WorldWideScience

Sample records for higher reaction temperatures

  1. Integrating reaction and analysis: investigation of higher-order reactions by cryogenic trapping

    Directory of Open Access Journals (Sweden)

    Skrollan Stockinger

    2013-09-01

    Full Text Available A new approach for the investigation of a higher-order reaction by on-column reaction gas chromatography is presented. The reaction and the analytical separation are combined in a single experiment to investigate the Diels–Alder reaction of benzenediazonium-2-carboxylate as a benzyne precursor with various anthracene derivatives, i.e. anthracene, 9-bromoanthracene, 9-anthracenecarboxaldehyde and 9-anthracenemethanol. To overcome limitations of short reaction contact times at elevated temperatures a novel experimental setup was developed involving a cooling trap to achieve focusing and mixing of the reactants at a defined spot in a fused-silica capillary. This trap functions as a reactor within the separation column in the oven of a gas chromatograph. The reactants are sequentially injected to avoid undefined mixing in the injection port. An experimental protocol was developed with optimized injection intervals and cooling times to achieve sufficient conversions at short reaction times. Reaction products were rapidly identified by mass spectrometric detection. This new approach represents a practical procedure to investigate higher-order reactions at an analytical level and it simultaneously provides valuable information for the optimization of the reaction conditions.

  2. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-07-15

    Aqueous solutions of benzene have been irradiated with Co {gamma}-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed.

  3. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    International Nuclear Information System (INIS)

    Christensen, H.

    1964-07-01

    Aqueous solutions of benzene have been irradiated with Co γ-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed

  4. Hydrothermal Liquefaction of Dried Distillers Grains with solubles: A reaction temperature study

    DEFF Research Database (Denmark)

    Mørup, Anders; Christensen, Per Runge; Aarup, David Friis

    2012-01-01

    provides rapid heating of biomass feeds and the option of performing multiple sequential repetitions. This bypasses long, uncontrollable temperature gradients and unintended changes in the reaction chemistry. The product, a crude bio-oil, was characterized in terms of yield, elemental composition......The effect of the reaction temperature on hydrothermal liquefaction of dried distillers grains with solubles (DDGS) was investigated using a novel stop-flow reactor system at varying temperatures (300–400 °C), fixed pressure (250 bar), and fixed reaction time (15 min). The stop-flow reactor......, and chemical composition. Higher reaction temperatures resulted in improved bio-oil yields, less char formation, and higher heating values of the bio-oil. A supercritical reaction temperature of 400 °C was found to produce bio-oil in the highest yields and of the best quality....

  5. Matching of experimental and statistical-model thermonuclear reaction rates at high temperatures

    International Nuclear Information System (INIS)

    Newton, J. R.; Longland, R.; Iliadis, C.

    2008-01-01

    We address the problem of extrapolating experimental thermonuclear reaction rates toward high stellar temperatures (T>1 GK) by using statistical model (Hauser-Feshbach) results. Reliable reaction rates at such temperatures are required for studies of advanced stellar burning stages, supernovae, and x-ray bursts. Generally accepted methods are based on the concept of a Gamow peak. We follow recent ideas that emphasized the fundamental shortcomings of the Gamow peak concept for narrow resonances at high stellar temperatures. Our new method defines the effective thermonuclear energy range (ETER) by using the 8th, 50th, and 92nd percentiles of the cumulative distribution of fractional resonant reaction rate contributions. This definition is unambiguous and has a straightforward probability interpretation. The ETER is used to define a temperature at which Hauser-Feshbach rates can be matched to experimental rates. This matching temperature is usually much higher compared to previous estimates that employed the Gamow peak concept. We suggest that an increased matching temperature provides more reliable extrapolated reaction rates since Hauser-Feshbach results are more trustwhorthy the higher the temperature. Our ideas are applied to 21 (p,γ), (p,α), and (α,γ) reactions on A=20-40 target nuclei. For many of the cases studied here, our extrapolated reaction rates at high temperatures differ significantly from those obtained using the Gamow peak concept

  6. Temperature effects on lithium-nitrogen reaction rates

    International Nuclear Information System (INIS)

    Ijams, W.J.; Kazimi, M.S.

    1985-08-01

    A series of experiments have been run with the aim of measuring the reaction rate of lithium and nitrogen over a wide spectrum of lithium pool temperatures. In these experiments, pure nitrogen was blown at a controlled flow rate over a preheated lithium pool. The pool had a surface area of approximately 4 cm 2 and a total volume of approximately 6 cm 3 . The system pressure varied from 0 to 4 psig. The reaction rate was very small - approximately 0.002 to 0.003 g Li min cm 2 for lithium temperatures below 500 0 C. Above 500 0 C the reaction rate began to increase sharply, and reached a maximum of approximately 0.80 g Li min cm 2 above 700 0 C. It dropped off beyond 1000 0 C and seemed to approach zero at 1150 0 C. The maximum reaction rate observed in these forced convection experiments was higher by 60% than those previously observed in experiments where the nitrogen flowed to the reaction site by means of natural convection. During a reaction, a hard nitride layer built up on the surface of the lithium pool - its effect on the reaction rate was observed. The effect of the nitrogen flow rate on the reaction rate was also observed

  7. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    International Nuclear Information System (INIS)

    Burger, L.L.

    1993-03-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in underground Hanford waste tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. Several may be in concentrations and quantities great enough to be considered a hazard in that they could undergo rapid and energetic chemical reactions with nitrate and nitrite salts that are present. The tanks also contain many inorganic compounds inert to oxidation. In this report the computed energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature, and the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature that may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated

  8. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N 2 O in place of N 2 are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly

  9. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.

  10. Gravitropic reaction of primary seminal roots of Zea mays L. influenced by temperature and soil water potential.

    Science.gov (United States)

    Nakamoto, T

    1995-03-01

    The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of -5, -38, and -67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10 cm from the grain. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the initial negative gravitropic reaction.

  11. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  12. Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS Reaction

    Directory of Open Access Journals (Sweden)

    Paula Sánchez

    2011-12-01

    Full Text Available Au-based catalysts supported on carbon materials with different structures such as graphite (G and fishbone type carbon nanofibers (CNF-F were prepared using two different methods (impregnation and gold-sol to be tested in the water gas shift (WGS reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM, temperature-programmed oxidation (TPO, X-ray diffraction (XRD, Raman spectroscopy, elemental analyses (CNH, N2 adsorption-desorption analysis, temperature-programmed reduction (TPR and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

  13. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  14. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  15. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  16. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  17. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  18. NSSEFF Designing New Higher Temperature Superconductors

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-VA-TR-2017-0083 NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS Meigan Aronson THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF...2015 4. TITLE AND SUBTITLE NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-10-1-0191 5c...materials, identifying the most promising candidates. 15. SUBJECT TERMS TEMPERATURE, SUPERCONDUCTOR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  19. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  20. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  1. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    Science.gov (United States)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  2. A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Harada, Nanase; Herbst, Eric; Wakelam, Valentine

    2010-01-01

    We present a new interstellar chemical gas-phase reaction network for time-dependent kinetics that can be used for modeling high-temperature sources up to ∼800 K. This network contains an extended set of reactions based on the Ohio State University (OSU) gas-phase chemical network. The additional reactions include processes with significant activation energies, reverse reactions, proton exchange reactions, charge exchange reactions, and collisional dissociation. Rate coefficients already in the OSU network are modified for H 2 formation on grains, ion-neutral dipole reactions, and some radiative association reactions. The abundance of H 2 O is enhanced at high temperature by hydrogenation of atomic O. Much of the elemental oxygen is in the form of water at T ≥ 300 K, leading to effective carbon-rich conditions, which can efficiently produce carbon-chain species such as C 2 H 2 . At higher temperatures, HCN and NH 3 are also produced much more efficiently. We have applied the extended network to a simplified model of the accretion disk of an active galactic nucleus.

  3. The reaction of OH with H at elevated temperatures

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2002-01-01

    The temperature dependence of the rate constant for the reaction between OH radicals and H atoms has been determined in Ar-saturated solutions at pH 2. The reaction was studied in the temperature range 5-233degreesC. The rate constants at 20degreesC and 200degreesC are 9.3 x 10(9) and 3.3 x 10...

  4. Subsequent development of the normal temperature fusion reaction. Joon kakuyugo sonogo no shinten

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1991-04-24

    This paper reports on a NATTOH model made public in May 1989 by T. Matsumoto who took notice of abnormality of the normal temperature fusion reaction. The NATTO model is based on a chain reaction by hydrogen with a hydrogen-catalyzed fusion reaction which is the normal temperature fusion reaction as an elementary process. If a high temperature fusion reaction is a small-size simulation of the fusion reaction rising on the surface of the sparkling star like the sun, the normal temperature fusion reaction can be a small-size simulation of the phenomena in the last years of the star in the far distance of the space. This gives reality to the normal temperature fusion reaction. The reaction mechanism of the normal temperature fusion reaction is almost being clarified by a NATTOH model. There remain problems on a possibility of generation of unknown radioactive rays and identification of radioactive wastes, but it seems that a prospect of commercialization can be talked about now. As for the utilization as energy, sea water may be used as it is. 10 ref., 5 figs.

  5. A review of reaction rates in high temperature air

    Science.gov (United States)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  6. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; Kay, Bruce D.; Kim, Yu Kwon

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.

  7. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang 033001 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yaling [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xiaoting [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Feng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-11-30

    Highlights: • Nitrogen-doped carbon dots (NCDs) from ammonia solution and citric acid were synthesized at different temperatures. • Quantum yield (QY) of NCDs depends largely on the amount of fluorescent polymer chains (FPC), more FPC gives higher QY. • The law of QY of NCDs first increase and then decrease with the reaction temperature increased is found and explained. • Nitrogen doping plays significant role in getting increased UV–vis absorption and QY. - Abstract: To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV–vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  8. Properties of ZnO Nano rods Arrays Growth via Low Temperature Hydrothermal Reaction

    International Nuclear Information System (INIS)

    Nur Syafinaz Ridhuan; Zainovia Lockman; Azlan Abdul Aziz; Azlan Abdul Aziz; Khairunisak Abdul Razak; Khairunisak Abdul Razak

    2011-01-01

    This work describes properties of 1- D ZnO nano rods (NRs) arrays growth using low temperature hydrothermal method on seeded substrate. The properties of ZnO seed were studied by varying annealed temperature from 250-450 degree Celsius. The optimum oxidation temperature to produce seeded ZnO template was 400 degree Celsius. The formations of ZnO NRs were further studied by varying hydrothermal reaction growth time from 1 to 24 hours. I-V characteristic of ZnO NRs photodetector in dark, ambient light and UV light were also studied. The change in the photoconductivity under UV illumination was found to be 1 order higher in magnitude compared to dark current and ambient light. With an incident wavelength of 370 nm and applied bias of 3V, the responsivity of photodetector was 5.0 mA/ W, which was higher compared to other reported works. The increase of photosensitivity indicated that the produced ZnO NRs were suitable for UV photodetector applications.(author)

  9. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    Science.gov (United States)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  10. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  11. Extrapolation of rate constants of reactions producing H2 and O2 in radiolysis of water at high temperatures

    International Nuclear Information System (INIS)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G.

    2014-01-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10 10 mol -1 s -1 at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  12. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is `Tunneling Reaction and Quantum Medium`. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  13. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is 'Tunneling Reaction and Quantum Medium'. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  14. Effect of the Reduction Temperature of PdAg Nanoparticles during the Polyol Process in the Ethanol Electrooxidation Reaction

    Directory of Open Access Journals (Sweden)

    R. Carrera-Cerritos

    2018-01-01

    Full Text Available This work reports the effect of reduction temperature during the synthesis of PdAg catalysts through the polyol process and their evaluation in the ethanol electrooxidation reaction (EOR. The characterization was performed using Transmission Electron Microscopy (TEM and X-Ray Diffraction (XRD. The electrochemical evaluation for the ethanol electrooxidation reaction was implemented in alkaline medium using chronoamperometry (CA and cyclic voltammetry (CV. An important effect of the reduction temperature on electroactivity and catalytic stability was observed: both the maximum current density and the catalytic stability were higher in the catalyst synthesized at the highest temperature (135°C. This performance was associated with the extent of the interaction between Pd and Ag which was measured in terms of the structural expansion of Pd.

  15. Catalytic depolymerization of lignin and woody biomass in supercritical Ethanol: influence of reaction temperature and feedstock : Influence of reaction temperature and feedstock

    NARCIS (Netherlands)

    Huang, X.; Atay, C.; Zhu, J.; Palstra, S.W.L.; Korányi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2017-01-01

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while

  16. Nasal reaction to changes in whole body temperature.

    Science.gov (United States)

    Lundqvist, G R; Pedersen, O F; Hilberg, O; Nielsen, B

    1993-11-01

    The changes in nasal patency following a 1.5 degrees C decrease or increase in whole body temperature were measured in 8 healthy young males, during and after 30 min of immersion in a 15 degrees C cold or a 40 degrees C warm bath, breathing air at the same temperature, in a cross-over experimental design. The nasal reactions were traced by consecutive measurements of changes in nasal cavity volumes by acoustic rhinometry. Swelling of the mucosa during cooling and an almost maximal shrinkage of the mucosa during heating were indicated by respectively a decrease and an increase in nasal cavity volumes. The reactions were determined predominantly by the whole body thermal balance, but were also influenced by the temperature of the inhaled air, either enhanced, reduced or temporarily reversed. The greatest change occurred in the nasal cavity, left or right, which differed most from the final state at the beginning of exposure due to the actual state of nasal cycle.

  17. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    Science.gov (United States)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  18. Optimization of Si–C reaction temperature and Ge thickness in C-mediated Ge dot formation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuhki, E-mail: yu-ki@ecei.tohoku.ac.jp; Itoh, Yuhki; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    To form Ge dots on a Si substrate, the effect of thermal reaction temperature of sub-monolayer C with Si (100) was investigated and the deposited Ge thickness was optimized. The samples were prepared by solid-source molecular beam epitaxy with an electron-beam gun for C sublimation and a Knudsen cell for Ge evaporation. C of 0.25 ML was deposited on Si (100) at a substrate temperature of 200 °C, followed by a high-temperature treatment at the reaction temperature (T{sub R}) of 650–1000 °C to create Si–C bonds. Ge equivalent to 2 to 5 nm thick was subsequently deposited at 550 °C. Small and dense dots were obtained for T{sub R} = 750 °C but the dot density decreased and the dot diameter varied widely in the case of lower and higher T{sub R}. A dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge deposition equivalent to 3 to 5 nm thick and a standard deviation of dot diameter was the lowest of 10 nm for 5 nm thick Ge. These results mean that C-mediated Ge dot formation was strongly influenced not only by the c(4 × 4) reconstruction condition through the Si–C reaction but also the relationship between the Ge deposition thickness and the exposed Si (100)-(2 × 1) surface area. - Highlights: • The effect of Si–C reaction temperature on Ge dot formation was investigated. • Small and dense dots were obtained for T{sub R} = 750 °C. • The dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge = 3 to 5 nm. • The standard deviation of dot diameter was the lowest of 10 nm at Ge = 5 nm.

  19. Reactions of metal-substituted myoglobins with excess electrons studied by pulse radiolysis and low-temperature gamma-radiolysis

    International Nuclear Information System (INIS)

    Miki, Hideho; Nakajima, Atushi; Ogasawara, Masaaki; Tamura, Mamoru

    1990-01-01

    Reactions of metal-substituted myoglobins with excess electrons in electron-pulse-irradiated aqueous solutions at room temperature and γ-irradiated aqueous matrices at 77 K were studied for the purpose of probing the functional role of heme iron. The rate constants for the reactions of various myoglobins with hydrated electrons were not much different from each other, and were close to those of diffusion-controlled reactions. In contrast, the reduction rates of myoglobins with dithionite depended markedly on the kind of central metals in the myoglobins. The difference was interpreted in terms of Marcus' theory for electron-transfer reactions. Effects of the 6-coordinate structure of the cobalt(III) species on the reaction with dithionite was also discussed. The steady-state optical-absorption measurements of γ-irradiated matrices containing cobaltimyoglobin at 77 K demonstrated the reduction of cobalt(III) species by excess electrons produced by the action of ionizing radiation. It was shown, by electron-spin resonance spectroscopy, that a 6-coordinated cobalt(II) species produced at 77 K transformed to a 5-coordinate one at higher temperatures, as reported previously. However, structural relaxation was not observed by optical spectroscopy either in the solutions or in the low-temperature matrices. It was concluded, therefore, that the intermediate 6-coordinate cobalt(II) species gave an optical absorption spectrum which was indistinguishable from that of the relaxed 5-coordinate cobalt(II) species. (author)

  20. The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2001-01-01

    The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1) and the activa......The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1...

  1. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  2. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  3. Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 3 - Effect of Reaction Time and Temperature

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions. To minimize retrogressive reactions, the liquefaction of coal was carried out in a flowing solvent reactor in which a fixed bed of coal is continuously permeated by hot solvent. Solvent flowing through the coal bed carries the liquefaction products out of the reactor. Unlike experiments carried out under similar conditions in a batch reactor no increase in solid residue is observed during long time high temperature runs in the flowing solvent reactor. There is a greater appreciation of the importance of retrograde, or polymerization, reactions. If the free radicals formed when coal breaks down are not quickly capped with hydrogen, they react with each other to form large molecules that are much harder to break down than the original coal. Reaction time impacts both the co-liquefaction cost and the product yield. So as to study this idea, the experiments of Elbistan Lignite (EL) with manure co-liquefaction carried out by changing the reaction time from 30 to 120 minutes. As a result, the greatest oil products yields obtained at 60 minutes. Therefore, by thinking about the oil products yield values acquired, the optimal reaction time was obtained to be 60 minutes for Elbistan lignite (EL) with manure liquefied with the temperature of 350°C and 400°C. Above 425°C did not examine because solvent (tetraline) loses its function after 425 °C. The obtained optimum temperature found 400°C due to higher total conversion of liquefaction products and also oil+gas yields.

  4. Extrapolation of rate constants of reactions producing H{sub 2} and O{sub 2} in radiolysis of water at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G. [Mount Allison Univ., Sackville, NB (Canada)

    2014-07-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10{sup 10} mol{sup -1} s{sup -1} at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  5. Influence of transesterification reaction temperature on biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@agr.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Brazilian government policy has authorized the introduction of biodiesel into the national energy matrix, law no.11.097 of January 13th, 2005. It is necessary, like any new product, to invest in research which is able to cover its entire production chain (planting of oilseeds, vegetable oils extraction and chemical reactions), providing data and relevant information in order to optimize the process and solve critical issues. The objective of this work was to study the effects of temperature on crude sunflower transesterification reaction with ethanol. A central composite experimental design with five variation levels (25 deg, 32 deg, 47.5 deg, 64 deg and 70 deg C) was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that the production suffered the influence of temperature (linear and quadratic effects) and reaction time (linear and quadratic). The generated models did not show significant regression. The model generated was not well suited to the experimental data and the value of the coefficient of determination (R{sup 2}=0.52) was low. Consequently it was not possible to build the response surface. (author)

  6. Impact parameter selected nuclear temperatures of hot nuclei from excited state populations for 40Ar+197Au reactions at E/A=25MeV

    International Nuclear Information System (INIS)

    Li Zuyu; He Zhiyong; Duan Limin; Jin Genming; Wu Heyu; Zhang Baoguo; Wen Wanxin; Qi Yujin; Luo Qingzheng; Dai Guangxi; Wang Hongwei

    1997-01-01

    Nuclear temperatures extracted from excited state populations were measured as a function of linear momentum transfer (LMT) for 40 Ar+ 197 Au reactions at 25MeV/nucleon. The emission temperatures increased slightly with increasing linear momentum transfer or decreasing impact parameter. Taking into account the corrections of detection efficiency and sequential feeding from higher-lying states, a temperature of T∼4MeV was deduced for central collisions. For peripheral collisions the extracted temperatures increased with the energy of the particles. (orig.)

  7. Phenomenon of quantum low temperature limit of chemical reaction rates

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.

    1975-01-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerisation, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerisation reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau 0 ) required to add one new link to the polymer chain of formaldehyde during its polymerisation by radiation and during postpolymerisation and to establish that below 80K the increase of tau 0 slows down and that at T approximately equal to 10-4K the time tau 0 reaches a plateau (tau 0 approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life)

  8. Phenomenon of quantum low temperature limit of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V I [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1975-12-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius Law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerization, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerization reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau/sub 0/) required to add one new link to the polymer chain of formaldehyde during its polymerization by radiation and during postpolymerization and to establish that below 80K the increase of tau/sub 0/ slows down and that at T approximately equal to 10-4K the time tau/sub 0/ reaches a plateau (tau/sub 0/ approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life).

  9. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms.

    Directory of Open Access Journals (Sweden)

    Kristian Meier

    Full Text Available Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction

  10. The rate of the reaction between CN and C2H2 at interstellar temperatures

    Science.gov (United States)

    Woon, D. E.; Herbst, E.

    1997-01-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  11. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature

    Directory of Open Access Journals (Sweden)

    K. B. Kale

    2012-12-01

    Full Text Available The CO2 adsorption by calcium zirconate was explored at pre- and post- combustion temperature condition. The several samples of the calcium zirconate were prepared by different methods such as sol-gel, solid-solid fusion, template and micro-emulsion. The samples of the calcium zirconate were characterized by measurement of surface area, alkalinity/acidity, and recording the XRD patterns and SEM images. The CO2 adsorptions by samples of the calcium zirconate were studied in the temperature range 100 to 850 oC and the CO2 adsorptions were observed in the ranges of 6.88 to 40.6 wt % at 600 0C and 8 to 16.82 wt% at in between the temperatures 200 to 300 oC. The effect of Ca/Zr mol ratio in the samples of the calcium zirconate on the CO2 adsorption and alkalinity were discussed. The adsorbed moisture by the samples of the calcium zirconate was found to be useful for the CO2 adsorption. The promoted the samples of the calcium zirconate by K+, Na+, Rb+, Cs+, Ag+ and La3+ showed the increased CO2 adsorption. The exposure time of CO2 on the samples of the calcium zirconate showed the increased CO2 adsorption. The samples of the calcium zirconate were found to be regenerable and reusable several times for the adsorption of CO2 for at the post- and pre-combustion temperature condition. Copyright © 2012 by BCREC Undip. All rights reservedReceived: 23rd June 2012, Revised: 28th August 2012, Accepted: 30th August 2012[How to Cite: K. B. Kale, R. Y. Raskar, V. H. Rane and A. G.  Gaikwad (2012. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 124-136. doi:10.9767/bcrec.7.2.3686.124-136] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3686.124-136 ] | View in 

  12. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  13. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  14. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    International Nuclear Information System (INIS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-01-01

    Oxygen exchange reactions performed on PuO 2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO 2 . Previous CeO 2 surrogate studies exhibit similar behavior, confirming that CeO 2 is a good qualitative surrogate for PuO 2 , in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO 2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO 2 Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  15. The bimolecular reaction of radiolysis product of hydrated electron at temperature up to 473K; Reaksi bimolekular antar produk radiolisis elektron terhidrasi pada temperatur hingga 473K

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, G R [Reactor Safety Technology Research Centre, National Atomic Energy Agency, Serpong (Indonesia)

    1996-06-01

    Rate constant from the bimolecular reaction of hydrated electron was determined by using radiolysis method. The methanol solution with concentration of 5 x 10{sup -2} dm{sup 3} mol{sup -1} was used as a scavenger of H and OH radicals. The pH was kept by adding the buffer solution of 1.0 x 10{sup -3} dm{sup 3} mol{sup -1} Na{sub 2}HPO{sub 4} + 1.0 x 10{sup 4} dm{sup 3} mol{sup -1} NaH{sub 2}PO{sub 4}. The irradiation was done by using the electron beam which come from linear accelerator 28 MeV with pulse width 10ns and dose of 80 Gy per pulse. The absorbance of hydrated electron was observed at wavelength of 824 nm. By using the kinetic equation the rate reaction constants were obtained. The bimolecular reaction of hydrated electron increase with temperature up to 423K. The activation energy was 19.3 kJ mol{sup -1} and the 2 k (298K) was 1.1 x 10{sup 10} dm{sup 3} mol{sup -1}. Then this bimolecular reaction decrease at temperature higher than 423K and the rate reaction constant at 473K almost similar with that at 298K. (author)

  16. CO2 as an Oxidant for High Temperature Reactions

    Directory of Open Access Journals (Sweden)

    Sibudjing eKawi

    2015-03-01

    Full Text Available This paper presents a review on the developments in catalyst technology for the reactions utilizing CO2 for high temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene and finally CO2 reforming of hydrocarbon feedstock (i.e. methane and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However some reactions, such as CO2 reforming of ethanol and glycerol which have not reached industrial scale are also reviewed owing to their great potential in terms of sustainability which are essential as energy for the future. This review further illustrates the building-up of knowledge which shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts which can be adapted for the multiple CO2-related reactions.

  17. Modeling thermal spike driven reactions at low temperature and application to zirconium carbide radiation damage

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.

    2017-11-01

    The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.

  18. Effect of Temperature Profile on Reaction Violence in Heated, Self-Ignited, PBX-9501

    Science.gov (United States)

    Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry

    2001-06-01

    Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We have conducted instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which have shown that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities and reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.

  19. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  20. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  1. Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures

    DEFF Research Database (Denmark)

    Hickel, B.; Sehested, K.

    1992-01-01

    The reaction of hydroxyl radical with ammonia in aqueous solutions has been studied by pulse radiolysis in the temperature range 20-200-degrees-C. The rate constant of the reaction was determined by monitoring the decay of the OH radical absorption at 260 nm for different concentrations of ammonia....... At room temperature the rate constant is (9.7 +/- 1) x 10(7) dm3 mol-1 s-1. In the whole range of temperatures the Tate constant follows Arrhenius law with an activation energy of (5.7 +/- 1) kJ mol-1. The protective effect of dissolved hydrogen on the radiolytic decomposition of ammon a is discussed....

  2. Temperature dependence of third order ion molecule reactions. The reaction H+3 + 2H2 = H+5 + H2

    International Nuclear Information System (INIS)

    Hiraoka, K.; Kebarle, P.

    1975-01-01

    The rate constants k 1 for Reaction (1): H + 3 +2H 2 = H + 5 +H 2 were measured in the temperature range 100--300 degreeK. The temperature dependence of k 1 has the form k 1 proportionalT - /subn/, where n=2.3. Pierce and Porter have reported a much stronger negative temperature dependence with n=4.6. The difference arises from a determination of k 1 at 300 degreeK obtained by Arifov and used by Porter. The present k 1 (300 degreeK) =9times10 -30 (cm 6 molecules -2 center-dotsec -1 ). This is more than an order of magnitude larger than the Arifov value. The temperature dependence of third body dependent association reactions like (1) is examined on the basis of the energy transfer theory and the recently proposed trimolecular complex transition state theory by Meot-Ner, Solomon, Field, and Gershinowitz. The temperature dependence of the rate constant for the reverse reaction (-1) is obtained from k 1 and the previously determined temperature dependence of the equilibria (1). k/sub -//sub 1/ gives a good straight line Arrhenius plot leading to k/sub -//sub 1/ =8.7times10 -6 exp(-8.4/RT) cm 3 molecules -1 center-dotsec -1 . The activation energy is in kcal/mole. The preexponential factor is much larger than the rate constant for Langevin collisions. This is typical for pyrolysis of ions involving second order activation

  3. Rate coefficients for the reactions of ions with polar molecules at interstellar temperatures

    International Nuclear Information System (INIS)

    Adams, N.G.; Smith, D.; Clary, D.C.

    1985-01-01

    A theory has been developed recently which predicts that the rate coefficients, k, for the reactions of ions with polar molecules at low temperatures will be much greater than the canonical value of 10 -9 cm 3 s -1 . The new theory indicates that k is greatest for low-lying rotational sates and increases rapidly with decreasing temperature. We refer to recent laboratory measurements which validate the theory, present calculated values of k for the reactions of H + 3 ions with several polar molecules, and discuss their significance to interstellar chemistry. For the reactions of ions with molecules having large dipole moments, we recommend that k values as large as 10 -7 cm 3 s -1 should be used in ion-chemical models of low-temperature interstellar clouds

  4. The rate of the reaction between C2H and C2H2 at interstellar temperatures

    Science.gov (United States)

    Herbst, E.; Woon, D. E.

    1997-01-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  5. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    Science.gov (United States)

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  6. Effect of Gd{sup 3+} doping and reaction temperature on structural and optical properties of CdS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajanan, E-mail: pandeygajanan@rediffmail.com [Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, (U.P.) (India); Dixit, Supriya; Shrivastava, A.K. [School of Studies in Physics, Jiwaji University, Gwalior, 474011, (M.P.) (India)

    2015-10-15

    Graphical abstract: - Highlights: • Cd{sub 1−x}Gd{sub x}S nanoparticles have been prepared in aqueous medium in presence of CTAB. • From XRD, EDX and ICP-OES study, successful doping of Gd{sup 3+} in CdS has been proved. • Gd{sup 3+} doping reduced size of NCs, while temperature increased size and altered shape. • Gd{sup 3+} doping and reaction temperature influenced the optical properties of NCs. - Abstract: CdS and Gd{sup 3+} ions doped CdS nanoparticles have been prepared at two reaction temperatures 90 and 120 °C in aqueous medium in presence of cationic surfactant cetyltrimethylammonium bromide. X-ray diffraction study revealed predominant formation of zinc blend CdS and Gd:CdS at 90 °C, while at 120 °C, phase pure wurtzite CdS and Gd:CdS were formed. From EDX spectra and ICP-OES analysis, successful doping of Gd{sup 3+} ions in CdS host has been proved. Fourier transform infrared spectroscopy results show the interaction of CTAB through headgroup at the nanoparticles surface. In the transmission electron microscopy images, it has been observed that the reaction temperature and Gd{sup 3+} doping played critical role on size and shape of nanocrystals. In UV–visible absorption as well as photoluminescence emission spectra, size and shape-dependent quantum confinement effect has been observed. On Gd{sup 3+} doping, surface states related emission peak shifted to higher wavelength, while intensity of peaks increased on increasing temperature.

  7. Carbon-13 Labeling Used to Probe Cure and Degradation Reactions of High- Temperature Polymers

    Science.gov (United States)

    Meador, Mary Ann B.; Johnston, J. Christopher

    1998-01-01

    High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.

  8. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  9. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  10. Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification.

    Science.gov (United States)

    Pinzi, S; Gandía, L M; Arzamendi, G; Ruiz, J J; Dorado, M P

    2011-01-01

    Presence of unreacted glycerides in biodiesel may reduce drastically its quality. This is why conversion of raw material in biodiesel through transesterification needs to readjust reaction parameter values to complete. In the present work, monitoring of glycerides transformation in biodiesel during the transesterification of vegetable oils was carried out. To check the influence of the chemical composition on glycerides conversion, selected vegetable oils covered a wide range of fatty acid composition. Reactions were carried out under alkali-transesterification in the presence of methanol. In addition, a multiple regression model was proposed. Results showed that kinetics depends on chemical and physical properties of the oils. It was found that the optimal reaction temperature depends on both length and unsaturation degree of vegetable oils fatty acid chains. Vegetable oils with higher degree of unsaturation exhibit faster monoglycerides conversion to biodiesel. It can be concluded that fatty acid composition influences reaction parameters and glycerides conversion, hence biodiesel yield and economic viability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  12. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  13. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 98 August. Tunneling reaction and its theory

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-10-01

    Present report is the proceedings of the 4th Meeting on Tunneling Reaction and Low Temperature Chemistry held in August 3 and 4, 1998. The main subject of the meeting is `Tunneling Reaction and Its Theory`. In the present meeting the theoretical aspects of tunneling phenomena in the chemical reaction were discussed intensively as the main topics. Ten reports were presented on the quantum diffusion of muon and proton in the metal and H{sub 2}{sup -} anion in the solid para-hydrogen, the theory of tunnel effect in the nuclear reaction and the tunneling reaction in the organic compounds. One special lecture was presented by Prof. J. Kondo on `Proton Tunneling in Solids`. The 11 of the presented papers are indexed individually. (J.P.N.)

  14. CO{sub 2} as an Oxidant for High-Temperature Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kawi, Sibudjing, E-mail: chekawis@nus.edu.sg; Kathiraser, Yasotha [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore (Singapore)

    2015-03-18

    This paper presents a review on the developments in catalyst technology for the reactions utilizing CO{sub 2} for high-temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene, and finally CO{sub 2} reforming of hydrocarbon feedstock (i.e., methane) and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However, some reactions, such as CO{sub 2} reforming of ethanol and glycerol, which have not reached industrial scale, are also reviewed owing to their great potential in terms of sustainability, which is essential as energy for the future. This review further illustrates the building-up of knowledge that shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts, which can be adapted for the multiple CO{sub 2}-related reactions.

  15. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...

  16. Kinetics of the high temperature oxygen exchange reaction on {sup 238}PuO{sub 2} powder

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Christofer E., E-mail: chris.whiting@udri.udayton.edu [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States); Du, Miting; Felker, L. Kevin; Wham, Robert M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barklay, Chadwick D.; Kramer, Daniel P. [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States)

    2015-12-15

    Oxygen exchange reactions performed on PuO{sub 2} suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO{sub 2}. Previous CeO{sub 2} surrogate studies exhibit similar behavior, confirming that CeO{sub 2} is a good qualitative surrogate for PuO{sub 2}, in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO{sub 2} oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO{sub 2} Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  17. Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock.

    Science.gov (United States)

    Huang, Xiaoming; Atay, Ceylanpinar; Zhu, Jiadong; Palstra, Sanne W L; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2017-11-06

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while char-forming reactions become significant at high reaction temperature (>380 °C). At preferred intermediate temperatures (300-340 °C), char-forming reactions are effectively suppressed by alkylation and Guerbet and esterification reactions. This shifts the reaction toward depolymerization, explaining high monomeric aromatics yield. Carbon-14 dating analysis of the lignin residue revealed that a substantial amount of the carbon in the lignin residue originates from reactions of lignin with ethanol. Recycling tests show that the activity of the regenerated catalyst was strongly decreased due to a loss of basic sites due to hydrolysis of the MgO function and a loss of surface area due to spinel oxide formation of the Cu and Al components. The utility of this one-step approach for upgrading woody biomass was also demonstrated. An important observation is that conversion of the native lignin contained in the lignocellulosic matrix is much easier than the conversion of technical lignin.

  18. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst

    Science.gov (United States)

    Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin

    2017-12-01

    This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.

