species restricted to lower elevations. Species inhabiting high elevations also cover a larger temperature range, suggesting that species able to occur in colder conditions may benefit from recruitment from populations occurring in warmer conditions. Our results provide evidence for an ‘altitudinal niche breadth hypothesis’ in parasitic species, showing a decrease in the parasites’ specialization along the elevational gradient, and also suggesting that Rapoport’s rule might apply to Psithyrus. 

  11. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  12. An Equipment to Measure the Freezing Point of Soils under Higher Pressure

    Science.gov (United States)

    Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei

    2014-05-01

    Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer

  13. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  15. Establishment and performance of an experimental green roof under extreme climatic conditions

    International Nuclear Information System (INIS)

    Klein, Petra M.; Coffman, Reid

    2015-01-01

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  16. A shorter snowfall season associated with higher air temperatures over northern Eurasia

    International Nuclear Information System (INIS)

    Ye Hengchun; Cohen, Judah

    2013-01-01

    The temperature sensitivity of the snowfall season (start, end, duration) over northern Eurasia (the former USSR) is analyzed from synoptic records of 547 stations from 1966 to 2000. The results find significant correlations between temperature and snowfall season at approximately 56% of stations (61% for the starting date and 56% for the ending date) with a mean snowfall season duration temperature sensitivity of −6.2 days °C −1 split over the start (2.8 days) and end periods (−3.4 days). Temperature sensitivity was observed to increase with stations’ mean seasonal air temperature, with the strongest relationships at locations of around 6 °C temperature. This implies that increasing air temperature in fall and spring will delay the onset and hasten the end of snowfall events, and reduces the snowfall season length by 6.2 days for each degree of increase. This study also clarifies that the increasing trend in snowfall season length during 1936/37–1994 over northern European Russia and central Siberia revealed in an earlier study is unlikely to be associated with warming in spring and fall seasons. (letter)

  17. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  18. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?

    Science.gov (United States)

    Hall, Marianne; Medlyn, Belinda E; Abramowitz, Gab; Franklin, Oskar; Räntfors, Mats; Linder, Sune; Wallin, Göran

    2013-11-01

    Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 μ mol mol(-1), elevated CO2 ∼700 μ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4

  19. High temperature oxidation in boiler environment of chromized steel

    Science.gov (United States)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  20. Effect of pre-sowing laser biostimulation on seeds on white lupine growth under differentiated temperature conditions

    International Nuclear Information System (INIS)

    Podleśny, J.

    1999-01-01

    The experiment went on over 6 weeks. Plants emergence depended on the temperature and pre-sowing laser irradiation of seeds. White lupine seeds germinated better under normal thermal conditions than in chilling stress. Triple irradiation of seeds showed the best advantageous effect improving the quality of plant emergence, irrespective of thermal conditions. The plants sprouted about 3-4 days earlier in comparison to plants from not irradiated seeds. Laser light positively affected also the height of plants, root length and dry matter yield of roots and aboveground parts

  1. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. © 2016 Institute of Food Technologists®

  2. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  3. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes

    DEFF Research Database (Denmark)

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai

    2014-01-01

    and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology...

  4. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    Science.gov (United States)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  5. Heat and Mass Transfer in a High-Porous Low-Temperature Thermal Insulation in Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2015-01-01

    Full Text Available The results of numerical simulation of heat and mass transfer in a high-porous low-temperature insulation in conditions of insulation freezing, a moisture migration to the front of phase transition and a condensation forming on an outer contour of interaction were obtained. Values of heat leakage were established.

  6. Exposure to bright light for several hours during the daytime lowers tympanic temperature

    Science.gov (United States)

    Aizawa, Seika; Tokura, H.

    The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28° C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx.

  7. Exposure to bright light for several hours during the daytime lowers tympanic temperature.

    Science.gov (United States)

    Aizawa, S; Tokura, H

    1997-11-01

    The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28 degrees C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx.

  8. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature

    Directory of Open Access Journals (Sweden)

    Irena Januskaitiene

    2018-03-01

    Full Text Available This work focuses on the investigation of competition interaction between C3 crop barley (Hordeum vulgare L. and C4 weed barnyard grass (Echinochloa crus-galli L. at 2 times higher than ambient [CO2] and +4 0C higher ambient temperature climate conditions. It was hypothesized that interspecific competition will change the response of the investigated plants to increased [CO2] and temperature. The obtained results showed that in the current climate conditions, a higher biomass and photosynthetic rate and a lower antioxidant activity were detected for barley grown under interspecific competition effect. While in the warmed climate and under competition conditions opposite results were detected: a higher water use efficiency, a higher photosynthetic performance, a lower dissipated energy flux and a lower antioxidant enzymes activity were detected for barnyard grass plants. This study highlights that in the future climate conditions, barnyard grass will become more efficient in performance of the photosynthetic apparatus and it will suffer from lower oxidative stress caused by interspecific competition as compared to barley.

  9. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  10. Features, present condition of development and future scope on the high temperature gas reactor as an innovative one

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2001-01-01

    The high temperature gas reactor has some features without previous reactors such as high temperature capable of taking-out, high specific safety, feasibility adaptable to versatile fuel cycle, and so on. Then, it is expected to be an innovative reactor to contribute to diversification of energy supply and expansion of energy application field. In Japan, under the HTTR (high temperature engineering test reactor) plan, construction of HTTR, which is the first high temperature gas reactor in Japan, was finished and its output upgrading test has been promoted. And, on the HTTR plan, together with promotion of full power operation, reactor performance tests, safety proof test, and so on, it is planned to carry out study on application of the high temperature heat such as hydrogen production and so on to aim to practise establishment and upgrading of technologies on high temperature gas reactor in Japan. Here were introduced features and present condition of development of the high temperature gas reactor as an innovative type reactor and described role and future scope in Japan. (G.K.)

  11. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    OpenAIRE

    Zongyue Yu; Zhiqian Ren; Junyong Tao; Xun Chen

    2014-01-01

    A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testi...

  12. Constraining the Depth of a Martian Magma Ocean through Metal-Silicate Partitioning Experiments: The Role of Different Datasets and the Range of Pressure and Temperature Conditions

    Science.gov (United States)

    Righter, K.; Chabot, N.L.

    2009-01-01

    Mars accretion is known to be fast compared to Earth. Basaltic samples provide a probe into the interior and allow reconstruction of siderophile element contents of the mantle. These estimates can be used to estimate conditions of core formation, as for Earth. Although many assume that Mars went through a magma ocean stage, and possibly even complete melting, the siderophile element content of Mars mantle is consistent with relatively low pressure and temperature (PT) conditions, implying only shallow melting, near 7 GPa and 2073 K. This is a pressure range where some have proposed a change in siderophile element partitioning behavior. We will examine the databases used for parameterization and split them into a low and higher pressure regime to see if the methods used to reach this conclusion agree for the two sets of data.

  13. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth

    Directory of Open Access Journals (Sweden)

    JUAN eMORAL

    2015-06-01

    Full Text Available Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt and the type of water stress (matric or osmotic on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30ºC during both periods, with a maximum around 20ºC. Germination increased with increasing Ψt from -1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche spp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata.

  14. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth.

    Science.gov (United States)

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from -1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata.

  15. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Li eFu

    2015-02-01

    Full Text Available Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this Zoige wetland sample. It appears that the aceticlastic methanogenesis dominated at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.

  16. Analysis of the kinetics of decohesion process in the conditions of cyclic temperature variations

    International Nuclear Information System (INIS)

    Zuchowski, R.

    1981-01-01

    Specimens made of four types of heat-resistant steels were used in the investigation. Various variants of loading process were applied, resulting in thermal fatigue, cyclic creep and isothermal fatigue. Stress or strain variation as well as intensity of acoustic emission were recorded during the tests as a function of time. Cyclic variations of strain or stress amplitude were found to occur one full period covering few to several cycles. Comparing the relative number of acoustic emission impulses with the variation of stress or strain leads to the conclusion that cyclic character of strain or stress variation results from cyclic character of damage cumulation process. This statement is confirmed by the results of material damage degree determination based on specific strain work measurements. Results of investigation testify to the equivalence of action (in terms of energy) of cyclically variable force field at constant temperature and of constant force field in the conditions of cyclic temperature variations. Damage mechanism can be different in each case, because it depends (for a given material) on loading process parameters and in particular - on temperature and stress value. (orig./HP)

  17. Effect of Fast Pyrolysis Conditions on the Biomass Solid Residues at High Temperatures (1000-1400°C)

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt

    to the parental fuel, whereas alfalfa straw char particle size remained unaltered with the higher temperatures. In this study, the retained shape of beechwood and herbaceous biomass samples is related to the presence of extractives and formation of silicates. Soot yield from herbaceous fuels occurs lower than...