  19. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O.; Savee, John D.; Osborn, David L.; Zádor, Judit; Taatjes, Craig A.; Sheps, Leonid

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed

  20. Effect of Temperature Profile on Reaction Violence in Heated and Self-Ignited PBX 9501

    Science.gov (United States)

    Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry

    2002-07-01

    Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We are conducting instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which are beginning to show that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities which can be considered a measure of reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.

  1. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  2. Electrodeless, multi-megawatt reactor for room-temperature, lithium-6/deuterium nuclear reactions

    International Nuclear Information System (INIS)

    Drexler, J.

    1993-01-01

    This paper describes a reactor design to facilitate a room-temperature nuclear fusion/fission reaction to generate heat without generating unwanted neutrons, gamma rays, tritium, or other radioactive products. The room-temperature fusion/fission reaction involves the sequential triggering of billions of single-molecule, 6 LiD 'fusion energy pellets' distributed in lattices of a palladium ion accumulator that also acts as a catalyst to produce the molecules of 6 LiD from a solution comprising D 2 O, 6 LiOD with D 2 gas bubbling through it. The D 2 gas is the source of the negative deuterium ions in the 6 LiD molecules. The next step is to trigger a first nuclear fusion/fission reaction of some of the 6 LiD molecules, according to the well-known nuclear reaction: 6 Li + D → 2 4 He + 22.4 MeV. The highly energetic alpha particles ( 4 He nuclei) generated by this nuclear reaction within the palladium will cause shock and vibrations in the palladium lattices, leading to compression of other 6 LiD molecules and thereby triggering a second series of similar fusion/fission reactions, leading to a third series, and so on. The absorption of the kinetic energy in the palladium will, in turn, generate a continuous flow of heat into the heavy water carrier, which would be removed with a heat exchanger. (author)

  3. Reaction of LiD with moisture by temperature programmed reaction (TPR)

    International Nuclear Information System (INIS)

    Dinh, L N; Balooch, M; Cecala, C M; Leckey, J H

    2000-01-01

    The temperature programmed reaction technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process has an activation energy barrier of 30 to 33.1 kcal/mol. The LiOH structure is stable at 320 K for 100 years. However, LiOH structures formed on the surface of LiD during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 30 kcal/mol. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of dangling bonds, cracks, and other long range disorders in the LiOH structures formed at low levels of moisture exposure. These defective LiOH structures may decompose significantly over the next 100 years of storage even at room temperature. At high moisture exposure levels, LiOH.H 2 O formation is observed. The release of H 2 O molecules from LiOH.H 2 O structure has small activation energy barriers in the range of 13.8 kcal/mol to 16.0 kcal/mol. The loosely bonded H 2 O molecules in the LiOH.H 2 O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth of LiOH and LiOH.H 2 O significantly

  4. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  5. Theoretical estimation of adiabatic temperature rise from the heat flow data obtained from a reaction calorimeter

    International Nuclear Information System (INIS)

    Das, Parichay K.

    2012-01-01

    Highlights: ► This method for estimating ΔT ad (t) against time in a semi-batch reactor is distinctively pioneer and novel. ► It has established uniquely a direct correspondence between the evolution of ΔT ad (t) in RC and C A (t) in a semi-batch reactor. ► Through a unique reaction scheme, the independent effects of heat of mixing and reaction on ΔT ad (t) has been demonstrated quantitatively. ► This work will help to build a thermally safe corridor of a thermally hazard reaction. ► This manuscript, the author believes will open a new vista for further research in Adiabatic Calorimetry. - Abstract: A novel method for estimating the transient profile of adiabatic rise in temperature has been developed from the heat flow data for exothermic chemical reactions that are conducted in reaction calorimeter (RC). It has also been mathematically demonstrated by the present design that there exists a direct qualitative equivalence between the temporal evolution of the adiabatic temperature rise and the concentration of the limiting reactant for an exothermic chemical reaction, carried out in semi batch mode. The proposed procedure shows that the adiabatic temperature rise will always be less than that of the reaction executed at batch mode thereby affording a thermally safe corridor. Moreover, a unique reaction scheme has been designed to establish the independent heat effect of dissolution and reaction quantitatively. It is hoped that the testimony of the transient adiabatic temperature rise that can be prepared by the proposed method, may provide ample scope for further research.

  6. Low-temperature (75 °C) solid-state reaction enhanced by less-crystallized nanoporous PbI2 films for efficient CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2017-01-01

    Highlights: • Efficient perovskite solar cells were prepared with solid-state reaction at 75 °C. • Ln-PbI 2 is superior to c-PbI 2 when applied in low-temperature solid-state reaction. • A higher champion PCE was obtained at 75 °C (13.8%) than that of 140 °C (11.8%). • Non-radiative defects increase significantly when annealed at high temperature. - Abstract: Organohalide perovskite films are usually prepared with the solid-state reaction at a high temperature ≥100 °C, which causes the increase of non-radiative defects and decomposition of perovskite films. Here, we demonstrate it’s feasible to prepare high-quality perovskite films with the solid-state reaction method even at a temperature of 75 °C, when enhanced by less-crystallized nanoporous PbI 2 (ln-PbI 2 ) films. The replacement of compact PbI 2 (c-PbI 2 ) by ln-PbI 2 , results in a significant improvement of crystallinity of perovskite films, besides the elimination of remnant PbI 2 . As a result, ln-PbI 2 based perovskite solar cells display much higher power conversion efficiency (PCE) and better stability. Moreover, annealing duration was found to be critical for high PCE and was optimized as 60 min. Finally, with the optimal process, the champion device displayed a PCE of 13.8% and the average PCE reached 10.1% with a satisfactory deviation. Furthermore, we found annealing at high temperature (140 °C) led to a lower PCE compared with that annealed at 75 °C, because non-radiative defects increased significantly during high-temperature annealing. This work may open up a promising avenue for preparing high-quality perovskite films with the low-temperature solid-state reaction method, which is desirable for real application.

  7. The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics

    Science.gov (United States)

    Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel

    2010-01-01

    When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…

  8. OH+ Formation in the Low-temperature O+(4S) + H2 Reaction

    Science.gov (United States)

    Kovalenko, Artem; Dung Tran, Thuy; Rednyk, Serhiy; Roučka, Štěpán; Dohnal, Petr; Plašil, Radek; Gerlich, Dieter; Glosík, Juraj

    2018-04-01

    Formation of OH+ in collisions of ground-state O+(4S) ions with normal H2 has been studied using a variable temperature 22-pole RF ion trap. From 300 to 30 K the measured reaction rate coefficient is temperature-independent, with a small decrease toward 15 K. The recent wave packet calculation predicts a slightly steeper temperature dependence. The rate coefficients at 300 and 15 K are almost the same, (1.4 ± 0.3) × 10‑9 cm3 s‑1 and (1.3 ± 0.3) × 10‑9 cm3 s‑1, respectively. The influence of traces of the two metastable ions, O+(2D) and O+(2P), has been examined by monitoring the H+ products of their reactions with H2, as well as by chemically probing them with N2 reactant gas.

  9. Ab initio molecular dynamics study of thermite reaction at Al and CuO nano-interfaces at different temperatures

    Science.gov (United States)

    Tang, Cui-Ming; Chen, Xiao-Xu; Cheng, Xin-Lu; Zhang, Chao-Yang; Lu, Zhi-Peng

    2018-05-01

    The thermite reaction at Al/CuO nano-interfaces is investigated with ab initio molecular dynamics calculations in canonical ensemble at 500 K, 800 K, 1200 K and 1500 K, respectively. The reaction process and reaction products are analyzed in terms of chemical bonds, average charge, time constants and total potential energy. The activity of the reactants enhances with increasing temperature, which induces a faster thermite reaction. The alloy reaction obviously expands outward at Cu-rich interface of Al/CuO system, and the reaction between Al and O atoms obviously expands outward at O-rich interface as temperature increases. Different reaction products are found at the outermost layer of different interfaces in the Al/CuO system. In generally, the average charge of the outer layer aluminum atoms (i.e., Al1, Al2, Al5 and Al6) increases with temperature. The potential energy of Al/CuO system decreases significantly, which indicates that drastic exothermic reaction occurs at the Al/CuO system. This research enhances fundamental understanding in temperature effect on the thermite reaction at atomic level, which can potentially open new possibilities for its industrial application.

  10. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela; Shinagawa, Tatsuya; Qureshi, Muhammad; Dhawale, Dattatray Sadashiv; Takanabe, Kazuhiro

    2016-01-01

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER

  11. Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    2000-11-28

    During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

  12. Fundamental study on temperature estimation of steam generator tubes at sodium-water reaction

    International Nuclear Information System (INIS)

    Furukawa, Tomohiro; Yoshida, Eiichi

    2008-11-01

    In case of the tube failure in the steam generator of the sodium cooled fast breeder reactor, its adjoined tubes are rapidly heated up by the chemical reaction between sodium and water/steam. And it is known that the tubes have the damage called 'wastage' by the disclosure steam jet. This research is a fundamental study based on the metallography about temperature estimation of the damaged tubes at the sodium-water reaction for the establishment of mechanism analysis technique of the behavior. In the examination, the material which gave the rapid thermal history which imitated sodium-water reaction was produced. And it was investigated whether the thermal history (i.e. maximum temperature and the holding time) of the samples could be presumed from the metallurgical examination of the samples. The major results are as follows: (1) The microstructure of the sample which was given the rapid thermal heating has reserved the influence of the maximum temperature and the time, and the structure can explain by referring to the equilibrium diagram and the continuous cooling transformation diagram. (2) Results of the electrolytic extraction of the samples, the ratio of the remained volume to the electrolyzed volume degreased with the increase of the maximum temperature and the time. Furthermore, it was observed the correlation between the remained volume of each element (Cr, Mo, Fe, V and Nb) and the thermal history. (3) It was obtained that the thermal history of the tubes damaged by sodium-water reaction might be able to be estimated from the metallurgical examinations. (author)

  13. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  14. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2012-01-01

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO 2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO 2 flow rate confirms the production of CO and CO 2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to

  15. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  16. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Oh, Sang-Hee [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Kim, Jae-Hun [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Byun, Eui-Hong [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Ree Kim, Mee [Department of Food and Nutrition, Chungnam National University, Gung-Dong 220, Yuseong, Daejeon 305-764 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Science and Technology, Government Complex-Gwacheon, Kyunggi 427-715 (Korea, Republic of); Byun, Myung-Woo [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of)]. E-mail: mwbyun@kaeri.re.kr

    2007-05-15

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.

  17. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo

    2007-01-01

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring

  18. Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available An exact solution to the flow of a viscous incompressible unsteady flow past an infinite vertical oscillating plate with variable temperature and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. Both the plate temperature and the concentration level near the plate are raised linearly with respect to time. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time are studied. The solutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter. .

  19. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study

    Science.gov (United States)

    Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R. J.

    The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 °C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO 2 formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO 2. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials (∼90% current efficiency for CO 2 formation at 100 °C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO 2 formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO 2 (68 ± 2 kJ mol -1 at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 ± 2 kJ mol -1 at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed.

  20. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-05-01

    The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO{sub 2} formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO{sub 2}. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials ({proportional_to}90% current efficiency for CO{sub 2} formation at 100 C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO{sub 2} formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO{sub 2} (68 {+-} 2 kJ mol{sup -1} at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 {+-} 2 kJ mol{sup -1} at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed. (author)

  1. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    International Nuclear Information System (INIS)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  2. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.

    Science.gov (United States)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was

  3. Pycnonuclear 12C+12C reaction at zero temperature

    International Nuclear Information System (INIS)

    Gasques, L R; Beard, M; Chamon, L C; Wiescher, M

    2005-01-01

    We present pycnonuclear reaction calculations for a one-component ionic crystal at zero temperature considering different theoretical approaches. The rates depend directly on the determination of the astrophysical S-factor at low energies, which has been obtained through the barrier penetration formalism. A totally parameter-free model for the real part of the nuclear interaction has been employed in the calculation of 12 C+ 12 C fusion cross sections

  4. Temperature variation of higher-order elastic constants of MgO

    Indian Academy of Sciences (India)

    series of strains using Taylor's series expansion. The coefficients of quadratic, cu- ... as thermal expansion, specific heat at higher temperature, temperature variation of ultrasonic velocity and attenuation, .... such studies have an impression that linear variation of elastic constant is true. The experimental study shows that ...

  5. Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures

    International Nuclear Information System (INIS)

    Mesmer, R.E.; Marshall, W.L.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.

    1990-01-01

    Electrochemical and electrical conductance cells have been widely used at ORNL over the years to quantitatively determine equilibrium constants and their salt effects to 300 degree C (EMF) and 800 degree C (conductance) at the saturation pressure of water (EMF) and to 4000 bars (conductance). The most precise results to 300 degree C for a large number of weak acids and bases show very similar thermodynamic behavior, which will be discussed. Results for the ionization constants of water, NH 3 (aq), HCl(aq), and NaCl(aq), which extend well into the supercritical region, have been fitted in terms of a model with dependence on density and temperature. The entropy change is found to be the driving force for ion-association reactions and this tendency increases (as it must) with increasing temperature at a given pressure. Also, the variation of all thermodynamic properties is greatly reduced at high fixed densities. Considerable variation occurs at low densities. From this analysis, the dependence of the reaction thermodynamics on the P-V-T properties of the solvent is shown, and the implication of large changes in hydration for solutes in the vicinity of the critical temperature will be discussed. Finally, the change in the molar compressibility coefficient for all reactions in water is shown to be the same and dependent only on the compressibility of the solvent

  6. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  7. Coalification reactions under pressure. Inkohl-ungsreaktionen unter Druck

    Energy Technology Data Exchange (ETDEWEB)

    Huck, G.; Patteisky, K.

    1964-12-15

    Studies of the influence of pressure on the coalification reactions in hard coal (temperature ranges from 240 to 350/sup 0/C and pressures ranging from 0.1 to 8000 ata) have shown that coalification reactions in younger coals are impeded by higher mechanical pressures. The relationship of the mutual effect of pressure and temperature on the coalification reactions may be illustrated by graphs, if the parameters are determined, which cause an increase in the reflection index of the vitrinite of 0.89 to 1.0 and liberate 8 liters of gas per kilogram of finely ground coal, at 0.5 mm Hg. The results indicate, contrary to theories often expressed in the literature, that the intensifying influence of pressure on coalification may be excluded if the pressure charge operates through shear- and friction-forces, without temperature changes. The results also show that the use of spores as coalification thermometers is limited. It is shown that at higher pressures spores may be exposed to temperatures above 200/sup 0/C without showing thermal modifications.

  8. Defect reactions on the phosphorus sublattice in low-temperature electron-irradiated InP

    International Nuclear Information System (INIS)

    Sibille, A.; Suski, J.

    1985-01-01

    This Rapid Communication describes several thermally or electronically stimulated defect reactions involving the dominant deep centers in low-temperature (25--300 K) electron-irradiated InP. Some of these reactions result in an increased concentration of the centers, thereby revealing the existence of a secondary production mechanism of the related defects. Low-energy irradiations allows one to select the type of the ejected atom (P) and gives direct evidence that only a phosphorus species, interstitial or vacancy, is involved in the creation-reaction-annealing events

  9. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    Science.gov (United States)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  10. The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste

    International Nuclear Information System (INIS)

    Cash, R.J.

    1995-01-01

    To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition

  11. High-temperature epoxidation of soybean oil in flow : speeding up elemental reactions wanted and unwanted

    NARCIS (Netherlands)

    Cortese, B.; Croon, de M.H.J.M.; Hessel, V.

    2012-01-01

    The soybean oil epoxidation reaction is investigated theoretically through kinetic modeling of temperature effects enabled through flow processing under superheated conditions. Different from previous studies on such processing, here a complex reaction network superimposed by multiphase transport is

  12. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  13. Higher-order human telomeric G-quadruplex DNA metalloenzymes enhance enantioselectivity in the Diels-Alder reaction.

    Science.gov (United States)

    Li, Yinghao; Jia, Guoqing; Wang, Changhao; Cheng, Mingpan; Li, Can

    2015-03-02

    Short human telomeric (HT) DNA sequences form single G-quadruplex (G4 ) units and exhibit structure-based stereocontrol for a series of reactions. However, for more biologically relevant higher-order HT G4 -DNAs (beyond a single G4 unit), the catalytic performances are unknown. Here, we found that higher-order HT G4 -DNA copper metalloenzymes (two or three G4 units) afford remarkably higher enantioselectivity (>90 % ee) and a five- to sixfold rate increase, compared to a single G4 unit, for the Diels-Alder reaction. Electron paramagnetic resonance (EPR) and enzymatic kinetic studies revealed that the distinct catalytic function between single and higher-order G4 -DNA copper metalloenzymes can be attributed to different Cu(II) coordination environments and substrate specificity. Our finding suggests that, like protein enzymes and ribozymes, higher-order structural organization is crucial for G4 -DNA-based catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of reaction temperature on the PM10 features during coal combustion

    International Nuclear Information System (INIS)

    Sui, J.C.; Du, Y.G.; Liu, Q.C.

    2008-01-01

    Coal-fired power plants produce fine fly ash consisting of particulate matter (PM). Particulate matter less than 10 micrometers in aerodynamic diameter (PM 1 0) is of significant concern because of its adverse environmental and health impacts. This paper studied the effect of reaction temperature on particulate matter (PM 1 0) emission and its chemical composition. The emission characteristics and elemental partition of PM 1 0 from coal combustion were investigated in a drop tube furnace. The paper discussed the experimental apparatus and conditions as well as the coal properties and sample analysis. Liupanshui (LPS) bituminous coal from China was used for the study. The fuel composition of LPS coal and the composition of low temperature ash of Chinese LPS coal were described. The paper also presented the results of the study with reference to particle size distribution and emission characteristic of PM 1 0; elemental partition within PM 1 0; and effect of the reaction temperature on elemental partition within PM 1 0. The PM mass size distribution was found to be bimodal. 14 refs., 2 tabs., 6 figs

  15. The [sup 26]Al(p,[gamma])[sup 27]Si reaction at low stellar temperature

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Physics and Astronomy Duke Univ., Durham, NC (United States). Triangle Universities Nuclear Lab.; Brown, B A [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Sherr, R [Princeton Univ., NJ (United States). Dept. of Physics

    1993-05-03

    Shell-model calculations have been used to predict the locations of states in [sup 27]Si which are analogous to well-studied states in [sup 27]Al. From this, we have determined the resonance properties of the known states in [sup 27]Si near the [sup 26]Al+p threshold. The resulting thermonuclear reaction rate is uncertain by about a factor of ten at low temperatures, but it appears that the [sup 26]Al(p, [gamma])[sup 27]Si reaction is too slow to destroy a significant amount of [sup 26]Al at these temperatures. (orig.)

  16. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    Science.gov (United States)

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  17. Rate constant and mechanism of the reaction Cl + CFCl₂H → CFCl₂ + HCl over the temperature range 298-670 K in N₂ or N₂/O₂ diluent.

    Science.gov (United States)

    Kaiser, E W; Jawad, Khadija M

    2014-05-08

    The rate constant of the reaction Cl + CFCl2H (k1) has been measured relative to the established rate constant for the reaction Cl + CH4 (k2) at 760 Torr. The measurements were carried out in Pyrex reactors using a mixture of CFCl2H, CH4, and Cl2 in either N2 or N2/O2 diluent. Reactants and products were quantified by GC/FID analysis. Cl atoms were generated by irradiation of the mixture with 360 nm light to dissociate the Cl2 for temperatures up to ~550 K. At higher temperature, the Cl2 dissociated thermally, and no irradiation was used. Over the temperature range 298-670 K, k1 is consistently a factor of ~5 smaller than that of k2 with a nearly identical temperature dependence. The optimum non-Arrhenius rate constant is represented by the expression k1 = 1.14 × 10(-22) T(3.49) e(-241/T) cm(3) molecule(-1) s(-1) with an estimated uncertainty of ±15% including uncertainty in the reference reaction. CFCl3 formed from the reaction CFCl2 + Cl2 (k3) is the sole product in N2 diluent. In ~20% O2 at 298 K, the CFCl3 product is suppressed. The rate constant of reaction 3 was measured relative to that of reaction 4 [CFCl2 + O2 (k4)] giving the result k3/k4 = 0.0031 ± 0.0005 at 298 K. An earlier experiment by others observed C(O)FCl to be the major product of reaction channel 4 [formed via the sequence, CFCl2(O2) → CFCl2O → C(O)FCl + Cl]. Our current experiments verified that there is a Cl atom chain reaction in the presence of O2 as required by this mechanism.

  18. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  19. Effect of Ti and C particle sizes on reaction behavior of thermal explosion reaction of Cu−Ti−C system under Ar and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yunhong; Zhao, Qian; Li, Xiujuan; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2016-09-15

    The thermal explosion (TE) reaction behavior of Cu−Ti−C systems with different Ti and C particle sizes was investigated under air and Ar atmospheres. It was found that increasing the Ti and C particle sizes leads to higher ignition temperatures under both atmospheres and that the maximum combustion temperature decreases with increasing C particle size. The TE reaction is much easier to activate (i.e., it has a lower ignition temperature) in air because of the heat released from Ti oxidation and nitridation and Cu oxidation reactions on the Cu−Ti−C compact surface. TiC ceramic particles are successfully prepared in the bulk Cu−Ti−C compacts under both air and Ar atmospheres through a dissolution-diffusion-precipitation mechanism. Differential thermal and thermodynamic analyses show that the TE reaction ignition process in air is mainly controlled by the Ti particle size. - Highlights: • Variation of Ti and C particle sizes affects thermal reaction (TE) behaviors. • Ignition temperature under air is much lower than that under Ar atmosphere. • Heat of oxidation and nitridation reactions reduces ignition temperature under air.

  20. Comparative study on ion-isotopic exchange reaction kinetics by application of tracer technique

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    2007-01-01

    The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reactions using industrial grade ion exchange resins Amberlite IRA-400. The experiments were performed to understand the effect of temperature and concentration of ionic solution on kinetics of exchange reactions. Both the exchange reactions were greatly influenced by rise in temperature, which result in higher percentage of ions exchanged. For bromide ion-isotopic exchange reactions, the calculated values of specific reaction rate/min -1 , and amount of ions exchanged/mmol were obtained higher than that for iodide ion-isotopic exchange reactions under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (orig.)

  1. Low-temperature (75 °C) solid-state reaction enhanced by less-crystallized nanoporous PbI{sub 2} films for efficient CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Suzhou Institute of SICCAS (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 238 North Changchun Road, Taicang 215499, Jiangsu Province (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2017-05-31

    Highlights: • Efficient perovskite solar cells were prepared with solid-state reaction at 75 °C. • Ln-PbI{sub 2} is superior to c-PbI{sub 2} when applied in low-temperature solid-state reaction. • A higher champion PCE was obtained at 75 °C (13.8%) than that of 140 °C (11.8%). • Non-radiative defects increase significantly when annealed at high temperature. - Abstract: Organohalide perovskite films are usually prepared with the solid-state reaction at a high temperature ≥100 °C, which causes the increase of non-radiative defects and decomposition of perovskite films. Here, we demonstrate it’s feasible to prepare high-quality perovskite films with the solid-state reaction method even at a temperature of 75 °C, when enhanced by less-crystallized nanoporous PbI{sub 2} (ln-PbI{sub 2}) films. The replacement of compact PbI{sub 2} (c-PbI{sub 2}) by ln-PbI{sub 2}, results in a significant improvement of crystallinity of perovskite films, besides the elimination of remnant PbI{sub 2}. As a result, ln-PbI{sub 2} based perovskite solar cells display much higher power conversion efficiency (PCE) and better stability. Moreover, annealing duration was found to be critical for high PCE and was optimized as 60 min. Finally, with the optimal process, the champion device displayed a PCE of 13.8% and the average PCE reached 10.1% with a satisfactory deviation. Furthermore, we found annealing at high temperature (140 °C) led to a lower PCE compared with that annealed at 75 °C, because non-radiative defects increased significantly during high-temperature annealing. This work may open up a promising avenue for preparing high-quality perovskite films with the low-temperature solid-state reaction method, which is desirable for real application.

  2. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    Science.gov (United States)

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  3. Low-Cost Temperature Logger for a Polymerase Chain Reaction Thermal Cycler

    Directory of Open Access Journals (Sweden)

    Chan-Young Park

    2016-10-01

    Full Text Available Polymerase chain reaction (PCR is a method of amplifying DNA which is normally carried out with a thermal cycler. To obtain more accurate and reliable PCR results, the temperature change within the chamber of the thermal cycler needs to be verified and calibrated regularly. Commercially available temperature loggers commonly used for temperature verification tests usually require a graphical user interface (GUI attached to the logger for convenience and straightforward understanding of the device. In this study, a host-local architecture for the temperature logger that significantly reduces the development time and cost is proposed. Employing standard computing devices as the host gives better development environment and user-friendly GUI. This paper presents the hardware and software design of the host-local temperature logger, and demonstrates the use of the local temperature logger connected to a personal computer with a Windows operating system. The probe design, thermistor resistance measurement, temperature filtering, and temperature calibration is described in detail. The thermistor self-heating problem was investigated in particular to determine the reference resistor that was serially connected to the thermistor. The temperature accuracy and temporal precision of the proposed system was 0.1 K.

  4. High temperature magnetic properties of Co(FeY){sub 2}O{sub 4} synthesized by combustion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Thiago Eduardo Pereira, E-mail: thiago.ifgo@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias (IFGO), Goiania (Brazil); Franco Junior, Adolfo [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: Cobalt ferrite is widely studied due to its interesting magnetic behavior at room temperature. However, many technical applications require temperatures that are above that. Thus, it is necessary to understand how some magnetic properties, such as saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc), may behave at high temperatures [1]. Among several methods to synthesize cobalt ferrites, combustion reaction method is intensively used because it is inexpensive, fast and has good control on the stoichiometry. This method is based on the chemistry of propellants and explosives [2]. Therefore, we have prepared a series of nanoparticles of CoFe{sub (2-x)}Y{sub x}O{sub 4}, with x ranging from 0.00 to 0.04, by combustion reaction method. The crystal structure and morphology were characterized by X-ray diffraction (XRD) using Rietveld refinement and transmission electron microscopy (TEM), respectively. Nanocrystalline particles structures in the typical phase of spinel were observed on diffractograms. Micrographies showed high crystalline powders for the particles and particles size within nanoscale range. The magnetic properties were measured by vibrating sample magnetometry (VSM) in broad range of temperature (300-850K). Saturation magnetization (Ms) decreases with Y doping increase, while Hc increases, being about 1.8 higher than the undoped sample. Furthermore, Curie temperature increases with Y doping increase. These magnetic properties were discussed in terms of the particle interactions induced by the thermal fluctuations, cation distribution, and ions exchange between yttrium and cobalt atoms in A-B sites in the cubic structure [3]. References: [1] A. Franco, Jr. and F. C. e Silva, Applied Physics Letters 96, 172505, (2010). 525 [2] S.R. Jain, et al, Combustion and flame 40, 71-79, (1981). [3] A. Franco Jr. et al. Journal of Alloys and Compounds 680, 198-205, (2016). (author)

  5. Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures

    Science.gov (United States)

    Tolbert, Margaret A.; Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO2) with H2O and HCl on surfacers that simulate polar stratospheric clouds are studied at temperatures relevant to the Antarctic stratosphere. The gaseous products of the resulting reactions, HOCl, Cl2O, and Cl2, could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the additional formation of condensed-phase HNO3 could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.

  6. Formation of barium strontium titanate powder by solid state reaction using different calcination temperatures

    International Nuclear Information System (INIS)

    Teoh Wah Tzu; Ahmad Fauzi Mohd Noor; Zainal Arifin Ahmad

    2002-01-01

    The unique electrical properties of large permittivity in Barium Strontium Titanate have been widely used to make capacitors; it can be produced by solid state reaction. In this study, the mixture of Barium Carbonate, Strontium Carbonate and Titanium Dioxide was calcined at 500 degree C, 1000 degree C, 1100 degree C , 1150 degree C, 1200 degree C, 1250 degree C and 1300 degree C. The results of the phases change in each stage were investigated via X ay Diffraction. The results show that the formation of Barium Strontium Titanate started at 1100 degree C with the presence of other phases. The mixture is fully reacted to form Barium Strontium Titanate at 1150 degree C. Only Barium Strontium Titanate was formed as the calcination temperature was set higher. (Author)

  7. Aggregation of human sperm at higher temperature is due to hyperactivation.

    Science.gov (United States)

    Keppler, E L; Chan, P J; Patton, W C; King, A

    1999-01-01

    Chemotaxis of sperm cells to chemicals and hormones, such as progesterone, helps us to understand the concept of sperm transport. Here, the hypothesis was that heat increased sperm hyperactive motility, which caused the sperm to aggregate at the higher temperature. The objectives were (1) to determine the concentration of sperm at both halves of an artificial female reproductive tract made from a hermetically sealed cryopreservation straw filled with culture medium and placed with each end at different temperatures, and (2) to analyze the motility or kinematic parameters and hyperactivation of sperm found at the different temperatures. Cryopreserved-thawed human donor sperm (N = 6) were pooled and processed through 2-layer colloid solution. Analyses of the motile sperm were carried out and the washed sperm were homogeneously mixed and pipetted into several 0.5-mL French cryopreservation straws and heat-sealed. The control substance, consisting of acid-treated sperm, was also placed in several straws. The plastic straws of sperm were placed half at 23 degrees C and half was at either 37 or 40 degrees C. After 4 h, sperm at different sections of the straws were analyzed using the Hamilton Thorn motility analyzer (HTM-C). After 4 h of incubation, the concentration of sperm was doubled at the 40 degrees C heated half of the straw when compared with the other half of the straw at 23 degrees C. There were no differences in sperm concentration in the straw kept half at 37 degrees C and half at 23 degrees C. There were significantly higher percent motility, mean average path velocity, straight line velocity, lateral head displacement, and percent hyperactivation in sperm at the 40 degrees C temperature. The aggregation of sperm at the higher temperature of 40 degrees C may be due to enhanced motility, increased sperm velocities, and a 10-fold increase in hyperactivation at that temperature. The 37 degrees C temperature was not sufficient to attract sperm. Sperm cells

  8. WO{sub 3} nanorods prepared by low-temperature seeded growth hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@eng.usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@eng.usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2014-03-05

    Highlights: • WO{sub 3} nanorods with 5–10 nm diameter were grown directly on seeded tungsten foil. • WO{sub 3} nanorods were successfully grown at low temperature of 80 °C. • WO{sub 3} nanorods were grown on the entire surface of the seed layer after 24 h. • Annealed nanorods showed better electrochromic properties than as-made nanorods. -- Abstract: This work describes the first tungsten oxide (WO{sub 3}) nanorods hydrothermally grown on W foil. WO{sub 3} nanorods were successfully grown at low hydrothermal temperature of 80 °C by seeded growth hydrothermal reaction. The seed layer was prepared by thermally oxidized the W foil at 400 °C for 0.5 h. This work discusses the effect of hydrothermal reaction and annealing period on the morphological, structural, and electrochromic properties of WO{sub 3} nanorods. Various hydrothermal reaction periods (8–24 h) were studied. Monoclinic WO{sub 3} nanorods with 5–10 nm diameter were obtained after hydrothermal reaction for 24 h. These 24 h WO{sub 3} nanorods were also annealed at 400 °C with varying dwelling periods (0.5–4 h). Electrochromic properties of WO{sub 3} nanorods in an acidic electrolyte were analyzed using cyclic voltammetry and UV–vis spectrophotometry. WO{sub 3} nanorods annealed at 400 °C for 1 h showed the highest charge capacity and the largest optical contrast among the 24 h WO{sub 3} films. The sample also showed good cycling stability without significant degradation. Based on the results, the reaction mechanism of WO{sub 3} nanorod formation on W foil was proposed.

  9. Comparison of techniques for the determination of conversion during suspension polymerization reactions

    Directory of Open Access Journals (Sweden)

    J. C. Santos

    2008-06-01

    Full Text Available The determination of conversion during suspension polymerization reactions is not an easy task due to the heterogeneity of the reaction medium and the tendency of particles to agglomerate rapidly when stirring is stopped. Usually, bulk polymerization in ampoules is employed to study the kinetics of suspension polymerization reactions. In this work, a comparison of different techniques for the determination of conversion during suspension polymerization reactions is presented. Results showed a good agreement between the conversion obtained by gravimetry during styrene suspension polymerization and on-line conversion monitoring data using fiber-optic based Raman Spectroscopy. Nevertheless, the polymerization rate of styrene bulk polymerization carried out in ampoules was higher than the real reaction rate of styrene suspension polymerization due to slightly higher reaction temperatures. Simulation results using the experimental temperature data in a mathematical model confirmed these results.

  10. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    Science.gov (United States)

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  11. Effect of Reaction Temperature on Structure, Appearance and Bonding Type of Functionalized Graphene Oxide Modified P-Phenylene Diamine

    Directory of Open Access Journals (Sweden)

    Hong-Juan Sun

    2018-04-01

    Full Text Available In this study, graphene oxides with different functionalization degrees were prepared by a facile one-step hydrothermal reflux method at various reaction temperatures using graphene oxide (GO as starting material and p-phenylenediamine (PPD as the modifier. The effects of reaction temperature on structure, appearance and bonding type of the obtained materials were investigated by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM. The results showed that when the reaction temperature was 10–70 °C, the GO reacted with PPD through non-covalent ionic bonds (–COO−H3+N–R and hydrogen bonds (C–OH…H2N–X. When the reaction temperature reached 90 °C, the GO was functionalized with PPD through covalent bonds of C–N. The crystal structure of products became more ordered and regular, and the interlayer spacing (d value and surface roughness increased as the temperature increased. Furthermore, the results suggested that PPD was grafted on the surface of GO through covalent bonding by first attacking the carboxyl groups and then the epoxy groups of GO.

  12. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  13. Waste-rock interactions and bedrock reactions

    International Nuclear Information System (INIS)

    White, W.B.