  18. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    Under the nominal conditions of power system coolants, the corrosion of components made of carbon steel is limited by the magnetite films that develop on surfaces. In some situations, the magnetite film loses much of its protective ability and corrosion and loss of iron to the system are exacerbated. Common examples of such situations occur when the system is non-isothermal so that temperature gradients cause differences in magnetite solubility around the circuit; the resulting areas of under-saturation in iron give rise to dissolution of normally protective films. Condensing steam in two-phase systems may also promote oxide dissolution. When the turbulence in the system is high, oxide degradation is aggravated and flow-accelerated corrosion (FAC) results. The subsequent increased loading of systems with iron leads to fouling of flow passages and heat transfer surfaces and in reactor primary coolants to rising radiation fields, while FAC can have disastrous results in terms of pipe wall thinning and eventual rupture. Magnetite dissolution is clearly a key contributor to these processes. Thus, the conventional mechanistic description of FAC postulates magnetite dissolution in series with mass transfer of iron from the film to the bulk coolant. In the resulting equations, if the dissolution rate constant is considerably less than the mass transfer coefficient for a particular situation, dissolution will control and flow should have no effect. This is clearly untenable for FAC, so it is often assumed that mass transfer controls and the contribution from oxide dissolution is ignored - on occasion when data on dissolution kinetics are available and sometimes when those data show that dissolution should control. In most cases, however, dissolution rate constants for magnetite are not available. At UNB Nuclear we have a research program using a high-temperature loop to measure dissolution rates of magnetite in water under various conditions of flow, temperature and

  19. Drain current enhancement induced by hole injection from gate of 600-V-class normally off gate injection transistor under high temperature conditions up to 200 °C

    Science.gov (United States)

    Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo

    2018-06-01

    In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.

  20. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  1. Amelioration of Heat-Stress Conditions of Egyptian Summer Season on Friesian Calves Using Air Condition

    International Nuclear Information System (INIS)

    Nessim, M.Z.; Kamal, T.H.; Khalil, W.K.B.

    2010-01-01

    Male Friesian calves were used to evaluate cool air condition (AC) in alleviating heat stress (HS) determined by Heat Shock Protein genes expression (HSP), hormonal, biochemical and physiological parameters. The animals were exposed to summer heat stress (HS) under shade for two weeks (control). The maximum temperature humidity index (THI) during summer HS was from 81 to 88. Afterward the animals were exposed to AC, inside a climatic chamber for 6 hours daily for two weeks, where, the THI was from 70 to 71. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp47) was lower under air condition treatment than under summer heat stress. Rectal temperature and respiration rate were significantly lower (p< 0.01) under air condition treatment than those under heat stress. Total triiodothyronin (T3) level was significantly higher (P< 0.05) in AC cooling treatments than in HS, while cortisol level was significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Creatinine and Urea -N levels were significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Triglycerides, ALT and AST levels were significantly lower (p<0.01), (P< 0.01) and (p<0.05), respectively in AC cooling treatment than in HS calves. These results demonstrated that there is a relationship between the molecular weight of HSPs and the level of HSPs gene exprisson. The higher the molecular weight (HSP 72) the lower is the HSPs gene expression level (0.82 in HS and 0.39 in AC) and vise versa. This holds true in both heat stress and air condition. AC treatment is capable to ameliorate heat stress of Friesian calves under hot summer climate

  2. Weather conditions may worsen symptoms in rheumatoid arthritis patients: the possible effect of temperature.

    Science.gov (United States)

    Abasolo, Lydia; Tobías, Aurelio; Leon, Leticia; Carmona, Loreto; Fernandez-Rueda, Jose Luis; Rodriguez, Ana Belen; Fernandez-Gutierrez, Benjamin; Jover, Juan Angel

    2013-01-01

    Patients with rheumatoid arthritis (RA) complain that weather conditions aggravate their symptoms. We investigated the short-term effects of weather conditions on worsening of RA and determined possible seasonal fluctuations. We conducted a case-crossover study in Madrid, Spain. Daily cases of RA flares were collected from the emergency room of a tertiary level hospital between 2004 and 2007. 245 RA patients who visited the emergency room 306 times due to RA related complaints as the main diagnostic reason were included in the study. Patients from 50 to 65 years old were 16% more likely to present a flare with lower mean temperatures. Our results support the belief that weather influences rheumatic pain in middle aged patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  3. A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mroczka Janusz

    2014-12-01

    Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.

  4. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  5. Effects of boundary conditions on temperature and density in an EXTRAP Z-pinch

    International Nuclear Information System (INIS)

    Drake, J.R.; Karlsson, P.

    1985-08-01

    Using the fluid equations, we examine transport in an Extrap configuration by carrying out calculations incorporating model profiles for the density and temperature. The goal of this analysis is to examine the scaling of the pinch equilibrium plasma density, temperature and radius with parameters that are characteristic for Extrap Z-pinches. These parameters include the discharge current, the neutral hydrogen filling density, an oxygen impurity fractional concentration and the condition at the pinch boundary. An Extrap Z-pinch is a pinch discharge where the current channel has a characteristic non-circular cross-section achieved by bounding the discharge by a magnetic separatrix produced when a vacuum octupole magnetic field, generated by currents in external conductors, combines with the self-magnetic field produced by the discharge current. The pinch boundary is changed from a plasma-vacuum boundary to an interface between a high-beta pinch plasma and a low-beta plasma contained in the vacuum magnetic field. The energy that is lost from the pinch region sustains this boundary layer. The introduction of a separatrix boundary around the pinch with four X-point nulls deteriorates the containment of the pinch somewhat. However the presence of the warm, low-beta plasma scrape-off layer, which provides a boundary condition on the pinch, tends to counteract the negative effects of the poorer confinement. Thus the equilibrium parameters that characterize the pinch may not be severely deteriorated by the introduction of the separatrix when the entire configuration, including the scrape-off layer, is considered. (author)

  6. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus).

    Science.gov (United States)

    Cliffe, Rebecca N; Haupt, Ryan J; Avey-Arroyo, Judy A; Wilson, Rory P

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  7. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  8. Pyrolysis of Lantana camara and Mimosa pigra: Influences of temperature, other process parameters and incondensable gas evolution on char yield and higher heating value.

    Science.gov (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2017-11-01

    Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg -1 (525°C) and 31.01MJkg -1 (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg -1 for LC and 31.61MJkg -1 for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Efficiency of measures aimed at improving health by normalization of temperature conditions in the Kochegarka mine

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, G.I.; Nifonov, V.P.; Kobets, A.N.

    1981-06-01

    This paper evaluates effects of air conditioning in the Kochegarka black coal mine on miners' health. Up to 1975 air temperature in the lowest mine horizon located at a depth of 970 m ranged from 26 to 32 C, in summer from 34 to 36 C. Air humidity ranged from 94 to 98%. Since 1975 KhTMF-248-4000 freon air cooling machines have been used in the mine; their capacity amounts to 3.8 x 10/SUP/6 kcal/h. Use of air cooling systems reduces air temperature to permissible limits. Air temperature measured at a distance of 1 km from mine shaft ranges from 24 to 26 C, and air humidity from 90 to 95%. At a distance of 1.5 km from the mine shaft air temperature in conveyor roadways is 26.4 C, in dead-end development workings 27 C, and at working faces 26 C (with air humidity ranging from 96 to 98%). ARVP systems for local air cooling are used at places distant from the mine shaft. The ARVP reduces air temperature from 2 to 4.5 C at a distance ranging from 4 to 8 m from the machine. Reducing air temperature, combined with other measures aimed at improving miners' health, has caused a decrease in miner absenteeism due to illness by 25.4%.

  10. Kinetics of CO(2) fluxes outgassing from champagne glasses in tasting conditions: the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2009-03-11

    Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.

  11. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  12. Lower-Temperature Invert Design For Diffusion Barrier

    International Nuclear Information System (INIS)

    Bruce Stanley

    2001-01-01

    The objective of this analysis is to advance the state of the subsurface facilities design to primarily support the ''Yucca Mountain Science and Engineering Report'' (DOE 2001) and to also support the preparation and revision of System Description Document's Section 2 system descriptions (CRWMS M and O 2001, pp. 9 and 11). The results may also eventually support the License Application (CRWMS M and O 2001, p. 3). The Performance Assessment Department will be the primary user of the information generated and will be used in abstraction modeling for the lower-temperature scenario (CRWMS M and O 200 1, p. 27). This analysis will evaluate the invert relative to the lower- and higher-temperature conditions in accordance with the primary tasks below. Invert design is a major factor in allowing water entering the drift to pass freely and enter the drift floor without surface ponding and in limiting diffusive transport into the host rock. Specific cost effective designs will be conceptualized under the new lower-temperature conditions in this analysis. Interfacing activities and all aspects of Integrated Safety Management and Nuclear Culture principles are included in this work scope by adhering to the respective principles during this design activity and by incorporating safety into the design analysis (CRWMS M and O 2001, p. 8). Primary tasks of this analysis include identifying available design information from existing sources on the invert as a diffusive barrier, developing concepts that reduce the amount steel, and developing other design features that accommodate both lower- and higher-temperature operating modes (CRWMS M and O 2001, p.16)

  13. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).

  14. Emotional memory consolidation under lower versus higher stress conditions

    Directory of Open Access Journals (Sweden)

    Inna eKogan

    2010-12-01

    Full Text Available An exposure to stress can enhance memory for emotionally arousing experiences. The phenomenon is suggested to be amygdala-dependent and in accordance with that view the amygdala was found to modulate mnemonic processes in other brain regions. Previously, we illustrated increased amygdala activation and reduced activation of CA1 following spatial learning under high versus low emotionality conditions. When spatial learning was followed by reversal training interference, impaired retention was detected only under high emotionality conditions. Here we further evaluate the potential implications of the difference in the level of amygdala activation on the quality of the memory formed under these stress conditions. We attempted to affect spatial memory consolidation under low or high stress conditions by either introducing a foot shock interference following massed training in the water maze; by manipulating the threshold for acquisition employing either brief (3 trials or full (12 trials training sessions; or by employing a spaced training (over three days rather than massed training protocol. The current findings reveal that under heightened emotionality, the process of consolidation seems to become less effective and more vulnerable to interference; however, when memory consolidation is not interrupted, retention is improved. These differential effects might underlie the complex interactions of stress, and, particularly, of traumatic stress with memory formation processes.