    1977-01-01

    The experimental program is designed to discover possible reactions between shale repository rocks and radioactive wastes. The canister can be regarded in three ways: (a) As a source of heat that modifies the mineralogy and therefore the physical properties of the surrounding rock (dry heat). (b) As a source of heat that activates reactions between minerals in the surrounding rock and slowly percolating ground water. (c) As a source of reaction materials of different composition from the surrounding rock and which therefore may react to form completely new ''minerals'' in a contact aureole around the canister. The matrix of interactions contains two composition axes. The waste compositions are defined by the various prototype waste forms usually investigated: glass, calcine, ''spent fuel'' and the ceramic supercalcine. The temperatures and pressures at which these reactions take place must be investigated. Thus each node on the ''wiring diagram'' is itself a matrix of experiments in which the T and to some extent P are varied. Experiments at higher pressure and temperature allow reactions to take place on a laboratory time scale and thus identify what could happen. These reactions are then followed downward in temperature to determine both phase boundaries and kinetic cut-offs below which equilibrium cannot be achieved on a laboratory time scale

  14. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    Science.gov (United States)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  15. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  16. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  17. Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu Ming

    2016-01-01

    Full Text Available This investigation was attempted to introduce carbon nanotubes (CNTs onto surface of copper powders in order to improve heat transfer performance of copper matrix for engineering application of electrical packaging materials. The Ni/MgO catalyst was formed on the copper powders surface by means of codeposition method. CVD technique was executed to fabricate uniform CNTs on copper powders and effect of reaction temperature on the morphology of CNTs was surveyed. The results showed that CNTs products on the copper powder surface were distributed uniformly even if reaction temperature was different. The diameter dimension of CNTs was within the scope of 30~60 nm. Growth behaviors of CNTs by CVD method were considered to be “tip-growth” mechanism. Raman spectra of CNTs proved that intensity ratio of D-band to G-band (ID/IG increased as deposition reaction temperature increased, which implied that order degree of graphitic structure in synthesized CNTs improved.

  18. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    Science.gov (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  19. Analyses for experiment on sodium-water reaction temperature by the CHAMPAGNE code

    International Nuclear Information System (INIS)

    Yoshioka, Naoki; Kishida, Masako; Yamada, Yumi

    2000-03-01

    In this work, analyses on sodium-water reaction temperature in the new SWAT-1(SWAT-1R) test were completed by the CHAMPAGNE code in order to understand void and velocity distribution in sodium system, which was difficult to be measured in experiments. The application method of the RELAP5/Mod2 code was investigated to LMFBR steam generator (SG) blow down analysis, too. The following results were obtained. (1) Analyses on sodium-water reaction temperature in the SWAT-1R test. 1) Analyses were carried out for the SWAT-1R test under the condition water leak rate 600 g/s by treating the pressure loss coefficient, the interface friction coefficient and the coefficient related to reaction rate as parameters. The effect and mechanism of each parameter on the shape of reaction zone were well understood by these analyses. 2) The void and velocity distribution in sodium system were estimated by use of the most suitable parameters. These analytical results are expected to be useful for planning of the SWAT-1R test and evaluation of test result. (2) Investigation of the RELAP5/Mod2 code. 1) The items to be improved in the RELAP5/Mod2 code were clarified to apply this code to the FBR SG blow down analysis. 2) One of these items was an addition of the shell-side (sodium-side) model. A sodium-side model was designed and added to the RELAP5/Mod2 code. Test calculations were carried out by this improved code and the basic function of this code was confirmed. (author)

  20. High-temperature reaction of ''anisotropic'' pyrolitic graphite with oxygen

    International Nuclear Information System (INIS)

    Lavrenko, V.A.; Pomytkin, A.P.; Neshpor, V.S.; Vinokur, F.L.

    1980-01-01

    Investigated is the kinetics of initial interaction stages of highly dense crystalloorientated pyrographite with oxygen. Oxidation was carried out in pure oxygen within 0.1-740 mm Hg pressure range and 500-1100 deg C temperature range. It is stated, that at the temperatures below 700 deg C pyrographite oxidation is subjected to a linear law. Above 700-800 deg C the linear law is preserved only at the initial oxidation stage, then the process is described by a parabolic law. Extension of the linear site is decreased in time with the reduction of oxygen pressure. The reaction has apparent fractional order. Activation energy of pyrogrpahite oxidation by the linear low constitutes approximately 58 kcal/mol within 600-800 deg C range and 14 kcal/mol within 800-1100 deg C range. The apparent activation energy constitutes approximately 13 kcal/mol in the region of correspondence to the parabolic law

  1. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  2. Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Pinet, O. [CEA VALRHO, SCDV/LEBV, F-30207 Bagnols Sur Ceze, (France); Magnien, V.; Neuville, D. R.; Roux, J.; Richet, P. [IPGP, CNRS, Physique des Mineraux et Magmas, F-75252 Paris 05, (France); Cormier, L. [Univ Paris 06, IMPMC, F-75015 Paris, (France); Hazemann, J. L. [CNRS, Inst Neel, F-38043 Grenoble, (France); De Ligny, D. [Univ Lyon 1, LMLC, CNRS, UMR 5620, F-69622 Villeurbanne, (France); Pascarelli, S. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Vickridge, I. [Univ Paris 06, INSP, F-75015 Paris, (France)

    2008-07-01

    The kinetics and the mechanisms of iron redox reactions in molten Fe-bearing pyroxene compositions have been investigated by Raman spectroscopy and X-ray absorption Near Edge Structure (XANES) experiments at the iron K-edge. The former experiments have been made only near the glass transition whereas the latter have also been performed from about 1300 to 2100 K. The same kinetics are observed with both techniques. They are described by characteristic times that depend primarily on temperature and not on the initial redox state. At high temperatures, where both kinds of reactions could be investigated, these times are similar for oxidation and reduction. From these characteristic times we have calculated as a function of temperature and composition a parameter termed effective redox diffusivity. For a given melt, the diffusivities follow two distinct Arrhenius laws, which indicate that the mechanisms of the redox reaction are not the same near the glass transition and at high temperatures. As is now well established, diffusion of divalent cations is the dominant mechanism at low temperatures but the enhanced kinetics observed for alkali-bearing melts indicate that Li{sup +} and Na{sup +} also participate in ionic transport. At super-liquidus temperatures, in contrast, diffusion of oxygen represents the dominant mechanism. (authors)

  3. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    Science.gov (United States)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  4. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie; Copé ret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Thivolle-Cazat, Jean

    2010-01-01

    , the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story

  5. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  6. Temperature influence on the malonic acid decomposition in the Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Blagojević, S. M.; Anić, S. R.; Čupić, Ž. D.; Pejić, N. D.; Kolar-Anić, Lj. Z.

    2009-09-01

    The kinetic investigations of the malonic acid decomposition (8.00 × 10-3 mol dm-3 ≤ [CH2(COOH)2]0 ≤ 4.30 × 10-2 mol dm-3) in the Belousov-Zhabotinsky (BZ) system in the presence of bromate, bromide, sulfuric acid and cerium sulfate, were performed in the isothermal closed well stirred reactor at different temperatures (25.0°C ≤ T ≤ 45.0°C). The formal kinetics of the overall BZ reaction, and particularly kinetics in characteristic periods of BZ reaction, based on the analyses of the bromide oscillograms, was accomplished. The evolution as well as the rate constants and the apparent activation energies of the reactions, which exist in the preoscillatory and oscillatory periods, are also successfully calculated by numerical simulations. Simulations are based on the model including the Br2O species.

  7. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  8. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  9. Temperature effect on radiation induced reactions in ethylene and tetrafluoroethylene copolymer (ETFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao

    1997-01-01

    Ethylene and tetrafluoroethylene copolymer (ETFE) was irradiated by γ-rays or electron beam (EB) under oxygen-free atmosphere at various temperatures ranging from 77 to 573 K. Mechanical and thermal properties, and absorption spectra of the irradiated ETFEs were measured. The mechanical properties of the film have been observed to change by irradiation. The modulus and yield strength increase with increasing dose, and these phenomena are clearly distinguished above the melting temperature of ETFE (533 K). Heat of crystallization changes drastically as a function of irradiation dose around the melting , compared with other temperatures. The absorption band around 250 nm of irradiated ETFE shifts to a longer wavelength region with increase of irradiation temperature. Therefore, it was concluded from those experimental results mentioned above that crosslinking takes place and conjugated double bonds formation proceeds in a wide range of irradiation temperatures. Those reactions are enhanced by increasing temperature. The homogeneous crosslinking takes place in the molten state, while the heterogeneous crosslinking does in the crystalline solid state. (author)

  10. Characteristics and mechanism of explosive reactions of Purex solvents with Nitric Acid at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Radiation Application Development Association, Tokai, Ibaraki (Japan); Takada, Junichi; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Ida, Masaaki [JGC PLANTECH CO., LTD (Japan); Nakagiri, Naotaka [JGC Corp., Tokyo (Japan); Nishio, Gunji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-03-01

    This investigation was undertaken to make clear the energetic properties and mechanism of explosive decomposition of Purex solvent systems (TBP/n-Dodecane/HNO{sub 3}) by Nitric Acid at elevated temperatures using a calorimetric technique (DSC, ARC) and a chromatographic technique (GC, GC/MS). The measurement of exothermic events of solvent-HNO{sub 3} reactions using DSC with a stainless steel sealed cell showed distinct two peaks with maxima at around 170 and 320degC, respectively. The peak at around 170degC was mainly attributed to the reactions of dealkylation products (n-butyl nitrate) of TBP and the solvent with nitric acid, and the peak at around 320degC was attributed to the exothermic decomposition of nitrated dodecanes formed in the foregoing exothermic reaction of dodecane with nitric acid. By using the data obtained in ARC experiments, activation energies of 123.2 and 152.5 kJ/mol were determined for the exothermic reaction of TBP with nitric acid and for the exothermic pyrolysis of n-butyl nitrate, respectively. Some possible pathways were considered for the explosive decomposition of TBP by nitric acid at elevated temperatures. (author)

  11. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  12. Temperature-dependent cross sections for meson-meson nonresonant reactions in hadronic matter

    International Nuclear Information System (INIS)

    Zhang Yiping; Xu Xiaoming; Ge Huijun

    2010-01-01

    We present a potential of which the short-distance part is given by one gluon exchange plus perturbative one- and two-loop corrections and of which the large-distance part exhibits a temperature-dependent constant value. The Schroedinger equation with this temperature-dependent potential yields a temperature dependence of the mesonic quark-antiquark relative-motion wave function and of meson masses. The temperature dependence of the potential, the wave function and the meson masses brings about temperature dependence of cross sections for the nonresonant reactions ππ→ρρ for I=2, KK→K*K* for I=1, KK*→K*K* for I=1, πK→ρK* for I=3/2, πK*→ρK* for I=3/2, ρK→ρK* for I=3/2 and πK*→ρK for I=3/2. As the temperature increases, the rise or fall of peak cross sections is determined by the increased radii of initial mesons, the loosened bound states of final mesons, and the total-mass difference of the initial and final mesons. The temperature-dependent cross sections and meson masses are parametrized.

  13. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    Science.gov (United States)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  14. Samarium ion exchanged montmorillonite for high temperature cumene cracking reaction

    International Nuclear Information System (INIS)

    Binitha, N.N.

    2009-01-01

    Full text: Nano material Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using TPD of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Bronsted acidity is confirmed from high selectivity to benzene. (author)

  15. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... hypophthalmus inhabits the Mekong river system covering two climate zones during its life cycle and migrating more than 2000 km from hatching in northern Laos to its adult life in the southern delta region. It is a facultative air-breather with well-developed gills and air-breathing organ and an unusual...... circulatory bauplan. Here we examine the question of its optimal temperature through aspects of its cardio respiratory physiology including temperature effects on blood oxygen binding, ventilation and blood gasses, stereological measures of cardiorespiratory system, metabolic rate and growth. Comparing...

  16. A Convenient Route to Higher Sugars by Two-Carbon Chain Elongation Using Wittig/Dihydroxylation Reactions

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Madsen, Robert

    2001-01-01

    The combination of a Wittig olefination and a dihydroxylation reaction constitutes a facile synthetic protocol for the transformation of unprotected carbohydrates into higher sugars. The Wittig reaction is carried out with tert-butyl or diphenylmethyl ester stabilized phosphoranes to give (E......)-configured alpha,beta -unsaturated esters as the only products in most cases. These are dihydroxylated in a diastereoselective fashion using OsO4/NMO. The stereochemical outcome in the dihydroxylation follows Kishi's empirical rule and gives high diastereoselectivity (5:1-8:1) when starting from sugars with the 2......,3-threo configuration. When starting from sugars with the 2,3-erythro configuration, the diastereoselectivity in the dihydroxylation is low (2:1-2.5:1). As a result, the Wittig/dihydroxylation protocol is most effective for producing higher sugars with the galacto configuration at the reducing end...

  17. Correlated colour temperature of morning light influences alertness and body temperature.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc; Schellen, Lisje; Souman, Jan L; van Marken Lichtenbelt, Wouter

    2018-03-01

    Though several studies have reported human alertness to be affected by the intensity and spectral composition of ambient light, the mechanism behind this effect is still largely unclear, especially for daytime exposure. Alerting effects of nocturnal light exposure are correlated with melatonin suppression, but melatonin levels are generally low during the day. The aim of this study was to explore the alerting effect of light in the morning for different correlated colour temperature (CCT) values, as well as its interaction with ambient temperature. Body temperature and perceived comfort were included in the study as possible mediating factors. In a randomized crossover design, 16 healthy females participated in two sessions, once under 2700K and once under 6500K light (both 55lx). Each session consisted of a baseline, a cool, a neutral and a warm thermal environment. Alertness as measured in a reaction time task was lower for the 6500K exposure, while subjective sleepiness was not affected by CCT. Also, core body temperature was higher under 6500K. Skin temperature parameters and perceived comfort were positively correlated with subjective sleepiness. Reaction time correlated with heat loss, but this association did not explain why the reaction time was improved for 2700K. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol : Influence of Reaction Temperature and Feedstock

    NARCIS (Netherlands)

    Huang, Xiaoming; Atay, Ceylanpinar; Zhu, Jiadong; Palstra, Sanne W L; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2017-01-01

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while

  19. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  20. The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1993-01-01

    The rate constant for the reaction between Fe(II) ions and H2O2 has been determined at pH 0.4-2 as a function of temperature in the range 5-300-degrees-C. H2O2 was produced by irradiating the aqueous solution with a pulse of electrons. The rate constants at 20 and 300-degrees-C were determined...

  1. Environmentally friendly room temperature strecker reaction:one-pot synthesis of α-aminonitriles in ionic liquid

    International Nuclear Information System (INIS)

    Mojtahedi, M. M.; Abaee, M.S.; Abbasi, H.

    2006-01-01

    A three component efficient and facile procedure is developed for the synthesis of a-aminonitriles from aromatic-and aliphatic aldehydes, amines, and trimethylsilyl cyanide in 1-butyl-3-methyl-1H-imidazolium perchlorate ([bmim][C1O 4 ]) ionic liquid as the reaction medium at room temperature. Excellent yields are obtained in this one-pot procedure with short reaction times and the ionic liquid medium reused several times in a row

  2. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  3. Substitution reactions of carbon nanotube template

    Science.gov (United States)

    Li, Chi Pui; Chen, Ying; Gerald, John Fitz

    2006-05-01

    Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO-C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200°C for 1h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000°C ). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO-C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

  4. The temperature dependences of the N2+ + N2 → N4+ and O2+ + O2 → O4+ association reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.; Smith, D.; Adams, N.G.

    1983-01-01

    The temperature dependencies of three body association reactions have been investigated in attempts to elucidate the mechanisms of ion-molecule association. The variation with temperature of the three-body rate coefficients is described usually as a power law k approximately Tsup(-n). Experience has shown that with measurements over limited temperature ranges as with previous methods the derived coefficients n are wrong and measurements over large temperature ranges are desirable. The selected ion flow-tube and the drift tube methods developed in Birmingham and Heidelberg provide measurements over (overlapping) wide temperature rang. In collaboration of the Birmingham and the Heidelberg group the He stabilized reactions N 2 + + N 2 + He → N 4 + + He and O 2 + + O 2 + He → O 4 + + He reactions over 30 to 600 deg K. A power law dependence is found above 100 K. The temperature dependencies of the rate constants are interpred and used as a critical test of recent theories of association reactions by D.R. Bates and E. Herbst. (G.Q.)

  5. Rotational state dependence of ion-polar molecule reactions at very low temperature

    International Nuclear Information System (INIS)

    Dubernet, M.L.; McCarroll, R.

    1989-01-01

    The adiabatic rotational state method is used to investigate the rotational state dependence of the rate coefficients for ion-polar molecule reactions in the very low temperature regime characteristic of interstellar molecular clouds. Results obtained for the systems H 3 + +HCl and H 3 + +HCN indicate that all the methods based on the adiabatic separation of the rotational and radial motion of the collision complex - adiabatic capture centrifugal sudden approximation (ACCSA), statistical adiabatic channel model, classical adiabatic invariance method - agree very satisfactorily in the low temperature limit. Discrepancies observed between some of the published data would appear to arise from numerical inaccuracies rather than from any defect of the theory. (orig.)

  6. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Maillard reactions and increased enzyme inactivation during oligosaccharide synthesis by a hyperthermophilic glycosidase

    NARCIS (Netherlands)

    Bruins, M.E.; Hellemond, van E.W.; Janssen, A.E.M.; Boom, R.M.

    2003-01-01

    The thermostable Pyrococcus furiosus beta-glycosidase was used for oligosaccharide production from lactose in a kinetically controlled reaction. Our experiments showed that higher temperatures are beneficial for the absolute as well as relative oligosaccharide yield. However, at reaction

  8. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  9. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH 4 /CO 2 reaction

    KAUST Repository

    Al-Sabban, Bedour

    2017-05-02

    Dry reforming of methane (DRM) proceeds via CH4 decomposition to leave surface carbon species, followed by their removal with CO2-derived species. Reactivity tuning for stoichiometric CH4/CO2 reactants was attempted by alloying the non-noble metals Co and Ni, which have high affinity with CO2 and high activity for CH4 decomposition, respectively. This study was focused on providing evidence of the capturing surface coverage of the reactive intermediates and the associated structural changes of the metals during DRM at high temperature using in-operando X-ray absorption spectroscopy (XAS). On the Co catalysts, the first-order effects with respect to CH4 pressure and negative-order effects with respect to CO2 pressure on the DRM rate are consistent with the competitive adsorption of the surface oxygen species on the same sites as the CH4 decomposition reaction. The Ni surface provides comparatively higher rates of CH4 decomposition and the resultant DRM than the Co catalyst but leaves some deposited carbon on the catalyst surface. In contrast, the bimetallic CoNi catalyst exhibits reactivity towards the DRM but with kinetic orders resembling Co catalyst, producing negligible carbon deposition by balancing CH4 and CO2 activation. The in-operando X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements confirmed that the Co catalyst was progressively oxidized from the surface to the bulk with reaction time, whereas CoNi and Ni remained relatively reduced during DRM. Density functional theory (DFT) calculation considering the high reaction temperature for DRM confirmed the unselective site arrangement between Co and Ni atoms in both the surface and bulk of the alloy nanoparticle (NP). The calculated heat of oxygen chemisorption became more exothermic in the order of Ni, CoNi, Co, consistent with the catalytic behavior. The comprehensive experimental and theoretical evidence provided herein clearly suggests

  10. Thermogravimetric studies of high temperature reactions between potassium salts and chromium

    International Nuclear Information System (INIS)

    Lehmusto, J.; Lindberg, D.; Yrjas, P.; Skrifvars, B.-J.; Hupa, M.

    2012-01-01

    Highlights: ► K 2 CO 3 reacted with Cr 2 O 3 forming K 2 CrO 4 . ► Presence of chlorine did not alone explain the initiation of accelerated oxidation. ► More light was shed to the role of chromates in accelerated oxidation. ► Accelerated oxidation of chromia protected steels occurs in two consecutive stages. ► Both potassium and chloride are required, so that both stages of reaction occur. - Abstract: This study compares the high temperature reactions of potassium chloride (KCl) and potassium carbonate (K 2 CO 3 ), two salts found in fly ashes formed in biomass combustion, with both pure metallic chromium (Cr) and chromium oxide (Cr 2 O 3 ). The reactions were investigated with thermogravimetric measurements and the results discussed based on thermodynamic calculations. In simple terms: potassium chloride reacted with chromium forming potassium chromate (K 2 CrO 4 ) and chromium oxide. Potassium chloride did not react with chromium oxide. Potassium carbonate reacted with chromium oxide, but not with chromium. The presence of potassium is sufficient to initiate accelerated oxidation, but chloride is needed to sustain it.

  11. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    Science.gov (United States)

    Morley, Simon A; Martin, Stephanie M; Day, Robert W; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A S; Peck, Lloyd S

    2012-01-01

    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt)) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max) and T(opt) over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their

  12. Quantum mechanical study of the proton exchange in the ortho-para H2 conversion reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-11-14

    Ortho-para H(2) conversion reactions mediated by the exchange of a H(+) proton have been investigated at very low energy for the first time by means of a time independent quantum mechanical (TIQM) approach. State-to-state probabilities and cross sections for H(+) + H(2) (v = 0, j = 0,1) processes have been calculated for a collision energy, E(c), ranging between 10(-6) eV and 0.1 eV. Differential cross sections (DCSs) for H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) for very low energies only start to develop a proper global minimum around the sideways scattering direction (θ≈ 90°) at E(c) = 10(-3) eV. Rate coefficients, a crucial information required for astrophysical models, are provided between 10 K and 100 K. The relaxation ortho-para process j = 1 → j' = 0 is found to be more efficient than the j = 0 → j' = 1 conversion at low temperatures, in line with the extremely small ratio between the ortho and para species of molecular hydrogen predicted at the temperature of interstellar cold molecular clouds. The results obtained by means of a statistical quantum mechanical (SQM) model, which has previously proved to provide an adequate description of the dynamics of the title reactions at a higher collision energy regime, have been compared with the TIQM results. A reasonable good agreement has been found with the only exception of the DCSs for the H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) process at very low energy. SQM cross sections are also slightly below the quantum results. Estimates for the rate coefficients, in good accord with the TIQM values, are a clear improvement with respect to pioneering statistical studies on the reaction.

  13. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  14. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    Science.gov (United States)

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Temperature and Pressure Dependence of the Reaction S plus CS (+M) -> CS2 (+M)

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul; Troe, Juergen

    2015-01-01

    Experimental data for the unimolecular decomposition of CS2 from the literature are analyzed by unimolecular rate theory with the goal of obtaining rate constants for the reverse reaction S + CS (+M) -> CS2 (+M) over wide temperature and pressure ranges. The results constitute an important input...

  16. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fujita, Yoshiko [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  17. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    Energy Technology Data Exchange (ETDEWEB)

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1993-12-01

    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  18. Reaction of yttria-stabilized zirconia with zirconium, silicon and Zircaloy-4 at high temperature: a compatibility study for cermet fuels

    International Nuclear Information System (INIS)

    Arima, T.; Tateyama, T.; Idemitsu, K.; Inagaki, Y.

    2003-01-01

    Compatibility studies for cermet (ceramic and metal) fuels have been completed for a temperature range of 1073-1423 K. A reaction between yttria-stabilized zirconia (YSZ), as a simulated fuel, and Zr, as a candidate for a metallic matrix, has been observed at temperatures ≥1273 K, which means the formation of a metallic reaction layer at the interface between YSZ and Zr and the occurrence of metallic phases inside the YSZ. Similar results were observed for the YSZ-Zry4 (cladding) system. On the other hand, the degree of reaction was relatively large for the YSZ-Si (metallic matrix) system, and Si diffused into the YSZ. However, the maximum fuel center-line temperature can be predicted to be less than ∼1273 K for cermet fuels. Therefore, compatibility between the ceramic fuel and the metallic matrix should be good under normal reactor operational conditions. Furthermore, since the temperature of the fuel-cladding gap is lower, the cermet fuel and the cladding material are compatible

  19. Coadsorption and reaction of H2 and CO on Raney nickel: Neutron vibrational spectroscopy

    International Nuclear Information System (INIS)

    Kelley, R.D.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    Neutron vibration spectroscopy is used to study the adsorption and reaction of H 2 and Co on a catalytic nickel surface. The sample was first exposed to H 2 and than to CO. At low temperatures there is no change of vibrational modes of H in the three-fold site; at a higher temperature changes occur. Some conclusions are drawn on the reaction product. (G.Q.)

  20. Interfacial reactions in intermetallic matrix composites

    International Nuclear Information System (INIS)

    Cantrell, L.B.; Clevenger, E.M.; Perepezko, J.H.

    1993-01-01

    The thermal stability of advanced composites is dominated by the behavior of internal interfaces. Analysis of these internal interfaces often involves consideration of at least ternary order phase equilibria. Limited thermodynamic data exists for ternary and higher order systems. However, a combined approach based upon the use of binary data to estimate ternary phase equilibria and experimentally determined reaction pathways is effective in the analysis of interface reactions in composite systems. In blended powder samples, thermal analysis was used to find possible reaction temperatures, while X-ray analysis, EDS, and EPMA of diffusion couples were used to assess interdiffusion reaction pathways. The approach is illustrated by compatibility studies between TiAl and TiSi 2 at 1,100 C, and in-situ reactions between B 4 C and TiAl at 1300 C where multiple reaction sequences have been analyzed to provide guidance for the design of in-situ reaction processing of composites

  1. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  2. Design and Application of a High-Temperature Linear Ion Trap Reactor

    Science.gov (United States)

    Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2018-01-01

    A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.

  3. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method

    International Nuclear Information System (INIS)

    Li Fashen; Wang Haibo; Wang Li; Wang Jianbo

    2007-01-01

    ZnFe 2 O 4 nanoparticles with average grain size ranging from 40 to 60 nm behaving superparamagnetic at room temperature have been produced using a low-temperature solid-state reaction (LTSSR) method without ball-milling process. Abnormal magnetic properties such as S-shape hysteresis loops and non-zero magnetic moments were observed. ZnFe 2 O 4 nanoparticles were also synthesized using a NaOH coprecipitation method and a PVA sol-gel method to study the relationship between the preparation processes and the magnetic properties. Spin-glass behavior was observed in the low temperature solid-state reaction produced Zn ferrite in the zero-field cooled (ZFC) measurement. Our work proves that the various preparation methods will to some extent determine the properties of magnetic nanoparticles

  4. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    Science.gov (United States)

    Saito, T.; Noguchi, S.; Matsumoto, T.; Sasaki, M.; Goto, M.

    2008-07-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time.

  5. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Saito, T; Noguchi, S; Matsumoto, T; Sasaki, M; Goto, M

    2008-01-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time

  6. Kinetic calorimetry in the study of the mechanism of low-temperature chemical reactions

    Science.gov (United States)

    Barkalov, I. M.; Kiryukhin, D. P.

    schemes are described [1-5]. However, despite the high working characteristics of modern calorimeters (Perkin-Elmer, Du Pont, LKB, etc.), all of them have one principal disadvantage: a cell with a sample is placed in them at room temperature. In cryochemical investigation, when the sample has metastable formations, the loading is made `from nitrogen to nitrogen', i.e. the sample prepared at 77 K should be loaded into a calorimeter at 77 K. Besides, the existing installations do not allow measurements at the temperatures Cryochemistry and Radiation Chemistry at the Institute of Chemical Physics in Chernogolovka has created original calorimetric techniques which allow: (1) the carrying out phase analysis and the determination of the main thermodynamic characteristic of individual substances and complicated systems in the temperature range 5 300 K. Sample loading can be conducted at 77 K that allows us to study the systems containing: tetrafiuoroethylene, hexafluoropropylene, ethylene, carbon monoxide, nitrogen, methane, hydrogen, oxygen, ozone, formaldehyde and many other gaseous substances; (2) the study of the dynamics of chemical reactions and to measure the main kinetic parameters of the processes-the elementary rate constants and the activation energies. The experiment can be conducted both under direct action of radiation and UV light and in the post-effect mode [5,6].

  7. On the impedance of galvanic cells XXVII. The temperature-dependence of the kinetic parameters of the hydrogen electrode reaction on mercury in concentrated HI

    NARCIS (Netherlands)

    Dekker, B.G.; Sluyters-Rehbach, M.; Sluyters, J.H.

    1969-01-01

    The impedance of a dropping mercury electrode in 57% HI (7.6 M) was measured at temperatures between −35° and +25°C. In a certain potential and temperature region, two reactions were found to be proceeding simultaneously: the reversible Hg/HgI4−2 reaction and the irreversible H+/H2(Hg) reaction.

  8. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production.

    Science.gov (United States)

    Mazubert, Alex; Taylor, Cameron; Aubin, Joelle; Poux, Martine

    2014-06-01

    Microwave effects have been quantified, comparing activation energies and pre-exponential factors to those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via transesterification and esterification reactions. Several publications report an enhancement of biodiesel production using microwaves, however recent reviews highlight poor temperature measurements in microwave reactors give misleading reaction performances. Operating conditions have therefore been carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction, the activation energy is 37.1kJ/mol (20.1-54.2kJ/mol) in the microwave-heated reactor compared with 31.6kJ/mol (14.6-48.7kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the activation energy is 45.4kJ/mol (31.8-58.9kJ/mol) for the microwave-heated reactor compared with 56.1kJ/mol (55.7-56.4kJ/mol) for conventionally-heated reactor. The results confirm the absence of non-thermal microwave effects for homogenous-catalyzed reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    Directory of Open Access Journals (Sweden)

    Simon A Morley

    Full Text Available The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna, New Zealand (Cellana ornata, Australia (C. tramoserica and Singapore (C. radiata, were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt increased from 1.0°C (N. concinna to 14.3°C (C. ornata to 18.0°C (an average for the optimum range of C. tramoserica to 27.6°C (C. radiata. The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max and T(opt over habitat temperature. However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their

  10. Drift-tube studies of ion-molecule reactions at low collision energies

    International Nuclear Information System (INIS)

    Chatterjee, B.K.

    1988-01-01

    This thesis presents experimental studies of ion-molecule reactions at low collision energies using two drift tube mass spectrometer apparatus. The reactions studied are (i) proton transfer from HeH + to ArH + , (ii) charge and ion transfer reactions of O 2 2+ with NO, CO 2 , Ne and O 2 + ( 4 π u ) with CO 2 , (iii) oxidation reactions of Zr + and ZrO + with NO, CO 2 and O 2 , (iv) vibrational quenching reactions of H 3 + with He, (v) termolecular clustering reactions of H 2 CN + and H 2 CN + (HCN) (with He as the third body), (vi) three body association reactions of H + and D + with He (with He as the third body) and (vii) termolecular association reaction of NO + with NO (with Ne as third body). All the reactions were studied at thermal energies (at room temperature), reactions of O 2 2+ with NO and CO 2 , Zr + with NO/CO 2 /O 2 were also studied at center-of-mass energies higher than thermal and the association reactions of H 2 CN + /H 2 CN + (HCN) with HCN and H + /D + with He were studied at low temperatures. In addition, the thesis presents model calculations for the sweep-out effect which is an instrumental effect. A super Langevin rate constant is introduced which is a higher-order correction to the Langevin model. A theoretical model for the three-body ion-atom association rate constant is presented in the appendix of the thesis

  11. An Unexpected Reaction between 5-Hydroxymethylfurfural and Imidazolium-Based Ionic Liquids at High Temperatures

    Directory of Open Access Journals (Sweden)

    Zongbao K. Zhao

    2011-10-01

    Full Text Available A new compound was detected during the production of 5-hydroxymethylfurfural (HMF from glucose and cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl at high temperatures. Further experiments found that it was derived from the reaction of HMF with [Bmim]Cl. The structure of new compound was established as 1-butyl-2-(5’-methyl-2’-furoylimidazole (BMI based on nuclear magnetic resonance and mass spectrometry analysis, and a possible mechanism for its formation was proposed. Reactions of HMF with other imidazolium-based ionic liquids were performed to check the formation of BMI. Our results provided new insights in terms of side reactions between HMF and imidazolium-based ionic liquids, which should be valuable for designing better processes for the production of furans using biomass and related materials.

  12. Temperature effects on multiphase reactions of organic molecular markers: A modeling study

    Science.gov (United States)

    Pratap, Vikram; Chen, Ying; Yao, Guangming; Nakao, Shunsuke

    2018-04-01

    Various molecular markers are used in source apportionment studies. In early studies, molecular markers were assumed to be inert. However, recent studies suggest that molecular markers can decay rapidly through multiphase reactions, which makes interpretation of marker measurements challenging. This study presents a simplified model to account for the effects of temperature and relative humidity on the lifetime of molecular markers through a shift in gas-particle partitioning as well as a change in viscosity of the condensed phase. As a model case, this study examines the stability of levoglucosan, a key marker species of biomass burning, over a wide temperature range relevant to summertime and wintertime. Despite the importance of wood combustion for space heating in winter, the lifetime of levoglucosan in wintertime is not well understood. The model predicts that in low-temperature conditions, levoglucosan predominantly remains in the particle phase, and therefore its loss due to gas-phase oxidation reactions is significantly reduced. Furthermore, the movement of the levoglucosan from the bulk of the particle to the particle surface is reduced due to low diffusivity in the semi-solid state. The simplified model developed in this study reasonably reproduces upper and lower bounds of the lifetime of levoglucosan investigated in previous studies. The model results show that the levoglucosan depletion after seven days reduces significantly from ∼98% at 25 °C to marker (lifetime > 1 week) even at 60% relative humidity irrespective of the assumed fragility parameter D that controls estimated diffusivity. The model shows that lifetime of an organic molecular marker strongly depends on assumed D especially when a semi-volatile marker is in semi-solid organic aerosol.

  13. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).

  14. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    Science.gov (United States)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  15. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  16. Effect of degree of polymerization and of temperature on the reactivity of poly(vinyl alcohol) by applying T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Imai, Kazunari

    1999-01-01

    In order to reveal the effect of the degree of polymerization and of temperature on the reactivity of functional polymers, the hydrogen-isotope exchange reaction between poly(vinyl alcohol) (PVA) having each degree of polymerization and tritiated water vapor (HTO vapor) was dynamically observed at 35-80 deg C in a gas-solid system. The reason of the observation at 35 deg C is to clarify the possibility of the T-for-H exchange reaction at a temperature near the environment. The degree of polymerization of PVA used in this work was 500, 1000, 2000, 2800, or 3500. Applying the A''-McKay plot method to the data obtained in each observation, the rate constant (k) for each PVA in the reaction was calculated. Moreover, the Arrhenius plot for each PVA was made by using the k values. Comparing the k values and the results obtained previously, the following six matters have been clarified. In the temperature range of 35-80 deg C, the T-for-H exchange reaction between HTO vapor and each PVA occurred, and in this case, the atoms participating in the reaction are the H atoms in the OH groups in PVA and T atoms in HTO vapor. The reactivity of each PVA increases with rising temperature, and decreases with increasing the degree of polymerization. The rate of the decreasing of k with increasing the degree of polymerization changes at near the degree of polymerization of 1000, and the rate is fairly large under the degree of 1000. Under the degree of polymerization of 1000, the reactivity of PVA is more affected by the effect of the degree of polymerization than by the effect of temperature, and the reactivity is large when the degree of polymerization is small. Over the degree of polymerization of 1000, the reactivity of PVA is affected by both the degree of polymerization and temperature, and the reactivity is large when temperature is high. For the T-for-H exchange reaction in a gas-solid system, the reaction form is unchanged in the range of 35-80 deg C, and the reactivity at 35

  17. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    Science.gov (United States)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  18. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...... at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...

  19. Evaluation of enthalpy of interfacial reactions from temperature dependency of interfacial equilibrium

    International Nuclear Information System (INIS)

    Kallay, Nikola; Cop, Ana

    2005-01-01

    Temperature dependency of equilibrium at metal oxide-aqueous electrolyte solution interface was analyzed by numerical simulation. Derivations of inner surface potential with respect to temperature were performed at constant values of several different parameters. When surface charge density in inner plane was kept constant the reasonable results were obtained, i.e. the electrostatic contribution to enthalpy of protonation of amphotheric surface sites was found to be positive in the pH region below the point of zero potential and negative above this point. All other examined possibilities produced opposite results. Derivation of empirical interfacial equilibrium constant at constant surface potential indicated that electrostatic effect on protonation entropy is negligible and that electrostatic contributions to reaction Gibbs energy and enthalpy are equal and directly related to the surface potential in the inner plane

  20. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  1. Kinetics of the hydrogen production reaction in a copper-chlorine water splitting plant

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Naterer, G.F.; Dincer, I.

    2009-01-01

    The exothermic reaction of HCl with particulate Cu occurs during hydrogen production step in the thermochemical copper-chlorine (Cu-Cl) water splitting cycle. In this paper, this chemical reaction is modeled kinetically, and a parametric study is performed to determine the influences of particle size, temperature and molar ratios on the reaction kinetics. It is determined that the residence time of copper particles varies between 10 and 100 s, depending on the operating conditions. The hydrogen conversion at equilibrium varies between 55 and 85%, depending on the reaction temperature. The heat flux at the particle surface, caused by the exothermic enthalpy of reaction, reaches about 3,000 W/m 2 when the particle shrinks to 0.1% from its initial size. A numerical algorithm is developed to solve the moving boundary Stefan problem with a chemical reaction. It predicts the shrinking of copper particles based on the hypothesis that the chemical reaction and heat transfer are decoupled. The model allows for estimation of the temperature of the copper particle, assumed spherical, in the radial direction. The maximum temperature at the interface is higher than the melting point of CuCl by 10-50 o C, depending on the assumed operating conditions. (author)

  2. Investigation into boron reaction with titanium at extreme temperature gradients

    International Nuclear Information System (INIS)

    Korchagin, M.A.; Gusenko, S.N.; Aleksandrov, V.V.; Neronov, V.A.

    1981-01-01

    The mechanism of self-propagation high-temperature synthesis of titanium boride is studied using the translucent electron microscopy. Titanium interaction with boron film (approximately 1000 A thick) starts with the metal partial melting. A twozone layer of the reaction products, separating the reagents, is formed. In the zone adjacent to B, Ti 3 B 4 and fusible liquid phases are present. The second zone consists of TiB. The subsequent interaction is realized by Means of the dissolving and absorption by titanium of the layer of products during its continuous increase in boron. TiB 2 formation takes place at subsequent stages of interaction inside Ti liquid particles during their saturation by boron from the products absorbed [ru

  3. Effect of temperature on photochemical smog reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bufalini, J J; Altshuller, A P

    1963-01-01

    In the present investigation the photo-oxidation reactions to trans-2-butene-nitric oxide and 1,3,5-trimethylbenzene (mesitylene)-nitric oxide in air have been followed. The rates of formation and disappearance of nitrogen dioxide and the rate of reaction of the hydrocarbons have been measured at 20 and 40/sup 0/. The results obtained indicate about a twofold decrease in conversion times over the 20/sup 0/ interval and a corresponding increase in rates of reactions. 5 references.

  4. Cross-section and reaction rates for some reactions involved in explosive nucleosynthesis

    International Nuclear Information System (INIS)

    Cheng, C.W.

    1979-03-01

    Total proton-induced and alpha-induced reaction cross sections have been determined for the 24 Mg(α,n), 25 Mg(p,n), 26 Mg(p,n), 27 Al(p,n), 28 Si(α,n), 42 Ca(p,γ), 42 Ca(α,n) and 44 Ca(p,n) reactions from energies near threshold (except the exothermic (p,γ) reaction) to about 3 to 4 MeV above threshold. The product nuclei are all positron emitters with half-lives ranging from about 3 sec to about 4 hours. From the measured cross sections reaction rates have been calculated in the temperature range 1 9 9 =1, at which the discrepancy is large. Included also are analytic forms for (p,n), (α,n), and (p,γ) reactions which can be used to describe the reaction rate within the temperature range 1 9 <=6 and which agree with the experimental rates at the discrete temperatures where the reaction rates have been calculated

  5. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Temperature dependence of He(2 3PJ) reactions: Collision-induced mixing and conversion to He2( 3Πg) molecules

    International Nuclear Information System (INIS)

    Zhao, X.; Soletsky, P.A.; Bryan, W.H.; Dunning, F.B.; Walters, G.K.

    1993-01-01

    The rate coefficients for mixing between He(2 3 P J, MJ) levels during collisions with ground-state helium atoms and for conversion of He(2 3 P J ) atoms to He 2 (b 3 Π g ) molecules via three-body reactions in helium gas have been investigated over the temperature range 1.6--300 K. The measured rate coefficients for collisionally induced P-state mixing decrease slowly with decreasing temperature, from (1.8±0.5)x10 -9 cm 3 s -1 at 300 K to (4.5±0.5)x10 -10 cm 3 s -1 at 4.2 K. The rate coefficients for the production of He 2 (b 3 Π g ) molecules via three-body reactions are observed to increase with decreasing temperature and are described by the relation k P congruent(2.5+267T -1 )x10 -32 cm 6 s -1 . This behavior, which is very different from that noted in earlier studies of the conversion of He(2 3 S 1 ) atoms to He 2 (a 3 Σ u + ) molecules through three-body reactions, suggests that the reaction is not thermally activated

  7. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction.

    Science.gov (United States)

    Parker, Julie; Novakovic, Katarina

    2017-08-05

    Reaction temperature plays a major role in product selectivity in the oscillatory mode of the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. At 40 °C, dimethyl (2Z)-2-phenyl-2-butenedioate is the major product whereas at 0 °C the major product is 5,5-dimethoxy-3-phenyl-2(5H)-furanone. The occurrence of oscillations in pH coincides with an increase in the rate of phenylacetylene consumption and associated product formation. Experiments were performed isothermally in a reaction calorimeter to correlate reactant consumption and product formation with the occurrence of pH oscillations and the heat released by the reaction. An increase in the size of the pH drop in a single oscillation correlates with an increase in energy, indicating that this section of a single oscillation relates to reactant consumption. Based on these observations, a reaction pathway responsible for product formation is provided. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  9. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  10. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.

    Science.gov (United States)

    Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K

    2016-09-14

    The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.

  11. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H.

    2017-02-01

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.

  12. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    Science.gov (United States)

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  13. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  14. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation.

    Science.gov (United States)

    Macedo, R G; Verhaagen, B; Wesselink, P R; Versluis, M; van der Sluis, L W M

    2014-02-01

    To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. The root canal walls of 24 standardized root canals in bovine incisors were exposed to a standardized volume of NaOCl at different temperatures (24 °C and 38 °C) and exposure times (20, 60 and 180 s). The irrigant was refreshed and ultrasonically activated four times for 20 s followed by a 40 s rest interval, with no refreshment and no activation as the controls. The reaction rate was determined by measuring the amount of active chlorine in the NaOCl solution before and after being exposed to dentine during the specific experimental conditions. Calorimetry was used to measure the electrical-to-sonochemical conversion efficiency during ultrasonic activation. Refreshment, activation and exposure time all increased the reaction rate of NaOCl (P reaction rate of NaOCl (P > 0.125). The reaction rate of NaOCl with dentine is enhanced by refreshment, ultrasonic activation and exposure time. Temperature rise of irrigant during ultrasonic activation was not sufficient to alter the reaction rate. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Effect of radiative transfer of heat released from combustion reaction on temperature distribution: A numerical study for a 2-D system

    International Nuclear Information System (INIS)

    Zhou Huaichun; Ai Yuhua

    2006-01-01

    Both light and heat are produced during a chemical reaction in a combustion process, but traditionally all the energy released is taken as to be transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. Chemiluminescence is generated during a chemical reaction and independent of the temperature, and has been used widely for combustion diagnostics. It was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting-absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, it is required to conduct experimental measurements to determine the fraction of self-absorbed heat for different combustion processes

  16. Strain rate effects in nuclear steels at room and higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, G. E-mail: george.solomos@jrc.it; Albertini, C.; Labibes, K.; Pizzinato, V.; Viaccoz, B

    2004-04-01

    An investigation of strain rate, temperature and size effects in three nuclear steels has been conducted. The materials are: ferritic steel 20MnMoNi55 (vessel head), austenitic steel X6CrNiNb1810 (upper internal structure), and ferritic steel 26NiCrMo146 (bolting). Smooth cylindrical tensile specimens of three sizes have been tested at strain rates from 0.001 to 300 s{sup -1}, at room and elevated temperatures (400-600 deg. C). Full stress-strain diagrams have been obtained, and additional parameters have been calculated based on them. The results demonstrate a clear influence of temperature, which amounts into reducing substantially mechanical strengths with respect to RT conditions. The effect of strain rate is also shown. It is observed that at RT the strain rate effect causes up shifting of the flow stress curves, whereas at the higher temperatures a mild downshifting of the flow curves is manifested. Size effect tendencies have also been observed. Some implications when assessing the pressure vessel structural integrity under severe accident conditions are considered.

  17. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.

    Science.gov (United States)

    Vu, Henry M; Duman, John G

    2017-08-01

    Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.

  18. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water

    Science.gov (United States)

    McCollom, Thomas M.; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose.

  19. Temperature dependent investigation on optically active process of higher-order bands in irradiated silicon

    International Nuclear Information System (INIS)

    Shi Yi; Nanjing Univ., JS; Wu Fengmei; Nanjing Univ., JS; Zheng Youdou; Nanjing Univ., JS; Suezawa, M.; Imai, M.; Sumino, K.

    1996-01-01

    Optically active processes of the higher-order bands (HOB) are investigated at different temperatures in fast neutron irradiated silicon using Fourier transform infrared absorption measurement. It is shown that the optically active process is nearly temperature independent below 80 K, the slow decay process remains up to a heating temperature of 180 K. The observations are analyzed in terms of the relaxation behavior of photoexcited carriers governed by fast neutron radiation induced defect clusters. (orig.)

  20. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  1. Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Szydlowski, A.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Scholz, M.; Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the application of SSNTDs of the PM-355 type to diagnostics of reaction products emitted from high-temperature deuterium plasmas produced in Plasma Focus (PF) facilities. Acceleration processes occurring in plasma lead often to the generation of high-energy ion beams. Such beams induce nuclear reactions and contribute to the emission of fast neutrons, fusion protons and alpha particles from PF discharges with a deuterium gas. Ion measurements are of primary importance for understanding the mechanisms of the physical processes which drive the charged-particle acceleration. The main aim of the present studies was to perform measurements of spatial- and energy-distributions of fusion-reaction protons (about 3 MeV) within a PF facility. Results obtained from energy measurements were compared with the proton-energy spectra computed theoretically. The protons were measured by means of a set of ion pinhole cameras equipped with PM-355 detectors, which were placed at different angles relative to the electrode axis of the PF facility.

  2. The reaction of uranium in the U-O2-H2O and U-H2O systems

    International Nuclear Information System (INIS)

    Pearce, R.J.; Kay, P.

    1987-09-01

    The reaction of uranium in dry air, moist air and oxygen free moisture has been studied thermogravimetrically over the temperature range 105-325 0 C and at water vapour pressures up to 100 kPa. It has been shown that in dry air the kinetics are complex and appear to result from parallel reactions involving both parabolic and linear rate laws. In oxygen free moisture, linear kinetics were obeyed and a near stoichiometric UO 2 reaction product was formed. Oxygen markedly inhibited the moisture reaction at the lower temperatures in the range examined but the degree of inhibition, as shown by weight gain measurements, decreased with increasing temperature such that, at the higher temperatures, there was little difference in reaction rates. At all temperatures, the production of hydrogen was markedly inhibited by the presence of air suggesting that the principal reaction was with free oxygen. However in moist conditions the reaction rate exhibited a dependency on the water vapour pressure according to k α psup(n) where n ∼ 0.3 in air and ∼ 0.5 in oxygen free conditions. The mechanism of the oxidation reaction is discussed. (author)

  3. EFFECT OF TIME AND TEMPERATURE ON ISOMERIZATION REACTION OF ?-PINENEUSING CATALYST ZR 4+ Nanik Wijayati, Supartono, Nuni Widiarti, Tri Handayani /NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Nanik Wijayati

    2016-03-01

    Full Text Available Effects of time and temperature on ?-pinene isomerization reaction using catalysts Zr/natural zeolitewas studied. Characterization of the catalysts include: crystallinity, observed using X-Ray Diffraction, count Zr 4+ carried observed using X-Ray Fluorescence, area and porosity catalyst was observed using the Surface Area Analyzer, and acidity catalyst observed through gravimetric method. Isomerization reaction carried out in a batch reactor with temperature variations 90, 120 and 150 C and reaction time variations of 60, 90, 120, 150 and 180 minutes. Best results of isomerisation in this study was obtained at 150 derajat C with a reaction time of 180 minutes. Kindsof isomer obtained was observed using GCMS. Catalyst characterization results indicate that modification of the catalyst by cation Zr increases the acidity from 2.76 to 6.64 mmol/g and does not damage the crystal structure significantly. The highest product conversion in this research is 9.24%, less than the maximum results caused by pre-treatment of the catalyst produces a low area. Thus, temperature and reaction time affect the concentration of ? pinene isomerization product in addition to the effect of the catalyst used.

  4. Temperature influence on the reaction kinetics of V(IV)/V(V) in methanesulfonic acid for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wang, Qiuhong; Daoud, Walid A.

    2016-01-01

    Highlights: • Diffusion coefficients and standard rate constants of V(IV) and V(V) in MSA at different temperatures are studied. • Carbon-based and metal electrodes are investigated under the same experimental condition at high temperature. • The influence of temperature on reaction kinetics is more significant on carbon-based electrode than metal electrode. • Gold electrode shows inefficient performance in MSA solution. - Abstract: In this study, methanesulfonic acid has been investigated as the supporting electrolyte for vanadium solutions due to the improvement of mass transfer rate and reaction kinetics. Here, we applied different temperatures (0–55 °C) for electrochemical experiments of 0.1 M vanadium ions in 1.0 M MSA electrolyte on gold, platinum and glassy carbon electrodes separately to study the temperature-related kinetics. Considering that electron transfer is the control path for the whole reduction potential window, the rotating disc electrode approach was utilized for the oxidation of V(IV) ions, while the reduction of V(V) ions was studied by cyclic voltammetry. The influence of temperature on charge-transfer resistance and mass transport for both V(IV) and V(V) solutions was studied by electrochemical impedance spectroscopy on glassy carbon electrode. The results showed that the diffusion coefficients in both redox reactions on all electrodes increased with temperature, and most were in the order of 10 −6 cm 2 s −1 . The positive influence of temperature was also observed on the standard rate constants for all conditions in this study, most significantly on the glassy carbon electrode. Comparison between glassy carbon electrode and metal electrodes indicates a promising potential of carbon-based material as electrode for redox flow battery.

  5. Synthesis and regulation of α-LiZnPO4.H2O via a solid-state reaction at low-heating temperatures

    International Nuclear Information System (INIS)

    Liao Sen; Chen Zhipeng; Tian Xiaozhen; Wu Wenwei

    2009-01-01

    A simple and novel route for the synthesis of a lithium zinc phosphate hydrate, α-LiZnPO 4 .H 2 O, was studied, and the target product was obtained with LiH 2 PO 4 .H 2 O and ZnCO 3 as raw materials and polyethylene glycol-400 (PEG-400) as a surfactant via a one step solid-state reaction at room temperature (25 deg. C). The product was characterized with X-ray powder diffraction (XRD), thermogravimetric analysis and the 1st derivativative of thermogravimetric analysis (TG/DTG) and Fourier transform infrared spectroscopy (FTIR). The comparison experimental results suggested that aging temperature controlled the products of the synthesis, that is, the α-LiZnPO 4 .H 2 O was formed when the reaction mixture was aged at room temperature, and the α-LiZnPO 4 was obtained when the reaction mixture was aged at 80 deg. C.

  6. Microstructure evolution by neutron irradiation during cyclic temperature variation

    International Nuclear Information System (INIS)

    Kiritani, M.; Yoshiie, T.; Iseki, M.; Kojima, S.; Hamada, K.; Horiki, M.; Kizuka, Y.; Inoue, H.; Tada, T.; Ogasawara, Y.

    1994-01-01

    Utilizing a technique to control the temperature which is not influenced by the operation mode of a reactor, an irradiation during which the temperature was alternatively changed several times between two temperatures (T-cycle) has been performed. Some defect structures are understood as combinations of the defect processes at lower and higher temperatures, and some others are understood if the defect processes during the transient between the two temperatures are taken into consideration. However, the most remarkable characteristic of defect processes associated with the temperature variation is the reaction of point defect clusters induced by lower-temperature irradiation at the higher temperature. During lower-temperature irradiation, there is a greater accumulation of vacancy clusters as stacking fault tetrahedra in fcc metals than that of interstitial clusters as dislocation loops. Vacancies evaporated from the vacancy clusters at higher temperature can eliminate interstitial clusters completely, and the repetition of these processes leads to unexpectedly slow defect structure development by T-cycle irradiation. ((orig.))

  7. Neutralization of Na2PO4: Reaction between Na3PO4 and CaCL2

    International Nuclear Information System (INIS)

    Xia Shenglan; Wang Luning

    1990-01-01

    The results of reaction Na 3 PO 4 with CaCl 2 in water at ambient and higher temperature are described. The reaction rate of Na 3 PO 4 with CaCl 2 is slow at ambient temperature and the reaction is complete at 260 deg C after 2 h. The products are Ca(OH) 2 and Ca 5 (PO 4 ) 3 (OH). The quantity of them is dependent upon the quanity of Na 3 PO 4 and CaCl 2 contained in water, all of them control pH of water

  8. Interaction between zircaloy tube and inconel spacer grid at high temperature

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi; Furuta, Teruo

    1990-09-01

    In order to investigate the interaction between fuel cladding and spacer grid of the pressurized water reactor during a severe accident, isothermal reaction tests were performed at the temperature range from 1248 to 1673K. A specimen consisted of a short Zircaloy-4 cladding tube and a piece of spacer grid of Inconel-718. In the tests in an argon atmosphere, eutectic reaction between Zircaloy and Inconel was observed at the contact points at 1248K. Rapid reaction was observed at higher test temperatures. For example, in the test at 1373K for 300s, Zircaloy reacted with Inconel over the entire thickness (0.62mm) of the tube in the vicinity of the contact point. In the present tests, Zircaloy which has higher melting point than Inconel was dissolved preferentially due to eutectic formation. In the tests in an oxygen atmosphere, no eutectic reaction was observed at temperatures below 1437K. A trace of interaction was found at the contact point of specimen heated at 1573 and 1623K. However, decrease in Zircaloy thickness was not measured. The possibility of eutectic reaction between Zircaloy cladding and Inconel spacer grid seems to be quite limited when sufficient oxygen is supplied. (author)

  9. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  10. Reaction OH + OH studied over the 298-834 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-06-21

    Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.

  11. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C. [Univ. of California, Davis, CA (United States)

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  12. Development of an apparatus to study chemical reactions at high temperature - a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sturzenegger, M; Schelling, Th; Steiner, E; Wuillemin, D [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    TREMPER is an apparatus that was devised to study kinetic and thermodynamic aspects of high-temperature reactions under concentrated solar irradiation. The design allows investigations on solid or liquid samples under inert or reactive atmospheres. The working temperature is adjustable; the upper limit that has yet been reached is about 1900 K. TREMPER will facilitate chemical reactivity studies on a temperature level that is difficult to access by other means. First experiments were conducted to study the decomposition of manganese oxide MnO{sub 2}. Chemical analysis of exposed samples confirmed that the parent MnO{sub 2} was decomposed to mixtures of Mn O and Mn{sub 3}O{sub 4}. The amount of Mn O ranged from 60 mol-% in air to 86 mol-% under inert atmosphere. (author) 1 fig., 1 tab., 2 refs.

  13. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    Science.gov (United States)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  14. The reactions of magnesium and its alloys with moist gases at high temperatures; Les reactions du magnesium et de ses alliages avec les gaz humides aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Darras, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-02-15

    The kinetics and mechanisms of the reaction of pure or low alloyed magnesium with various gas saturated by water vapor: oxygen, argon, nitrogen, air, carbon dioxide, have been studied and compared in the temperature range 350-600 deg C. After picturing the large chemical reactivity of magnesium surface, the more or less properties of the oxide film, always made of magnesia, have been shown depending on the nature of the gas carrying water vapor; in fact, metal sublimation occurs the more easily as the surrounding atmosphere is less oxidizing. Moreover, an activation energy change is systematic, but at a temperature which depends also on the latter. In the case of the alloys, the linear oxidation rate is generally obtained only after short induction periods, parabolic in nature. Two possibilities of corrosion inhibition of magnesium by water vapor are then demonstrated and explained: either by a partial superficial fluoridation, or when the carrier gas is carbon dioxide. Also, the extreme conditions of oxidation were studied, that is the ignition processes that occur at a particular temperature in every gas mixture. Finally, it is tried to evolve the fundamental and practical significance of all the results. (author) [French] On a etudie et compare par voie thermogravimetrique, micrographique et radiocristallographique, les cinetiques et les mecanismes de reaction du magnesium et de certains de ses alliages avec diverses atmospheres saturees en vapeur d'eau: oxygene, argon, azote, air, gaz carbonique, dans un domaine de temperatures s'etendant de 350 a 600 deg C, Apres avoir illustre l'extreme sensibilite chimique de la surface du magnesium, on a tout d'abord montre que la valeur plus ou moins protectrice de la couche d'oxyde formee, pourtant toujours constituee de magnesie normale, depend de la nature du gaz porteur de la vapeur d'eau; en effet, la sublimation du metal intervient d'autant plus facilement que les atmospheres en presence sont moins oxydantes. De plus

  15. Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction.

    Science.gov (United States)

    Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong

    2017-06-01

    By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.

  16. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    Science.gov (United States)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  17. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El

    2015-01-01

    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  18. Effect of the Reduction Temperature of PdAg Nanoparticles during the Polyol Process in the Ethanol Electrooxidation Reaction

    OpenAIRE

    Carrera-Cerritos, R.; Salazar-Hernandez, C.; Galindo-Esquivel, I. R.; Fuentes-Ramirez, R.

    2018-01-01

    This work reports the effect of reduction temperature during the synthesis of PdAg catalysts through the polyol process and their evaluation in the ethanol electrooxidation reaction (EOR). The characterization was performed using Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). The electrochemical evaluation for the ethanol electrooxidation reaction was implemented in alkaline medium using chronoamperometry (CA) and cyclic voltammetry (CV). An important effect of the reduct...

  19. IR laser induced reactions: temperature distributions and detection of primary products

    International Nuclear Information System (INIS)

    Bachmann, F.

    1981-12-01

    The products of laser-driven pyrolysis in the gas phase often differ drastically from those of conventional pyrolysis. In this work some reasons for this behaviour are considered. First, temperature distributions in cylindrical cells, filled with SF 6 at low pressure and heated by cw CO 2 laser radiation, are calculated by a simple model. The influence of convection is not taken into account. Comparison of theoretical prediction and corresponding experiments included the temperature-dependent absorption cross section. In the second part we describe a molecular-beam sampling system for real time monitoring of primary products in laser-driven reactions. With this system initial tests were made in nonreacting SF 6 /rare-gas mixtures. The influence of thermal diffusion was indicated by changes in concentration when the laser was switched on and off. A theoretical treatment is given solving the time-dependent heat-conduction and diffusion equation numerically. As an example for reacting systems, the laser-driven pyrolysis of methanol with SF 6 as an absorber was studied. (orig./HT)

  20. Colour-Temperature Correspondences: When Reactions to Thermal Stimuli Are Influenced by Colour

    Science.gov (United States)

    Ho, Hsin-Ni; Van Doorn, George H.; Kawabe, Takahiro; Watanabe, Junji; Spence, Charles

    2014-01-01

    In our daily lives, information concerning temperature is often provided by means of colour cues, with red typically being associated with warm/hot, and blue with cold. While such correspondences have been known about for many years, they have primarily been studied using subjective report measures. Here we examined this correspondence using two more objective response measures. First, we used the Implicit Association Test (IAT), a test designed to assess the strength of automatic associations between different concepts in a given individual. Second, we used a priming task that involved speeded target discrimination in order to assess whether priming colour or thermal information could invoke the crossmodal association. The results of the IAT confirmed that the association exists at the level of response selection, thus indicating that a participant’s responses to colour or thermal stimuli are influenced by the colour-temperature correspondence. The results of the priming experiment revealed that priming a colour affected thermal discrimination reaction times (RTs), but thermal cues did not influence colour discrimination responses. These results may therefore provide important clues as to the level of processing at which such colour-temperature correspondences are represented. PMID:24618675

  1. A Pilot Study of Ion - Molecule Reactions at Temperatures Relevant to the Atmosphere of Titan

    Czech Academy of Sciences Publication Activity Database

    Zymak, Illia; Žabka, Ján; Polášek, Miroslav; Španěl, Patrik; Smith, D.

    2016-01-01

    Roč. 46, č. 4 (2016), s. 533-538 ISSN 0169-6149 R&D Projects: GA ČR(CZ) GA14-19693S Grant - others:COST(XE) TD1308 Institutional support: RVO:61388955 Keywords : titan ionosphere * variable temperature selected ions flow tube * ion-molecule reactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.000, year: 2016

  2. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  3. Continuous thermal degradation of pyrolytic oil in a bench scale CSTR reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Hwan; Nam, Ki Yun [Climate Change Technology Research Division, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-05-15

    Continuous thermal degradation of two pyrolytic oils with low (LPO) and high boiling point distribution (HPO) was conducted in a constant stirrer tank reactor (CSTR) with bench scale. Raw pyrolytic oil as a reactant was obtained from the commercial rotary kiln pyrolysis plant for municipal plastic waste. The degradation experiment was conducted by temperature programming with 10 C/min of heating rate up to 450 C and then maintained with long lapse time at 450 C. Liquid product was sampled at initial reaction time with different degradation temperatures up to 450 C and then constant interval lapse time at 450 C. The product characteristics over two pyrolytic oils were compared by using a continuous reaction system. As a reactant, heavy pyrolytic oil (HPO) showed higher boiling point distribution than that of diesel and also light pyrolytic oil (LPO) was mainly consisting of a mixture of gasoline and kerosene range components. In the continuous reaction, LPO showed higher yield of liquid product and lower residue than those of HPO. The characteristics of liquid products were influenced by the type of raw pyrolytic oil. Also, the result obtained under degradation temperature programming was described. (author)

  4. Reactions of the HO2 radical with OH, H, Fe2+ and Cu2+ at elevated temperatures

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2004-01-01

    was studied in the temperature range 20-296degreesC (k = 7.0 x 10(9), E-a = 7.4) and the reaction with H in the temperature range 5-149degreesC (k = 8.5 x 10(9), E-a = 17.5). The reaction with Fe2+ was studied in the temperature range 16-118degreesC (k = 7.9 x 10(5), E-a = 36.8) and the reaction with Cu2......+ in the temperature range 17-211degreesC (k = 1.1 x 10(8), E-a = 14.9). (C) 2003 Elsevier Ltd. All rights reserved....

  5. Temperature-controlled cross-linking of silver nanoparticles with Diels-Alder reaction and its application on antibacterial property

    International Nuclear Information System (INIS)

    Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling

    2017-01-01

    Highlights: • Silver nanoparticles were functionalized by furan groups. • The DA reaction of furan with bismaleimide was used to cross-link the particles. • The reverse cross-linking could be controlled by temperature. • The antibacterial activity of silvers could be adjusted by the cross-linking. - Abstract: Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV–vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.

  6. Temperature-controlled cross-linking of silver nanoparticles with Diels-Alder reaction and its application on antibacterial property

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lian; Yang, Pengfei, E-mail: ypf@qlu.edu.cn; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling

    2017-05-01

    Highlights: • Silver nanoparticles were functionalized by furan groups. • The DA reaction of furan with bismaleimide was used to cross-link the particles. • The reverse cross-linking could be controlled by temperature. • The antibacterial activity of silvers could be adjusted by the cross-linking. - Abstract: Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV–vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.

  7. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  8. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non......-carbonating conditions, but no or even a negative effect under carbonating conditions. The results led to the conclusion that SO2 released from raw meal in the upper stages of the preheater does not to any significant extent react with CaO recirculating in the preheater tower....

  9. Reaction mechanism of reductive decomposition of FGD gypsum with anthracite

    International Nuclear Information System (INIS)

    Zheng, Da; Lu, Hailin; Sun, Xiuyun; Liu, Xiaodong; Han, Weiqing; Wang, Lianjun

    2013-01-01

    Highlights: • The reaction mechanism was different if the molar ratio of C/CaSO 4 was different. • The yield of CaO rises with an increase in temperature. • The optimal ratio of C/CaSO 4 = 1.2:1. • The decomposition process is mainly apparent solid–solid reaction with liquid-phase involved. - Abstract: The process of decomposition reaction between flue gas desulfurization (FGD) gypsum and anthracite is complex, which depends on the reaction conditions and atmosphere. In this study, thermogravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the experiment in a tubular reactor were used to characterize the decomposition reaction in a nitrogen atmosphere under different conditions. The reaction mechanism analysis showed that the decomposition reaction process and mechanism were different when the molar proportion of C/CaSO 4 was changed. The experiment results showed that appropriate increase in the C/CaSO 4 proportion and higher temperatures were suitable for the formation of the main production of CaO, which can help us to understand the solid state reaction mechanism better. Via kinetic analysis of the reaction between anthracite and FGD gypsum under the optimal molar ratio of C/CaSO 4 , the mechanism model of the reaction was confirmed and the decomposition process was a two-step reaction which was in accordance with apparent solid–solid reaction

  10. Production of carbon nanotubes using mechanical milling in the presence of an exothermic reaction

    International Nuclear Information System (INIS)

    Karimi, E.Z.; Zebarjad, S.M.; Khaki, J. Vahdati; Izadi, H.

    2010-01-01

    Carbon nanotubes (CNTs) have shown promising potential for many applications in field of engineering due to their unusual significant properties. A major challenge for the industrial applications of CNTs is the large-quantity production. In this field, one new method for CNT production is annealing the ball milled graphite powder. The annealing process should be done in high temperature (1200-1400 o C) and needs time more than 6 h. The novel process introduced in this paper is elimination the annealing stage thorough a thermite reaction. The necessity heat for the conversion of milling products to CNTs was generated in the milling chamber by an exothermic reaction. In addition, the reaction products acted as catalysts to the CNT formation process. The adiabatic temperatures of 1809, 2000 and 2325 K were selected according to balancing graphite and thermite mixture (Aluminum + Iron oxide powders) for exothermic reaction. The results of thermo gravimetric analysis (TGA) test proved that CNT formation strongly depends on adiabatic temperature. The results of microscopic evaluation done by transition electron microscope (TEM) showed that at higher adiabatic temperature CNTs could be produced.

  11. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  12. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  13. Effect of temperature on a free energy and equilibrium constants during dry flue gas desulphurisation chemical reactions

    Directory of Open Access Journals (Sweden)

    Kuburović Miloš

    2002-01-01

    Full Text Available During dry flue gas desulphurisation (FGD dry particles of reagents are inserted (injected in the stream of flue gas, where they bond SO2. As reagents, the most often are used compounds of calcium (CaCO3, CaO or Ca(OH2. Knowledge of free energy and equilibrium constants of chemical reactions during dry FGD is necessary for understanding of influence of flue gas temperature to course of these chemical reactions as well as to SO2 bonding from flue gases.

  14. In situ TEM observation of solid-gas reactions

    International Nuclear Information System (INIS)

    Kishita, K; Kamino, T; Watabe, A; Kuroda, K; Saka, H

    2008-01-01

    Under a gaseous atmosphere at high temperatures, almost all the materials (metal, catalysts, etc.) change their structures and properties. For the research and development of materials, it is of vital importance to clarify mechanisms of solid-gas and liquid-gas reactions. Recently an in situ TEM system combined with an environmental holder, which has a gas injection nozzle close to a specimen-heating element, has been developed. The gas injection nozzle permits gas to flow around the specimens sitting on the heating element made of a fine W filament. The newly developed in situ TEM has a differential pumping system; therefore, the pressure in the specimen chamber is maintained in the range of higher than 1 Pa, while the pressure in the electron gun chamber can be kept in the range of 10 -5 Pa. This system was applied to in situ observation of chemical reactions of metals with gases: Observation of oxidation and reduction under a gas pressure ranging from 10 -5 Pa to 1 Pa at high temperatures (room temperature to ∼1473 K) were successfully carried out on pure metal and rare metal catalysts at near-atomic resolution. This in situ environmental TEM system is promising for clarifying mechanisms of many solid-gas and liquid-gas reactions that take place at high temperatures under a gas atmosphere.

  15. Energy-filtered environmental transmission electron microscopy for the assessment of solid–gas reactions at elevated temperature: NiO/YSZ–H{sub 2} as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel (Switzerland); Hansen, T.W.; Wagner, J.B. [Center for Electron Nanoscopy, Technical University of Denmark, Lyngby (Denmark); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, Jülich (Germany); Hébert, C. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van herle, J. [Fuelmat Group, Ecole Polytechnique Fédérale de Lausanne, Sion (Switzerland); Hessler-Wyser, A. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel (Switzerland)

    2016-10-15

    A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode in 1.3 mbar of H{sub 2}. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction. Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction. - Highlights: • EFTEM is used to assess solid–gas reactions at elevated temperatures. • This novel approach provides local, quantitative chemical and structural data. • A 3D insight into how the reaction proceeds is obtained under certain assumptions. • Reaction mechanisms and their link to microstructure can be established.