  15. Low-temperature conditioning of "seed" cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in 'Coreano' garlic (Allium sativum) during plant development.

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D; Zavala-Gutiérrez, Karla G; Cao, Cong-Mei; Cisneros-Zevallos, Luis; Guevara-González, Ramón G; Torres-Pacheco, Irineo; Vázquez-Barrios, M Estela; Rivera-Pastrana, Dulce M; Mercado-Silva, Edmundo M

    2013-11-06

    Low-temperature conditioning of garlic "seed" cloves accelerated the development of the crop cycle, decreased plant growth, and increased the synthesis of phenolic compounds and anthocyanins in the outer scale leaves of the bulbs at harvest time, leading to 3-fold content increase compared with those conditioned at room temperature. Cold conditioning of "seed" cloves also altered the anthocyanin profile during bulb development and at harvest. Two new anthocyanins are reported for the first time in garlic. The high phenolics and anthocyanin contents in bulbs of plants generated from "seed" cloves conditioned at 5 °C for 5 weeks were preceded by overexpression of some putative genes of the phenolic metabolism [6-fold for phenylalanine ammonia lyase (PAL)] and anthocyanin synthesis [1-fold for UDP-sugar:flavonoid 3-O-glycosyltransferase (UFGT)] compared with those conditioned at room temperature.

  16. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions

    OpenAIRE

    De Oliveira , Tiago; Guégan , Régis; Thiebault , Thomas; Le Milbeau , Claude; Muller , Fabrice; Teixeira , Vinicius; Giovanela , Marcelo; Boussafir , Mohammed

    2017-01-01

    Accepted Manuscript; International audience; Among pharmaceutical products (PPs) recalcitrant to water treatments, diclofenac shows a high toxicity and remains at high concentration in natural aquatic environments. The aim of this study concerns the understanding of the adsorption mechanism of this anionic PP onto two organoclays prepared with two long-alkyl chains cationic surfactants showing different chemical nature for various experimental pH and temperature conditions. The experimental d...

  17. Modeling daily soil temperature over diverse climate conditions in Iran—a comparison of multiple linear regression and support vector regression techniques

    Science.gov (United States)

    Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan

    2018-02-01

    The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.

  18. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop

    International Nuclear Information System (INIS)

    Song, K.; Hong, S.; Park, H.

    2012-01-01

    A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.

  19. RIP INPUT TABLES FROM WAPDEG FOR LA DESIGN SELECTION: HIGHER THERMAL LOADING

    International Nuclear Information System (INIS)

    K. Mon

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b. Software Routine Report for WAPDEG (Version 3.09)) simulations used to analyze waste package degradation and failure under the repository exposure conditions characterized by the higher thermal loading repository design feature and, (2) post-processing of these results into tables of waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems version 5.19.01 (RIP) computer program (Golder Associates 1998). Specifically, the WAPDEG simulations discussed in this calculation correspond to waste package emplacement conditions (repository environment and design) defined in the Total System Performance Assessment-Viability Assessment (TSPA-VA), with the exception that the higher thermal loading Design Feature (Design Feature 26) of the License Application Design Selection (LADS) analysis was analyzed. Higher thermal loading would keep the drift temperature above the boiling point of water for a longer period of time, thereby minimizing moisture around the waste packages during a longer post-closure period. The higher thermal loading would also affect the surrounding rock, which may have adverse effects. The only failure mechanism of this feature would be if the effects on the surrounding rock were determined to be unacceptable. As a result of the change in waste package placement relative to the TSPA-VA base-case design, different temperature and relative humidity time histories at the waste package surface are calculated (input to the WAPDEG simulations), and consequently different waste package failure histories (as calculated by WAPDEG) result

  20. Comparison of materials resistance to rupture for low-cycle fatigue under isothermal and nonisothermal conditions

    International Nuclear Information System (INIS)

    Sobolev, N.D.; Egorov, V.I.

    1979-01-01

    Proposed is the following conception of damage at cyclic change of deformation and temperature allowing for two effects: 1) material damage occurs mainly in the stretching semicycle and the higher the temperature and the greater the ageing time, the greater the material damage; 2) the healing effect may take place in the compression semicycle and the higher the temperature and the greater the ageing time, the greater the effect. Comparison in durability of some loading conditions is carried out for the 304 stainless steel to confirm the above conception. It is shown that it is necessary to take into account separately damages is stretching and compression semicycles with allowance for temperature and durability of active loading and holdings

  1. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.

    Science.gov (United States)

    Kavouras, P; Pantazopoulou, E; Varitis, S; Vourlias, G; Chrissafis, K; Dimitrakopulos, G P; Mitrakas, M; Zouboulis, A I; Karakostas, Th; Xenidis, A

    2015-01-01

    A tannery sludge, produced from physico-chemical treatment of tannery wastewaters, was incinerated without any pre-treatment process under oxic and anoxic conditions, by controlling the abundance of oxygen. Incineration in oxic conditions was performed at the temperature range from 300°C to 1200°C for duration of 2h, while in anoxic conditions at the temperature range from 400°C to 600°C and varying durations. Incineration under oxic conditions at 500°C resulted in almost total oxidation of Cr(III) to Cr(VI), with CaCrO4 to be the crystalline phase containing Cr(VI). At higher temperatures a part of Cr(VI) was reduced, mainly due to the formation of MgCr2O4. At 1200°C approximately 30% of Cr(VI) was reduced to Cr(III). Incineration under anoxic conditions substantially reduced the extent of oxidation of Cr(III) to Cr(VI). Increase of temperature and duration of incineration lead to increase of Cr(VI) content, while no chromium containing crystalline phase was detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Franck--Hertz experiment with higher excitation level measurements

    International Nuclear Information System (INIS)

    Liu, F.H.

    1987-01-01

    The measurement of the higher levels of 6 3 P 2 and 6 1 P 1 of the mercury atom in the Franck--Hertz experiment has been introduced into the junior and senior laboratory course by using a homemade tetrode Franck--Hertz tube. The main structure of the tube is described. The optimum operating conditions are in the temperature range between 130 and 150 0 C and the collector currents are of the order of 10 -9 A. The additional observations of the famous Franck--Hertz experiment in the laboratory course will give the students more familiarity with the quantum behavior of atoms

  3. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    Science.gov (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  4. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    Science.gov (United States)

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  5. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  6. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  7. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.

    Science.gov (United States)

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K

    2012-12-01

    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.

  8. Study of ignition characteristics of microemulsion of coconut oil under off diesel engine conditions

    Directory of Open Access Journals (Sweden)

    Mahir H. Salmani

    2015-09-01

    Full Text Available The increasing awareness of the depletion of fossil fuel resources and the environmental benefits motivates the use of vegetable oils, however there is little known information about ignition and combustion characteristics of vegetable oil based fuels under off diesel engine conditions. These conditions are normally reached either during starting or when the engine is sufficiently worn out. A fuel was prepared by co-solvent blending of coconut oil with 20% butyl alcohol and was analysed. An experimental study of the measurement of ignition delay (ID characteristics of conical fuel sprays impinging on hot surface in cylindrical combustion chamber was carried out. The objective of the study was to investigate the effect of hot surface temperatures on ignition delays of microemulsion of coconut oil at various ambient air pressures and temperatures which would have reached under off diesel engine conditions. An experimental set-up was designed and developed for a maximum air pressure of 200 bar and a maximum temperature of 800 °C with the emphasis on optical method for the measurement of ignition delay. Hot surface temperature range chosen was 300–450 °C and ambient air pressure (inside the combustion chamber range chosen was 10–25 bar. Present study shows that at fixed injection pressure and fixed ambient (hot surface temperature, at higher ambient air pressure (25 bar inside the combustion chamber, ignition delay of diesel and microemulsion of coconut oil are comparable and therefore are having matching combustion characteristics. Although a pressure of 25 bar is much less than the precombustion pressure of most diesel engines but again conclusively establish that combustion characteristics are same despite lower air pressure, temperature and lower injection pressure. At higher injection pressure ignition delay of microemulsion of coconut oil and pure diesel attains the lower value at the same ambient air pressure inside the

  9. The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear.

    Directory of Open Access Journals (Sweden)

    Melissa Judith Sharpe

    2015-01-01

    Full Text Available The prelimbic (PL cortex allows rodents to adapt their responding under changing experimental circumstances. In line with this, the PL cortex has been implicated in strategy set shifting, attentional set shifting, the resolution of response conflict, and the modulation of attention towards predictive stimuli. One interpretation of this research is that the PL cortex is involved in using information garnered from higher-order cues in the environment to modulate how an animal responds to environmental stimuli. However, data supporting this view of PL function in the aversive domain are lacking. In the following experiments, we attempted to answer two questions. Firstly, we wanted to investigate whether the role of the PL cortex in using higher-order cues to influence responding generalizes across appetitive and aversive domains. Secondly, as much of the research has focused on a role for the PL cortex in performance, we wanted to assess whether this region is also involved in the acquisition of hierarchal associations which facilitate an ability to use higher-order cues to modulate responding. In order to answer these questions, we assessed the impact of PL inactivation during both the acquisition and expression of a contextual bi-conditional discrimination. A contextual bi-conditional discrimination involves presenting two stimuli. In one context, one stimulus is paired with shock while the other is presented without shock. In another context, these contingencies are reversed. Thus, animals have to use the present contextual cues to disambiguate the significance of the stimulus and respond appropriately. We found that PL inactivation disrupted both the encoding and expression of these context-dependent associations. This supports a role for the PL cortex in allowing higher-order cues to modulate both learning about, and responding towards, different cues. We discuss these findings in the broader context of functioning in the medial prefrontal

  10. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  11. Decision-Support System for Urban Air Pollution under Future Climate Conditions

    OpenAIRE

    Jensen , Steen ,; Brandt , Jørgen; Hvidberg , Martin; Ketzel , Matthias; Hedegaard , Gitte ,; Christensen , Jens ,

    2011-01-01

    Part 6: Climate Services and Environmental Tools for Urban Planning and Climate Change Applications and Services; International audience; Climate change is expected to influence urban living conditions and challenge the ability of cities to adapt to and mitigate climate change. Urban climates will be faced with elevated temperatures and future climate conditions are expected to cause higher ozone concentrations, increased biogenic emissions from vegetation, changes in the chemistry of the atm...

  12. Temperature-induced processes for size-selected metallic nanoparticles on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bettermann, H., E-mail: hendrik.bettermann@uni-duesseldorf.de; Werner, M.; Getzlaff, M., E-mail: getzlaff@uni-duesseldorf.de

    2017-01-01

    Highlights: • FeNi nanoparticles on W(110) are stable at room temperature and above. • Unrolling carpet mechanism is driving the melting of nanoparticles. • Ostwald ripening is driving the formation of FeNi islands after melting. - Abstract: The melting behavior of Iron-Nickel alloy nanoparticles on W(110) was studied under UHV conditions as a function of heating temperature and heating duration. These particles were found to be stable at 423 K without evaporation or diffusion taking place. Unrolling carpet behavior occurs at higher temperatures. This creates ramified islands around the nanoparticles. Ostwald ripening at higher temperatures or longer heating times is creating compact islands. The melting of these nanoparticles opens the possibility for thin film growth of FeNi alloys. The formation of monolayer high islands is a strong contrast to Fe, Co, and FeCo alloy nanoparticles which are dominated by direct evaporation, single atom surface diffusion and anisotropic spreading.

  13. Effect of morning bright light on body temperature, plasma cortisol and wrist motility measured during 24 hour of constant conditions.

    Science.gov (United States)

    Foret, J; Aguirre, A; Touitou, Y; Clodoré, M; Benoit, O

    1993-06-11

    Using 24 h constant conditions, time course of body temperature, plasma cortisol and wrist motility was measured in response to a 3 day morning 2 h bright light pulse. This protocol demonstrated that a 2000 lux illumination was sufficient to elicit a shift of about 2 h of temperature minimum and cortisol peak. In reference session, actimetric recordings showed a circadian time course, closely in relation with core temperature. Bright light pulse resulted in a decrease of amplitude and a disappearance of circadian pattern of actimetry.

  14. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  15. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing.

    Science.gov (United States)

    Idrissi, Hosni; Bollinger, Caroline; Boioli, Francesca; Schryvers, Dominique; Cordier, Patrick

    2016-03-01

    The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.

  16. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  17. Absolute decay parametric instability of high-temperature plasma

    International Nuclear Information System (INIS)

    Zozulya, A.A.; Silin, V.P.; Tikhonchuk, V.T.

    1986-01-01

    A new absolute decay parametric instability having wide spatial localization region is shown to be possible near critical plasma density. Its excitation is conditioned by distributed feedback of counter-running Langmuir waves occurring during parametric decay of incident and reflected pumping wave components. In a hot plasma with the temperature of the order of kiloelectronvolt its threshold is lower than that of a known convective decay parametric instability. Minimum absolute instability threshold is shown to be realized under conditions of spatial parametric resonance of higher orders

  18. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  19. Elevated temperature ductility of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649 0 C was observed to eliminate the ductility minimum at 649 0 C in both types 304 and 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593 0 C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition

  20. Temperature affects brain and pituitary gene expression related to reproduction and growth in the male blue gouramis, Trichogaster trichopterus.

    Science.gov (United States)

    David, Dalia; Degani, Gad

    2011-04-01

    This study examined the effect of temperature on reproduction and growth-related factors in blue gourami males under nonreproductive and reproductive conditions. Males that were maintained under nonreproductive conditions did not build nest and the gonado-somatic index (% GSI) was significantly higher in fish maintained at 27°C compared with fish maintained at 23°C. The relative mRNA levels of brain gonadotropin-releasing hormone 3 (GnRH3), pituitary adenylate cyclase-activating polypeptide (PACAP), insulin-like growth factor-1(IGF-1), pituitary β-luteinizing hormone (βLH), and prolactin were significantly higher when the fish were maintained at 27°C than at 23°C or 31°C. β-Follicle-stimulating hormone (βFSH) mRNA levels were significantly lower when maintained at 31°C than at the other temperatures. Nests were observed only in males under reproductive conditions. In these fish, higher mRNA levels of GnRH3, PACAP, βFSH, βLH and prolactin were detected at 27°C, and higher mRNA levels of IGF-1 were detected at 23°C, when compared with other temperature of maintenance or with fish that did not build nest. In conclusion, we propose that temperature has more effect on the transcription of genes, associated with reproduction, than on those pertaining to growth. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  1. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    Science.gov (United States)

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  2. The prediction of the-circumferential fuel-temperature distribution under ballonian condition. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, A M; El-Sherbiny, E M [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Swelling and thermal distortion of nuclear fuel elements due to depressurization of reactor coolant may cause contracts in points or finite regions between adjacent fuel elements in square and triangle lattices. This is very probable in Advanced Pressurized Water Reactors where the clearance between fuel elements is about 1 mm. This results in partial blocking of the coolant flow and formation of hot spots in the contact regions. In these regions, absence of coolant results in nonuniform clad circumferential temperature distribution. This causes excessive thermal stresses which may produce local melting or clad failure. An accurate prediction of the clad circumferential temperature distribution during these severe incidents is very important. This problem was studied numerically during transient and steady state conditions. Recently, a semi analytical solution for the underlying problem was derived assuming the heat transfer coefficient to vary linearly with the circumferential distance measured from the cusp point, and the heat flux at the fuel-clad interface to be a constant quantity. In the present work, an approximate analytic solution is obtained. The accuracy is tested by solving the problem numerically. Also the problem is reanalyzed by considering the heat flux at the fuel-clad interface to be a power function of the angular distance along the clad surface. Moreover, the heat transfer coefficient is assumed to be a function of both the circumferential coordinate and temperature of the clad. Discussion of the analytical solution and the assumptions are rationalized in the text. 4 figs.

  3. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions

    Directory of Open Access Journals (Sweden)

    Alefsi David Sanchez-Reinoso

    2014-12-01

    Full Text Available Heat stress due to high daytime temperatures is one of the main limiting factors in rice (Oryza sativa L. yield in Colombia. Thus, the objective of the present research was to analyze the effect of three different daytime temperatures (25, 35, and 40 °C on the physiological responses of three Colombian rice cultivars (F60, F733, and F473, thereby contributing to the knowledge of rice acclimation mechanisms. For 10 d, eight plants of each of the three cultivars were subjected daily to 5 h periods of 35 and 40 °C. The control treatment corresponded to normal growth conditions (25 °C. Thermal stress was assessed based on a series of physiological and biochemical parameters. The 35 °C treatment produced photosynthetic and respiratory differences in all three cultivars. At 40 °C, 'F60' displayed the lowest photosynthetic rate and the highest respiratory rate. Although this cultivar experienced particularly strong electrolyte leakage and changes in proline when subjected to the high-temperature treatments, similar trends were observed in 'F733' and 'F473'. At 40 °C, the concentration of malondialdehyde (MDA was lower in 'F473' than in the other cultivars. These results may explain the poor agronomic performance of 'F60' in the field under daytime heat stress. The methodologies employed in the present work may be useful in Colombian rice breeding programs, particularly for the selection of heat-tolerant breeding stocks.

  4. Temperature modulates phototrophic periphyton response to chronic copper exposure

    International Nuclear Information System (INIS)

    Lambert, Anne Sophie; Dabrin, Aymeric; Morin, Soizic; Gahou, Josiane; Foulquier, Arnaud; Coquery, Marina; Pesce, Stéphane

    2016-01-01

    Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L"−"1). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures. - Highlights: • At in situ temperature, Cu impacted structure and activity of phototrophic biofilms. • Cu effects were reduced with increasing temperature (from +5 °C to +15 °C). • The decrease in Cu effects may be related to lower Cu bioaccumulation in biofilms. • Changes in diatom

  5. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  6. GWAS of Barley Phenotypes Established Under Future Climate Conditions of Elevated Temperature, CO2, O3 and Elevated Temperature and CO2 Combined

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Backes, G.; Lyngkjær, M. F.

    2015-01-01

    Climate change is likely to decrease crop yields worldwide. Developing climate resilient cultivars is one way to combat this production scarcity, however, little is known of crop response to future climate conditions and in particular the variability within crops.In Scandinavia, barley is widely...... cultivated, but yields have stagnated since the start of this century. In this study we cultivated 138 spring barley accessions in a climate phytotron under four treatments mimicking forecasted levels of temperature, carbon dioxide concentration ([CO2]) and ozone ([O3]) at the end of the 21st century1...... yield, grain protein concentration, grain protein harvested, number of grains, number of ears, aboveground vegetative biomass and harvest index. In addition, stability of the production was calculated over the applied treatments for the assessed parameters.In the climate scenario of elevated temperature...