  16. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  17. The relationship of microstructure and temperature to fracture mechanics parameters in reaction bonded silicon nitride

    International Nuclear Information System (INIS)

    Jennings, H.M.; Dalgleish, B.J.; Pratt, P.L.

    1978-01-01

    The development of physical properties in reaction bonded silicon nitride has been investigated over a range of temperatures and correlated with microstructure. Fracture mechanics parameters, elastic moduli, strength and critical defect size have been determined. The nitrided microstructure is shown to be directly related to these observed properties and these basic relationships can be used to produce material with improved properties. (orig.) [de

  18. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  19. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  20. Temperature dependence of immunoreactions using shear horizontal surface acoustic wave immunosensors

    Science.gov (United States)

    Kogai, Takashi; Yatsuda, Hiromi; Kondoh, Jun

    2017-07-01

    In this paper, the temperature dependence of immunoreactions, which are antibody-antigen reactions, on a shear horizontal surface acoustic wave (SH-SAW) immunosensor is described. The immunosensor is based on a reflection-type delay line on a 36° Y-cut 90° X-propagation quartz substrate, where the delay line is composed of a floating electrode unidirectional transducer (FEUDT), a grating reflector, and a sensing area between them. In order to evaluate the temperature dependence of immunoreactions, human serum albumin (HSA) antigen-antibody reactions are investigated. The SH-SAW immunosensor chip is placed in a thermostatic chamber and the changes in the SH-SAW velocity resulting from the immunoreactions are measured at different temperatures. As a result, it is observed that the HSA immunoreactions are influenced by the ambient temperature and that higher temperatures provide more active reactions. In order to analyze the immunoreactions, an analytical approach using an exponential fitting method for changes in SH-SAW velocity is employed.

  1. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  2. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-01-01

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  3. Interaction of chemical reactions and radiant heat transfer with temperature turbulent pulsations and its effect on heat traner in high-temperature gas flows

    International Nuclear Information System (INIS)

    Petukhov, B.S.; Zal'tsman, I.G.; Shikov, V.K.

    1980-01-01

    Methods of taking account of mutual effect of chemical transformations, radiation and turbulence in the calculations of heat transfer in gas flows are considered. Exponential functions of medium parameters are used to describe chemical sources and optical properties of media. It is shown using as an example the dissociation reaction C 2 reversible 2C that the effect of temperature and composition pulsations on recombination rates is negligibly small. It is also shown on the example of turbulent flow of hot molecular gas in a flat channel with cold walls that at moderate temperatures the effect of temperature pulsations on heat radiation flow can be significant (30-40%). The calculational results also show that there is a region in a turbulent boundary layer where the radiation greatly affects the coefficient of turbulent heat transfer

  4. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.

    Science.gov (United States)

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M

    2018-03-20

    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  5. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  6. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  7. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    Science.gov (United States)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  8. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  9. Growth and Destruction of PAH Molecules in Reactions with Carbon Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia; Henning, Thomas [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany)

    2017-02-10

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that all small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.

  10. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  11. The ecology and evolution of temperature-dependent reaction norms for sex determination in reptiles: a mechanistic conceptual model.

    Science.gov (United States)

    Pezaro, Nadav; Doody, J Sean; Thompson, Michael B

    2017-08-01

    Sex-determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex-determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature-dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco-evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management

  12. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  13. The influence of temperature and reaction time in the degradation of natural rubber latex

    International Nuclear Information System (INIS)

    Siti Zaleha Isa; Rosiyah Yahya; Aziz Hassan; Mohd Tahir

    2007-01-01

    Liquid natural rubber (LNR /LENR) should be considered as a new material instead of a new type of rubber though they have the same configuration as the rubber used. In this work, thermal degradation of natural rubber latex was carried out to obtain LNR/LENR by varying the reaction time at different temperatures. The degraded polymers were characterized structurally using FTIR and NMR spectroscopies and the average molecular weights were determined by membrane-osmometry and viscometry. (author)

  14. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, J.P. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  15. High temperature reactions between molybdenum and metal halides

    International Nuclear Information System (INIS)

    Boeroeczki, A.; Dobos, G.; Josepovits, V.K.; Hars, Gy.

    2006-01-01

    Good colour rendering properties, high intensity and efficacy are of vital importance for high-end lighting applications. These requirements can be achieved by high intensity discharge lamps doped with different metal halide additives (metal halide lamps). To improve their reliability, it is very important to understand the different failure processes of the lamps. In this paper, the corrosion reactions between different metal halides and the molybdenum electrical feed-through electrode are discussed. The reactions were studied in the feed-through of real lamps and on model samples too. X-ray photoelectron spectroscopy (XPS) was used to establish the chemical states. In case of the model samples we have also used atomic absorption spectroscopy (AAS) to measure the reaction product amounts. Based on the measurement results we were able to determine the most corrosive metal halide components and to understand the mechanism of the reactions

  16. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    Directory of Open Access Journals (Sweden)

    Christian H. Hornung

    2017-01-01

    Full Text Available This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.

  17. Is higher body temperature beneficial in ischemic stroke patients with normal admission CT angiography of the cerebral arteries?

    Science.gov (United States)

    Kvistad, Christopher Elnan; Khanevski, Andrej; Nacu, Aliona; Thomassen, Lars; Waje-Andreassen, Ulrike; Naess, Halvor

    2014-01-01

    Low body temperature is considered beneficial in ischemic stroke due to neuroprotective mechanisms, yet some studies suggest that higher temperatures may improve clot lysis and outcomes in stroke patients treated with tissue plasminogen activator (tPA). The effect of increased body temperature in stroke patients treated with tPA and with normal computed tomography angiography (CTA) on admission is unknown. We hypothesized a beneficial effect of higher body temperature in the absence of visible clots on CTA, possibly due to enhanced lysis of small, peripheral clots. Patients with ischemic stroke admitted to our Stroke Unit between February 2006 and April 2013 were prospectively registered in a database (Bergen NORSTROKE Registry). Ischemic stroke patients treated with tPA with normal CTA of the cerebral arteries were included. Outcomes were assessed by the modified Rankin Scale (mRS) after 1 week. An excellent outcome was defined as mRS=0, and a favorable outcome as mRS=0-1. A total of 172 patients were included, of which 48 (27.9%) had an admission body temperature ≥37.0°C, and 124 (72.1%) had a body temperature temperature ≥37.0°C was independently associated with excellent outcomes (odds ratio [OR]: 2.8; 95% confidence interval [CI]: 1.24-6.46; P=0.014) and favorable outcomes (OR: 2.8; 95% CI: 1.13-4.98; P=0.015) when adjusted for confounders. We found an association between higher admission body temperature and improved outcome in tPA-treated stroke patients with normal admission CTA of the cerebral arteries. This may suggest a beneficial effect of higher body temperature on clot lysis in the absence of visible clots on CTA.

  18. Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltametry

    International Nuclear Information System (INIS)

    Bilal, B.A.

    1991-01-01

    The redox potential of the couple Eu 3+ /E 2+ in aqueous NaCl, NaClO 4 and Na 2 SO 4 solutions of different strength and various pH values has been determined by means of cyclic voltammetry up to 458 K and 1 kbar. In all cases reversible voltammograms were obtained. Compared to the redox potential in ClO 4 - solutions of pH 2, no significant shift was observed in Cl-solutions of the same pH, whereas a drastic shift to more negative potentials in solutions of SO 4 2- and in Cl - solutions of higher pH (pH 3-5) was obtained. This indicates a negligible complexation of Eu 3+ by means of Cl - but a strong one by means of OH - and SO 4 2- . An isothermal pressure increase up to 1 kbar led to a shift of only few mV more negative, indicating a small pressure dependence of the change of the partial molar volume (ΔV el ) accompanying the redox reaction, which results in this case only due to the different degrees of electrostriction. A more drastic shift of the redox potential (in the positive direction) results with increasing temperature. The isobaric temperature dependence of the redox potential is described by a two parameter equation which remains valid up to the saturation pressure at 458 K, due to the small pressure effect. ΔS and ΔH of the redox reaction has been determined. (orig.)

  19. The higher temperature in the areola supports the natural progression of the birth to breastfeeding continuum.

    Directory of Open Access Journals (Sweden)

    Vincenzo Zanardo

    Full Text Available Numerous functional features that promote the natural progression of the birth to breastfeeding continuum are concentrated in the human female's areolar region. The aim of this study was to look more closely into the thermal characteristics of areola, which are said to regulate the local evaporation rate of odors and chemical signals that are uniquely important for the neonate's 'breast crawl'. A dermatological study of the areolae and corresponding intern breast quadrants was undertaken on the mothers of 70 consecutive, healthy, full-term breastfed infants. The study took place just after the births at the Policlinico Abano Terme, in Italy from January to February 2014. Temperature, pH and elasticity were assessed one day postpartum using the Soft Plus 5.5 (Callegari S.P.A., Parma, Italy. The mean areolar temperature was found to be significantly higher than the corresponding breast quadrant (34.60 ±1.40°C vs. 34.04 ±2.00°C, p<0.001 and the pH was also significantly higher (4.60±0.59 vs. 4.17±0.59, p<0.001. In contrast, the elasticity of the areolar was significantly lower (23.52±7.83 vs. 29.02±8.44%, p<0.003. Our findings show, for the first time, that the areolar region has a higher temperature than the surrounding breast skin, together with higher pH values and lower elasticity. We believe that the higher temperature of the areolar region may act as a thermal signal to guide the infant directly to the nipple and to the natural progression of the birth to breastfeeding continuum.

  20. Effects of the presence of core debris on the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.

    1984-01-01

    Calculations using the SOCON model indicated the following: the temperature was increased throughout the concrete and the reaction product layer. Temperature could be raised to above sodium bp. Rate of release and accumulation of water and CO 2 gas were increased. The sodium mass transport to the reaction surface was also increased. As a consequence, more hydrogen and chemical heat were produced. The probability of concrete mechanical failure was higher. Sodium boiling inside the reaction product layer would not significantly alter the course of the reaction, unless it could reduce the rate of sodium transport. Although the chemical heat dominated during the early period, the decay heat could become the main source later. The reactions were driven by three main heat sources: the chemical heat, core debris heat and conduction heat from the hot sodium pool. The latter could become a heat sink. Even with the presence of core debris, the chemical reaction penetration was self-limiting and eventually, the reaction penetration rate decreased to a small value

  1. Temperature effects on waste glass performance

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1991-02-01

    The temperature dependence of glass durability, particularly that of nuclear waste glasses, is assessed by reviewing past studies. The reaction mechanism for glass dissolution in water is complex and involves multiple simultaneous reaction proceeded, including molecular water diffusion, ion exchange, surface reaction, and precipitation. These processes can change in relative importance or dominance with time or changes in temperature. The temperature dependence of each reaction process has been shown to follow an Arrhenius relationship in studies where the reaction process has been isolated, but the overall temperature dependence for nuclear waste glass reaction mechanisms is less well understood, Nuclear waste glass studies have often neglected to identify and characterize the reaction mechanism because of difficulties in performing microanalyses; thus, it is unclear if such results can be extrapolated to other temperatures or reaction times. Recent developments in analytical capabilities suggest that investigations of nuclear waste glass reactions with water can lead to better understandings of their reaction mechanisms and their temperature dependences. Until a better understanding of glass reaction mechanisms is available, caution should be exercised in using temperature as an accelerating parameter. 76 refs., 1 tab

  2. The reactions of magnesium and its alloys with moist gases at high temperatures

    International Nuclear Information System (INIS)

    Darras, R.

    1963-02-01

    The kinetics and mechanisms of the reaction of pure or low alloyed magnesium with various gas saturated by water vapor: oxygen, argon, nitrogen, air, carbon dioxide, have been studied and compared in the temperature range 350-600 deg C. After picturing the large chemical reactivity of magnesium surface, the more or less properties of the oxide film, always made of magnesia, have been shown depending on the nature of the gas carrying water vapor; in fact, metal sublimation occurs the more easily as the surrounding atmosphere is less oxidizing. Moreover, an activation energy change is systematic, but at a temperature which depends also on the latter. In the case of the alloys, the linear oxidation rate is generally obtained only after short induction periods, parabolic in nature. Two possibilities of corrosion inhibition of magnesium by water vapor are then demonstrated and explained: either by a partial superficial fluoridation, or when the carrier gas is carbon dioxide. Also, the extreme conditions of oxidation were studied, that is the ignition processes that occur at a particular temperature in every gas mixture. Finally, it is tried to evolve the fundamental and practical significance of all the results. (author) [fr

  3. Spectral studies of intermediate species formed in one-electron reactions of bovine liver catalase at room and low temperatures. A comparison with peroxidase reactions

    International Nuclear Information System (INIS)

    Metodiewa, D.; Dunford, H.B.

    1992-01-01

    The reactions of native bovine catalase with superoxide and solvated electrons have been investigated using three different methods for generating these reducing substrates: γ-radiolysis of oxygenated or deaerated buffer solutions in the presence of an OH radical scavenger; either xanthine or acetaldehyde with xanthine oxidase; and low-temperature (77 K) γ-radiolysis of buffered ethylene glycol/water solutions with subsequent annealing of samples at 183 K. (Author)

  4. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence......We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...

  5. 1,3,5-Triethylbenzene Transformation Reactions Compared to Its Transalkylation Reaction with Ethylbenzene

    KAUST Repository

    Akhtar, M. Naseem; Sulaiman, Al Khattaf

    2009-01-01

    The transalkylation of 1,3,5-triethylbenzene (1,3,5-TEB) with ethylbenzene (EB) has been studied over USYtype catalysts using a riser simulator that mimics the operation of a fluidized-bed reactor. The reaction mixture EB and 1,3,5-TEB was used at a molar ratio of 1:1, which is equivalent to 40:60 wt % of EB/1,3,5-TEB, respectively. The reaction temperature was varied from 350 to 500 °C with a time on stream ranging from 3-15 s. The effect of reaction conditions on 1,3,5-TEB conversion, DEB selectivity, and isomerization of 1,3,5-TEB is reported. The transalkylation of 1,3,5-TEB with EB has been compared to the transformation reaction of pure 1,3,5-TEB and EB. The experimental results have revealed that reactivity of 1,3,5-TEB and selectivity of DEB is increased during the transalkylation reaction (EB + 1,3,5-TEB) as compared to the transformation reaction of pure EB or 1,3,5-TEB. The 1,3,5-TEB undergoes isomerization and a cracking reaction to produce DEB and EB but does not undergo any appreciable disproportionation reaction. The isomerization of 1,3,5-TEB is more active at low temperatures, while cracking is more active at high temperatures. © 2009 American Chemical Society.

  6. 1,3,5-Triethylbenzene Transformation Reactions Compared to Its Transalkylation Reaction with Ethylbenzene

    KAUST Repository

    Akhtar, M. Naseem

    2009-08-20

    The transalkylation of 1,3,5-triethylbenzene (1,3,5-TEB) with ethylbenzene (EB) has been studied over USYtype catalysts using a riser simulator that mimics the operation of a fluidized-bed reactor. The reaction mixture EB and 1,3,5-TEB was used at a molar ratio of 1:1, which is equivalent to 40:60 wt % of EB/1,3,5-TEB, respectively. The reaction temperature was varied from 350 to 500 °C with a time on stream ranging from 3-15 s. The effect of reaction conditions on 1,3,5-TEB conversion, DEB selectivity, and isomerization of 1,3,5-TEB is reported. The transalkylation of 1,3,5-TEB with EB has been compared to the transformation reaction of pure 1,3,5-TEB and EB. The experimental results have revealed that reactivity of 1,3,5-TEB and selectivity of DEB is increased during the transalkylation reaction (EB + 1,3,5-TEB) as compared to the transformation reaction of pure EB or 1,3,5-TEB. The 1,3,5-TEB undergoes isomerization and a cracking reaction to produce DEB and EB but does not undergo any appreciable disproportionation reaction. The isomerization of 1,3,5-TEB is more active at low temperatures, while cracking is more active at high temperatures. © 2009 American Chemical Society.

  7. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  8. A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2015-03-21

    The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.

  9. A novel rate of the reaction between NaOH with CO2 at low temperature in spray dryer

    Directory of Open Access Journals (Sweden)

    Yadollah Tavan

    2017-03-01

    Full Text Available Carbon dioxide (CO2 is an influential greenhouse gas that has a significant impact on global warming partly. Nowadays, many techniques are available to control and remove CO2 in different chemical processes. Since the spray dryer has high removal efficiency rate, a laboratory-scale spray dryer is used to absorb carbon dioxide from air in aqueous solution of NaOH. In the present study, the impact of NaOH concentration, operating temperature and nozzle diameter on removal efficiency of CO2 is explored through experimental study. Moreover, the reaction kinetic of NaOH with CO2 is studied over the temperature range of 50–100 °C in a laboratory-scale spray dryer absorber. In the present contribution, a simple reaction rate equation is proposed that shows the lowest deviation from the experimental data with error less than 2%.

  10. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  11. Cintichem modified process - {sup 99}Mo precipitation step: application of statistical analysis tools over the reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Teodoro, Rodrigo; Dias, Carla R.B.R.; Osso Junior, Joao A., E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandez Nunez, Eutimio Gustavo [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Quimica

    2011-07-01

    Precipitation of {sup 99}Mo by {alpha}-benzoin oxime ({alpha}-Bz) is a standard precipitation method for molybdenum due the high selectivity of this agent. Nowadays, statistical analysis tools have been employed in analytical systems to prove its efficiency and feasibility. IPEN has a project aiming the production of {sup 99}Mo by the fission of {sup 235}U route. The processing uses as the first step the precipitation of {sup 99}Mo with {alpha}-Bz. This precipitation step involves many key reaction parameters. The aim of this work is based on the development of the already known acidic route to produce {sup 99}Mo as well as the optimization of the reactional parameters applying statistical tools. In order to simulate {sup 99}Mo precipitation, the study was conducted in acidic media using HNO{sub 3}, {alpha}Bz as precipitant agent and NaOH /1%H{sub 2}O{sub 2} as dissolver solution. Then, a Mo carrier, KMnO{sub 4} solutions and {sup 99}Mo tracer were added to the reaction flask. The reactional parameters ({alpha}-Bz/Mo ratio, Mo carrier, reaction time and temperature, and cooling reaction time before filtration) were evaluated under a fractional factorial design of resolution V. The best values of each reactional parameter were determined by a response surface statistical planning. The precipitation and recovery yields of {sup 99}Mo were measured using HPGe detector. Statistical analysis from experimental data suggested that the reactional parameters {alpha}-Bz/Mo ratio, reaction time and temperature have a significant impact on {sup 99}Mo precipitation. Optimization statistical planning showed that higher {alpha}Bz/Mo ratios, room temperature, and lower reaction time lead to higher {sup 99}Mo yields. (author)

  12. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    ether at higher temperature. In co-reaction over H-modified ZSM-5, while the ethanol was transformed to an olefin (ethene) at lower temperature, methanol reacted to hydrocarbons at higher temperature. Above 553 K, dimethyl ether and lower amounts of methyl ethyl ether were formed compared to these products over alumina, while higher yields of C 3 -C 6 hydrocar- bons were obtained in comparison with single methanol conversion. This result proves the influence of ethanol (reacting immediately to ethene) in the co-reaction to produce higher yields of C 3 -C 5 olefins. It can be concluded that the single methanol transformation was modified by ethanol reactant producing new derivates i.e. mixed ether over alumina and also C 3 -C 5 hydrocarbon co-products over H-ZSM-5. (author)

  13. Extended Opacity Tables with Higher Temperature-Density-Frequency Resolution

    Science.gov (United States)

    Schillaci, Mark; Orban, Chris; Delahaye, Franck; Pinsonneault, Marc; Nahar, Sultana; Pradhan, Anil

    2015-05-01

    Theoretical models for plasma opacities underpin our understanding of radiation transport in many different astrophysical objects. These opacity models are also relevant to HEDP experiments such as ignition scale experiments on NIF. We present a significantly expanded set of opacity data from the widely utilized Opacity Project, and make these higher resolution data publicly available through OSU's portal with dropbox.com. This expanded data set is used to assess how accurate the interpolation of opacity data in temperature-density-frequency dimensions must be in order to adequately model the properties of most stellar types. These efforts are the beginning of a larger project to improve the theoretical opacity models in light of experimental results at the Sandia Z-pinch showing that the measured opacity of Iron disagrees strongly with all current models.

  14. High stereoselectivity on low temperature Diels-Alder reactions

    Directory of Open Access Journals (Sweden)

    Invernize Paulo

    2005-12-01

    Full Text Available Abstract We have found that some of the usually poor dienophiles (2-cycloenones can undergo Diels-Alder reaction at -78°C with unusually high stereoselectivity in the presence of niobium pentachloride as a Lewis acid catalyst. A remarkable difference in reaction rates for unsubstituted and α- or β-methyl substituted 2-cycloenones was also observed.

  15. Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Prag, Carsten Brorson; Polonsky, J.

    2012-01-01

    Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis...

  16. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  17. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature dependent fluorescence......We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...

  18. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  19. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  20. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

    Science.gov (United States)

    Peukert, S L; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

  1. Temperature measurements in thermonuclear plasmas; Mesures des temperatures dans les plasmas thermonucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The temperatures needed to produce thermonuclear reactions are of the order of several million degrees Kelvin. Devising methods for measuring such temperatures has been the subject of research in many countries. In order to present the problem clearly and to demonstrate its importance, the author reviews the various conditions which must be fulfilled in order that reactions may be qualified as thermonuclear. The relationship between the temperature and the cross-section of the reactions is studied, and it is shown that the notion of temperature in the plasmas is complex, which leads to a consideration of the temperature of the ions and that of the electrons. None of the methods for the temperature measurements is completely satisfactory because of the hypotheses which must be made, and which are seldom fulfilled during high-intensity discharges in the plasmas. In practice it is necessary to use several methods simultaneously. (author) [French] Les temperatures necessaires pour produire des reactions thermonucleaires sont de l'ordre de plusieurs millions de degres Kelvin. Les methodes envisagees pour mesurer ces temperatures font l'objet de recherches dans de nombreux pays. Afin de preciser le probleme et de montrer son importance, l'auteur rappelle les conditions qui doivent etre reunies pour que des reactions puissent etre qualifiees thermonucleaires. Il etudie la relation entre la temperature et la section efficace des reactions et montre que la notion de temperature dans les plasmas est complexe, ce qui amene a considerer la temperature des ions et celle des electrons. Aucune des methodes de mesure des temperatures n'est completement satisfaisante en raison des hypotheses qu'elles exigent et qui sont rarement realisees lors des decharges a haute intensite dans les plasmas. En pratique, il est necessaire d'utiliser plusieurs methodes simultanement. (auteur)

  2. Efficiency calculations and optimization analysis of a solar reactor for the high temperature step of the zinc/zinc-oxide thermochemical redox cycle

    Energy Technology Data Exchange (ETDEWEB)

    Haussener, S.

    2007-03-15

    A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in

  3. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  4. Catalytic steam gasification of biomass in fluidized bed at low temperature: Conversion from livestock manure compost to hydrogen-rich syngas

    International Nuclear Information System (INIS)

    Xiao, Xianbin; Le, Duc Dung; Li, Liuyun; Meng, Xianliang; Cao, Jingpei; Morishita, Kayoko; Takarada, Takayuki

    2010-01-01

    Utilizing large amounts of animal waste as a source of renewable energy has the potential to reduce its disposal problems and associated pollution issues. Gasification characteristics of the manure compost make it possible for low temperature gasification. In this paper, an energy efficient approach to hydrogen-rich syngas from manure compost is represented at relatively low temperature, around 600 o C, in a continuous-feeding fluidized bed reactor. The effects of catalyst performance, reactor temperature, steam, and reaction type on gas yield, gas composition, and carbon conversion efficiency are discussed. The Ni-Al 2 O 3 catalyst simultaneously promotes tar cracking and steam reforming. Higher temperature contributes to higher gas yield and carbon conversion. The steam introduction increases hydrogen yield, by steam reforming and water-gas shift reaction. Two-stage gasification is also tried, showing the advantage of better catalyst utilization and enhancing the catalytic reactions to some extent.

  5. Considerations from the viewpoint of neoclassical transport towards higher ion temperature heliotron plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Matsuoka, S.; Funaba, H.; Ida, K.; Nagaoka, K.; Yoshinuma, M.; Takeiri, Y.; Kaneko, O.

    2010-01-01

    The neoclassical (NC) transport analyses have been performed to elucidate the plausible approaches towards higher ion-temperature heliotron plasmas. Avoidance of the ripple transport is the key issue, for which the neoclassical ambipolar radial electric field (E r ) can be utilized. The ion-root scenario and the electron-root scenario are expected to be effective according to the experimental situation (especially, the temperature ratio between ions and electrons). The impact of the ion mass on the neoclassical ambipolar E r is also investigated to reveal the easier realization of electron-root E r in heavier ion plasmas. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species during Methanol to Olefins Conversion over H-SSZ-13

    NARCIS (Netherlands)

    Borodina, E.; Meirer, F.; Lezcano-Gonzalez, I.; Mokhtar, M.; Asiri, A. M.; Al-Thabaiti, S. A.; Basahel, S. N.; Ruiz-Martinez, J.; Weckhuysen, B. M.

    The formation of hydrocarbon species during the methanol to olefins (MTO) reaction over zeolite H-SSZ-13 has been systematically studied at reaction temperatures between 573 and 723 K with a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that the applied

  7. Formation of intermediate structures during the thermal transformation of lignin. 5. Contribution of the reactions of formation and recombination of paramagnetic centres

    Energy Technology Data Exchange (ETDEWEB)

    Domburg, G E; Skripchenko, T N

    1982-01-01

    ESR spectra were determined for samples of softwood (spruce) lignin and hardwood (aspen or birch) lignin at 20-400 degrees C and after cooling to 20 degrees C. Results provide evidence for a change from low-temperature to high-temperature reactions at 300-350 degrees C (higher in hardwoods than softwoods) associated with increased formation and recombination of paramagnetic centres (free radicals). A scheme is presented for the sequence of reactions leading to charcoal formation over the temperature range 100-500 degrees C.

  8. Reaction of tellurium with Zircaloy-4

    International Nuclear Information System (INIS)

    Boer, R. de; Cordfunke, E.H.P.

    1994-09-01

    Interaction of tellurium vapour with Zircaloy during the initial stage of an accident will lead to retention of tellurium in the core. For reliable estimation of the release behaviour of tellurium, it is necessary to know which zirconium tellurides are formed during this interaction. In this work the reaction of tellurium with Zircaloy-4 has been studied, using various reaction temperatures and tellurium vapour pressures. The compound ZrTe 2-x is formed on the surface of the Zircaloy in a broad range of reaction temperatures and vapour pressures. It is found that the formation of the more zirconium-rich compound Zr 5 Te 4 is favoured at high reaction temperatures is combination with low tellurium vapour pressures. (orig.)

  9. RBS investigations of high-temperature reactions on graphite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Eloi, C.C. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry]|[Center for Applied Energy Research, University of Kentucky, Lexington, KY 40506 (United States); Robertson, J.D. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry]|[Center for Applied Energy Research, University of Kentucky, Lexington, KY 40506 (United States); Majidi, V. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry

    1995-05-01

    While graphite furnace atomic absorption spectrometry (GFAAS) is one of the most powerful techniques for ultratrace analysis of Pb, it is often plagued by matrix interferences. These interferences are minimized by the addition of matrix modifiers which stabilize the analyte signal through unknown mechanisms. Using RBS, the high temperature reactions of nitrate salts of Pb were studied on pyrolytically coated graphite with and without matrix modifiers. The addition of an ammonium phosphate modifier was found to stabilize Pb through the formation of a metal oxy-phosphorus compound. Moreover, the depth profiles demonstrated that the pyrolytically coated graphite was not impervious as previously thought. Pre-treatment of the surface with O{sub 2} is also known to cause a delay in the vaporization of Pb. While a surface effect had previously been postulated, the 3.04 MeV resonance {sup 16}O({alpha}, {alpha}){sup 16}O elastic scattering measurements show that it proceeds through the formation of surface bound lead-oxygen species as the number of oxygen atoms chemisorbed and the number of lead atoms, present on the surface prior to vaporization, are nearly equal. (orig.).

  10. Analyzes of students’ higher-order thinking skills of heat and temperature concept

    Science.gov (United States)

    Slamet Budiarti, Indah; Suparmi, A.; Sarwanto; Harjana

    2017-11-01

    High order thinking skills refer to three highest domains of the revised Bloom Taxonomy. The aims of the research were to analyze the student’s higher-order thinking skills of heat and temperature concept. The samples were taken by purposive random sampling technique consisted of 85 high school students from 3 senior high schools in Jayapura city. The descriptive qualitative method was employed in this study. The data were collected by using tests and interviews regarding the subject matters of heat and temperature. Based on the results of data analysis, it was concluded that 68.24% of the students have a high order thinking skills in the analysis, 3.53% of the students have a high order thinking skills in evaluating, and 0% of the students have a high order thinking skills in creation.

  11. Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Hsin; Syu, Yu-Jhih [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-10-15

    Hydrogen production via the water gas shift reaction (WGSR) was investigated in a high gravity environment. A rotating packed bed (RPB) reactor containing a Cu-Zn catalyst and spinning in the range of 0-1800 rpm was used to create high centrifugal force. The reaction temperature and the steam/CO ratio ranged from 250 to 350 C and 2 to 8, respectively. A dimensionless parameter, the G number, was derived to account for the effect of centrifugal force on the enhancement of the WGSR. With the rotor speed of 1800 rpm, the induced centrifugal force acting on the reactants was as high as 234 g on average in the RPB. As a result, the CO conversion from the WGSR was increased up to 70% compared to that without rotation. This clearly revealed that the centrifugal force was conducive to hydrogen production, resulting from intensifying mass transfer and elongating the path of the reactants in the catalyst bed. From Le Chatelier's principle, a higher reaction temperature or a lower steam/CO ratio disfavors CO conversion; however, under such a situation the enhancement of the centrifugal force on hydrogen production from the WGSR tended to become more significant. Accordingly, a correlation between the enhancement of CO conversion and the G number was established. As a whole, the higher the reaction temperature and the lower the steam/CO ratio, the higher the exponent of the G number function and the better the centrifugal force on the WGSR. (author)

  12. Reaction of hydroborate anions with liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.

    1978-01-01

    The reaction of anhydrous liquid HF with salts of the decahydro-closodecarborate (2) ion B 10 H 10 2- at room temperature or a decreased temperature leads to the formation of complex mixtures of high-molecular boranes with yields of 88 to 92 %. This solid, yellow, nonvolatile product contains traces of B 10 H 14 and B 18 H 22 . The average molecular masses of the borane mixtures obtained are in the range of 438 - 992. The complex composition of the mixtures was confirmed by thin-layer chromatography on silica gel. The IR and NMR spectra of the products are presented. The possible mechanism of the reaction between HF and B 10 H 10 2- with the formation of higher boron hydrides is discussed. Salts of B 12 H 10 2- and B 10 Cl 10 2- do not react with HF; KBF 4 and CsB 9 H 14 are decomposed by HF with the formation of MBF 4

  13. Novel determination of surface temperature of lithium hydride hydrolysis using DRIFT spectroscopy

    International Nuclear Information System (INIS)

    Awbery, Roy P.; Tsang, S.C.

    2008-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy has been used to show how increasing temperature causes the hydroxyl band of LiOH to shift linearly and reversibly towards lower wavenumbers. The band shift with temperature was used to determine the surface temperature of LiH when exposed to water vapour at 158, 317, 793 and >1900 Pa (5%, 10%, 25% and >60% relative humidity), the exothermic hydrolysis reaction resulting in surface temperature increases of up to 50 deg. C. The rate of surface heating was found to increase slightly with increasing water vapour exposures up to 793 Pa, demonstrating that the LiH hydrolysis reaction rate was dependent upon the partial pressure of water vapour. The growth of surface LiOH appeared to significantly slow down further reaction until the water vapour exposure was increased beyond 1900 Pa, when formation of hydrated LiOH occurred. The effect of temperature on detectors was also investigated showing that baselines shifted towards higher intensities with increasing temperature when measured with a DTGS detector and towards lower intensities with an MCT detector, over the temperature range 25-450 deg. C

  14. Enhancing chemical reactions

    Science.gov (United States)

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  15. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  16. Particle size effect of redox reactions for Co species supported on silica

    International Nuclear Information System (INIS)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki; Yamamoto, Yusaku; Yamashita, Shohei; Katayama, Misaki; Inada, Yasuhiro

    2016-01-01

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co 3 O 4 species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particles and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co 3 O 4 was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO 2 -supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.

  17. Temperature effect on formation of advanced glycation end products in infant formula milk powder

    DEFF Research Database (Denmark)

    Zhu, Ru-Gang; Cheng, Hong; Li, Li

    2018-01-01

    For a standard infant formula milk powder, browning reactions were shown to become limiting for shelflife for storage at higher temperature rather than lipid oxidation. Advanced glycation end (AGE) products were found in the temperature range 65e115 C to have an energy of activation...

  18. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  19. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    Science.gov (United States)

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    The decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem. Accs. 2010, 127, 519] and Yang et al. [J. Theor. Comput. Chem. 2012, 11, 53]. The rate constants of all the elementary reactions were evaluated with the variational transition state theory. The vibrational frequencies for the stationary points as well as the selected points along the minimum energy paths (MEPs) were calculated with density functional theory at the B3PW91/6-311G(d,p) level and the energies were refined with the accurate model chemistry method G3(MP2). For the elementary reaction associated with a transition state, the MEP was obtained with the intrinsic reaction coordinates, while for the elementary reaction without transition state, the relaxed potential energy surface scan was employed to obtain the MEP. The rate constants were calculated for temperatures within 200-2000 K and fitted into three-parameter Arrhenius expressions. The reaction rates were investigated by using the COMSOL software to solve numerically the coupled differential rate equations. The results show that the reactions are, consistent with the experiments, appropriate at 1100-1500 K with the reaction time of 30 s for 1100 K, 1.5 s for 1200 K, 0.12 s for 1300 K, 0.011 s for 1400 K, or 0.001 s for 1500 K, for propene being almost completely consumed. The completely dissociated species, boron carbides C(3)B, C(2)B, and CB, have very low concentrations, and C(3)B is the main product at higher temperatures, while C(2)B is the main product at lower temperatures. For the reaction time 1 s, all these concentrations approach into a nearly constant. The maximum value (in mol/m(3)) is for the highest temperature 1500 K with the orders of -13, -17, and -23 for C(3)B, C(2)B, and CB, respectively. It was also found that the logarithm of the overall reaction rate and reciprocal

  20. Temperature and excitation energy of hot nuclei in the reaction of 40Ar+197Au at 25 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, H.; Jin, G.; Li, Z.; Dai, G.; Qi, Y.; He, Z.; Luo, Q.; Duan, L.; Wen, W.; Zhang, B.