  7. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  8. Is the boundary layer of an ionic liquid equally lubricating at higher temperature?

    Science.gov (United States)

    Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W

    2016-04-07

    Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

  9. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  10. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  11. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  12. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... (H2O) vapor content in the flue gas on the high-temperaturecorrosion of austenitic stainless steel (TP 347H FG) under laboratory conditions, to improve the understanding of corrosionmechanisms. Deposit-coated and deposit-free samples were isothermally exposed for 72 h in a synthetic flue gas...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  13. New methods to get valid signals at high temperature conditions by using DSP tools of the ASSA (Abnormal Signal Simulation Analyzer)

    International Nuclear Information System (INIS)

    Koo, Kil-Mo; Hong, Seong-Wan; Song, Jin-Ho; Baek, Won-Pil; Jung, Myung-Kwan

    2012-01-01

    A new method to get valid signals under high temperature conditions using DSP (Digital Signal Processing) tools of an ASSA (Abnormal Signal Simulation Analyzer) module through a signal analysis of important circuit modeling under severe accident conditions has been suggested. Already exist, such kinds of DSP technique operated by LabVIEW or MatLab code linked with PSpice code, which have convenient tools as a special function of the ASSA module including a signal reconstruction method. If we can obtain a shift data of the transient parameters such as the time constant of the R-L-C circuit affected by high temperature under a severe accident condition, it will be possible to reconstruct an abnormal signal using a trained deconvolution algorithm as a sort of DSP technique. (author)

  14. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Wesam Altaher, Yassir; Shokryazdan, Parisa; Ebrahimi, Roohollah; Ebrahimi, Mahdi; Idrus, Zulkifli; Tufarelli, Vincenzo; Liang, Juan Boo

    2016-07-01

    High ambient temperature is a major problem in commercial broiler production in the humid tropics because high producing broiler birds consume more feed, have higher metabolic activity, and thus higher body heat production. To evaluate the effects of two previously isolated potential probiotic strains ( Lactobacillus pentosus ITA23 and Lactobacillus acidophilus ITA44) on broilers growing under heat stress condition, a total of 192 chicks were randomly allocated into four treatment groups of 48 chickens each as follows: CL, birds fed with basal diet raised in 24 °C; PL, birds fed with basal diet plus 0.1 % probiotic mixture raised in 24 °C; CH, birds fed with basal diet raised in 35 °C; and PH, birds fed with basal diet plus 0.1 % probiotic mixture raised in 35 °C. The effects of probiotic mixture on the performance, expression of nutrient absorption genes of the small intestine, volatile fatty acids (VFA) and microbial population of cecal contents, antioxidant capacity of liver, and fatty acid composition of breast muscle were investigated. Results showed that probiotic positively affected the final body weight under both temperature conditions (PL and PH groups) compared to their respective control groups (CL and CH). Probiotic supplementation numerically improved the average daily gain (ADG) under lower temperature, but significantly improved ADG under the higher temperature ( P < 0.05) by sustaining high feed intake. Under the lower temperature environment, supplementation of the two Lactobacillus strains significantly increased the expression of the four sugar transporter genes tested (GLUT2, GLUT5, SGLT1, and SGLT4) indicating probiotic enhances the absorption of this nutrient. Similar but less pronounced effect was also observed under higher temperature (35 °C) condition. In addition, the probiotic mixture improved bacterial population of the cecal contents, by increasing beneficial bacteria and decreasing Escherichia coli population, which could be

  15. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non......-carbonating conditions, but no or even a negative effect under carbonating conditions. The results led to the conclusion that SO2 released from raw meal in the upper stages of the preheater does not to any significant extent react with CaO recirculating in the preheater tower....

  16. Low temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, A A

    1934-01-10

    A process is described in which coal is passed through a distillation chamber in one retort at a comparatively low temperature, then passing the coal through a distillation chamber of a second retort subjected to a higher temperature, thence passing the coal through the distillation chamber of a third retort at a still higher temperature and separately collecting the liquid and vapors produced from each retort.

  17. Containerless processing at high temperatures using acoustic levitation

    Science.gov (United States)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  18. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  19. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  20. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  1. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus

    Directory of Open Access Journals (Sweden)

    Rebecca N. Cliffe

    2015-04-01

    Full Text Available Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths had a remarkably low mean food intake of 17 g kg−1day−1 (SD 4.2. Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  2. A model for the description of feeding regulation by mesozooplankton under different conditions of temperature and prey nutritional status

    DEFF Research Database (Denmark)

    Acheampong, Emmanuel; Acheampong, Emmanuel; Hense, Inga

    2014-01-01

    Ecosystem modelling studies that consider mesozooplankton feeding regulation have primarily focused on the impact of prey nutritional status and temperature separately, despite experimental evidence for strong links between these two factors. Here, we propose a method based on optimal feeding...... behaviour of individual mesozooplankton that can be used to derive acclimative food ingestion, assimilation, and respiration under different temperature and food conditions. In the model, animals first evaluate the nutritional value of prey organisms based on their temperature-specific demand for energy...... support and extend conclusions previously obtained for mesozooplankton and indicate that ocean warming could alter the role of Acartia spp. in planktonic food webs. © 2013 Elsevier B.V....

  3. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  4. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  5. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Directory of Open Access Journals (Sweden)

    Serena Rasconi

    Full Text Available Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification" of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C and brownification will, a cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans, and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development.

  6. Chemical speciation of inorganic compounds under hydrothermal conditions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Darab, J.G.; Fulton, J.L.; Steidler, G.T.; Stern, E.A.

    1998-01-01

    'To obtain the chemistry of metallic solute ions under aqueous and hydrothermal conditions in order to obtain key insights pertinent to the removal of toxic wastes. Elements present in Hanford tank wastes will be investigated to get a better understanding of how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In the following summary of the x-ray absorption fine structure (XAFS) measurements under aqueous and hydrothermal conditions, most measurements below the critical temperature (375 C) were taken at about 200 bar pressure, while at supercritical temperatures the pressure was about 600 bar. Chemistry of Na 2 WO 4 Under Aqueous and Hydrothermal Conditions Tungsten, molybdenum, vanadium and, to a lesser agree, chromium, niobium and tantalum form isopolymetallates, polymeric species of rather complicated structure and complex chemical equilibria, in aqueous solution upon acidification. Except Tantalum, all of these elements are present in the Hanford tank wastes and it is not well understood how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In March 1998, the authors launched a series of XAFS experiments to resolve these questions. Measurements were obtained for 0.2 molal tungstate solutions as a function of temperature (to 200 C) and as a function of starting pH. The outcome of these measurements is providing key insights into this chemistry as follows: (1) A change from tetrahedral to octahedral coordination of the oxygen atoms around the tungsten center atom can be detected upon increasing extent of polymerization. (2) At least one new feature shows up in the Fourier Transform of the k-weighted Chi plot (closely related to a radial distribution function) which is unambiguously attributed to a tungsten-tungsten scattering path, only present in the polymeric species. (3) Perhaps most interestingly, the XAFS data indicate a higher extent of polymerization at

  7. Spikelet sterility in rice genotypes affected by temperature at microsporogenesis

    Directory of Open Access Journals (Sweden)

    Natalia M. de Souza

    Full Text Available ABSTRACT This study evaluated the effect of temperatures during the phase of microsporogenesis on spikelet sterility of paddy rice and identified genotypes tolerant to low temperatures at this growth stage. The inbreds SC681, SC491, and SC676 and the cultivars Epagri 109 and SCS116 Satoru were assessed. The genotypes were submitted for three days in a growth chamber to five temperatures at microsporogenesis: 9, 12, 15, 18, and 21 oC. For each tested temperature, a control was kept in the greenhouse under environmental conditions. After harvest, full and empty spikelets were counted and weighed and the percentage of spikelet sterility was determined. Data were evaluated by variance analysis using the F test. Averages were compared by Tukey’s test and regression analysis. The highest spikelet sterilities were observed when the genotypes were exposed to the temperatures of 9 and 12 oC. Genotype spikelet sterility was similar to that of the control at 21 ºC. The inbred SC 676 presented higher tolerance to lower temperatures is therefore potentially suited to generate a cultivar with adequate agronomic performance in rice growing areas prone to cold conditions at microsporogenesis.

  8. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  9. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  10. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA in Groundwater under Acidic Conditions

    Directory of Open Access Journals (Sweden)

    Penghua Yin

    2016-06-01

    Full Text Available Perfluorooctanoic acid (PFOA is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C, persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH. The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  11. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. Copyright © 2014. Published by Elsevier B.V.

  12. Combined Effects of Temperature and Seston Concentration on the Physiological Energetics of the Manila Clam Ruditapes philippinarum.

    Directory of Open Access Journals (Sweden)

    Hee Yoon Kang

    Full Text Available The suspension-feeding Manila clam Ruditapes philippinarum is a native species of the western Pacific that is now widely distributed around the globe because of its commercial importance. To determine the adaptive physiological responses to changing thermal and nutritional conditions, clearance, filtration, feces production, ammonium excretion, respiration rates, and scope for growth (SFG were measured in adult clams. The clams were exposed to 24 treatments involving the combination of four water temperatures (8, 13, 18, and 23°C and six concentrations of suspended particulate matter (SPM: 9.5 to 350.5 mg L(-1. Physiological rates were standardized by using the mean (480 mg of tissue dry weights of experimental clams using allometric equations between physiological variables and tissue dry weight. Higher clearance rates were recorded at higher temperatures and lower SPM concentrations, and these rates decreased with increasing SPM concentration at individual temperatures. Consumed energy increased with increasing temperature and SPM concentration, peaking at around 100-200 mg L(-1 at 18-23°C. Whereas fecal energy was largely determined by SPM concentration, ammonia excretion was mainly governed by temperature. Respiration rate studies revealed a predominant quadratic effect of temperature on the metabolism, indicating a lack of acclimatory adjustment of metabolic rate to rising temperature. SFG values were positive under almost all the treatment conditions and were much higher at higher SPM concentrations (> 45 mg L(-1, with the highest level being recorded at 18°C and 100-200 mg L(-1 SPM. Increased filtration rate offset the increased metabolic cost at warm temperatures. Our holistic findings suggest that a high degree of physiological plasticity allows R. philippinarum to tolerate the wide range of temperatures and SPM concentrations that are found in tidal flats, accounting in part for the successful distribution of this species over a

  13. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  14. What to eat in a warming world: do increased temperatures necessitate hazardous duty pay?

    Science.gov (United States)

    Hall, L. Embere; Chalfoun, Anna D.

    2018-01-01

    Contemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predation risk in food choice has been studied broadly, the extent to which individuals respond to thermoregulatory risk by changing resource preferences is unclear. We addressed whether individuals compensated for temperature-related reductions in foraging time by altering forage preferences, using the American pika (Ochotona princeps) as a model species. We tested two hypotheses: (1) food-quality hypothesis—individuals exposed to temperature extremes should select higher-quality vegetation in return for accepting a physiologically riskier feeding situation; and (2) food-availability hypothesis—individuals exposed to temperature extremes should prioritize foraging quickly, thereby decreasing selection for higher-quality food. We quantified the composition and quality (% moisture, % nitrogen, and fiber content) of available and harvested vegetation, and deployed a network of temperature sensors to measure in situ conditions for 30 individuals, during July–Sept., 2015. Individuals exposed to more extreme daytime temperatures showed increased selection for high-nitrogen and for low-fiber vegetation, demonstrating strong support for the food-quality hypothesis. By contrast, pikas that experienced warmer conditions did not reduce selection for any of the three vegetation-quality metrics, as predicted by the food-availability hypothesis. By shifting resource-selection patterns, temperature-limited animals may be able to proximately buffer some of the negative effects associated with rapidly warming environments, provided that sufficient resources remain on the landscape.

  15. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang; Kong Hainan

    2007-01-01

    Natural zeolite and expanded clay were used as filter media for biological aerated filter (BAF) to treat municipal wastewater in parallel in whole three test stages. The stage one test results revealed that zeolite BAF and expanded clay BAF have COD and NH 3 -N removals in the range of 84.63-93.11%, 85.74-96.26%, 82.34-93.71%, and 85.06-93.2%, respectively, under the conditions of water temperature of 20-25 deg. C and hydraulic load of 2-3 m 3 /(m 2 h). At the following stage two, the influent NH 3 -N concentration was increased to about double value of the stage one, and it was investigated that the effluent NH 3 -N of expanded clay BAF increased significantly and then gradually restored to normal condition in 2 weeks, while the effluent NH 3 -N of zeolite BAF kept stable. At stage three, the low reactor temperature has also different effects on these two BAFs, under conditions of water temperature of 7-10 deg. C, hydraulic load of 2-3 m 3 /(m 2 h), zeolite BAF and expanded clay BAF have COD and NH 3 -N removals in the range of 74.5-88.47% (average of 81.57%), 71.73-88.49% (average of 81.06%), 71.91-87.76% (average of 80.49%), and 38.41-77.17% (average of 65.42%), respectively. Three stages test results indicated that the zeolite BAF has a stronger adaptability to NH 3 -N shock load and low temperature compared to expanded clay BAF. In addition, the detection of the amounts of heterobacteria and nitrobacteria of two biological aerated filters in three stages also showed the zeolite filter media was more suitable to the attached growth of nitrobacteria, which is helpful to the improvement of nitrification performance in zeolite BAF

  16. Individual differences in normal body temperature: longitudinal big data analysis of patient records

    Science.gov (United States)

    Samra, Jasmeet K; Mullainathan, Sendhil

    2017-01-01

    Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (–0.021°C for every decade, Ptemperature (eg, hypothyroidism: –0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, Pbody mass index: 0.002 per m/kg2, Ptemperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Conclusions Individuals’ baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. PMID:29237616

  17. Reactivation of αμ in muon-catalyzed fusion under plasma conditions

    International Nuclear Information System (INIS)

    Jandel, M.; Froelich, P.; Larson, G.; Stodden, C.D.

    1989-01-01

    The reactivation efficiency of αμ slowing down in a deuterium-tritium plasma has been calculated for a broad range of plasma conditions. The plasma stopping power has been obtained from the random-phase approximation, which includes both the quantum mechanics of short-range collisions and collective effects due to long-range plasma interactions. It is shown that muon reactivation increases with increasing plasma temperature and density. Near-complete reactivation is, however, reached only at temperatures higher than 1000 eV

  18. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity

    Directory of Open Access Journals (Sweden)

    Katharina eHeidrich

    2013-10-01

    Full Text Available In plant effector-triggered immunity (ETI, intracellular nucleotide binding-leucine rich repeat (NLR receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll Interleukin1 receptor domain-NLR (denoted TNL gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4 and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal ‘WRKY’ transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4Ws/RRS1Ws allelic pair governs resistance to Pst/AvrRps4 accompanied by host programmed cell death (pcd. In accession Col-0, RPS4Col/RRS1Col effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4Col (in a 35S:RPS4-HS line confers temperature conditioned EDS1-dependent auto-immunity. Here we show that a high (28oC, non-permissive to moderate (19oC, permissive temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4Col auto-immunity depends entirely on EDS1 and partially on RRS1Col. Examination of gene expression microarray data over 24h after temperature shift reveals a mainly quantitative RRS1Col contribution to up- or down-regulation of a small subset of RPS4Col-reprogrammed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1Col contributes to temperature-conditioned RPS4Col auto-immunity and are consistent with activated RPS4Col engaging RRS1Col for resistance signaling.

  19. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

    Science.gov (United States)

    Pántano, Vanesa C.; Penalba, Olga C.

    2017-12-01

    Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

  20. Influence of Storage Temperature on Radiochemical Purity of 99mTc-Radiopharmaceuticals.

    Science.gov (United States)

    Uccelli, Licia; Boschi, Alessandra; Martini, Petra; Cittanti, Corrado; Bertelli, Stefania; Bortolotti, Doretta; Govoni, Elena; Lodi, Luca; Romani, Simona; Zaccaria, Samanta; Zappaterra, Elisa; Farina, Donatella; Rizzo, Carlotta; Giganti, Melchiore; Bartolomei, Mirco

    2018-03-15

    The influence of effective room temperature on the radiochemical purity of 99m Tc-radiopharmaceuticals was reported. This study was born from the observation that in the isolators used for the preparation of the 99m Tc-radiopharmaceuticals the temperatures can be higher than those reported in the commercial illustrative leaflets of the kits. This is due, in particular, to the small size of the work area, the presence of instruments for heating, the continuous activation of air filtration, in addition to the fact that the environment of the isolator used for the 99m Tc-radiopharmaceuticals preparation and storage is completely isolated and not conditioned. A total of 244 99m Tc-radiopharmaceutical preparations (seven different types) have been tested and the radiochemical purity was checked at the end of preparation and until the expiry time. Moreover, we found that the mean temperature into the isolator was significantly higher than 25 °C, the temperature, in general, required for the preparation and storage of 99m Tc-radiopharmaceuticals. Results confirmed the radiochemical stability of radiopharmaceutical products. However, as required in the field of quality assurance, the impact that different conditions than those required by the manufacturer on the radiopharmaceuticals quality have to be verified before human administration.

  1. Temperature-dependent transmission of Candidatus phytoplasma asteris by the vector leafhopper Macrosteles quadripunctulatus Kirschbaum

    Directory of Open Access Journals (Sweden)

    F. Maggi

    2014-10-01

    Full Text Available A set of experiments was carried out to characterize how temperature affects the spread of chrysanthemum yellows phytoplasma (CYP, a strain of Candidatus Phytoplasma asteris, in Chrysanthemum carinatum plants transmitted by the Macrosteles quadripunctulatus leafhopper. Experiments provided data on CYP latency period in insect and plant host, M. quadripunctulatus adult mortality rate, and epidemics progression in plants under controlled conditions inside climatic chambers. Experiments were conducted at temperatures ranging between 15 and 30°C. Empirical laws for temperature-dependent epidemiological parameters were next derived and used in a dynamical model of the epidemics progression. Experiments showed that CYP epidemics was faster at higher temperatures and the model could replicate these observations with relatively high accuracy (correlation >98.03% and residuals <14.5%. The epidemics spreading rate increased linearly from 0.2 plants infected per day at 15°C to about 0.7 plants per day at 30°C, possibly due to: i faster CYP multiplication in the host plants and ii higher frequency of feeding bouts of M. quadripunctulatus at higher temperatures.

  2. A Pilot Study Examining Physical and Social Warmth: Higher (Non-Febrile) Oral Temperature Is Associated with Greater Feelings of Social Connection.