    1997-01-01

    The coincidence measurements between heavy fission fragments and light charged particles with Z ≤2 were carried out for the 40 Ar+ 197 Au reaction at 25 MeV/nucleon, to study the properties of hot nuclei in heavy ion induced reactions. The linear momentum transfers (LMTs) were deduced from the folding angle and the time-of-flight difference between two fission fragments of heavy residues. The relationship of the nuclear temperature (slope parameter of the energy spectrum) and the excitation energy was determined independently from the measurement of the kinetic energy spectra in the frames of the emitting sources and from the LMT analysis. Both the temperature and the excitation energy increase with decreasing impact parameter, which suggests that a plateau temperature of 5.5 MeV is reached at an excitation energy of 3.1 MeV/nucleon. The result was also compared with various statistical models that explain the plateau by the multifragmentation process, where the excitation energy is assumed to be stored in compression and expansion effects. (orig.)

  1. Exploiting Synergistic Effects in Organozinc Chemistry for Direct Stereoselective C-Glycosylation Reactions at Room Temperature.

    Science.gov (United States)

    Hernan-Gomez, Alberto; Orr, Samantha; Uzelac, Marina; Kennedy, Alan; Barroso, Santiago; Jusseau, Xavier; Lemaire, Sebastien; Farina, Vittorio; Hevia, Eva

    2018-06-01

    Pairing a range of bis(aryl) zinc reagents ZnAr2 with the stronger Lewis acidic [(ZnArF2)] (ArF = C6F5), enables highly stereoselective cross-coupling between glycosyl bromides and ZnAr2 without the use of a transition metal. Reactions occur at room temperature with excellent levels of stereoselectivity, where ZnArF2 acts as a non-coupling partner although its presence is crucial for the execution of the C(sp2)-C(sp3) bond formation process. Mechanistic studies have uncovered a unique synergistic partnership between the two zinc reagents, which circumvents the need for transition-metal catalysis or forcing reaction conditions. Key to the success of the coupling is the avoidance of solvents that act as Lewis bases vs. diarylzinc compounds (e.g. THF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.

    Science.gov (United States)

    Dammeier, J; Colberg, M; Friedrichs, G

    2007-08-21

    The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).

  3. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    Science.gov (United States)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  4. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Battaglia, Francine

    2008-01-01

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  5. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  6. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy.

    Science.gov (United States)

    Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi

    2009-07-06

    Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.

  7. Non-resonant triple alpha reaction rate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Carter, J.; Donaldson, L.; Sideras-Haddad, E. [Schools of Physics, University of Witwatersrand, Johannesburg 2050 (South Africa); Furuno, T.; Kawabata, T. [Departments of Physics, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Kamimura, M. [RIKEN Nishina Center, Wako, Saitama, 351-0198 (Japan); Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C. [iThemba Laboratory for Accelerator Based Sciences Somerset, West, 7129 (South Africa)

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  8. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    Science.gov (United States)

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may

  9. High-precision (p,t) reactions to determine reaction rates of explosive stellar processes

    NARCIS (Netherlands)

    Matić, Andrija

    2007-01-01

    The aim of my study was to investigate the nuclear structure of 22Mg and 26Si. These two nuclei play a significant role in stellar reaction processes at high temperatures. On base of the obtained nuclear structure we calculated the stellar reaction rates for the following reactions: 18Ne(α,p)21Na,

  10. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  11. Hydrogenolysis reactions characteristics of deashed coal under low temperature; Teionka ni okeru dakkai shoritan no suisoka bunkai hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Owada, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-10-28

    In relation to coal liquefaction, the effect of inorganic minerals on liquefaction reactivity and the effect of hydrofluoric acid (HF) treatment on organic molecular structure of coals were studied by demineralization of low-rank coals in HCl or HF solution. In experiment, Taiheiyo coal specimen was deashed in HCl solution at 25-70{degree}C for 6 hours while agitating, and in addition, deashed in HF solution. Hydrogenolysis of the deashed coal specimen was conducted using tetralin or methylnaphthalene as solvent under initial hydrogen pressure of 1.96MPa at reaction temperature of 693K for 60min. The experimental results are as follows. The ash content of Taiheiyo coal hardly offers catalysis in hydrogenolysis reaction. Carboxyl group increases in demineralization of coal because of breakage of bridged bonds. Organic structure of coal changes by demineralization in dense HF solution. Change in organic structure of coal by demineralization in dense HF solution is dependent on treatment temperature. 2 refs., 4 figs., 1 tab.

  12. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  14. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    OpenAIRE

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  15. Surface modification of highly oriented pyrolytic graphite by reaction with atomic nitrogen at high temperatures

    International Nuclear Information System (INIS)

    Zhang Luning; Pejakovic, Dusan A.; Geng Baisong; Marschall, Jochen

    2011-01-01

    Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 deg. C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 deg. C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 deg. C show the D mode near 1360 cm -1 , which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.

  16. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  17. Low temperature rate coefficients of the H + CH(+) → C(+) + H2 reaction: New potential energy surface and time-independent quantum scattering.

    Science.gov (United States)

    Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry

    2015-09-21

    The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.

  18. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  19. Development of a reduced model of formation reactions in Zr-Al nanolaminates

    KAUST Repository

    Vohra, Manav

    2014-12-15

    A computational model of anaerobic reactions in metallic multilayered systems with an equimolar composition of zirconium and aluminum is developed. The reduced reaction formalism of M. Salloum and O. M. Knio, Combust. Flame 157(2): 288–295 (2010) is adopted. Attention is focused on quantifying intermixing rates based on experimental measurements of uniform ignition as well as measurements of self-propagating front velocities. Estimates of atomic diffusivity are first obtained based on a regression analysis. A more elaborate Bayesian inference formalism is then applied in order to assess the impact of uncertainties in the measurements, potential discrepancies between predictions and observations, as well as the sensitivity of predictions to inferred parameters. Intermixing rates are correlated in terms of a composite Arrhenius law, which exhibits a discontinuity around the Al melting temperature. Analysis of the predictions indicates that Arrhenius parameters inferred for the low-temperature branch lie within a tight range, whereas the parameters of the high-temperature branch are characterized by higher uncertainty. The latter is affected by scatter in the experimental measurements, and the limited range of bilayers where observations are available. For both branches, the predictions exhibit higher sensitivity to the activation energy than the pre-exponent, whose posteriors are highly correlated.

  20. Development of a reduced model of formation reactions in Zr-Al nanolaminates

    KAUST Repository

    Vohra, Manav; Winokur, Justin; Overdeep, Kyle R.; Marcello, Paul; Weihs, Timothy P.; Knio, Omar

    2014-01-01

    A computational model of anaerobic reactions in metallic multilayered systems with an equimolar composition of zirconium and aluminum is developed. The reduced reaction formalism of M. Salloum and O. M. Knio, Combust. Flame 157(2): 288–295 (2010) is adopted. Attention is focused on quantifying intermixing rates based on experimental measurements of uniform ignition as well as measurements of self-propagating front velocities. Estimates of atomic diffusivity are first obtained based on a regression analysis. A more elaborate Bayesian inference formalism is then applied in order to assess the impact of uncertainties in the measurements, potential discrepancies between predictions and observations, as well as the sensitivity of predictions to inferred parameters. Intermixing rates are correlated in terms of a composite Arrhenius law, which exhibits a discontinuity around the Al melting temperature. Analysis of the predictions indicates that Arrhenius parameters inferred for the low-temperature branch lie within a tight range, whereas the parameters of the high-temperature branch are characterized by higher uncertainty. The latter is affected by scatter in the experimental measurements, and the limited range of bilayers where observations are available. For both branches, the predictions exhibit higher sensitivity to the activation energy than the pre-exponent, whose posteriors are highly correlated.

  1. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P.; Knopp, G.; Johnson, M.; Boedi, A.; Gerber, T.

    2009-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Paul Scherrer Institute (PSI) in Switzerland. The project 'Investigation of reactions and species dominating low temperature combustion' involves the characterisation of species that govern ignition. A base established for the spectroscopic investigation of peroxy radicals is discussed. The two-fold aim of this project is discussed which includes the measurement of molecular features such as binding energies and dissociation patterns of well-studied and spectroscopically accessible molecules and radicals as well as the application of the measurement techniques to alkyl peroxy radicals. This was done in order to improve the database of a class of molecules playing a dominant role in combustion and atmospheric chemistry. Several experimental techniques that are to be developed to achieve these aims are looked at. Achievements made are discussed and future work to be carried out is noted.

  2. Gibbs free energy of reactions involving SiC, Si3N4, H2, and H2O as a function of temperature and pressure

    Science.gov (United States)

    Isham, M. A.

    1992-01-01

    Silicon carbide and silicon nitride are considered for application as structural materials and coating in advanced propulsion systems including nuclear thermal. Three-dimensional Gibbs free energy were constructed for reactions involving these materials in H2 and H2/H2O. Free energy plots are functions of temperature and pressure. Calculations used the definition of Gibbs free energy where the spontaneity of reactions is calculated as a function of temperature and pressure. Silicon carbide decomposes to Si and CH4 in pure H2 and forms a SiO2 scale in a wet atmosphere. Silicon nitride remains stable under all conditions. There was no apparent difference in reaction thermodynamics between ideal and Van der Waals treatment of gaseous species.

  3. The reaction of hydrazine nitrate with nitric acid

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu

    2004-03-01

    It is known that hydrazine nitrate used in nuclear fuel reprocessing plants is an unstable substance thermochemically like hydroxylamine nitrate. In order to take the basic data regarding the reaction of hydrazine nitrate with nitric acid, initiation temperatures and heats of this reaction, effect of impurity on initiation temperature and self-accelerating reaction when it holds at constant temperature for a long time were measured by the pressure vessel type reaction calorimeter etc. In this paper, the experimental data and evaluation of the safe handling of hydrazine nitrate in nuclear fuel reprocessing plants are described. (author)

  4. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    DEFF Research Database (Denmark)

    Nocente, M.; Källne, J.; Salewski, Mirko

    2015-01-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instrume......First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution...... instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical...... results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the reaction and the temperature of protons accelerated by radio-frequency heating.The results presented in this paper significantly improve the accuracy of diagnostic...

  5. Fast Neutral reactions in cold interstellar clouds

    International Nuclear Information System (INIS)

    Graff, M.M.

    1989-01-01

    The dynamics of exothermic neutral reactions between radical species have been examined, with particular attention to reactivity at the very low energies characteristic of cold interstellar clouds. Long-range interactions (electrostatic and spin-orbit) were considered within in the adiabatic capture-infinite order sudden approximation (ACIOSA). Analytic expressions have been developed for cross sections and rate constants of exothermic reactions between atoms and dipolar radicals at low temperatures. A method for approximating the adiabatic potential surface for the reactive state will be presented. The reaction systems O+OH and O+CH are both predicted to be fast at low temperatures. The systems C+CH and C+OH are expected to be nonreactive at low temperatures, and upper limits of rate constants for these reactions have been estimated. General predictions are made for other reaction systems. Implications for interstellar chemistry will be discussed

  6. A low temperature investigation of the gas-phase N(2D) + NO reaction. Towards a viable source of N(2D) atoms for kinetic studies in astrochemistry.

    Science.gov (United States)

    Nuñez-Reyes, Dianailys; Hickson, Kevin M

    2018-06-18

    The gas-phase reaction of metastable atomic nitrogen N(2D) with nitric oxide has been investigated over the 296-50 K temperature range using a supersonic flow reactor. As N(2D) could not be produced photolytically in the present work, these excited state atoms were generated instead through the C(3P) + NO → N(2D) + CO reaction while C(3P) atoms were created in situ by the 266 nm pulsed laser photolysis of CBr4 precursor molecules. The kinetics of N(2D) atoms were followed on-resonance by vacuum ultraviolet laser induced fluorescence at 116.7 nm. The measured rate constants for the N(2D) + NO reaction are in excellent agreement with most of the earlier work at room temperature and represent the only available kinetic data for this process below 296 K. The rate constants are seen to increase slightly as the temperature falls to 100 K with a more substantial increase at even lower temperature; a finding which is not reproduced by theoretical work. The prospects for using this chemical source of N(2D) atoms in future studies of a wide range of N(2D) atom reactions are discussed.

  7. Evaluation of the effect of the acetic anhydride concentration, temperature and time in the acetylation reaction for chemical modification of Calophyllum brasiliense and Enterolobium cyclocarpum

    International Nuclear Information System (INIS)

    Blanco Arias, Ernesto

    2013-01-01

    A treatment is performed to increase the life of wood in Costa Rica. The effect of acetic anhydride concentration, temperature and time have been studied in the reaction of acetylation for the chemical modification of tropical species Calophyllum brasiliense (Cedar Maria) and Enterolobium cyclocarpum (Guanacaste). Species have been characterized for quantifying the amount of OH groups available for the acetylation reaction. An important aspect is that the temperature conditions, the ratio of acetic anhydride with has dry wood mass and initial acetic acid concentration were assessed using a factorial design and have determined the conditions with which has obtained greater weight gain in the acetylation reaction. Furthermore, the acetylation reaction was conducted for times of 2 hours, 4,5 hours and 7 hours. The ATR infrared spectroscopy was used to verify the replacement of the OH group by acetyl groups and the increase in the different reaction time. The characteristics obtained from the OH groups have been 13,23 mmol and 13,85 mmol of OH per gram of wood of the Guanacaste species and Cedar Maria respectively. The temperature has been 90 degrees Celsius, one relationship acetic anhydride/dry wood 1,75 mL/g without the initial presence of acetic acid in the reaction medium. Also, percentages of profit of weight (WPG) have been obtained; maximums of 12,20% and 12,44% for Guanacaste for Cedar Maria in reaction time of 7 hours, 4,5 hours respectively. A decrease in the band has performed in the 3300 cm -1 characteristic of the OH group and the presence of bands at 1700 cm -1 characteristic of C=O. One of the main conclusions is that the acetylated wood has been an increase in resistance to biological degradation by white rot fungus Trametes versicolor of about 87% efficiency for both species [es

  8. Possible higher order phase transition in large-N gauge theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically different behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical

  9. Temperature dependence of desoxyribosylation of pyrimidine derivatives labelled with carbon-14 and tritium

    International Nuclear Information System (INIS)

    Pritasil, L.; Filip, J.

    1977-01-01

    The effect of the temperature and concentration of the enzyme preparation from Escherichia coli B on the reaction of pyrimidine bases with 2-desoxy-α-D-riboso-l-phosphate or α-D-riboso-l-phosphate was studied. It was found that at +2 deg C and low enzyme concentration higher yields of nucleosides are obtained than at the commonly used temperature of 37 deg C. The reaction time, however, must be protracted. The prepared [2- 14 C] uridine, 2'-deoxy[2- 14 C] uridine and [2- 14 C] thymidine had a high specific activity and radiochemical purity

  10. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    Science.gov (United States)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  11. Rate Constants and H-Atom Product Yields for the Reactions of O(1D) Atoms with Ethane and Acetylene from 50 to 296 K.

    Science.gov (United States)

    Nunez-Reyes, Dianailys; Hickson, Kevin M

    2018-05-01

    The gas phase reactions of atomic oxygen in its first excited state with ethane and acetylene have been investigated in a continuous supersonic flow reactor over the temperature range 50 K to 296 K. O(1D) atoms were produced by pulsed laser photolysis of ozone at 266 nm. Two different types of experiments, kinetics measurements and H-atom product yield determinations, were performed by detecting O(1D) atoms and H(2S) atoms respectively by vacuum ultraviolet laser induced fluorescence. The measured rate constants are in agreement with previous work at room temperature and little or no temperature dependence was observed as the temperature is decreased to 50 K. H-atoms yields were found to be independent of temperature for the reaction of O(1D) with ethane. These product yields are discussed in the context of earlier dynamics measurements at higher temperature. Due to the influence of secondary reactions, no H-atom yields could be obtained for the reaction of O(1D) with acetylene.

  12. Characterization of Cu/CeO2/Al2O3 catalysts by temperature programmed reduction and activity for CO oxidation

    International Nuclear Information System (INIS)

    Cataluna, Renato; Baibich, Ione M.; Dallago, R.M.; Picinini, C.; Martinez-Arias, A.; Soria, J.

    2001-01-01

    The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional: oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher dispersion when cerium oxide is present. (author)

  13. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  14. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  15. Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

    2018-06-01

    Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.

  16. Fluorination reaction uranium dioxide by fluorine

    International Nuclear Information System (INIS)

    Ogata, Shinji; Homma, Shunji; Koga, Jiro; Matsumoto, Shiro; Sasahira, Akira; Kawamura, Fumio

    2004-01-01

    Kinetics of the fluorination reaction of uranium dioxide is studied using un-reacted core model with shrinking particles. The model includes the film mass transfer of fluorine gas and its diffusion in the particle. The rate constants of the model are determined by fitting the experimental data for 370-450degC. The model successfully represents the fluorination in this temperature range. The rate control step is identified by examining the rate constants of the model for 300-1,800degC. For temperature range up to 900degC, the fluorination reaction is rate controlling. For over 900degC, both mechanisms of the mass transfer of fluorine and the fluorination reaction control the rate of the fluorination. With further increase of the temperature, however, the fluorination reaction becomes so fast that the mass transfer of fluorine eventually controls the rate of the fluorination. (author)

  17. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-107 K).

    Science.gov (United States)

    Ocaña, A J; Blázquez, S; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Jiménez, E

    2018-02-21

    Ethanol, CH 3 CH 2 OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH 3 CH 2 OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10 -11 (T/300 K) -(0.71±0.10) cm 3 molecule -1 s -1 . In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10 -11 cm 3 molecule -1 s -1 at 100 K and around 1 × 10 -10 cm 3 molecule -1 s -1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  18. Mathematical Model of Synthesis Catalyst with Local Reaction Centers

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2017-01-01

    Full Text Available The article considers a catalyst granule with a porous ceramic passive substrate and point active centers on which an exothermic synthesis reaction occurs. A rate of the chemical reaction depends on the temperature according to the Arrhenius law. Heat is removed from the pellet surface in products of synthesis due to heat transfer. In our work we first proposed a model for calculating the steady-state temperature of a catalyst pellet with local reaction centers. Calculation of active centers temperature is based on the idea of self-consistent field (mean-field theory. At first, it is considered that powers of the reaction heat release at the centers are known. On the basis of the found analytical solution, which describes temperature distribution inside the granule, the average temperature of the reaction centers is calculated, which then is inserted in the formula for heat release. The resulting system of transcendental algebraic equations is transformed into a system of ordinary differential equations of relaxation type and solved numerically to achieve a steady-state value. As a practical application, the article considers a Fischer-Tropsch synthesis catalyst granule with active cobalt metallic micro-particles. Cobalt micro-particles are the centers of the exothermic reaction of hydrocarbons macromolecular synthesis. Synthesis occurs as a result of absorption of the components of the synthesis gas on metallic cobalt. The temperature distribution inside the granule for a single local center and reaction centers located on the same granule diameter is found. It was found that there is a critical temperature of reactor exceeding of which leads to significant local overheating of the centers - thermal explosion. The temperature distribution with the local reaction centers is qualitatively different from the granule temperature, calculated in the homogeneous approximation. It is shown that, in contrast to the homogeneous approximation, the

  19. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  20. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  1. Rate coefficients of the CF3CHFCF3 + H → CF3CFCF3 + H2 reaction at different temperatures calculated by transition state theory with ab initio and DFT reaction paths.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2013-03-15

    The minimum energy path (MEP) of the reaction, CF(3)CHFCF(3) + H → transition state (TS) → CF(3)CFCF(3) + H(2), has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6-31++G**, BH&HLYP/cc-pVDZ, BMK/6-31++G**, M05/6-31+G**, M05-2X/6-31+G**, UMP2/6-31++G**, PUMP2/6-31++G**//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVDZ//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVTZ(spd,sp)//UMP2//6-31++G**, RCCSD(T)/CBS//M05/6-31+G**, and RCCSD(T)/CBS//UMP2/6-31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero-curvature, and small-curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000-1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6-31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. Copyright © 2012 Wiley Periodicals, Inc.

  2. Fusion chain reaction - a chain reaction with charged particles

    International Nuclear Information System (INIS)

    Peres, A.; Shvarts, D.

    1975-01-01

    When a DT-plasma is compressed to very high density, the particles resulting from nuclear reactions give their energy mostly to D and T ions, by nuclear collisions, rather than to electrons as usual. Fusion can thus proceed as a chain reaction, without the need of thermonuclear temperatures. In this paper, we derive relations for the suprathermal ion population created by a fusion reaction. Numerical integration of these equations shows that a chain reaction can proceed in a cold infinite DT-plasma at densities above 8.4x10 27 ions.cm -3 . Seeding the plasma with a small amount of 6 Li reduces the critical density to 7.2x10 27 ions.cm -3 (140000times the normal solid density). (author)

  3. Thermodynamic evaluation of highly exothermic reactions for the fabrication of ceramic metal composites

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Pandolfelli, V.C.; Botta Filho, W.J.; Tomasi, R.; Stevens, R.; Brook, R.J.

    1990-01-01

    Highly exothermic reactions allow the synthesis or production of materials. Which present advantages regarding to energy saving, simplicity of process and higher purity of the products. Considering adiabatic conditions these reactions give off a large amount of heat which will raise the temperature of the system, allowing the production of highly refractory materials. This paper presents a thermodynamic forecast of reactants are Nb2O5, Al e Zr. The objective is to produce high toughness alumina matrix composites containing ZrO2 particles and Nb metal. (author)

  4. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  5. Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Lázaro-Milla, Carlos

    2015-02-25

    2-(Pyridinium-1-yl)-1,1-bis(triflyl)ethanides have been used as 1,2-dipole precursors in a metal-free direct [2+2] cycloaddition reaction of alkynes. Starting from stable zwitterionic pyridinium salts, the electron deficient olefin 1,1-bis(trifluoromethylsulfonyl)ethene is generated in situ and immediately reacted at room temperature with an alkyne to afford substituted cyclobutenes. Remarkably, this mild and facile uncatalyzed protocol requires neither irradiation nor heating.

  6. Experimental Study of Na based Titanium Nanofluid-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae; Baek, Jehyun; Kim, Hyun Soo; Oh, Sun Ryung; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    In KALIMER-600, a sodium-cooled fast reactor designed by KAERI, thermal energy is transported from high-temperature liquid Na (526 .deg. C at 0.1 MPa) to low temperature water (230 .deg. C at - 19.5 MPa) through a heat exchanger. If any leakage or rupture occurs during the operation of this heat exchanger, highly pressurized liquid water can penetrate into the liquid Na channels; this contact should instantly cause SWR. As reaction continues, liquid water is soon vaporized by pressure drop and huge amount of reaction heat. This generated water vapor expands large reaction area and increases sodium-water vapor reaction process. Therefore, the rapid generation of reaction product (like H{sub 2}) and water vapor increases the system pressure that can cause the system failure in SFR. To reduce this strong chemical reaction phenomena between Na and water, some we have focused on suppressing the chemical reactivity of liquid Na by dispersing nanoparticles (NPs). For the real application of NaTiNF, the pressure change induced by NaTiNF-water reaction is compared with Na-water reaction in the present study. NaTiNF contains 100nm of Ti NPs at 0.2 vol. %. The reaction rate of NaTiNF-water reaction is also investigated as reaction temperature increases. Sodium-water vapor reaction (SVR) will occur when an SWR accident occurs in SFR. In this manner, NaTiNF-water vapor reaction is experimentally performed for ensuring the suppression of chemical reactivity of NaTiNF in contact with water vapor. In the basic step for reducing risk of an SWR in SFR, we have experimentally verified the suppressed chemical reactivity of liquid sodium using Ti NPs through SWR and SVR experiments. In SWR, Na based titanium nanofluid (NaTiNF) shows lower pressure change than Na. As T{sub R} increases, P{sub max} in Na-water reaction increases while NaTiNF does not. The reaction rate of NaTiNF shows twice slower than that of Na. In SVR, NaTiNF shows slower temperature increase than Na. The distinct

  7. Polyol synthesis of silver nanocubes via moderate control of the reaction atmosphere.

    Science.gov (United States)

    Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L

    2014-12-01

    Silver nanocubes were successfully synthesized at high yield in variously controlled reaction atmospheres by balancing etching of O2/Cl(-) and reduction of glycolaldehyde. There have been efforts to control the O2 content in reaction atmospheres by purging of O2 or Ar gas for the balancing, but we found that moderate control of reaction atmosphere, just by careful timing of the opening and the capping of the reaction vial, greatly enhanced reproducibility. Enhanced reproducibility is attributed to alleviation of evaporation and condensation of glycolaldehyde (b.p.=131°C) by using capping at reaction temperatures higher than the b.p. of glycolaldehyde rather than purging with gas. The most important finding is that seeding is initiated by HNO3 induced deoxygenation reaction in the gas phase. O2 is consumed by oxidation of NO generated from the silver etching reaction by HNO3, which effectively controls the reaction atmosphere without introduction of gas. Our simple method to control reaction atmosphere reduces the overall reaction time to one fifth of the previous result and provides excellent size and distribution selectivity of the Ag nanocube product. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Intrinsic reaction kinetics of coal char combustion by direct measurement of ignition temperature

    International Nuclear Information System (INIS)

    Kim, Ryang-Gyoon; Jeon, Chung-Hwan

    2014-01-01

    A wire heating reactor that can use a synchronized experimental method was developed to obtain the intrinsic kinetics of large coal char particles ranging in size from 0.4 to 1 mm. This synchronization system consists of three parts: a thermocouple wire for both heating and direct measurement of the particle temperature, a photodetector sensor for determining ignition/burnout points by measuring the intensity of luminous emission from burning particles, and a high-speed camera–long-distance microscope for observing and recording the movement of luminous zone directly. Coal char ignition was found to begin at a spot on the particle's external surface and then moved across the entire particle. Moreover, the ignition point determined according to the minimum of dT/dt is a spot point and not a full growth point. The ignition temperature of the spot point rises as the particle diameter increases. A spot ignition model, which describes the ignition in terms of the internal conduction and external/internal oxygen diffusion, was then developed to evaluate the intrinsic kinetics and predict the ignition temperature of the coal char. Internal conduction was found to be important in large coal char particles because its effect becomes greater than that of oxygen diffusion as the particle diameter increases. In addition, the intrinsic kinetics of coal char obtained from the spot ignition model for two types of coal does not differ significantly from the results of previous investigators. -- Highlights: • A novel technique was used to measure the coal char particle temperature. • The ignition point determined from a dT/dt minimum is a spot ignition point. • A spot ignition model was suggested to analyze the intrinsic reaction kinetics of coal char. • Internal conduction has to be considered in order to evaluate the intrinsic kinetics for larger particle (above 1 mm)

  9. Determining Annealing Temperatures for Polymerase Chain Reaction

    Science.gov (United States)

    Porta, Angela R.; Enners, Edward

    2012-01-01

    The polymerase chain reaction (PCR) is a common technique used in high school and undergraduate science teaching. Students often do not fully comprehend the underlying principles of the technique and how optimization of the protocol affects the outcome and analysis. In this molecular biology laboratory, students learn the steps of PCR with an…

  10. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  11. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    International Nuclear Information System (INIS)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  12. The use of on-line ion chromatography for high temperature and high pressure reaction studies

    International Nuclear Information System (INIS)

    Lynch, G.J.

    1993-10-01

    This paper describes the use of on-line ion chromatography as a tool for chemistry reaction studies in small volume systems. The technique was used to study chemistry behavior in a high temperature and high pressure autoclave system. A dual analyzer, multi-channel on-line ion chromatograph (IC) was configured to automate the sampling and analysis. Analytical channels were set up for analysis of inorganic anions, monovalent cations, conductivity, and pH. Conductivity and pH were measured using the IC as a flow injection analyzer. Use of the IC system provides significant advantages over conventional sampling and analysis techniques: Reduction in sample volume, a closed sampling system that protects air or light sensitive analytes from breakdown, around-the-clock test performance combined with automatic calibration and quality control checking, and detection and tracking of reaction products or unexpected contaminants. Methods used to correct measured concentrations for the effects of sampling and for calculation of control chemical loss half-lives are presented. A limited evaluation of the flow injection analysis methods for conductivity and pH is provided

  13. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  14. KINETICS OF THE REACTION OF ELEMENTAL FLUORINE WITH ZIRCONIUM CARBIDE AND ZIRCONIUM DIBORIDE AT HIGH TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Kuriakose, A. K.; Margrave, J. L.

    1963-09-15

    The reaction between ZrC and F/sub 2/ was investigated at 278 to 410 deg C, using 31 mm HgF/syb 2/. The reaction was found to be linear with time, and linear rate constants were computed. The activation energy was determined to be 22.1 plus or minus 1.6 kcal/mole. ZrB/sub 2/ is not attacked by 31 mm HgF/sub 2/ below 500 deg C. The weight losses from reaction of ZrB/sub 2/ with F/sub 2/ at 600 to 900 deg C and of ZrC with F/sub 2/ at 700 to 950 deg C, were rneasured for a F/sub 2/ pressure of 2.7 mm Hg. Zero-time linear rate constants were calculated and found not to be strongly temperature-dependent above 600 deg C, and the activation energies are essentially zero for both ZrB/sub 2/ and ZrC. For ZrC at 350 deg C and for ZrB/sub 2/ at 700 deg C, the rate is approximately proportional to the square root of F/sub 2/ partial pressure, while for ZrC at 700 deg C, it is proportional to the 1.5 power of F/sub 2/ partial pressure. (D.L.C.)

  15. The effects of temperature and pH on the kinetics of reactions between catalase and its suicide substrate hydrogen peroxide.

    Science.gov (United States)

    Ghadermarzi, M; Moosavi-Movahedi, A A

    1997-12-01

    Variation of initial (intact) activity (ai), inactivation rate constant (ki) and the partition ratio (r) of bovine liver catalase in the reaction with its suicide substrate, hydrogen peroxide, were determined in workable ranges of temperature (17-42 degrees C) or pH (5-10.5), using the data of progress curves. The changes of temperature had a slight effect on ai, giving a Q10 of 1.15 for the enzymatic breakdown of H2O2, corresponding to an improved value for its activation energy of 8.8 +/- l kJ.mol-1. In contrast, the ki was greatly increased by elevation of temperature, giving a Q10 of 2.1 for the suicide inactivation reaction of catalase. Consequently, a significant decrease of r was observed by increasing of temperature. In pH studies, decreasing of pH from 7.0 to 5.0 led to reduction of ai whereas the ki value was not effected significantly, possibly due to the parallel changes in affinities to free catalase and compound I for H2O2. Reduction of ki and alpha i were observed at pH > 9.5, where reversible dissociation of tetrameric enzyme into catalytically inactive subunits is possible. The r had a maximum value at pH around 7.5, similar to that of catalase activity. The effect of ionic strength on the above kinetic parameters was studied. There was not an observable influence when the ammonium sulfate concentration was below l M.

  16. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Roberto Rosa

    2014-05-01

    Full Text Available The use of microwaves to perform inorganic synthesis allows the direct transfer of electromagnetic energy inside the reaction mixture, independently of the temperature manifested therein. The conversion of microwave (MW radiation into heat is useful in overcoming the activation energy barriers associated with chemical transformations, but the use of microwaves can be further extended to higher temperatures, thus creating unusual high-energy environments. In devising synthetic methodologies to engineered nanomaterials, hydrothermal synthesis and solution combustion synthesis can be used as reference systems to illustrate effects related to microwave irradiation. In the first case, energy is transferred to the entire reaction volume, causing a homogeneous temperature rise within a closed vessel in a few minutes, hence assuring uniform crystal growth at the nanometer scale. In the second case, strong exothermic combustion syntheses can benefit from the application of microwaves to convey energy to the reaction not only during the ignition step, but also while it is occurring and even after its completion. In both approaches, however, the direct interaction of microwaves with the reaction mixture can lead to practically gradient-less heating profiles, on the basis of which the main observed characteristics and properties of the aforementioned reactions and products can be explained.

  17. Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions

    Science.gov (United States)

    Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.

    2018-03-01

    N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.

  18. Effects on the development of Dipylidium caninum and on the host reaction to this parasite in the adult flea (Ctenocephalides felis felis).

    Science.gov (United States)

    Pugh, R E

    1987-01-01

    Temperature was found to be a major factor affecting the development of Dipylidium caninum and the presence of a host reaction of adult Ctenocephalides felis felis to D. caninum. Adult fleas reared at 30-32 degrees C contained fully developed metacestodes when they emerged from their cocoons. However at lower temperatures, D. caninum could not complete development until the flea hosts had spent some time on their mammalian hosts. It was the surface temperature of the mammals (31-36 degrees C) and not the fleas' blood meals which resulted in the metacestodes completing their development. This development of D. caninum was therefore independent of the flea development. At 20 degrees C, a larger and more prolonged host reaction was mounted than at higher temperatures. The larval flea diet had a small effect on the subsequent cestode development and the adult fleas' reaction to it.

  19. The Effect of MHD on Free Convection with Periodic Temperature and Concentration in the Presence of Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    Zigta B.

    2017-12-01

    Full Text Available This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.

  20. The Effect of MHD on Free Convection with Periodic Temperature and Concentration in the Presence of Thermal Radiation and Chemical Reaction

    Science.gov (United States)

    Zigta, B.; Koya, P. R.

    2017-12-01

    This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.

  1. Reactions of oxygen containing structures in coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hodek, W.; Kirschstein, J.; Van Heek, K.-H. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany, F.R.))

    1991-03-01

    In coal pyrolysis O-containing structures such as ether bridges and phenolic groups play an important role. Their reactions were studied by non-isothermal pyrolysis of a high volatile bituminous coal and some model polymers with gas chromatographic detection of the gaseous pyrolysis products. The coal was separated into the maceral groups vitrinite, exinite and inertinite, which showed markedly different pyrolysis behaviour. The formation of CO, methane and benzene was measured versus temperature. By comparison with polyphenyleneoxide and phenol-formaldehyde resins, it was found that the main volatilization, during which most of the tar is evolved, is initiated by cleavage of alkyl-aryl-ethers. Rearrangements of the primarily formed radicals lead to the formation of CO and methane at higher temperatures. 5 refs., 8 figs., 1 tab.

  2. Characterization and kinetic study of Diels-Alder reaction: Detailed study on N-phenylmaleimide and furan based benzoxazine with potential self-healing application

    Directory of Open Access Journals (Sweden)

    Z. Stirn

    2016-07-01

    Full Text Available The Diels-Alder reaction between N-phenylmaleimide and benzoxazine bearing furan group was investigated for the purpose of successful appliance of self-healing in benzoxazine polymer networks. The reaction as a function of temperature/time was performed in molten state and in a solution, where also the kinetic study was performed. The Diels-Alder reaction leads to a mixture of two diastereomers: endo presented at lower cyclo-reversion temperature and exo at higher. Therefore, the conversion rates and exo/endo ratio were studied in detail for both systems. For instance, in molten state the Diels-Alder reaction was triggered by the temperature of the melting point at 60 °C with exo/endo ratio preferable to the endo adduct. The study of the kinetics in a solution revealed that the Diels-Alder reaction followed typical bimolecular reversible second-order reaction. The activation energies were close to the previous literature data; 48.4 and 51.9 kJ·mol–1 for Diels-Alder reaction, and 91.0 and 102.3 kJ·mol–1 for retro-Diels-Alder reaction, in acetonitrile and chloroform, respectively. The reaction equilibrium in a solution is much more affected by the retro-Diels-Alder reaction than in a molten state. This study shows detailed investigation of DA reaction and provides beneficial knowledge for further use in self-healing polymer networks.

  3. Method for conducting exothermic reactions

    Science.gov (United States)

    Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-01-05

    A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  4. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-05-01

    The chemical reaction behavior between Zircaloy-4 and 1.4919 (AISI 316) stainless steel, which are used in absorber assemblies of Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR), has been studied in the temperature range 1000 - 1400 C. Zircaloy was used in the as-received, pre-oxidized and oxygen-containing condition. The maximum temperature was limited by the fast and complete liquefaction of the reaction couple as a result of eutectic chemical interactions. Liquefaction of the components occurs below their melting point. The effect of oxygen dissolved in Zircaloy plays an important role in the interaction; oxide layers on the Zircaloy surface delay the chemical interactions with stainless steel but cannot prevent them. Oxygen dissolved in Zircaloy reduces the reaction rates and shift the liquefaction temperature to slightly higher levels. The interaction experiments at the examined temperatures with or without pre-oxidized Zircaloy can be described by parabolic rate laws. The Arrhenius equations for the various conditions of interactions are given. (orig.) [de

  5. Reaction of uranium and the fluorocarbon FC-75

    Science.gov (United States)

    Young, R. H.

    1985-04-01

    Because of criticality concerns with water cooling in enriched uranium upgrading, a fluorocarbon has been evaluated as a replacement coolant for internal module components in the Plasma Separation Process (PSP). The interaction of bulk uranium and of powdered uranium with FC-75 has been investigated at temperatures between 200 and 700 C. The gas pressure and the metal temperature were monitored as a function of time. Modest temperature changes of 50 to 100 C were observed for the bulk uranium/fluorocarbon reaction. Much larger changes (up to 1000 C) were noted for the reaction involving high surface area uranium powder. These temperature transients, particularly for the powdered uranium reaction, were short-lived ( 10 seconds) and indicative of the formation of a protective layer of reaction products. Analysis of residual gas products by infrared spectroscopy indicated that one potentially serious hazard, UF6, was not present; however, several small toxic fluorocarbons were produced by thermolysis and/or reaction. X-ray diffraction analysis of the residual solids indicated UF4 and UO2 were the major solid products.

  6. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  7. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  8. Degradation reactions in SONY-type Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.P.; Nagasubramanian, G.

    2000-07-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 C involving the solid electrolyte interface (SEI) layer and the LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/LiPF{sub 6}). These reactions could account for the thermal runaway observed in these cells beginning at 100 C. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  9. The optimization of 18F-nucleophilic fluorination reaction and its application in synthesis of VMAT2 imaging tracer: [18F]AV-133

    International Nuclear Information System (INIS)

    Liu Yajing; Zhu Lin; Karl, P.; Qu Wenchao

    2010-01-01

    Objective: The nucleophilic introduction of n.c.a. [ 18 F]F- into alkanes by nucleophilic reaction is the main method of preparing 18 F-labelled radiopharmaceuticals, and the efficient and rapid reaction is important in 18 F-labelled radiopharmaceuticals. Method: Using 2-(3-substitute propoxy)naphthalene as model compound, the optimal reaction condition was achieved by comparing the different [ 18 F]fluorination condition: 1)different leaving groups (-OTs, -I, -Br and -Cl), 2) different [ 18 F]fluorination catalysts (Kryptofix222/K 2 CO 3 and TBAHCO 3 ), 3) different reaction solvent (ACN, DMSO and DMF), 4) [ 18 F]fluorination temperature (40, 50 and 60 degree C) and 5) reaction time. The radiochemical yields were analyzed by TLC and HPLC. VMAT2 imaging tracer [ 18 F]AV-133 was synthesized under the optimal conditions. Results: From the experiment results, the reation activity was the highest when using -OTs as the leaving group, followed by -I and -Br, -Clunder the [ 18 F]fluorination condition of using K222/K 2 CO 3 as catalyst and ACN as solvent. And also, the radiochemical yield raised as the reaction time and temperature increased. The higher temperature, the shorter time to reach the equilibrium. When changing the solvent from ACN to DMSO, the radiochemical yields were increased. On the contrary, the radiochemical yields were decreasing by using DMF. Comparing the catalyst K222/K 2 CO 3 with TBAHCO 3 , the [ 18 F] fluorination of -OTs gave a higher radiochemical yield in the presence of K222/K 2 CO 3 . So the optimized [ 18 F]fluorination reaction condition was that choosing -OTs as the leaving group, the [ 18 F]fluorination reaction was efficient and gave higher radiochemical yield catalyzed by K222/K 2 CO 3 in DMSO at high temperature. [ 18 F]fluorination of AV-244 was found to provide the VMAT2 imaging tracer [ 18 F]AV-133 in 80 ± 2% radiochemical yield after reaction at 120 degree C for 3 min under optimized conditions. Conclusion: We have described an

  10. Rates of the main thermonuclear reactions

    International Nuclear Information System (INIS)

    Abramovich, S.N.; Guzhovskii, B.Ya.; Dunaeva, S.A.; Fomushkin, E.F.

    1992-01-01

    The data on the cross sections of main thermonuclear reactions have been estimated with an account of the latest experimental results in a form of S-factor spline presentation. Based on this estimation, the reates of these reactions in 0.0001-1 MeV temperature range in the supposition of Maxwell distribution of relative velocities have been computed. The Maxwell-Boltzmann averaged -factors were calculated according to the table values of the reaction rates. Then the -factors were approximated with the 3 order spline-function. The necessity of the account of electron shielding and intramolecular movement at low temperatures is discussed (orig.)

  11. Dual-level direct dynamics studies for the hydrogen abstraction reaction of 1,1-difluoroethane with O( 3P)

    Science.gov (United States)

    Liu, Jing-yao; Li, Ze-sheng; Dai, Zhen-wen; Zhang, Gang; Sun, Chia-chung

    2004-01-01

    We present dual-level direct dynamics calculations for the CH 3CHF 2 + O( 3P) hydrogen abstraction reaction in a wide temperature range, based on canonical variational transition-state theory including small curvature tunneling corrections. For this reaction, three distinct transition states, one for α-abstraction and two for β-abstraction, have been located. The potential energy surface information is obtained at the MP2(full)/6-311G(d,p) level of theory, and higher-level single-point calculations for the stationary points are preformed at several levels, namely QCISD(T)/6-311+G(3df,3pd), G2, and G3 using the MP2 geometries, as well as at the G3//MP4SDQ/6-311G(d,p) level. The energy profiles are further refined with the interpolated single-point energies method at the G3//MP2(full)/6-311G(d,p) level. The total rate constants match the experimental data reasonable well in the measured temperature range 1110-1340 K. It is shown that at low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increases.

  12. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-10^7 K)

    Science.gov (United States)

    Ocaña, A. J.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejoab, J.; Jiménez, E.

    2018-02-01

    Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 10^7 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(10^7 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10^-11 (T/300 K)-(0.71±0.10) cm^3 molecule^-1 s^-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (˜10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10^-11 cm^3 molecule^-1 s^-1 at 100 K and around 1 × 10^-10 cm^3 molecule^-1 s^-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  13. Dechlorinating reaction of organic chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Yahata, Taneaki; Kihara, Shinji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Ohuchi, Misao

    1996-06-01

    Dechlorination has been examined by the reaction between iron, aluminum powder or CaO and organic chlorides such as C{sub 2}HCl{sub 3} and CH{sub 2}Cl{sub 2}. Progress of the reaction was analyzed with mass spectrometer. The reaction between iron and organic chloride was rapidly occurred at the temperature between 350 and 440degC in an atmosphere of argon. Above 380degC, more than 99.5% of C{sub 2}HCl{sub 3} was decomposed within approximately 100 minutes. At 440degC, approximately 60% of C{sub 2}HCl{sub 3} was decomposed by the reaction with aluminium powder within approximately 100 minutes. At 440degC, reaction between C{sub 2}HCl{sub 3} and CaO powder were occurred rapidly in an atmosphere of argon to form CaCl{sub 2} and free carbon. Also in an atmosphere of air, nearly the same result was obtained. In this reaction, CaCl{sub 2}, CO and CO{sub 2} were formed. CH{sub 2}Cl{sub 2} was also decomposed by the reaction with iron at the temperature between 380 and 440degC. In the reaction, FeCl{sub 2}, carbon and hydrogen were formed. CH{sub 3}{sup +} and CH{sub 4} were observed during the dechlorinating reaction of CH{sub 2}Cl{sub 2}. Variation in particle size of iron powder such as 100, 150 and 250 mesh did not affect the reaction rate. (author)

  14. A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals

    KAUST Repository

    Khaled, Fathi; Giri, Binod; Szőri, Milá n; Mai, Tam V.-T.; Huynh, Lam K.; Farooq, Aamir

    2017-01-01

    The reaction kinetics of dimethyl carbonate (DMC) and OH radicals were investigated behind reflected shock waves over the temperature range of 872-1295 K and at pressures near 1.5 atm. Reaction progress was monitored by detecting OH radicals at 306.69 nm using a UV laser absorption technique. The rate coefficients for the reaction of DMC with OH radicals were extracted using a detailed kinetic model developed by Glaude et al. (Proc. Combust. Inst. 2005, 30(1), 1111-1118). The experimental rate coefficients can be expressed in Arrhenius form as: kexpt'l = 5.15 × 10(13) exp(-2710.2/T) cm(3) mol(-1) s(-1). To explore the detailed chemistry of the DMC + OH reaction system, theoretical kinetic analyses were performed using high-level ab initio and master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) calculations. Geometry optimization and frequency calculations were carried out at the second-order Møller-Plesset (MP2) perturbation level of theory using Dunning's augmented correlation consistent-polarized valence double-ζ basis set (aug-cc-pVDZ). The energy was extrapolated to the complete basis set using single point calculations performed at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory. For comparison purposes, additional ab initio calculations were also carried out using composite methods such as CBS-QB3, CBS-APNO, G3 and G4. Our calculations revealed that the H-abstraction reaction of DMC by OH radicals proceeds via an addition elimination mechanism in an overall exothermic process, eventually forming dimethyl carbonate radicals and H2O. Theoretical rate coefficients were found to be in excellent agreement with those determined experimentally. Rate coefficients for the DMC + OH reaction were combined with literature rate coefficients of four straight chain methyl ester + OH reactions to extract site-specific rates of H-abstraction from methyl esters by OH radicals.

  15. Study of the obtainment of Mo_2C by gas-solid reaction in a fixed and rotary bed reactor

    International Nuclear Information System (INIS)

    Araujo, C.P.B. de; Souza, C.P. de; Souto, M.V.M.; Barbosa, C.M.; Frota, A.V.V.M.

    2016-01-01

    Carbides' synthesis via gas-solid reaction overcomes many of the difficulties found in other processes, requiring lower temperatures and reaction times than traditional metallurgic routes, for example. In carbides' synthesis in fixed bed reactors (FB) the solid precursor is permeated by the reducing/carburizing gas stream forming a packed bed without mobility. The use of a rotary kiln reactor (RK) adds a mixing character to this process, changing its fluid-particle dynamics. In this work ammonium molybdate was subjected to carbo-reduction reaction (CH4 / H2) in both reactors under the same gas flow (15L / h) and temperature (660 ° C) for 180 minutes. Complete conversion was observed Mo2C (dp = 18.9nm modal particles sizes' distribution) in the fixed bed reactor. In the RK reactor this conversion was only partial (∼ 40%) and Mo2C and MoO3 (34nm dp = bimodal) could be observed on the produced XRD pattern. Partial conversion was attributed to the need to use higher solids loading in the reactor CR (50% higher) to avoid solids to centrifuge. (author)

  16. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  17. A high-temperature shock tube kinetic study for the branching ratios of isobutene+OH reaction

    KAUST Repository

    Khaled, Fathi; Giri, Binod; Farooq, Aamir

    2016-01-01

    Isobutene is an important intermediate formed during the oxidation of branched alkanes. It also appears as a byproduct during the combustion of methyl-tert-butyl-ether (MTBE) which is used as octane enhancer in gasolines. To understand better the oxidation kinetics of isobutene, we have measured the rate coefficients for the reaction of OH radicals with isobutene (HCC(CH)) behind reflected shock waves over the temperature range of 830-1289K and pressures near 1.5atm. The reaction progress was followed by measuring mole fraction of OH radicals near 306.7nm using UV laser absorption technique. Three deuterated isotopes, isobutene-1-d2 (DCC(CH)), isobutene-3-d6 (HCC(CD)) and isobutene-d8 (DCC(CD)) were employed to elucidate branching ratios of the allylic and vinylic H-abstraction from isobutene by OH radicals. H-abstraction from the allylic sites was found to be dominant and constituted about 75% of the total rate in the entire temperature range of the current work. The derived three-parameter Arrhenius expressions for site-specific H- and D- abstraction rates over 830-1289K are (units:cm mol s):k3,H=6.98×106(TK)1.77exp(-136.6KT) k3,D=4.42×106(TK)1.8exp(-361.7KT) k1,H=6.25×105(TK)2.16exp(-711.6KT) k1,D=3.13×107(TK)1.67exp(-1814KT) The subscript of . k identifies the position of H or D atom in isobutene according to the IUPAC nomenclature of alkenes.

  18. A high-temperature shock tube kinetic study for the branching ratios of isobutene+OH reaction

    KAUST Repository

    Khaled, Fathi

    2016-10-11

    Isobutene is an important intermediate formed during the oxidation of branched alkanes. It also appears as a byproduct during the combustion of methyl-tert-butyl-ether (MTBE) which is used as octane enhancer in gasolines. To understand better the oxidation kinetics of isobutene, we have measured the rate coefficients for the reaction of OH radicals with isobutene (HCC(CH)) behind reflected shock waves over the temperature range of 830-1289K and pressures near 1.5atm. The reaction progress was followed by measuring mole fraction of OH radicals near 306.7nm using UV laser absorption technique. Three deuterated isotopes, isobutene-1-d2 (DCC(CH)), isobutene-3-d6 (HCC(CD)) and isobutene-d8 (DCC(CD)) were employed to elucidate branching ratios of the allylic and vinylic H-abstraction from isobutene by OH radicals. H-abstraction from the allylic sites was found to be dominant and constituted about 75% of the total rate in the entire temperature range of the current work. The derived three-parameter Arrhenius expressions for site-specific H- and D- abstraction rates over 830-1289K are (units:cm mol s):k3,H=6.98×106(TK)1.77exp(-136.6KT) k3,D=4.42×106(TK)1.8exp(-361.7KT) k1,H=6.25×105(TK)2.16exp(-711.6KT) k1,D=3.13×107(TK)1.67exp(-1814KT) The subscript of . k identifies the position of H or D atom in isobutene according to the IUPAC nomenclature of alkenes.

  19. Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 °C) solid-state reaction: The role of non-coordinating solvent-vapor

    Science.gov (United States)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2018-04-01

    The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.

  20. C-13 isotopic studies of the surface catalysed reactions of methane

    International Nuclear Information System (INIS)

    Long, M.A.; He, S.J.X.; Adebajo, M.

    1997-01-01

    The ability of methane to methylate aromatic compounds, which are considered to be models for coal, is being studied. Related to this reaction, but at higher temperatures, is the direct formation of benzene from methane in the presence of these catalysts. Controversy exists in the literature on the former reaction, and 13 C isotope studies are being used to resolve the question. The interest in this reaction arises because the utilisation of methane, in the form of natural gas, in place of hydrogen for direct coal liquefaction would have major economic advantage. For this reason Isotope studies in this area have contributed significantly to an understanding of the methylation reactions. The paper describes experiments utilising methane 13 C, which show that methylation of aromatics such as naphthalene by the methane 13 C is catalysed by microporous, Cu-exchanged SAPO-5, at elevated pressures (6.8 MPa) and temperatures around 400 degree C. The mass spectrometric analysis and n.m.r. study of the isotopic composition of the products of the methylation reaction demonstrate unequivocally that methane provides the additional carbon atom for the methylated products. Thermodynamic calculations predict that the reaction is favourable at high methane pressures under these experimental conditions. The mechanism as suggested by the isotope study is discussed. The catalysts which show activity for the activation of methane for direct methylation of organic compounds, such as naphthalene, toluene, phenol and pyrene, are substituted aluminophosphate molecular sieves, EIAPO-5 (where El=Pb, Cu, Ni and Si) and a number of metal substituted zeolites. Our earlier tritium studies had shown that these catalysts will activate alkanes, at least as far as isotope hydrogen exchange reactions are concerned

  1. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  2. Reaction of uranium and plutonium carbides with nitrogen; Reaction avec l'azote des carbures d'uranium et de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzelli, R; Martin, A; Schickel, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-03-01

    Uranium and plutonium carbides react with nitrogen during the grinding process preceding the final sintering. The reaction occurs even in argon atmospheres containing a few percent of residual nitrogen. The resulting contamination is responsible for the appearance of an equivalent quantity of higher carbide in the sintered products; nitrogen remains quantitatively in the monocarbide phase. UC can be transformed completely into nitride under a nitrogen pressure, at a temperature as low as 400 C. The reaction is more sluggish with PuC. The following reactions take places: UC + 0,8 N{sub 2} {yields}> UN{sub 1.60} + C and PuC + 0,5 N{sub 2} {yields} PuN + C. (authors) [French] Les carbures d'uranium et de plutonium reagissent avec l'azote au cours du broyage qui precede le frittage final. Cette reaction est sensible meme sous des atmospheres d'argon ne contenant que quelques pour cent d'azote. Cette contamination se traduit sur les produits frittes par l'apparition d'une quantite equivalente de carbure superieur, l'azote restant fixe quantitativement dans la phase monocarbure. On peut transformer entierement UC en nitrure par action de l'azote sous pression des 400 C. La reaction est plus difficile avec PuC. Les reactions sont les suivantes: UC + 0,8 N{sub 2} {yields} UN{sub 1.60} + C et PuC + 0,5 N{sub 2} {yields} PuN + C.

  3. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Colantuono, A.; Kokkinidou, S.; Peterson, D.G.; Fogliano, V.

    2014-01-01

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at

  4. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results

    International Nuclear Information System (INIS)

    Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K.

    2014-01-01

    An integrated environmental cell has been designed and developed for the latest generation of Atom Probe Tomography LEAP™ instruments, allowing controlled exposure of samples to gases at high temperatures. Following treatment, samples can be transferred through the LEAP vacuum system for subsequent APT analysis, which provides detailed information on changes to chemical microstructures following the reactions with near-atomic resolution. A full description of the cell is presented, along with some sample results on the oxidation of aluminum and two platinum-group alloys, demonstrating the capability of combining exposure/characterization functionality in a single instrument. - Highlights: • Designed and built atom probe environmental cell for in situ reactions. • Investigated Al oxidation, and demonstrated improvement with new cell. • in situ APT analysis of Pt-alloys showed surface segregation of Rh and Ir

  5. Computational simulation of reactive species production by methane-air DBD at high pressure and high temperature

    Science.gov (United States)

    Takana, H.; Tanaka, Y.; Nishiyama, H.

    2012-01-01

    Computational simulations of a single streamer in DBD in lean methane-air mixture at pressure of 1 and 3 atm and temperature of 300 and 500 K were conducted for plasma-enhanced chemical reactions in a closed system. The effects of surrounding pressure and temperature are characterized for reactive species production by a DBD discharge. The results show that the production characteristics of reactive species are strongly influenced by the total gas number density and the higher concentration of reactive species are produced at higher pressure and lower gas temperature for a given initial reduced electric field.

  6. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    Science.gov (United States)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  7. Temperature-controlled cross-linking of silver nanoparticles with diels-alder reaction and its application on antibacterial property

    Science.gov (United States)

    Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling

    2017-05-01

    Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV-vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.

  8. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  9. Kinetics Analysis of Synthesis Reaction of Struvite With Air-Flow Continous Vertical Reactors

    Science.gov (United States)

    Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, dan A. P.

    2018-01-01

    Kinetics reaction is a knowledge about a rate of chemical reaction. The differential of the reaction rate can be determined from the reactant material or the formed material. The reaction mechanism of a reactor may include a stage of reaction occurring sequentially during the process of converting the reactants into products. In the determination of reaction kinetics, the order of reaction and the rate constant reaction must be recognized. This study was carried out using air as a stirrer as a medium in the vertical reactor for crystallization of struvite. Stirring is one of the important aspects in struvite crystallization process. Struvite crystals or magnesium ammonium phosphate hexahydrates (MgNH4PO4·6H2O) is commonly formed in reversible reactions and can be generated as an orthorhombic crystal. Air is selected as a stirrer on the existing flow pattern in the reactor determining the reaction kinetics of the crystal from the solution. The experimental study was conducted by mixing an equimolar solution of 0.03 M NH4OH, MgCl2 and H3PO4 with a ratio of 1: 1: 1. The crystallization process of the mixed solution was observed in an inside reactor at the flow rate ranges of 16-38 ml/min and the temperature of 30°C was selected in the study. The air inlet rate was kept constant at 0.25 liters/min. The pH solution was adjusted to be 8, 9 and 10 by dropping wisely of 1 N KOH solution. The crystallization kinetics was examined until the steady state of the reaction was reached. The precipitates were filtered and dried at a temperature for subsequent material characterization, including Scanning Electron Microscope (SEM) and XRD (X-Ray diffraction) method. The results show that higher flow rate leads to less mass of struvite.

  10. PENGARUH SORPSI AIR DAN SUHU TRANSISI GELAS TERHADAP LAJU PENCOKLATAN NON-ENZIMATIS PADA PANGAN MODEL [The Effect of Water Sorption and Glass Transition Temperature on Non-Enzymatic Browning Reaction of Food Models

    Directory of Open Access Journals (Sweden)

    Dede R Adawiyah1

    2005-12-01

    Full Text Available This research was aimer/ to study the extend of non enzymatic browning reaction in food models containing the mixture of tapioca starch, casein, sucrose and oh at different moisture contents (2.55%, 5.26%, 7.54%, 15.20%. 15.93% and 23.99% and storage temperatures (30, 55 and 700C. The non-enzymatic browning reaction was detected from brown color intensity measured by spechtrophotometer and colorimetric methods. The non-enzymatic browning reaction or food model follow pseudo-zero order reaction, suggesting that browning reaction occurred at moisture content above monolayer zone. T-Tg (T storage - Tg prediction and reaction rate constant (k plots showed that browning reaction occurred at temperature around glass transition and increased significantly at 150 above Tg of casein. Tapioca starch in the food model was under glassy condition. The mobility of substrate increased and diffused at amorphous matrix.

  11. Temperature measurements in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Breton, D.

    1958-01-01

    The temperatures needed to produce thermonuclear reactions are of the order of several million degrees Kelvin. Devising methods for measuring such temperatures has been the subject of research in many countries. In order to present the problem clearly and to demonstrate its importance, the author reviews the various conditions which must be fulfilled in order that reactions may be qualified as thermonuclear. The relationship between the temperature and the cross-section of the reactions is studied, and it is shown that the notion of temperature in the plasmas is complex, which leads to a consideration of the temperature of the ions and that of the electrons. None of the methods for the temperature measurements is completely satisfactory because of the hypotheses which must be made, and which are seldom fulfilled during high-intensity discharges in the plasmas. In practice it is necessary to use several methods simultaneously. (author) [fr

  12. Free energy landscapes of electron transfer system in dipolar environment below and above the rotational freezing temperature

    International Nuclear Information System (INIS)

    Suzuki, Yohichi; Tanimura, Yoshitaka

    2007-01-01

    Electron transfer reaction in a polar solvent is modeled by a solute dipole surrounded by dipolar molecules with simple rotational dynamics posted on the three-dimensional distorted lattice sites. The interaction energy between the solute and solvent dipoles as a reaction coordinate is adopted and free energy landscapes are calculated by generating all possible states for a 26 dipolar system and by employing Wang-Landau sampling algorithm for a 92 dipolar system. For temperatures higher than the energy scale of dipole-dipole interactions, the free energy landscapes for the small reaction coordinate region have quadratic shape as predicted by Marcus [Rev. Mod. Phys. 65, 599 (1993)] whereas for the large reaction coordinate region, the landscapes exhibit a nonquadratic shape. When the temperature drops, small notched structures appear on the free energy profiles because of the frustrated interactions among dipoles. The formation of notched structure is analyzed with statistical approach and it is shown that the amplitude of notched structure depend upon the segment size of the reaction coordinate and is characterized by the interaction energy among the dipoles. Using simulated free energy landscapes, the authors calculate the reaction rates as a function of the energy gap for various temperatures. At high temperature, the reactions rates follow a bell shaped (inverted parabolic) energy gap law in the small energy gap regions, while it becomes steeper than the parabolic shape in a large energy gap regions due to the nonquadratic shape of the free energy landscape. The peak position of parabola also changes as the function of temperature. At low temperature, the profile of the reaction rates is no longer smooth because of the many local minima of the free energy landscape

  13. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation

    NARCIS (Netherlands)

    Macedo, R.G.; Verhaagen, B.; Wesselink, P.R.; Versluis, Michel; van der Sluis, L.W.M.

    2014-01-01

    Aim To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. Methodology The root canal walls of 24 standardized root canals in

  14. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  15. On the use temperature parameterized rate coefficients in the estimation of non-equilibrium reaction rates

    Science.gov (United States)

    Shizgal, Bernie D.; Chikhaoui, Aziz

    2006-06-01

    The present paper considers a detailed analysis of the nonequilibrium effects for a model reactive system with the Chapman-Eskog (CE) solution of the Boltzmann equation as well as an explicit time dependent solution. The elastic cross sections employed are a hard sphere cross section and the Maxwell molecule cross section. Reactive cross sections which model reactions with and without activation energy are used. A detailed comparison is carried out with these solutions of the Boltzmann equation and the approximation introduced by Cukrowski and coworkers [J. Chem. Phys. 97 (1992) 9086; Chem. Phys. 89 (1992) 159; Physica A 188 (1992) 344; Chem. Phys. Lett. A 297 (1998) 402; Physica A 275 (2000) 134; Chem. Phys. Lett. 341 (2001) 585; Acta Phys. Polonica B 334 (2003) 3607.] based on the temperature of the reactive particles. We show that the Cukrowski approximation has limited applicability for the large class of reactive systems studied in this paper. The explicit time dependent solutions of the Boltzmann equation demonstrate that the CE approach is valid only for very slow reactions for which the corrections to the equilibrium rate coefficient are very small.

  16. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions

    DEFF Research Database (Denmark)

    Abu, Rohana; Woodley, John M.

    2015-01-01

    , it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of thermodynamic...... shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless...

  17. Current Status of the MOOC Movement in the World and Reaction of the Turkish Higher Education Institutions

    Directory of Open Access Journals (Sweden)

    Cengiz Hakan Aydin

    2017-03-01

    Full Text Available This manuscript intends to elaborate the current status of MOOC movement in the world and to reveal the results of a survey study in which the Turkish higher education institutions’ reactions to this movement was investigated. The survey was actually a part of a larger survey study that, as a deliverable of the EU funded HOME project, was conducted to contribute to the literature by providing an insight about European perspectives on MOOCs, to gain a better understanding of the strategic reasons why a higher education institution is or isn’t involved in MOOCs, and to compare these reasons with the results of similar studies in U.S. After a brief background and history of MOOC movement, following sections of the manuscript present the details (methodology and results of the survey study on the Turkish HE institutions’ strategies regarding adaptation of MOOCs. The final part of the manuscript consists of discussions and conclusions drawn in the light of the results of the study.

  18. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination

    Directory of Open Access Journals (Sweden)

    Lluvia Flores-Rentería

    2018-04-01

    Full Text Available High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1 higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2 high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3 pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that

  19. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    International Nuclear Information System (INIS)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-01-01

    Highlights: • CsPbBr_3 perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr_3 nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr_3 nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr_3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr_3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr_3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr_3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr_3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of

  20. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei, E-mail: awtang@bjtu.edu.cn

    2017-05-31

    Highlights: • CsPbBr{sub 3} perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr{sub 3} nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr{sub 3} nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr{sub 3} nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr{sub 3} NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr{sub 3} NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr{sub 3} NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr{sub 3} NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the

  1. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions.

    Science.gov (United States)

    Di Santo, Giovanni; Blankenburg, Stephan; Castellarin-Cudia, Carla; Fanetti, Mattia; Borghetti, Patrizia; Sangaletti, Luigi; Floreano, Luca; Verdini, Alberto; Magnano, Elena; Bondino, Federica; Pignedoli, Carlo A; Nguyen, Manh-Thuong; Gaspari, Roberto; Passerone, Daniele; Goldoni, Andrea

    2011-12-16

    Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  3. A temperature dependence kinetics study of the reactions of Cl/2-P-3/2/ with O3, CH4, and H2O2

    Science.gov (United States)

    Watson, R.; Machado, G.; Fischer, S.; Davis, D. D.

    1976-01-01

    The temperature dependence of two chlorine atom reactions of considerable fundamental importance to stratospheric chemistry was studied using the technique of flash photolysis-resonance fluorescence. The reactions of interest were: (1) Cl + O3 yields ClO + O2 studied at 220-350 K, and (2) Cl + CH4 yields CH3 + HCl studied at 218-401 K. In addition, the reaction Cl + H2O2 yields HCl + HO2 was studied at 300 K. The corresponding rate constants are provided for the three reactions. The new rate data implies the need to revise downward by a factor of 2.4-3 the magnitude of the ozone perturbation due to the presence of ClO/x/ species in the stratosphere, predicted by earlier model calculations.

  4. Reaction and devitrification of a prototype nuclear-waste-storage glass with hot magnesium-rich brine

    International Nuclear Information System (INIS)

    Komarneni, S.; Freeborn, W.P.; Scheetz, B.E.; White, W.B.; McCarthy, G.J.

    1982-10-01

    PNL 76-68, a prototype nuclear waste storage glass, was reacted under hydrothermal conditions at 100, 200, and 300 C with NBT-6a (Ca-Mg-K-Na-Cl) brine. Reaction products were identified, the state of the residual glass determined, and the concentrations of various elements remaining in the solutions analyzed. Solid products formed by reaction of the glass and brine talc (hydrated magnesium silicate), powellite (CaMoO 4 ), hematite (Fe 2 O 3 ) and rarely an unidentified uranium-containing phase. Glass fragments were leached to depths of 300 to 500 μm, depending on time and temperature. Most elements were extracted, but the silicate framework remained intact. Distinct diffusion fronts due to K/Na exchange and Mg/Zn exchange were identified. A complex compositional layering develops in the outer reaction rind. The concentration of silica in brine solution was lower by an order of magnitude than the concentration of silica in deionized water reacted under similar conditions. The concentration of cesium, strontium, uranium, rare earths, and other alkali and alkaline earth elements in solution increases exponentially with temperature of reaction. Behavior of the transition metals is more complex. In general the extraction of elements from the glass by hydrothermal brine leads to concentrations in solution that are from 10 to 100 times higher than the concentrations obtained by deionized water extraction under similar conditions of temperature and pressure

  5. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  6. Gas phase reactions of organic iodine in containment conditions

    International Nuclear Information System (INIS)

    Kaerkalae, T.; Holm, J.; Auvinen, A.; Zilliacus, R.; Kajolinna, T.; Tapper, U.; Gaenneskog, H.; Ekberg, C.

    2010-01-01

    In case of a hypothetical severe accident it is very likely that iodine at least partly deposits on painted walls of a reactor containment building. Iodine may react with painted surfaces to form organic iodine species. These organic species are a possible source of volatile iodine, which may increase the fraction of releasable iodine. Therefore, it is important to study the transport of organic iodine in containment conditions. Another question is, in which form are the organic iodides transported as gaseous molecules or as aerosol particles resulting from organic iodides reacting with radiolysis products. To answer this last question methyl iodide was fed into the EXSI facility in an air mixture. In some experiments the flow contained also humidity. The reactions took place in a quartz tube heated either to 50 deg. C, 90 deg. C or 120 deg. C. UV-light was used as a source of radiation to produce ozone from oxygen. A separate generator was also applied to reach higher ozone concentrations. Nucleated aerosol particles were collected on plane filters and gaseous iodine species were trapped in trapping bottles. Aerosol mass flow rate and size distribution as well as speciation of gaseous reaction products were measured with several on-line instruments. Collected aerosol particles were analysed with SEM. It was found that the formation of aerosol particles was very fast when ozone and methyl iodide were present in the facility. Even a very low concentration of ozone produced high number concentration of particles. The measured aerosol mass concentration increased with increasing temperature and ozone concentration. Because the particle diameter was quite small (<180 nm), their settling velocity is low. Therefore, iodine containing aerosols may exist in containment atmosphere for a long period of time. Part of methyl iodide was always transported through the facility regardless of experimental conditions. All ozone was consumed in the reactions when only UV-light was

  7. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  8. An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    rate enantioselectivity using N,N-dialkylnorephedrines as chiral ligands. ..... temperatures also, there was no product conversion. ... Optimization of reaction conditions for asymmetric Reformatsky reaction between benzaldehyde and α-.

  9. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  10. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    Science.gov (United States)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  11. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    Science.gov (United States)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  12. Mechanisms controlling temperature dependent mechanical and electrical behavior of SiH4 reduced chemically vapor deposited W

    International Nuclear Information System (INIS)

    Joshi, R.V.; Prasad, V.; Krusin-Elbaum, L.; Yu, M.; Norcott, M.

    1990-01-01

    The effects of deposition temperature on growth, composition, structure, adhesion properties, stress, and resistivity of chemically vapor deposited W deposited purely by SiH 4 reduction of WF 6 are discussed. At lower deposition temperatures, due to incomplete Si reduction reaction, a small amount of Si is incorporated in the film. This elemental Si in W is responsible for the observed high stresses and high resistivities over a wide temperature range. With the increase in the deposition temperature, the conversion of incorporated Si as well as the initial Si reduction are taking place, stimulating increased grain growth and thereby relieving stress and reducing resistivity. The optimum values for stress and resistivity are achieved around 500 degree C, as Si content is at its minimum. At higher temperatures the reaction between residual Si and W, is the prime cause of resistivity increase

  13. The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 deg. C

    International Nuclear Information System (INIS)

    Rojas, Moises Frias; Sanchez de Rojas, M.I.

    2003-01-01

    It is well known that the pozzolanic reaction between metakaolin (MK) and calcium hydroxide produces CSH, C 2 ASH 8 (stratlingite), C 4 AH 13 and C 3 ASH 6 (hydrogarnet). However, the presence or absence of these hydrated phases depends on different parameters, such as curing temperature, matrix used, etc. This paper shows the results of a study in order to know the effect of high curing temperature (60 deg. C) on the kinetics of the pozzolanic reaction in different matrices. MK/lime (calcium hydroxide) and MK-blended cement matrices were studied in samples stored and cured at 60 deg. C and up to 123 days of hydration. The nature, sequence and crystallinity of the hydrated phases were analysed using differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. Results showed that the sequence and formation of the hydrated phases was different in both matrices cured at 60 deg. C. In an MK/lime matrix, C 2 ASH 8 , C 4 AH 13 and C 3 ASH 6 were the main hydrated phases; while in an MK-blended cement, stratlingite was the sole hydrated phase issued from pozzolanic reaction. The DTA and XRD data also reveal an important fact: there is no evidence of the presence of hydrogarnet in blended cements

  14. Reactions homogenes en phase gazeuse dans les lits fluidises

    Science.gov (United States)

    Laviolette, Jean-Philippe

    This thesis presents a study on homogeneous gas-phase reactions in fluidized beds. The main objective is to develop new tools to model and characterize homogeneous gas-phase reactions in this type of reactor. In the first part of this work, the non-premixed combustion of C 1 to C4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ TB ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and two one-phase PFR models in series: one PFR to model the region close to the injector and another to represent the main fluidized bed body. The measured global reaction rates for C2 to C4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. In the second part of this work, propane combustion experiments were conducted in the freeboard of a fluidized bed of sand particles at temperatures between 818 K and 923 K and at superficial gas velocity twice the minimum fluidization velocity. The freeboard region was characterized by simultaneous

  15. Transport processes in exothermic gas-solid reactions

    International Nuclear Information System (INIS)

    Vijay, P.L.; Sathiyamoorthy, D.

    1997-01-01

    The variation of the concentration of gaseous reactant, temperature distribution for an exothermic reaction, the diffusivity factor and the reaction ratio profiles with various radial positions of a solid reactant have been computed and illustrated for a specific case of reduction reaction of UO 3 by hydrogen

  16. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-01-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 deg. C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 deg. C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%

  17. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    Science.gov (United States)

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ametryn degradation by aqueous chlorine: Kinetics and reaction influences

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Cheng Hefa; Hu Chenyan; Xia Shengji; Sun Xiaofeng; Wang Xuejiao; Yang Shaogui

    2009-01-01

    The chemical oxidation of the herbicide ametryn was investigated by aqueous chlorination between pH 4 and 10 at a temperature of 25 deg. C. Ametryn was found to react very rapidly with aqueous chlorine. The reaction kinetics can be well described by a second-order kinetic model. The apparent second-order rate constants are greater than 5 x 10 2 M -1 s -1 under acidic and neutral conditions. The reaction proceeds much more slowly under alkaline conditions. The predominant reactions were found to be the reactions of HOCl with neutral ametryn and the charged ametryn, with rate constants equal to 7.22 x 10 2 and 1.58 x 10 3 M -1 s -1 , respectively. The ametryn degradation rate increases with addition of bromide and decreases with addition of ammonia during the chlorination process. Based on elementary chemical reactions, a kinetic model of ametryn degradation by chlorination in the presence of bromide or ammonia ion was also developed. By employing this model, we estimate that the rate constants for the reactions of HOBr with neutral ametryn and charged ametryn were 9.07 x 10 3 and 3.54 x 10 6 M -1 s -1 , respectively. These values are 10- to 10 3 -fold higher than those of HOCl, suggesting that the presence of bromine species during chlorination could significantly accelerate ametryn degradation.

  19. Development of LEAP-JET code for sodium-water reaction analysis. Validation by sodium-water reaction tests (SWAT-1R)

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Hamada, Hirotsugu

    2004-03-01

    The sodium-water reaction event in an FBR steam generator (SG) has influence on the safety, economical efficiency, etc. of the plant, so that the selection of design base leak (DBL) of the SG is considered as one of the important matters. The clarification of the sodium-water reaction phenomenon and the development of an analysis model are necessary to estimate the sodium-water reaction event with high accuracy and rationality in selecting the DBL. The reaction jet model is pointed out as a part of the necessary improvements to evaluate the overheating tube rupture of large SGs, since the behavior of overheating tube rupture is largely affected by the reaction jet conditions outside the tube. Therefore, LEAP-JET has been developed as an analysis code for the simulation of sodium-water reactions. This document shows the validation of the LEAP-JET code by the Sodium-Water Reaction Test (SWAT-1R). The following results have been obtained: (1) The reaction rate constant, K, is estimated at between 0.001≤K≤0.1 from the LEAP-JET analysis of the SWAT-1R data. (2) The analytical results on the high-temperature region and the behaviors of reaction consumption (Na, H 2 O) and products (H 2 , NaOH, Na 2 O) are considered to be physically reasonable. (3) The LEAP-JET analysis shows the tendency of overestimation in the maximum temperature and temperature distribution of the reaction jet. (4) In the LEAP-JET analysis, the numerical calculation becomes unstably, especially in the mesh containing quite small sodium mass. Therefore, it is necessary to modify the computational algorism to stabilize it and obtain the optimum value of K in sodium-water reactions. (author)

  20. The influenced of reaction time on the degradation of palm oil empty fruit bunch (EFB) in hydrothermal carbonization

    Science.gov (United States)

    Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah

    2017-11-01

    Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.

  1. A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals

    KAUST Repository

    Khaled, Fathi

    2017-02-08

    The reaction kinetics of dimethyl carbonate (DMC) and OH radicals were investigated behind reflected shock waves over the temperature range of 872-1295 K and at pressures near 1.5 atm. Reaction progress was monitored by detecting OH radicals at 306.69 nm using a UV laser absorption technique. The rate coefficients for the reaction of DMC with OH radicals were extracted using a detailed kinetic model developed by Glaude et al. (Proc. Combust. Inst. 2005, 30(1), 1111-1118). The experimental rate coefficients can be expressed in Arrhenius form as: kexpt\\'l = 5.15 × 10(13) exp(-2710.2/T) cm(3) mol(-1) s(-1). To explore the detailed chemistry of the DMC + OH reaction system, theoretical kinetic analyses were performed using high-level ab initio and master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) calculations. Geometry optimization and frequency calculations were carried out at the second-order Møller-Plesset (MP2) perturbation level of theory using Dunning\\'s augmented correlation consistent-polarized valence double-ζ basis set (aug-cc-pVDZ). The energy was extrapolated to the complete basis set using single point calculations performed at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory. For comparison purposes, additional ab initio calculations were also carried out using composite methods such as CBS-QB3, CBS-APNO, G3 and G4. Our calculations revealed that the H-abstraction reaction of DMC by OH radicals proceeds via an addition elimination mechanism in an overall exothermic process, eventually forming dimethyl carbonate radicals and H2O. Theoretical rate coefficients were found to be in excellent agreement with those determined experimentally. Rate coefficients for the DMC + OH reaction were combined with literature rate coefficients of four straight chain methyl ester + OH reactions to extract site-specific rates of H-abstraction from methyl esters by OH radicals.

  2. Reaction between uranium hexafluoride and trimethylsilylhalides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D; Berry, J A [UKAEA Atomic Energy Research Establishment, Harwell. Chemistry Div.; Holloway, J H; Staunton, G M [Leicester Univ. (UK). Dept. of Chemistry

    1938-07-01

    Reactions involving 1.1:1 molar ratios of uranium hexafluoride to either trimethylsilylchloride or trimethylsilylbromide in halocarbon solutions yield ..beta..-UF/sub 5/ at room temperature. With 2 mol equivalents of trimethylsilylchloride the product is UF/sub 4/. The reactions appear to proceed via the intermediate formation of unstable brown uranium(VI) chloride and bromide fluorides. Calculations show that UClF/sub 5/ and UCl/sub 2/F/sub 4/ are thermodynamically unstable with respect to the loss of chlorine at room temperature.

  3. Quasielastic reactions

    International Nuclear Information System (INIS)

    Henning, W.

    1979-01-01

    Quasielastic reaction studies, because of their capability to microscopically probe nuclear structure, are still of considerable interest in heavy-ion reactions. The recent progress in understanding various aspects of the reaction mechanism make this aim appear closer. The relation between microscopic and macroscopic behavior, as suggested, for example, by the single proton transfer data to individual final states or averaged excitation energy intervals, needs to be explored. It seems particularly useful to extend measurements to higher incident energies, to explore and understand nuclear structure aspects up to the limit of the energy range where they are important

  4. Temperature dependence of radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Le, T.T.; Milne, K.A.; O'Donnell, J.H.; Perera, S.M.C.; Pomery, P.J.

    1990-01-01

    Chemical reactions which occur during radiolysis of polymers usually show an increase in rate with increasing temperature that can be described by an Arrhenius relationship. The magnitude of the activation energy can vary widely and is affected by physical, as well as chemical, factors. Different reaction rates may be expected in crystalline and amorphous morphologies, and in glassy and rubbery regions. The temperature dependence of radiolysis reactions can be expected to show discontinuities at the glass and melting transitions, T g and T m . The ceiling temperature, T c , for polymerization/depolymerization will also affect the rate of degradation, especially for depropagation to monomer. The temperature for this effect depends on the molecular structure of the polymer. The temperature dependence of free radical reactions can be studied by cryogenic trapping and ESR spectroscopy during thermal profiling. Increased degradation rates at high dose rates can be due to increased temperatures resulting from energy absorption

  5. Measurement of Reactions on 30P for Nova Nucleosynthesis

    Science.gov (United States)

    Ma, Z.; Guidry, M. W.; Hix, W. R.; Smith, M. S.

    2003-05-01

    Replace these paragraphs with your abstract. We encourage you to include a sentence acknowledging your funding agency. In a recent study the 30P(p,gamma)31S rate played a crucial role in the synthesis of heavier nuclear species, from Si to Ca, in nova outbursts on ONe White Dwarfs [1]. The adopted rate of this reaction, based on a Hauser-Feshbach calculation [2], has a large uncertainty and could be as much as a factor of 100 too high or too low [3]. In their study, Jose et al.[1] varied the 30P(p,gamma)31S reaction rate within this uncertainty and found that, when rate is reduced by a factor of 100, the synthesis of elements above Si is lowered by a factor 10 with respect to the values found with the nominal rate. This has important consequences for nova nucleosynthesis, as overproduction of isotopes in the Si to Ca mass region has been observed in the ejecta from some nova explosions (e.g.,[4,5]). While generally valid at higher temperatures, Hauser-Feshbach calculations of the rates at nova temperatures can have large uncertainties. At these temperatures, the rate is more likely dominated by a few individual nuclear resonances. At present there are about 10 31S resonances known above the 30P + p threshold that may contribute to the 30P(p,gamma)31S reaction rate at nova temperatures. The excitation energies of these levels are known but spins and parities (for all but two) are not. We plan to measure the 30P(p,p)30P and 30P(p,gamma)31S reactions at HRIBF to better determine this reaction rate. A detailed description of the experiments will be given. We are also conducting a new nova nucleosynthesis simulation over multiple spatial zones of the exploding envelope to investigate the influence of the 30P(p,gamma)31S reaction rate on nova nucleosynthesis. The results of these calculations will be discussed. 1. Jose , J., Coc, A., Hernanz, M., Astrophys. J., 560, 897(2001). 2. Thielemann, F.-K et al., 1987, Advances in Nuclear Astrophysics, ed. E. Vangioni-Flam ( Gif

  6. Comparison of higher irradiance and black panel temperature UV backsheet exposures to field performance

    Science.gov (United States)

    Felder, Thomas C.; Gambogi, William J.; Phillips, Nancy; MacMaster, Steven W.; Yu, Bao-Ling; Trout, T. John

    2017-08-01

    The need for faster PV qualification tests that more accurately match field observations is leading to tests with higher acceleration levels, and validating the new tests through comparison to field data is an important step. We have tested and compared a wide panel of backsheets according to a proposed new backsheet UV exposure qualification standard from the International Electrotechnical Commission (IEC). Weathering Technical Standard IEC 62788-7-2 specifies higher irradiance and higher black panel temperature UV Xenon exposures. We tested PVF, PVDF, PET, PA and FEVEbased backsheets in glass laminates and simple backsheet coupons in UV exposure condition A3 (0.8W/sqmnm@340nm and 90° C BPT) We find mild yellowing with no mechanical loss in the original lower intensity ASTM G155 0.55 W/sqm-nm 70C BPT exposure condition. The new A3 exposures creates mechanical loss in sensitive backsheets, with no effect on known durable backsheets. Results from the new exposure are closer to field mechanical loss data.

  7. Temperature field calculation with allowance for heat of chemical reactions under electroexplosion nickel plating of aluminum

    Science.gov (United States)

    Romanov, Denis A.; Semina, Olga A.; Stepikov, Maksim A.; Gromov, Victor E.

    2017-01-01

    The analysis of stress-strained state at the boundary «faced surface layer - substrate» is performed by methods of elasticity theory of inhomogeneous media, on exposure to the load distributed in a circle. The fundamental aspects of Kelvin - Helmholtz and Richtmayer - Meshkov instabilities are considered. The following methods are used for the research. The analytical method of solution is used for finding the temperature distribution of substrate and coating material as well as distribution of speed of material motion in deposition of the coating. Finite element method is required in accounting for the parameters of convective mixing. For the analysis of the proposed thickness and dispersion of the coating the concepts of hydrodynamic Kelvin - Helmholtz and Richtmayer - Meshkov instabilities are used. Using the mass, energy and momentum conservation laws, with allowance for the possible exothermal reactions, the system of equations of the mathematical model of electroexplosion synthesis on the basis of thermoreacting components of Ni-Al system is formulated. The degree of effect of model's parameters on dispersion and thickness of the coating is determined. The comparison of the modeling and experimental data is carried out. It is established that the due regard to the thermal effect of chemical reaction increases considerably the time of existence of the reacting elements in the liquid state and it facilitates the participation of the entire nickel in the reaction. The increased time of heat effect enables the other processes to occur more completely.

  8. Preparation of natural isovaleraldehyde by the Maillard reaction

    Institute of Scientific and Technical Information of China (English)

    Hong Yu Tian; Jie Zhang; Bao Guo Sun; Ming Quan Huang; Jian Rong Li; Xiao Xiang Han

    2007-01-01

    Isovaleraldehyde possesses malty, fruity, cocoa-like odor and is widely used in fruit, chocolate, coffee flavors. The preparation of natural isovaleraldehyde by the Maillard model reaction was studied in this paper. The effects of the ratio of D-glucose/L-leucine,reaction temperature and pH value on the yield of isovaleraldehyde were explored. The optimum conditions were as follows:n(D-glucose):n(L-leucine) = 4, temperature 150 ℃, reaction time 3 h, pH 5. The highest yield of isovaleraldehyde obtained was about 32%.

  9. Preliminary estimations on the heat recovery method for hydrogen production by the high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Koh, Jae Hwa; Yoon, Duck Joo

    2009-01-01

    As a part of the project 'development of hydrogen production technologies by high temperature electrolysis using very high temperature reactor', we have developed an electrolyzer model for high temperature steam electrolysis (HTSE) system and carried out some preliminary estimations on the effects of heat recovery on the HTSE hydrogen production system. To produce massive hydrogen by using nuclear energy, the HTSE process is one of the promising technologies with sulfur-iodine and hybrid sulfur process. The HTSE produces hydrogen through electrochemical reaction within the solid oxide electrolysis cell (SOEC), which is a reverse reaction of solid oxide fuel cell (SOFC). The HTSE system generally operates in the temperature range of 700∼900 .deg. C. Advantages of HTSE hydrogen production are (a) clean hydrogen production from water without carbon oxide emission, (b) synergy effect due to using the current SOFC technology and (c) higher thermal efficiency of system when it is coupled nuclear reactor. Since the HTSE system operates over 700 .deg. C, the use of heat recovery is an important consideration for higher efficiency. In this paper, four different heat recovery configurations for the HTSE system have been investigated and estimated

  10. Non stoichiometry in U3O(8±x), its temperature and oxygen pressure dependence

    International Nuclear Information System (INIS)

    Rodriguez De Sastre, M.S.; Philippot, J.; Moreau, C.

    1967-01-01

    The deviation from stoichiometry in uranium oxide U 3 O 8 obtained by oxidation of UO 2 , has been studied with respect to its dependence on temperature and oxygen pressure. It is shown that the ratio r = O/U increases with oxygen pressure up to 200 mm Hg at any temperature. At higher pressures, this ratio tends toward a limit which decreases with increasing temperatures. The curve r = f(P) suggest a chemisorption phenomenon as the reaction limiting mechanism. (authors) [fr

  11. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  12. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    Science.gov (United States)

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  13. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  14. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    Science.gov (United States)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  15. Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl.

    Science.gov (United States)

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2005-01-30

    The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase

  16. α-Bromodiazoacetamides – a new class of diazo compounds for catalyst-free, ambient temperature intramolecular C–H insertion reactions

    Directory of Open Access Journals (Sweden)

    Åsmund Kaupang

    2013-07-01

    Full Text Available In this work, we introduce a new class of halodiazocarbonyl compounds, α-halodiazoacetamides, which through a metal-free, ambient-temperature thermolysis perform intramolecular C–H insertions to produce α-halo-β-lactams. When carried out with α-bromodiazoacetamides bearing cyclic side chains, the thermolysis reaction affords bicyclic α-halo-β-lactams, in some cases in excellent yields, depending on the ring size and substitution pattern of the cyclic amide side chains.

  17. On determination of enthalpies of complex formation reactions by means of temperature coefficient of complexing degree

    International Nuclear Information System (INIS)

    Povar, I.G.

    1995-01-01

    Equations describing the relation between temperature coefficient of ∂lnα/∂T complexing degree and the sum of changes in the enthalpy of complex formation of the composition M m L n δH mn multiplied by the weight coefficients k mm , are presented. A method to determine changes in the enthalpy of certain ΔH mm reactions from ∂lnα/∂T derivatives has been suggested. The best approximating equation from lnα/(T) dependence has been found. Errors of thus determined δH mm values are estimated and the results of calculation experiment for the system In 3+ -F - are provided. 10 refs., 2 figs., 3 tabs

  18. Destruction of polyphasic systems in supercritical water reaction media

    International Nuclear Information System (INIS)

    Leybros, A.

    2009-12-01

    Spent ion exchange resins (IER) are, hence, radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable alternative treatment to destroy the organic structure of resins by using supercritical water properties. The reactor used in Supercritical Fluids and Membranes Laboratory is a double shell stirred reactor. Total Organic Carbon reduction rates higher than 99% were obtained thanks to POSCEA2 experimental set-up when using a co-fuel, isopropyl alcohol. Influence of operating parameters was studied. A detailed reactional mechanism for cationic and anionic resins is created. For the solubilization of the particles in supercritical water, a mechanism has been created with the identified rate determining species and implemented into Fluent software through the EDC approach. Experimental temperature profiles are well represented by EDC model. Reaction rates are hence controlled by the chemical species mixing. (author)

  19. Temperature influence on biodiesel production by non-catalytic transesterification; Influencia da temperatura na producao de biodiesel por transesterificacao nao catalitica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Humberto N.M.; Oliveira, Thomas R; Sousa, Elisa M.B.D. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The main objective of this paper is to produce biodiesel using supercritical fluids through of the transesterification process without use of catalysts. It become easier the separation of the reaction products when compared with conventional method. In this work the influence of the temperature in the production of biodiesel from mamona oil was studied. Tree temperatures were studied (473.15 K, 523.15 K and 573.15 K) and the pressure (300 bar) and molar ratio (1:40) was keep constant during the process. Excess of Alcohol was used for this synthesis. The influence of temperature on the conversion and the reaction time was evaluated. The castor bean oil and biodiesel obtained were characterized in relation to their properties more significant. For results, higher conversions were found at higher temperatures (573.15 K), however can see a trend to the stability of reaction. The quality of the product was suitable for most properties evaluated. The equipment designed and built for this purpose was feasible but require some modifications to its optimization. The reaction of biodiesel production was confirmed, even without the addition of catalyst. It was the need to use a large excess of alcohol in relation to oil on this route without catalytic converters. In the case of the route of biodiesel production without the addition of catalysts, was felt the need to use excess alcohol in relation to the castor bean oil. (author)

  20. Comparative study on bromide and iodide ion-isotopic exchange reactions using strongly basic anion exchange resin Duolite A-113

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Dole, M.H.; Singare, P.U.

    2006-01-01

    Kinetics of ion-isotopic exchange reaction was studied using industrial grade ion exchange resin Duolite A-113. The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reaction. The experiments were performed in the temperature range of 26.0degC to 43.0degC and the concentration of external ionic solution varying from 0.005 M to 0.100 M. For bromide ion-isotopic exchange reaction, the calculated values of specific reaction rate, initial rate of bromide ion exchange, and amount of bromide ions exchanged were obtained higher than that for iodide ion-isotopic exchange reaction under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (author)

  1. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic and Diethylenetrinitropentaacetic Acids

    International Nuclear Information System (INIS)

    Tian, Guoxin; Rao, Linfeng

    2009-01-01

    The protonation reactions of two ligands that play important roles in the TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The protonation constants at 10-70 C were determined by titration potentiometry and the protonation enthalpies were determined at 25 C by titration microcalorimetry. The protonation constants remain essentially unchanged (25-70 C) within the experimental uncertainties, indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast, the protonation constants of DTPA (log βH's) generally decrease as the temperature is increased. Results from this study indicate that the effect of temperature on the protonation of DTPA could alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since lower values of logβH at higher temperatures suggest that the hydrogen ions would compete less strongly with the metal ions for the complexation of DTPA at higher temperatures.

  3. Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction

    Science.gov (United States)

    Saquib, Mohammad; Halder, Aditi

    2018-06-01

    In the present work, the effect of surface strain in the carbon supported Pt3Co dealloy catalyst towards hydrogen evolution reaction (HER) has been reported. Dealloying process is adopted to generate the geometric strain in Pt3Co/C alloy by preferential dissolution of non-noble metal (Co) from the alloy. The developed geometric strain has been estimated by different microstructural characterization techniques. Electrochemical studies showed that the highest current density for HER was obtained for Pt3Co/C dealloy catalyst and it was nearly 2 and 5 times higher than Pt3Co/C alloy and Pt/C respectively. Tafel slope for HER was improved from 49 (Pt/C) to 34 mV dec-1 (Pt3Co/C dealloy), indicating that the surface strain plays important role in the improvement of the catalytic activity of Pt3Co catalyst. The chronoamperometry data, LSV curves and ECSA values before and after chronoamperometry confirmed that Pt3Co/C dealloy catalyst was a stable as well as a durable electrocatalyst for HER.

  4. Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles

    KAUST Repository

    Yin, Simin; Zhu, Yihan; Ren, Zhaohui; Chao, Chunying; Li, Xiang; Wei, Xiao; Shen, Ge; Han, Yu; Han, Gaorong

    2014-01-01

    Perovskite PbTiO3 (PTO) nanocrystals with a truncated octahedral morphology have been prepared by a facile solid-state reaction. Pt nanoparticles preferentially nucleated on the {111} facet of PTO nanocrystals exhibit a remarkable low-temperature catalytic activity towards CO oxidation from a temperature as low as 30 °C and achieve 100% conversion at ∼50 °C. © 2014 the Partner Organisations.

  5. Study on Energetic Ions Behavior in Plasma Facing Materials at Lower Temperature

    International Nuclear Information System (INIS)

    Morimoto, Y.; Sugiyama, T.; Akahori, S.; Kodama, H.; Tega, E.; Sasaki, M.; Oyaidu, M.; Kimura, H.; Okuno, K.

    2003-01-01

    An apparatus equipped with X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) was constructed to study interactions of energetic hydrogen isotopes with plasma facing materials. It is a remarkable feature of the apparatus that energetic ion implantation is carried out at around 150K to study reactions of energetic ions with matrix by suppressing the reactions of thermalized ions. Using this apparatus, TDS experiments for pyrolytic graphite implanted with energetic D 2 ions at 173 and 373K were carried out. The experimental results suggest that the deuterium implanted was released through a four-step release processes, involving three D 2 and one CD x (x = 2, 3 and 4) desorption processes. Two deuterium and CD x desorption processes were observed in the temperature range from 700 to 1200 K. In addition, a new deuterium desorption process was observed for the deuterium-implanted sample at 173 K. This has never been observed for deuterium-implanted graphite implanted at temperatures higher than room temperature

  6. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    Energy Technology Data Exchange (ETDEWEB)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy); Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto [UTTTRI RIF – C.R. ENEA Trisaia, SS Jonica 106, km 419.5, 75026 Rotondella (Italy); Galvagno, Sergio [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy)

    2013-03-15

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.

  7. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Lara-Curzio, Edgar [ORNL; King Jr, Thomas J [ORNL

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  8. The effect of catalyst support on the RWGS reaction

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Sutthisripok, W.

    2004-01-01

    'Full text:' Methane steam reforming is generally applied in order to produce synthesis gas mainly consist of hydrogen and carbon monoxide for later utilization in SOFC. This reaction is always carried out with the water gas shift reaction over a catalyst at elevated temperatures resulting in some carbon dioxide production. The CO/CO2 production selectivity strongly depends on the influence of water gas shift reaction. It was observed that the reactivity of this reaction depended on the type of support material. Stabilities, activities, and kinetics of the reverse water gas shift reaction (RWGS) for commercial nickel on CeO2, ZrO2, CeO2-ZrO2, TiO2, MgO, and Al2O3 supports were studied in order to observe the influence of the support on this reaction. According to the experiment, the activities of Ni/CeO2 toward the reverse water gas shift reaction (RWGS) were very high, and reached equilibrium level at approximately 600 o C (where the conversion of CO2 was closed to 1). Other oxide supports provided lower activities toward this reaction. It was observed that the activity of Ni/Al2O3 toward this reaction was the lowest. The kinetics of this reaction was also studied. Carbon dioxide presented positive effect on the reverse water gas shift reaction. The reaction orders in carbon dioxide were observed to be positive partial value between 0-1. It slightly decreased with increasing temperature for Ni/ CeO2 and Ni/CeO2-ZrO2, whereas it seemed to be independent of the operating temperature for other materials in the range of conditions studied. Hydrogen also showed positive effect on the reverse water gas shift reaction for all materials. The reaction order in hydrogen for all materials was observed to be the positive value and less than one for the range of conditions studied. The approximate values for all catalysts were between 0.45-0.65, and seemed to be independent of the operating temperature. The estimated values of the apparent activation energy for RWGS reaction

  9. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    Science.gov (United States)

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  10. Zircaloy-steam reaction under a simulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kawasaki, Satoru; Furuta, Teruo; Hashimoto, Masao

    1975-07-01

    Under a simulated loss-of-coolant condition, the reaction between zircaloy and steam and the embrittlement of the zircaloy oxidized by this reaction have been studied. The parabolic rate constant, ksub(p), in the zircaloy-steam reaction is represented as ksub(p)=3.24x10 6 exp(-40500/RT) (mg 2 /cm 4 . sec) Ring compression test was made on the steam-reacted zircaloy tubes, and following results were obtained: Embrittlement of the steam-reacted zircaloy tube increases with oxidation at each oxidation temperature. For a given quantity of the oxidation, the incursion of α-phase into β-phase is more remarkable in the specimens reacted at low temperatures than those at high temperatures. The embrittlement, however, is larger in the specimens oxidized at high temperatures than those at low temperatures. (auth.)

  11. Redox and oxo-abstraction reactions of silylamine with MoOCl4

    International Nuclear Information System (INIS)

    Vasisht, S.K.; Singh, G.

    1985-01-01

    Trimethylsilyldiethylamine Me 3 SiNEt 2 and MoOCl 4 (1:1) undergo a free radical redox reaction in CH 2 Cl 2 or Et 2 O to form MoCl 3 O(HNEt 2 ). Reduction occurs even in aprotic media like CCl 4 and CS 2 to give Mo(V) complexes Mo 2 Cl 6 O 2 (N 2 Et 4 ) and Mo 2 Cl 6 O 2 [(SCNEt 2 ) 2 S 2 ], respectively. A 2:1 reaction in nonionizing protic solvents undergoes redox cum cleavage to provide MoCl 2 O(NEt 2 )(HNEt 2 ) but a reaction at reflux temperature in 1,2-dichloroethane leads to diethylammonium salt, [Et 2 NH 2 ][MoCl 4 O(HNEt 2 )]. Higher molar reactions (3:1, 4:1) in CH 2 Cl 2 or Et 2 O are associated with redox reaction as well as oxygen atom abstraction to form de-oxo Mo(IV) complex MoCl 3 (NEt 2 )(HNEt 2 ) 2 , whereas, a 3:1 reaction in CS 2 forms Mo 2 Cl 4 O(S 2 CNEt 2 ) 4 . Compounds have been characterized by elemental analyses, redox titration, magnetic moment, conductance, infrared, electronic absorption and 1 H-NMR measurements. (author)

  12. Effect of Barium-Precursors on Reaction Kinetics in Y-Ba-Cu-O System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reactions of stoichiometric Y2O3, CuO, and different Ba salts or oxides (BaCO3, Ba(NO3)2, BaO2, BaCuO2) for forming various compounds in the Y-Ba-Cu-O system (i.e., YBa2Cu3O7-δ, BaCuO2, Y2BaCuO5 and Y2Cu2O5) were systematically investigated by thermal analysis and X-ray diffractometry. The relevant activation energies were calculated from thermogravimetric data. It is found that the reaction pathway significantly depends on the thermal stability of the Ba precursors. Binary BaO-CuO phases form at low temperature (650~700 ℃) when in presence of easy-to-decompose Ba precursors, and then slowly transform to ternary compounds. On the contrary, when Ba ions are released at temperature higher than 900 ℃, ternary phases form directly from the components.

  13. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  14. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  15. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer

    OpenAIRE

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-01-01

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600??C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO bac...

  16. Thermodynamic analysis of dust sulphation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A.

    1997-12-31

    Sulphation reactions of metal oxides with SO{sub 2} and O. or SO{sub 3} play significant roles in sulphation roasting of sulphide and oxide minerals as well as in desulphurisation process of combustion gases. In metallurgical waste-heat boilers for sulphide smelting, the sulphation of the oxidic flue dust in the atmosphere containing sulphur oxides is an unavoidable process, and the sulphation reactions have to be guided in a controlled way in the proper parts of the gas handling equipment. In this report, some thermodynamic analyses were conducted for the oxide sulphation reactions in relation to sulphide smelting processes. The phase stability of Me-S-O systems especially for oxides - sulphates equilibrium was studied under different thermodynamic conditions of gas compositions and temperatures. The sulphate stability was analysed for an example of gas compositions in the copper flash smelter of Outokumpu Harjavalta Metals Oy, in relation to temperature. In the report, most of the information was from literature. Moreover, a number of thermodynamic computations were carried out with the HSC program, and the constructed phase stability diagrams were compared with those from the literature whenever possible. The maximum temperatures for stable sulphates under normal operating conditions of the waste-heat boilers in sulphide smelting processes were obtained. This report will serve as the basis for the kinetic studies of the sulphation reactions and the sulphation reaction modelling in pyrometallurgical processes. (orig.) SULA 2 Programme. 36 refs.

  17. AlN powder synthesis via nitriding reaction of aluminum sub-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T.; Nishida, T.; Sugiura, M. (Waseda Univ., Tokyo (Japan). Graduate School); Fuwa, A. (Waseda Univ., Tokyo (Japan))

    1993-06-01

    In order to obtain the pertinent properties of aluminium nitride in its sintered form, it is desirable to have powders of finer sizes with narrower size distribution and higher purity, thereby making the sintering processing easier and the final body denser. Instead of using sublimated aluminum tri-chloride vapor (AlCl3) as an aluminum source in the vapor phase nitriding reaction, the mixed aluminum chloride vapor consisted of aluminum tri-chloride, bi-chloride and mono-chloride are used in the reaction with ammonia at temperatures of 1000 and 1200K. The mixed chloride vapors are produced by reacting chlorine with molten aluminum at 1000 or 1200K under atmospheric pressure. The reaction of this mixed chloride vapor with ammonia is then experimentally investigated to study the aluminum nitride powder morphology. The aluminum nitride powders synthesized under various ammonia concentrations are characterized for size distribution, mean particle size and particle morphology. 24 refs., 8 figs., 2 tabs.

  18. A Kinetic Study of the Gas-Phase Reaction of OH with Br2

    Science.gov (United States)

    Bryukov, Mikhail G.; Dellinger, Barry; Knyazev, Vadim D.

    2011-01-01

    An experimental, temperature-dependent kinetic study of the gas-phase reaction of the hydroxyl radical with molecular bromine (reaction 1) has been performed using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over a wide temperature range of 297 – 766 K, and at pressures between 6.68 and 40.29 kPa of helium. The experimental rate coefficients for reaction 1 demonstrate no correlation with pressure and exhibit a negative temperature dependence with a slight negative curvature in the Arrhenius plot. A non-linear least-squares fit with two floating parameters of the temperature dependent k1(T) data set using an equation of the form k1(T) = ATn yields the recommended expression k1(T) = 1.85×10−9T − 0.66 cm3 molecule−1 s−1 for the temperature dependence of the reaction 1 rate coefficient. The potential energy surface (PES) of reaction 1 was investigated using quantum chemistry methods. The reaction proceeds through formation of a weakly bound OH···Br2 complex and a PES saddle point with an energy below that of the reactants. Temperature dependence of the reaction rate coefficient was modeled using the RRKM method on the basis of the calculated PES. PMID:16854030

  19. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  20. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WIL