    Science.gov (United States)

    Inagaki, Tristen K; Irwin, Michael R; Moieni, Mona; Jevtic, Ivana; Eisenberger, Naomi I

    2016-01-01

    An emerging literature suggests that experiences of physical warmth contribute to social warmth-the experience of feeling connected to others. Thus, thermoregulatory systems, which help maintain our relatively warm internal body temperatures, may also support feelings of social connection. However, the association between internal body temperature and feelings of connection has not been examined. Furthermore, the origins of the link between physical and social warmth, via learning during early experiences with a caregiver or via innate, co-evolved mechanisms, remain unclear. The current study examined the relationship between oral temperature and feelings of social connection as well as whether early caregiver experiences moderated this relationship. Extending the existing literature, higher oral temperature readings were associated with greater feelings of social connection. Moreover, early caregiver experiences did not moderate this association, suggesting that the physical-social warmth overlap may not be altered by early social experience. Results provide additional support for the link between experiences of physical warmth and social warmth and add to existing theories that highlight social connection as a basic need on its own.

  3. Differences in the heat stress associated with white sportswear and being semi-nude in exercising humans under conditions of radiant heat and wind at a wet bulb globe temperature of greater than 28 °C.

    Science.gov (United States)

    Tsuji, Michio; Kume, Masashi; Tuneoka, Hideyuki; Yoshida, Tetsuya

    2014-08-01

    This study investigated whether wearing common white sportswear can reduce heat stress more than being semi-nude during exercise of different intensities performed under radiant heat and wind conditions, such as a hot summer day. After a 20-min rest period, eight male subjects performed three 20 min sessions of cycling exercise at a load intensity of 20 % or 50 % of their peak oxygen uptake (VO2peak) in a room maintained at a wet bulb globe temperature (WBGT) of 28.7 ± 0.1 °C using two spot lights and a fan (0.8 m/s airflow). Subjects wore common white sportswear (WS) consisting of a long-sleeved shirt (45 % cotton and 55 % polyester) and short pants (100 % polyester), or only swimming pants (SP) under the semi-nude condition. The mean skin temperature (Tsk) was greater when subjects wore SP than WS under both the 20 % and 50 % exercise conditions. During the 50 % exercise, the rating of perceived exertion (RPE) and thermal sensation (TS), and the increases in esophageal temperature (ΔTes) and heart rate were significantly higher (Pheat storage (S), calculated from the changes in the mean body temperature (0.9Tes + 0.1 Tsk), was significantly lower in the WS trials than in the SP trials during the 20 min resting period before exercise session. However, S was similar between conditions during the 20 % exercise, but was greater in the WS than in the SP trials during 50 % exercise. These results suggest that, under conditions of radiant heat and wind at a WBGT greater than 28 °C, the heat stress associated with wearing common WS is similar to that of being semi-nude during light exercise, but was greater during moderate exercise, and the storage of body heat can be reduced by wearing WS during rest periods.

  4. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    Science.gov (United States)

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  5. What is felt temperature? Air conditioning with felt temperature in buildings and vehicles?; Was ist gefuehlte Temperatur? Klimaregelung mit gefuehlter Temperatur in Gebaeuden und Fahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Eigel, Franz [Technology Marketing Support, St. Georgen (Germany); Rengshausen, Detlef [Vereta GmbH, Einbeck (Germany)

    2010-11-15

    The term 'felt temperature' reaches back to a long series of medical, empirical-sociological and meteorological studies accomplished world-wide for human temperature feeling. The consideration of the felt temperature at the regulation of refrigerators meets not only the comfort feeling of humans, but also saves cash money at the same time.

  6. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  7. Status of LANL investigations of temperature constraints on clay in repository environments

    International Nuclear Information System (INIS)

    Caporuscio, Florie A.; Cheshire, Michael C.; Newell, Dennis L.; McCarney, Mary Kate

    2012-01-01

    The Used Fuel Disposition (UFD) Campaign is presently evaluating various generic options for disposal of used fuel. The focus of this experimental work is to characterize and bound Engineered Barrier Systems (EBS) conditions in high heat load repositories. The UFD now has the ability to evaluate multiple EBS materials, waste containers, and rock types at higher heat loads and pressures (including deep boreholes). The geologic conditions now available to the U.S.A. and the international community for repositories include saturated and reduced water conditions, along with higher pressure and temperature (P, T) regimes. Chemical and structural changes to the clays, in either backfill/buffer or clay-rich host rock, may have significant effects on repository evolution. Reduction of smectite expansion capacity and rehydration potential due to heating could affect the isolation provided by EBS. Processes such as cementation by silica precipitation and authigenic illite could change the hydraulic and mechanical properties of clay-rich materials. Experimental studies of these repository conditions at high P,T have not been performed in the U.S. for decades and little has been done by the international community at high P,T. The experiments to be performed by LANL will focus on the importance of repository chemical and mineralogical conditions at elevated P,T conditions. This will provide input to the assessment of scientific basis for elevating the temperature limits in clay barriers.

  8. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  9. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  10. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  11. A study of reduction of patient's radiation exposure by using the new ortho screen film systems (4). A study of the possibility of higher developing temperature by observation of chest phantom radiographs

    International Nuclear Information System (INIS)

    Yagi, Hirofumi; Fukui, Toshihito; Yasutomo, Motokatsu; Takashima, Koosuke; Kuroda, Tokue; Nishitani, Hiromu.

    1995-01-01

    Recently, some new ortho screen-film systems (Konica EX system, Fuji AD system and Kodak IEF system) are being developed. The granulalities of these systems have been greatly improved and gross fogs are lower than those of traditional ortho screen-film systems. Even if the radiographs with the new ortho screen-film are processed at higher temperature than with the old ortho system such as Lanex Medium/TMC-RA (Eastman Kodak), the deterioration in the image quality is negligible. Furthermore, the speed of the screen-film systems increases as the developing temperature rises. Therefore, there may be the potential to reduce patients' radiation exposure without greatly decreasing the image quality. At that time, the problem arises how to determine the appropriate developing temperature. The limit of developing temperature for the new ortho system was determined as the temperature for getting the same gross fog in old ortho-system. In this report, phantom radiographs were made at various developing temperatures and the comments about the higher limit of the developing temperature were solicited from medical doctors who evaluated them. Consequently, it has been confirmed there are sufficient image quality in the radiographs which were developed at the higher developing temperature than at the temperature used in many faculties now. (author)

  12. Effect of roll hot press temperature on crystallite size of PVDF film

    Energy Technology Data Exchange (ETDEWEB)

    Hartono, Ambran, E-mail: ambranhartono@yahoo.com; Sanjaya, Edi [Departement of Physics Faculty of Science and Technology, Islamic State University Syarif Hidayatullah , Jl. Juanda 95 Ciputat Jakarta (Indonesia); Djamal, Mitra; Satira, Suparno; Bahar, Herman [Theoretical High Energy Physics and Instrumentation Group Research, Faculty Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung (Indonesia); Ramli [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl.Prof. Hamka, Padang 25131 (Indonesia)

    2014-03-24

    Fabrication PVDF films have been made using Hot Roll Press. Preparation of samples carried out for nine different temperatures. This condition is carried out to see the effect of Roll Hot Press temperature on the size of the crystallite of PVDF films. To obtain the diffraction pattern of sample characterization is performed using X-Ray Diffraction. Furthermore, from the diffraction pattern is obtained, the calculation to determine the crystallite size of the sample by using the Scherrer equation. From the experimental results and the calculation of crystallite sizes obtained for the samples with temperature 130 °C up to 170 °C respectively increased from 7.2 nm up to 20.54 nm. These results show that increasing temperatures will also increase the size of the crystallite of the sample. This happens because with the increasing temperature causes the higher the degree of crystallization of PVDF film sample is formed, so that the crystallite size also increases. This condition indicates that the specific volume or size of the crystals depends on the magnitude of the temperature as it has been studied by Nakagawa.

  13. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures.

    Science.gov (United States)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-06-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  14. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    Science.gov (United States)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-02-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  15. Effect of operating conditions on energy efficiency for a small passive direct methanol fuel cell

    International Nuclear Information System (INIS)

    Chu Deryn; Jiang Rongzhong

    2006-01-01

    Energy conversion efficiency was studied in a direct methanol fuel cell (DMFC) with an air-breathing cathode using Nafion 117 as electrolyte membrane. The effect of operating conditions, such as methanol concentration, discharge voltage and temperature, on Faradic and energy conversion efficiencies was analyzed under constant voltage discharge with quantitative amount of fuel. Both of Faradic and energy conversion efficiencies decrease significantly with increasing methanol concentration and environmental temperature. The Faradic conversion efficiency can be as high as 94.8%, and the energy conversion efficiency can be as high as 23.9% if the environmental temperature is low enough (10 deg. C) under constant voltage discharge at 0.6 V with 3 M methanol for a DMFC bi-cell. Although higher temperature and higher methanol concentration can achieve higher discharge power, it will result in considerable losses of Faradic and energy conversion efficiencies for using Nafion electrolyte membrane. Development of alternative highly conductive membranes with significantly lower methanol crossover is necessary to avoid loss of Faradic conversion efficiency with temperature and with fuel concentration

  16. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, Fabio [Dipartimento di Chimica - Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant' Angelo, 80126 Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  17. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  18. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    International Nuclear Information System (INIS)

    Glaus, M.A.; Van Loon, L.R.

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60 o and 90 o C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 o C and 90 o C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline hydrolysis at the

  19. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Van Loon, L.R

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60{sup o} and 90{sup o}C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 {sup o}C and 90 {sup o}C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline

  20. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  1. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  2. Technique to extend ozonesonde temperature data to the mesopause

    International Nuclear Information System (INIS)

    Weichel, R.L.

    1983-10-01

    An analysis of global Multichannel Filter Radiometer radiances and ozone retrieval results revealed that the simulated radiances were not always representative of the measurements for the CO 2 channels sensing the temperatures in the middle and upper stratosphere. This problem was particularly pronounced, but not limited to, higher latitude winter conditions. Because of the special importance of the middle stratosphere and high latitudes for ozone analyses, a research effort was undertaken to develop an improved method (described below) of extending the temperatures from the ozonesondes used in the simulation procedure. An overview of the radiative transfer theory is provided to show the importance of the temperature profile in the calculation of simulated radiances

  3. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  4. Do sex, body size and reproductive condition influence the thermal preferences of a large lizard? A study in Tupinambis merianae.

    Science.gov (United States)

    Cecchetto, Nicolas Rodolfo; Naretto, Sergio

    2015-10-01

    Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  6. Effect of Temperature on Galling Behavior of SS 316, 316 L and 416 Under Self-Mated Condition

    Science.gov (United States)

    Harsha, A. P.; Limaye, P. K.; Tyagi, Rajnesh; Gupta, Ankit

    2016-11-01

    Galling behavior of three different stainless steels (SS 316, 316 L and 416) was evaluated at room temperature and 300 °C under a self-mated condition. An indigenously fabricated galling tester was used to evaluate the galling performance of mated materials as per ASTM G196-08 standard. The variation in frictional torque was recorded online during the test to assess the onset of galling. The galling50 (G50) stress value was used to compare the galling resistance of a combination of materials, and the results indicate a significant influence of temperature on the galling resistance of the materials tested. This has been attributed to the decrease in hardness and yield strength at elevated temperature which results in softening of the steel and limits its ability to resist severe deformation. Scanning electron micrographs of the galled surface reflected a severe plastic deformation in sliding direction, and a typical adhesive wear mechanism is prevalent during the galling process.

  7. Bonding to dentin as a function of air-stream temperatures for solvent evaporation

    Directory of Open Access Journals (Sweden)

    Andréia Aquino Marsiglio

    2012-06-01

    Full Text Available This study evaluated the influence of solvent evaporation conditions of acid-etching adhesives. The medium dentin of thirty extracted human third molars was exposed and bonded to different types of etch-and-rinse adhesives: 1 Scotchbond Multi-Purpose (SBMP ; water-based; 2 Adper Single Bond 2 (SB ; ethanol/water-based, and 3 Prime & Bond 2.1 (PB ; acetone-based. Solvents were evaporated at air-drying temperatures of 21ºC or 38ºC. Composite buildups were incrementally constructed. After storage in water for 24 h at 37ºC, the specimens were prepared for bond strength testing. Data were analyzed by two-way ANOVA and Tukey's test (5%. SBMP performed better when the solvents were evaporated at a higher temperature (p < 0.05. Higher temperatures did not affect the performance of SB or PB. Bond strength at room temperature was material-dependent, and air-drying temperatures affected bonding of the water-based, acid-etching adhesive.

  8. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  9. Evaluation of wrapper tube temperatures of fast neutron reactors using the TRANSCOEUR-2 code

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, B.; Brun P. [CEA/DRN/DEC/SECA/LHC CEN, St Paul Lez Durance (France); Chaigne, G. [FRAMATOME/NOVATOME, Lyon (France)

    1995-09-01

    This paper deals with the thermal loading estimation of wrapper tubes using the TRANSCOEUR-2 code. This estimation requires a knowledge of two temperature fields: the first involves the peripheral sub-channel temperatures of each sub-assembly calculated by the design code CADET, and the second, outside the sub-assemblies, is the inter-wrapper flow temperature field calculated by the thermal-hydraulic code TRIO-VF with boundary conditions taken from CADET. Theoretical models of the three codes are presented as well as the first TRANSCOEUR-2 wrapper tube temperature calculation performed on the European Fast Reactor (EFR) Core Design 6/91 (CD 6/91) under nominal power conditions. The results show a temperature variation of 115{degrees}C between the bottom of the lower blanket and the top of the upper blanket fuel sub-assemblies in the center of the core and 95{degrees}C at the core periphery. The wrapper tube temperatures are higher in the center than in the external core.

  10. A novel condition for stable nonlinear sampled-data models using higher-order discretized approximations with zero dynamics.

    Science.gov (United States)

    Zeng, Cheng; Liang, Shan; Xiang, Shuwen

    2017-05-01

    Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  12. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    Science.gov (United States)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-05-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  13. In Vitro Efficacy of Continuous Mild High Temperature on the Biofilm Formation of Aspergillus Niger.

    Science.gov (United States)

    Zeng, Rong; Tong, Jian Bo; Liu, Yu Zhen; Chen, Qing; Lin, Tong; Li, Min; Lü, Gui Xia

    2017-12-20

    Objective To investigate whether continuous mild high temperature (increased temperature without causing significant damage to host cells) can inhibit the biofilm formation of Aspergillus niger (A.niger) and its vitality.Methods A.niger biofilms were formed on a coverslip in 24-well tissue culture plate and were checked at the time points 4,8,10,16,24,48 and 72 hours.Confocal laser scanning microscopy (CLSM) was used to image and quantify A.niger biofilm formation under three different continuous mild high temperatures at 37℃,39℃,and 41℃.Furthermore,2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used to quantify the dynamic growth of A.niger biofilm under the above conditions.Results Compared with the culture condition 37℃,CLSM analysis at 39℃ or 41℃ showed that higher temperature induced later germination at 4 hours (t=8.603,P=0.047;t=14.550,P=0.008),poorer hyphal elongation at 8 hours(t=35.118,P=0.039;t=63.450,P=0.006),poorer polar growth,and reduced biofilm thickness from 10 to 24 hours.The XTT assay showed that higher temperature (39℃ or 41℃) lead to lower vitality at 10 hours,higher vitality at 16 hours,but finally lower vitality from 24 to 72 hours (t=24.262,P=0.038;t=7.556,P=0.031).Conclusion Continuous mild high temperature may have a negative regulatory effect on biofilm formation of A.niger and its vitality.

  14. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  15. Effects of conditioning with variations of temperatures on the susceptibility of the medfly, Ceratitis capitata (Wied.) to gamma radiation

    International Nuclear Information System (INIS)

    Hussin, E.K.; Abdel-Megeed, M.I.; Wakid, A.M.; Fadel, A.M.

    2010-01-01

    An attempt was carried out to investigate the effect of gamma irradiation on sterility and male mating competitiveness of the medfly C. capitata (Wied.) under hypo and hyperthermia in order to minimize the deleterious effects of radiation on insects. Low, moderate and high temperature (5, 25 and 32 degree C) were applied to pupal and adult stages of C. capitata at different ages before and/or after irradiation with the doses (70, 90 and 110 Gy) of gamma radiation. Sterility of pupae or adults exposed to low temperature (5 degree C) before or after irradiation was increased compared with their controls. The rate of increase was more clear in pupae exposed after irradiation and in adults exposed before irradiation. When pupae or adults were treated with high temperature (32 degree C) for 24 h before or after irradiation, adult sterility was increased with increasing the radiation dose. The competitiveness values were greatly higher when pupae or adults were exposed to low temperature (5 degree C) than those exposed to moderate or high temperature before irradiation.

  16. Response of garlic (Allium sativum L. bolting and bulbing to temperature and photoperiod treatments

    Directory of Open Access Journals (Sweden)

    Cuinan Wu

    2016-04-01

    Full Text Available This research was conducted to evaluate the effect of temperature and photoperiod treatments on the bolting and bulb formation of three local garlic cultivars (cvs in two consecutive years. Naturally vernalized plants of cvs G107, G025 and G064 were transplanted into growth chambers and subjected to various combinations of temperature [T15/10, 15°C/10°C; T20/15, 20°C/15°C and T25/18, 25°C/18°C (day/night] and photoperiod (L8, 8 h and L14,14 h treatments. Plant growth, endogenous phytohormone and methyl jasmonate (MeJA levels, along with the bolting and yield of garlic were evaluated. The experimental results from two consecutive years indicated that higher temperature (20°C or 25°C and longer photoperiod (14 h treatments significantly enhanced the garlic bolting, bulbing and cloving with a shorter growth period and a higher bulb weight. Moreover, the endogenous phytohormone and MeJA levels in the test plants were significantly increased by the higher temperature (25°C for the phytohormone level; 20°C for the MeJA level and longer photoperiod [14 h, except for abscisic acid (ABA, which had the highest level at 8 h] conditions and were decreased by the lowest test temperature (15°C and shorter photoperiod (8 h, except for ABA conditions. This response coincided with that of the bulbing index, bolting rate, growth period and bulb weight. In addition, plants treated under the conditions of 20°C/15°C–14 h and 25°C/18°C–14 h produced the highest phytohormone levels (except for ABA for cvs G025 and G064, respectively, and showed the best bolting and bulbing behavior. It is reasonable to assume that endogenous phytohormone (especially gibberellic acid and MeJA levels are highly related to garlic bolting and bulbing, which might lead to the different responses of the three studied cultivars to the combination of temperature and photoperiod treatments. Furthermore, cvs G107 and G025 bolt well and have better bulb

  17. Atmospheric turbulence temperature on the laser wavefront properties

    Science.gov (United States)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  18. Atmospheric turbulence temperature on the laser wavefront properties

    International Nuclear Information System (INIS)

    López, J C Contreras; Rojas, O J Tíjaro; Díaz, A Ballesteros; Moreno, Y Torres

    2017-01-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting. (paper)

  19. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel. PMID:25923722

  20. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions.

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel.