WorldWideScience

Sample records for higher organic carbon

  1. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  2. Statistics provide guidance for indigenous organic carbon detection on Mars missions.

    Science.gov (United States)

    Sephton, Mark A; Carter, Jonathan N

    2014-08-01

    Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior

  3. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  4. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  5. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Science.gov (United States)

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  6. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  7. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2016-07-01

    Full Text Available Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve, while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve. This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.

  8. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  9. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  10. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  11. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  12. Selection criteria for oxidation method in total organic carbon measurement.

    Science.gov (United States)

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Driving forces of organic carbon spatial distribution in the tropical seascape

    Science.gov (United States)

    Gillis, L. G.; Belshe, F. E.; Ziegler, A. D.; Bouma, T. J.

    2017-02-01

    An important ecosystem service of tropical coastal vegetation including seagrass beds and mangrove forests is their ability to accumulate carbon. Here we attempt to establish the driving forces for the accumulation of surface organic carbon in southern Thailand coastal systems. Across 12 sites we found that in line with expectations, seagrass beds (0.6 ± 0.09%) and mangrove forests (0.9 ± 0.3%) had higher organic carbon in the surface (top 5 cm) sediment than un-vegetated mudflats (0.4 ± 0.04%). Unexpectedly, however, mangrove forests in this region retained organic carbon, rather than outwell it, under normal tidal conditions. No relationship was found between organic carbon and substrate grain size. The most interesting finding of our study was that climax and pioneer seagrass species retained more carbon than mixed-species meadows, suggesting that plant morphology and meadow characteristics can be important factors in organic carbon accumulation. Insights such as these are important in developing carbon management strategies involving coastal ecosystems such as offsetting of carbon emissions. The ability of tropical coastal vegetation to sequester carbon is an important aspect for valuing the ecosystems. Our results provide some initial insight into the factors affecting carbon sequestration in these ecosystems, but also highlight the need for further research on a global scale.

  14. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    labile carbon and carbon management indices also were calculated. In carbon management index calculation, a reference farm was chosen at the vicinity of two regions which were abandoned for years. Statistical analysis like analysis of variance and correlation coefficients was done using SPSS 16.0 software. Results and discussion: Results revealed that the highest crop yield (with the average of 5.7 tonh-1 was related to the farm which was irrigated with saline water (water EC 8.1 dSm-1 with enough water crop requirement. As this farm received the highest amount of water (with thw volume of 1039.5 mm, it seems that much more irrigation water probably provided the leaching fraction and prevented salt accumulation in the the root zone. Therefore, water salinity could not be a limiting factor for crop growth in this farm. This farm also had the highest content of organic carbon but it didn’t have the highest labile organic carbon and carbon management index (the value of 161.5. On the other hand, the farm containing the highest labile carbon and carbon management indices (the value of 284, didn’t have the highest crop yield (with the average of 2.6 tonha-1 although it has recieved enough amount of water as well as non-saline irrigation water (water EC 2.28 dSm-1. The more carbon management index represents the higher soil carbon lability and soil quality and it demonstrates that soil have better condition for living microorganisms. Therefore, it can be concluded from the results that the higher soil quality not necessarily resulted in higher crop yield. Many researchers reported that better soil properties are not always resulted in the higher productivity. Taking everything into account, carbon management index is not related to crop yield, but since it indirectly is related to microbial activity and calculated easily, it could be a useful indicator for rapid assessment of soil quality. Meanwhile, this indicator may be associated with qualitative properties of the crops

  15. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Hui; Zhang, Yiran; Lal, Rattan; Wang, Renqing; Ge, Xiuli; Liu, Jian

    2017-07-14

    Wetlands are an important carbon reservoir pool in terrestrial ecosystems. Light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and dissolved organic carbon (DOC) were fractionated in sediment samples from the four wetlands (ZR: Zhaoniu River; ZRCW: Zhaoniu River Constructed Wetland; XR: Xinxue River; XRCW: Xinxue River Constructed Wetland). Organic carbon (OC) from rivers and coasts of China were retrieved and statistically analyzed. At regional scale, HFOC stably dominates the deposition of OC (95.4%), whereas DOC and LFOC in ZR is significantly higher than in ZRCW. Concentration of DOC is significantly higher in XRCW (30.37 mg/l) than that in XR (13.59 mg/l). DOC and HFOC notably distinguish between two sampling campaigns, and the deposition of carbon fractions are limited by low nitrogen input. At the national scale, OC attains the maximum of 2.29% at precipitation of 800 mm. OC has no significant difference among the three climate zones but significantly higher in river sediments than in coasts. Coastal OC increases from Bohai Sea (0.52%) to South Sea (0.70%) with a decrease in latitude. This study summarizes the factors affecting organic carbon storage in regional and national scale, and have constructive implications for carbon assessment, modelling, and management.

  16. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  17. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  18. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  19. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  20. Organic carbon content of tropical zooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  1. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  2. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  3. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  4. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  5. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  6. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  7. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  8. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were

  9. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  10. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  11. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  12. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  13. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    International Nuclear Information System (INIS)

    Zhang Na; Yang Yu; Tao Shu; Liu Yan; Shi Kelu

    2011-01-01

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: → Soil organic carbon content determines the OCP sequestration fraction in soil. → Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. → The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. → DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  14. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  15. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  16. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  17. Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from the Indian monsoonal rivers

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, M.S.; Prasad, V.R.; Sarma, V.V.S.S.; Reddy, N.P.C.; Hemalatha, K.P.J.; Rao, Y.V.

    normalized fluxes of DOC and DON were found to be higher in the estuaries located in the southwestern than the estuaries from other regions of India. It was attributed to relatively higher soil organic carbon, biomass carbon, and heavy rainfall in catchment...

  18. Biochemical indicators for the bioavailability of organic carbon in ground water

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Goode, D.J.; Tiedeman, C.; Lacombe, P.J.; Kaiser, K.; Benner, R.

    2009-01-01

    The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 ??M; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (???0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 ??M; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (???1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.

  19. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  20. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  2. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Iyer, S.D.; Chauhan, O.S.; PrakashBabu, C.

    Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals...

  3. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  4. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  5. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Science.gov (United States)

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  7. [Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].

    Science.gov (United States)

    Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao

    2011-03-01

    the sediment humus of two lakes, and the followed was loosely combined humus. As a whole, the carbon storage of two lakes were all relatively stable, but the values of PQ, LFOC/TOC, the ratio of loosely to tightly combined humus and HA/FA revealed that, in the sediment of Wuliangsuhai, the humification degree of organic matter was lower than that of Daihai, while the activity of humus was higher than that of Daihai, thus the carbon storage is less stable than that of Daihai.

  8. Accumulation of organic carbon in northwestern Arabian sea sediments

    International Nuclear Information System (INIS)

    Khan, A.A.

    1999-01-01

    In this study accumulation of organic carbon in marine sediments of northwestern Arabian sea has been discussed. This paper presents the geochemical analysis of Organic carbon content and accumulation, delta 13 stable carbon isotope and Ba/Al. The primary objective was to investigate the high resolution information about the variations in paleoproductivity and source of organic matter in sediments below an upwelling area. Undisturbed sediments (Piston core NIOP-486) of late Pleistocene time were collected during Netherlands Indian Ocean Program (NIOP-1992-93). The core NIOP-486 was raised from a depth of 2077 meters near the Owen Ridge. This core records deposition history of last 200,000 years and includes 4 warm and 3 cold periods. The distribution of organic carbon content in studied core shows a pronounced cyclicity during glacial and interglacial stages. Organic carbon accumulation trends show that high sedimentation rates in glacial stages results in rapid burial and hence increase organic carbon accumulation. Paleoproductivity indicator Ba/Al has been used to compare with the organic carbon content and is correlated with the warm and cold periods variations in monsoons upwelling intensity. Generally, low paleoproductivity is found in glacial stages. The organic carbon content and accumulation, in sediments however seems to differ from the paleoproductivity trends shown by Ba/Al in glacial sediments of stage 6. Delta 13 C.org isotope results of the core NIOP-486 confirm that organic matter in sediments is predominantly marine (-20 to -23% ). (author)

  9. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  10. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  11. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  12. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  13. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  14. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  15. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  16. Soluble carbon in oxisol under the effect of organic residue rates

    Directory of Open Access Journals (Sweden)

    Gabriela Lúcia Pinheiro

    2014-06-01

    Full Text Available The application of organic residues to the soil can increase soluble organic carbon (SOC and affect the pH and electrolytic conductivity (EC of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC, water-extractable organic carbon (WEOC, and water-extractable inorganic carbon (WEIC in soil treated with manure (chicken, swine, and quail, sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4, organic carbon (OC- KH2PO4, and inorganic C (IC- KH2PO4 extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

  17. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  18. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  19. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  20. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  1. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  2. Modeling Coupled Landscape Evolution and Soil Organic Carbon Dynamics in Intensively Management Landscapes

    Science.gov (United States)

    Yan, Q.; Kumar, P.

    2017-12-01

    Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and

  3. Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia

    Science.gov (United States)

    Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho

    2017-04-01

    Tropical peatlands are valuable stores of carbon. However, tropical peat swamp forests (TPSFs) in Southeast Asia have increasingly been converted to other land-uses. For example, more than 25% of TPSFs are now under oil palm plantations. This conversion - requiring felling and burning of trees and drainage of the peat - can enhance carbon mineralization, dissolved organic carbon (DOC) losses and can contribute significantly to global anthropogenic greenhouse gas emissions, changing these natural carbon sinks into carbon sources. At present, relatively few scientifically sound studies provide dependable estimates of gaseous and fluvial carbon losses from oil palm plantations or from drained tropical peat in general. Here we present an annual (54 week) estimate of the export of dissolved and particulate organic carbon in water draining two oil palm estates and nearby stands of TPSF in Sarawak, Malaysia, subjected to varying degrees of past anthropogenic disturbance. Spectrophotometric techniques including SUVA254 (Specific Ultra-Violet Absorption) were used to gain insight into the aromaticity and subsequent bioavailability of the exported DOC. Water draining plantation and deforested land had a higher proportion of labile carbon compared to water draining forested areas. Preliminary data suggest a total fluvial DOC flux from plantations of ca. 190 g C m-2 year-1; nearly three times estimates from intact TPSFs (63 g C m-2 year-1). DOC accounted for between 86 % - 94 % of the total organic carbon lost (most of which was bioavailable). Wit et al. (2015) estimates that an average of 53 % of peat-derived DOC is decomposed and emitted as CO2, on a monthly basis. Based on these estimates our data suggests an additional 101 g CO2 m-2 may be emitted indirectly from fluvial organic carbon in degraded TPSFs per year. Overall, these findings emphasize the importance of including fluvial organic carbon fluxes when quantifying the impact of anthropogenic disturbance on the

  4. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  5. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  6. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC IMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC NIOSH ratio and the EC IMPROVE-A to EC EUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  7. Dynamics of organic carbon losses by water erosion after biocrust removal

    Directory of Open Access Journals (Sweden)

    Cantón Yolanda

    2014-12-01

    Full Text Available In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1 were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC and organic carbon bonded to sediments (SdOC were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC (average 1.80±1.86 g m-2 compared to physical soil crusts (7.83±3.27 g m-2. Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff

  8. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    Science.gov (United States)

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  9. Comparisons of Organic Carbon Analyzers and Related Importance to Water Quality Assessments

    Directory of Open Access Journals (Sweden)

    Murage Ngatia

    2007-05-01

    Full Text Available This study tested whether analyzers using different methods were equally capable of measuring organic carbon in diverse environmental water samples from California’s Sacramento/San Joaquin Delta and its watersheds. The study also evaluated whether the different instruments might provide differing organic carbon concentration measurements, which could in turn trigger (or not a regulatory requirement for enhanced coagulation at a water treatment plant. In Phase 1, samples were collected in eight monthly events at five stations associated with California’s State Water Project and analyzed using three high temperature combustion and three chemical oxidation instruments. Significant differences between instruments occurred in only 20% of the analyses. However, 80% of the observed differences were attributed to one combustion instrument that reported higher values compared to the other instruments. In Phase 2, four certified standards were analyzed with nine instruments. Results suggested that the main contributor of the observed differences was some instruments’ inability to remove inorganic carbon, an important step in the analytical process. There were no significant differences in the frequencies at which different instruments would have prescribed enhanced coagulation at a water treatment plant. We concluded that properly operating instruments using any of the standard methods were equally capable of analyzing the diverse concentration levels of organic carbon in the Delta.

  10. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    Science.gov (United States)

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  11. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    Science.gov (United States)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  12. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  13. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  14. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  15. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  16. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  17. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay

    International Nuclear Information System (INIS)

    Kubo, Atsushi; Kanda, Jota

    2017-01-01

    Total organic carbon (TOC), total nitrogen (TN) contents, their stable C and N isotope ratio (δ 13 C and δ 15 N), and chlorophyll a ([Chl a] sed ) of surface sediments were investigated monthly to identify the seasonal variations and sources of organic matter in Tokyo Bay. The sedimentary TOC (TOC sed ) and TN (TN sed ) contents, and the sedimentary δ 13 C and δ 15 N (δ 13 C sed and δ 15 N sed ) values were higher in summer than other seasons. The seasonal variations were controlled by high primary production in the water column and hypoxic water in the bottom water during summer. The fraction of terrestrial and marine derived organic matter was estimated by Bayesian mixing model using stable isotope data and TOC/TN ratio. Surface sediments in Tokyo Bay are dominated by marine derived organic matter, which accounts for about 69 ± 5% of TOC sed . - Highlights: • High values of sedimentary organic carbon and nitrogen were observed in summer. • Surface sediments in Tokyo Bay were dominated by marine derived organic matter which was estimated by Bayesian mixing model. • The most amount of terrestrial POC was deposited and degraded in Tokyo Bay before being discharged to the open ocean.

  18. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii.

    Science.gov (United States)

    Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D

    2015-01-01

    The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. New evidence for enhanced preservation of organic carbon in contact with oxygen minimum zone on the western continental slope of India

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; PrakashBabu, C.; Mascarenhas, A.

    (HI) expressed as mg HC/g organic carbon. Results and discussion The organic carbon (OC) content varies between 0.14 and 6.18 wt% (Table 1). The depthwise con- centration of organic carbon (Fig. 2a) shows that significantly higher values (av. 3... the presence of lipid-rich organic matter in the sediments in con- tact with the OMZ. Two samples fringing the lower depth level of OMZ, i.e. 1500 m also regis- tered high HI values (459 and 560, respectively). These stations marginally exceeded the depth...

  20. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  1. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  3. PBDE and PCB accumulation in benthos near marine wastewater outfalls: The role of sediment organic carbon

    International Nuclear Information System (INIS)

    Dinn, Pamela M.; Johannessen, Sophia C.; Ross, Peter S.; Macdonald, Robie W.; Whiticar, Michael J.; Lowe, Christopher J.; Roodselaar, Albert van

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation. - Highlights: ► Physical receiving environment affects PBDE bioaccumulation by benthic invertebrates. ► PBDE uptake is correlated with organic-carbon normalized sediment concentrations. ► PBDE and PCB congener uptake are governed by different properties. ► PBDE sediment quality guidelines may benefit by using organic carbon-normalized data. ► Enhanced wastewater treatment may mean increased benthic invertebrate PBDE bioaccumulation. - The physical receiving environment affects the accumulation of PBDEs by benthic invertebrates near submarine municipal outfalls, and uptake of PBDE congeners is governed by different properties than for PCB congeners.

  4. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  5. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  6. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  7. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  8. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    International Nuclear Information System (INIS)

    Rathod, T.D.; Sahu, S.K.; Tiwari, M.; Pandit, G.G.

    2016-01-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g"−"1 and 17.84±6.45 W g"−"1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67–90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV–visible spectrum. - Highlights: • Biomass fuels (wood and dung cake) were studied for brown carbon direct radiative effects. • Model calculations predicted positive contribution of Brown carbon aerosols to organic carbon direct radiative effect. • Average direct radiative values for brown carbon from dung cake were higher compare to wood. • The visible light absorption played major role in brown carbon contribution (67–90 %) to total direct radiative effect.

  9. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  10. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  11. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  12. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  13. Fate of Subducting Organic Carbon: Evidence from HP/UHP Metasedimentary Suites

    Science.gov (United States)

    Kraft, K.; Bebout, G. E.

    2017-12-01

    Community interest in deep-Earth C cycling has focused attention on extents of C release from subducting oceanic lithosphere and sediment and the fate of this released C. Many have suggested that, based on isotopic and other arguments, 20% of the C subducted into the deeper mantle is in reduced form (organic); however, individual margins show large variation in carbonate to organic C ratios. Despite the size of the potentially deeply subducted organic C reservoir, its fate in subducting sections remains largely unexplored, with most attention paid to release of carbonate C. To characterize the forearc behavior of organic C, metamorphosed to P-T as high as that beneath volcanic fronts, we evaluated records of reduced C (RC) contents and isotope compositions in HP/UHP metasediments: 1) Schistes Lustres/Cignana (SLC) suite (Alps; Cook-Kollars et al., 2014, Chem Geol) with abundant carbonate and resembling sediment entering the East Sunda trench; and (2) Franciscan Complex (FC), W. Baja Terrain (WBT), Catalina Schist (CS) metasediments (Sadofsky and Bebout, 2003, G3), largely sandstone-shale sequences containing very little carbonate. In general, more Al-rich samples (shaley) in the terrigenous metasedimentary suites have higher concentrations of RC, which in low-grade units preserves δ13C of its organic protoliths. Carbonate-poor rocks in the SLC suite, and at ODP Site 765, show correlated major element (Al, Mg, Mn, Ti, P) and RC contents (up to 1.2 wt.%) reflecting sandstone-shale mixture. In the FC, WBT, and CS, the more Al-rich samples contain up to 2 wt. % RC. In high-grade Catalina Schist, RC has elevated δ13C due to C loss in CH4 and high-grade Alps rocks show reduced RC wt. % normalized to Al content. We consider processes that could alter contents and isotopic compositions of RC in sediment, e.g., devolatilization, closed-system exchange with carbonate, redox reactions, isotopic exchange with C in externally-derived fluids. It appears that, on modern Earth

  14. Organic carbon recovery modeling for a rotating belt filter and its impact assessment on a plant-wide scale

    DEFF Research Database (Denmark)

    Behera, Chitta Ranjan; Santoro, Domenico; Gernaey, Krist V.

    2018-01-01

    In this study, we perform a systematic plant-wide assessment of the organic carbon recovery concept on wastewater treatment plants by an advanced cellulose recovery enabling technology called rotating belt filter (RBF). To this end, first, an empirical model is developed to describe organic carbon...... recovery by the RBF, which is then used for the plant-wide performance evaluation to further understand the impact of organic carbon recovery by framing four different scenarios. The key features of the scenario analysis are: (i) an RBF operating with thick mat increases methane production (around 10...... %) and brings down aeration energy demand (by 8 %) compared to the primary clarifier (PC) and, (ii) the sludge retention time (SRT) of the activated sludge (AS) tank increases by 55 % when an RBF runs with thick mat and therefore promotes higher nitrification rate, (iii) organic carbon recovery by the RBF does...

  15. Do elevated nutrients and organic carbon on Philippine reefs increase the prevalence of coral disease?

    Science.gov (United States)

    Kaczmarsky, L.; Richardson, L. L.

    2011-03-01

    Characterizations of Philippine coral diseases are very limited. The two most common, ulcerative white spot disease (UWS) and massive Porites growth anomalies (MPGA), target the genus Porites, a dominant reef-building genus. This is the first investigation in the Philippines to detect positive correlations between coral disease, nutrient levels, and organic carbon. A total of 5,843 Porites colonies were examined. Water and sediment samples were collected for analyses of nutrients (total nitrogen and phosphorus) and total organic carbon at 15 sites along a 40.5 km disease gradient, which was previously shown to positively correlate with human population levels. Results suggest that outbreaks of UWS and MPGAs are driven by elevated nutrient and organic carbon levels. Although the variables analyzed could be proxies for other causative agents (e.g., high sediment levels), the results provide quantitative evidence linking relatively higher coral disease prevalence to an anthropogenically impacted environment.

  16. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  17. The Accumulation and Seasonal Dynamic of the Soil Organic Carbon in Wetland of the Yellow River Estuary, China

    Directory of Open Access Journals (Sweden)

    Xianxiang Luo

    2014-01-01

    Full Text Available The wetland of the Yellow River estuary is a typical new coastal wetland in northern China. It is essential to study the carbon pool and its variations for evaluating the carbon cycle process. The study results regarding the temporal-spatial distribution and influential factors of soil organic carbon in four typical wetlands belonging to the Yellow River estuary showed that there was no significant difference in the contents of the surface soil TOC to the same season among the four types of wetlands. For each type of wetlands, the TOC content in surface soils was significantly higher in October than that in both May and August. On the whole, the obvious differences in DOC contents in surface soils were not observed in the different wetland types and seasons. The peak of TOC appeared at 0–10 cm in the soil profiles. The contents of TOC and DOC were significantly higher in salsa than those in reed, suggesting that the rhizosphere effect of organic carbon in salsa was more obvious than that in reed. The results of the principal component analysis showed that the nitrogen content, salinity, bulk density, and water content were dominant influential factors for organic carbon accumulation and seasonal variation.

  18. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  19. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  20. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    Science.gov (United States)

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  1. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  2. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  3. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  4. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    Science.gov (United States)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  5. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  6. Method for obtaining more precise measures of excreted organic carbon

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A new method for concentrating and measuring excreted organic carbon by lyophilization and scintillation counting is efficient, improves measurable radioactivity, and increases precision for estimates of organic carbon excreted by phytoplankton and macrophytes

  7. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    Science.gov (United States)

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  8. [Soil organic carbon sequestration rate and its influencing factors in farmland of Guanzhong Plain: a case study in Wugong County, Shannxi Province].

    Science.gov (United States)

    Zhang, Xiao-Wei; Xu, Ming-Xiang

    2013-07-01

    Take Wugong County as an example, soil carbon storage and soil carbon sequestration rate were calculated, the change law of farmland soil organic carbon was explored, and the relationship of farmland soil organic carbon and natural factors, human factors was further revealed. The results of the study showed that: (1) The soil organic carbon contents in 80% of the sampling sites were in the range of 8.0-12.0 g x kg(-1), and the organic carbon contents in 0-20 cm soils showed a normal distribution. (2) In 2011, the organic carbon density of the 0-20 cm farmland soil was 26.3 t x hm(-2), below the national average soil organic carbon density (33.45 t x hm(-2)) of the arable layer. In the last 30 years, the soil carbon sequestration rate in the 0-20 cm layer was 71.3 kg x (hm2 x a)(-1), and in the past five years, the carbon sequestration rate was 480 kg x (hm x a)(-1). The recent carbon sequestration rate was higher than the national average soil carbon sequestration rate of the arable layer [380.78 kg x (hm2 x a)(-1)]. (3) In the semi-humid plain region, soil organic carbon was mainly affected by soil types, landform types, organic fertilizer. Soil types accounted for 30.2% of the organic carbon variability; the landform types and the organic fertilizer could explain 37.7% and 32.1%, respectively. The results of the comprehensive analysis showed that the farmland soil organic carbon density of Wugong County in the past 30 years is increasing, and this probably relies on the utilization of chemical fertilizer and the returning straw. Further study should be conducted on the impact of the chemical fertilizer and returning straw.

  9. Redox-controlled carbon and phosphorus burial: A mechanism for enhanced organic carbon sequestration during the PETM

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard E.

    2017-12-01

    Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination

  10. Examining organic carbon transport by the Orinoco River using SeaWiFS imagery

    Science.gov (United States)

    López, Ramón; Del Castillo, Carlos E.; Miller, Richard L.; Salisbury, Joseph; Wisser, Dominik

    2012-09-01

    The Orinoco River is the fourth largest in the world in terms of water discharge and organic carbon export to the ocean. River export of organic carbon is a key component of the carbon cycle and the global carbon budget. Here, we examined the seasonal transport of organic carbon by the Orinoco River into the eastern Caribbean using the conservative relationship of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in low salinity coastal waters influenced by river plumes. In situ measurements of CDOM absorption, DOC, and salinity were used to develop an empirical model for DOC concentration at the Orinoco River Plume. Satellite remote sensing reflectances were used with empirical models to determine DOC and Particulate organic carbon (POC) river transport. Our estimates of CDOM and DOC significantly correlated with in situ measurements and were within the expected ranges for the river. Total organic carbon transport by the Orinoco River during the period of 1998 to 2010 was 7.10 ×1012 g C y-1, from 5.29 × 1012 g C y-1 of DOC and 1.81 × 1012 g C y-1 of POC, representing ˜6% increase to previous published estimates. The variability in organic carbon transport responded to the seasonality in river flow more than to changes in organic carbon concentration in the river. Our results corroborate that is possible to estimate organic carbon transport using ocean color data at global scales. This is needed to reduce the uncertainties of land-ocean carbon fluxes.

  11. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  12. Measurement of stable isotope ratio of organic carbon in water samples

    International Nuclear Information System (INIS)

    Fujii, Toshihiro; Otsuki, Akira

    1977-01-01

    A new method for the measurement of stable isotope ratios was investigated and applied to organic carbon's isotope ratio measurements in water samples. A few river water samples from Tsuchiura city were tested. After the wet oxidation of organic carbons to carbon dioxide in a sealed ampoule, the isotope ratios were determined with the gas chromatograph-quadrupole mass spectrometer combined with a total organic carbon analyser, under the dynamic conditions. The GC-MS had been equipped with the multiple ion detector-digital integrator system. The ion intensities at m/e 44 and 45 were simultaneously measured at a switching rate of 1 ms. The measurements with carbon dioxide acquired from sodium carbonate (53 μg) gave the isotope ratios with the variation coefficient of 0.62%. However, the variation coefficients obtained from organic carbons in natural water samples were 2 to 3 times as high as that from sodium carbonate. This method is simple and rapid and may be applied to various fields especially in biology and medicine. (auth.)

  13. Dynamics of organic and inorganic carbon in surface sediments of the Yellow River Estuary

    Science.gov (United States)

    Yu, Z.; Wang, X.; Liu, X.; Zhang, E.; Hang, F.

    2017-12-01

    Estuarine sediment is an important carbon reservoir thus may play an important role in the global carbon cycle. However, little is known on the dynamics of organic carbon (OC) and inorganic carbon (IC) in the surface sediment of the Yellow River Estuary, a large estuary in northern China. In this study, we applied element analyses and isotopic approach to study spatial distribution and sources of OC and IC in the Yellow River Estuary. We found that TIC concentration (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the surface sediment. There showed a large spatial variability in TOC and TIC and their stable isotopes. Both TOC and TIC were higher to the north (2.6 and 14.5 g kg-1) than to the south (1.6 and 12.2 g kg-1), except in the southern bay where TOC and TIC reached 2.7 and 15.4 g kg-1, respectively. Generally, TOC and TIC in our study area was mainly autochthonous. The lower TOC values in the south section were due to relatively higher kinetic energy level whereas the higher values in the bay was attributable to terrigenous matters accumulation and lower kinetic energy level. However, the southern bay revealed the most negative δ13Corg and δ13Ccarb, suggesting that there might exist some transfer of OC to IC in the section. Our study points out that the dynamics of sedimentary carbon in the Yellow River Estuary is influenced by multiple and complex processes, and highlights the importance of carbonate in carbon sequstration.

  14. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  15. The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit

    International Nuclear Information System (INIS)

    Miyakawa, Kazuya; Ishii, Eiichi; Hirota, Akinari; Komatsu, Daisuke D.; Ikeya, Kosuke; Tsunogai, Urumu

    2017-01-01

    Carbonate minerals in veins can record paleo-hydrogeological information that enables the reconstruction of groundwater history. This paper investigates the cause of differences in the occurrence of carbonate veins in the Koetoi and Wakkanai formations, both Neogene mudstone units in northwestern Hokkaido, from the perspective of controls on CO_2 supply from the alteration of organic matter. Carbonate veins are rare in the Koetoi Formation, but are widespread in the Wakkanai Formation. This area is a region of oil and gas accumulation where deep groundwater is saturated mainly with CH_4 and CO_2. The results show high δ"1"3C values in co-existing CH_4 (∼–32.6‰) and CO_2 (∼+31.0‰) gases. An investigation of δ"1"3C – δD systematics among these gases indicates that isotopic fractionation was caused by microbial CO_2 reduction. Although total organic carbon content in the Koetoi Formation decreases with increasing depth, total organic content in the Wakkanai Formation remains roughly constant with depth. Furthermore, although δ"1"3C values also show depth dependence, values from the Wakkanai Formation are higher than those from the Koetoi Formation. This "1"3C-enrichment could be explained by Rayleigh fractionation in a closed system. Based on these results, the processes behind the formation of the carbonate veins can be summarized as follows. Carbon dioxide behavior is thought to play an important role with respect to carbonate formation because CO_2 abundance is closely linked to pH and pressure. In shallow sedimentary rocks such as the Koetoi Formation that have started to experience diagenetic alteration of organic matter, CO_2 in groundwater is supplied by microbial decomposition of organic matter and is reduced to CH_4 by methanogens. In deep sedimentary rocks such as the Wakkanai Formation that have undergone diagenesis but have only experienced moderate temperatures so that thermal decomposition of organic matter has not yet begun, microbial

  16. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands.

    Science.gov (United States)

    Zhao, Yongcun; Wang, Meiyan; Hu, Shuijin; Zhang, Xudong; Ouyang, Zhu; Zhang, Ganlin; Huang, Biao; Zhao, Shiwei; Wu, Jinshui; Xie, Deti; Zhu, Bo; Yu, Dongsheng; Pan, Xianzhang; Xu, Shengxiang; Shi, Xuezheng

    2018-04-17

    China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha -1 in 1980 to 32.9 Mg C ha -1 in 2011, representing a net increase of 140 kg C ha -1 year -1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.

  17. Distribution of organic carbon in sediments from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    Many earlier studies on the distribution of organic carbon in the Arabian Sea, sediments have projected contradictory opinions on the factors favouring accumulation and preservation of organic carbon in the Arabian Sea. An attempt is made...

  18. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    International Nuclear Information System (INIS)

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  19. Assimilation of aged organic carbon in a glacial river food web

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  20. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  1. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  2. The distribution of organic carbon fractions in a typical loess-paleosol profile and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Qingqing Zhang

    2018-04-01

    Full Text Available Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1 the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2 soil clay content and median grain size (Md (ϕ were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3 in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ, while negatively correlated with CaCO3 content, and the correlations were more significant

  3. The distribution of organic carbon fractions in a typical loess-paleosol profile and its paleoenvironmental significance

    Science.gov (United States)

    Hu, Feinan; Huo, Na; Shang, Yingni; Chang, Wenqian

    2018-01-01

    Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC) ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC) and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1) the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2) soil clay content and median grain size (Md (ϕ)) were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3) in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ), while negatively correlated with CaCO3 content, and the correlations were more significant in soil

  4. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study

    Directory of Open Access Journals (Sweden)

    Tang Yali

    2017-01-01

    Full Text Available A mesocosm study illuminated possible transfer pathways for dissolved organic carbon from the water column to zooplankton. Organic carbon was added as 13C enriched glucose to 15 mesocosms filled with natural lake water. Stable isotope analysis and phospholipid fatty acids-based stable isotope probing were used to trace the incorporation of 13C into the cladoceran Bosmina and its potential food items. Glucose-C was shown to be assimilated into phytoplankton (including fungi and heterotrophic protists, bacteria and Bosmina, all of which became enriched with 13C during the experiment. The study suggests that bacteria play an important role in the transfer of glucose-C to Bosmina. Furthermore, osmotic algae, fungi and heterotrophic protists might also contribute to the isotopic signature changes observed in Bosmina. These findings help to clarify the contribution of dissolved organic carbon to zooplankton and its potential pathways.

  5. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan.

    Science.gov (United States)

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM2.5 in Japan via long-range aerosol transport, the radiocarbon ((14)C) concentrations of PM2.5 samples from April 2003 to March 2004 were measured. (14)C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the (14)C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and (14)C. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  7. Insight into the adsorption mechanisms of trace organic carbon on biological treatment process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Brar, Satinder Kaur; Buelna, Gerardo; Dubé, Rino

    2017-09-01

    The presence of recalcitrant dissolved organic matter (DOM) could have a significant effect on the adsorption mechanism and capacity of the sludge for many trace organic carbons (TrOCs). In this study, adsorption of three TrOCs on the sludge and HA was investigated. The results revealed that neutral hydrophilic compounds had an insignificant interaction with both sludge and HA. Positively charged compounds, such as fluoranthene, had more affinity toward HA than sludge with solid/liquid partitioning of 57 and 3.2 L/g, respectively. The adsorption intensity (K f ) of di-2-ethyl hexyl phthalate was 0.5 and 1.13 for the HA and the sludge, respectively. By introducing the sludge to the solution of HA and TrOCs that already reached equilibrium, the sludge adsorption capacity in the presence of HA was investigated. The finding showed that at the lower concentration, adsorption of HA on the sludge was considered as the main removal pathway for the adsorbed emerging contaminants, as 70 mg of HA was adsorbed by a gram of sludge. For the higher concentration, desorption of TrOCs from DOM into the sludge comprised 15-30% of total removal efficiency. CBZ: carbamazepine; DEHP: di-2-ethyl hexyl phthalate; DOM: dissolved organic matter; FLAN: fluoranthene; f oc : fraction of organic carbon; HA: humic acid; Log Kow: octanol-water partition coefficient; PAH: polycyclic aromatic hydrocarbon TS: total solid; TrOCs: trace organic carbons VS: volatile solid.

  8. Towards a universal microbial inoculum for dissolved organic carbon degradation experiments

    Science.gov (United States)

    Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael

    2017-04-01

    Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.

  9. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Science.gov (United States)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  10. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  11. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    Directory of Open Access Journals (Sweden)

    Liza Nuriati Lim Kim Choo

    2014-01-01

    Full Text Available Pineapples (Ananas comosus (L. Merr. cultivation on drained peats could affect the release of carbon dioxide (CO2 into the atmosphere and also the leaching of dissolved organic carbon (DOC. Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr than under bare peat treated with chloroform (205 t CO2 ha/yr, and they were the lowest (179.6 t CO2 ha/yr under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.

  12. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    Science.gov (United States)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be

  13. Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon?

    International Nuclear Information System (INIS)

    Agarwal, Tripti; Bucheli, Thomas D.

    2011-01-01

    Black carbon (BC) and total organic carbon (TOC) were quantified in the surface soils of Switzerland (N = 105) and Delhi (N = 36), India, to examine their relationships with contents of polycyclic aromatic hydrocarbons (PAH). BC content in Swiss (background) soils (N = 104) varied from 0.41 to 4.75 mg/g (median: 1.13 mg/g) and constituted 1-9% (median: 3%) of TOC. Indian (urban) soils had similar BC concentrations (0.37-2.05 mg/g, median: 1.19 mg/g), with relatively higher BC/TOC (6-23%, median: 13%). Similar to TOC, BC showed significant positive correlation with lighter PAH, but no correlation with heavier PAH in Swiss soils. In contrast, heavier PAH were significantly correlated only with BC in Delhi soils. It seems that TOC governs the distribution of PAH in organic matter rich background soils, while the proximity to emission sources is reflected by BC-PAH association in urban soils. - Light PAH correlated with TOC in background soils, whereas heavy PAH were associated with BC close to emission sources.

  14. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  15. Soil aggregation and organic carbon of Oxisols under coffee in agroforestry systems

    Directory of Open Access Journals (Sweden)

    Gabriel Pinto Guimarães

    2014-02-01

    Full Text Available Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1, organic coffee (Org1 and conventional coffee (Con1. On Farm 2, we evaluated: secondary forest (Sf2, organic coffee intercropped with inga (Org/In2, organic coffee intercropped with leucaena and inga (Org/In/Le2, organic coffee intercropped with cedar (Org/Ced2 and unshaded conventional coffee (Con2. Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2, with 20.2 g kg-1.

  16. Validity of estimating the organic carbon content of basin sediment using color measurements

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Sugai, Toshihiko; Ogami, Takashi; Yanagida, Makoto; Yasue, Ken-ichi

    2010-01-01

    Psychometric lightness (L* value) measured by a colorimeter offers a rapid means of obtaining the organic carbon content of sediment. We measured peat and lacustrine sediments covering the past 300 ka - 106 samples for L* value and 197 samples for organic carbon content. L* values are highly correlated with organic carbon contents. Therefore, L* values are a convenient alternative to measuring organic carbon contents. (author)

  17. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  18. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  19. Relationship of subseafloor microbial diversity to sediment age and organic carbon content

    Science.gov (United States)

    Walsh, E. A.; Kirkpatrick, J. B.; Sogin, M. L.; D'Hondt, S. L.

    2013-12-01

    Our tag pyrosequencing investigation of four globally distant sites reveals sediment age and total organic carbon content to be significant components in understanding subseafloor diversity. Our sampling locations include two sites from high-productivity regions (Indian Ocean and Bering Sea) and two from moderate-productivity (eastern and central equatorial Pacific Ocean). Sediment from the high-productivity sites has much higher TOC than sediment from the moderate-productivity equatorial sites. We applied a high-resolution 16S V4-V6 tag pyrosequencing approach to 24 bacterial and 17 archaeal samples, totaling 602,502 reads. We identified1,291 archaeal and 15,910 bacterial OTUs (97%) from these reads. We analyzed bacterial samples from all four sites in addition to archaeal samples from our high productivity sites. These high productivity, high TOC sites have a pronounced methane-rich sulfate-free zone at depth from which archaea have been previously considered to dominate (Biddle et al., 2006). At all four locations, microbial diversity is highest near the seafloor and drops rapidly to low but stable values with increasing sediment depth. The depth at which diversity stabilizes varies greatly from site to site, but the age at which it stabilizes is relatively constant. At all four sites, diversity reaches low stable values a few hundred thousand years after sediment deposition. The sites with high total organic carbon (high productivity sites) generally exhibit higher diversity at each sediment age than the sites with lower total organic carbon (moderate-productivity sites). Archaeal diversity is lower than bacterial diversity at every sampled depth. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R. et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. PNAS 103: 3846-3851.

  20. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau.

    Science.gov (United States)

    Qu, Bin; Sillanpää, Mika; Li, Chaoliu; Kang, Shichang; Stubbins, Aron; Yan, Fangping; Aho, Kelly Sue; Zhou, Feng; Raymond, Peter A

    2017-01-01

    The role played by river networks in regional and global carbon cycle is receiving increasing attention. Despite the potential of radiocarbon measurements (14C) to elucidate sources and cycling of different riverine carbon pools, there remain large regions such as the climate-sensitive Tibetan Plateau for which no data are available. Here we provide new 14C data on dissolved organic carbon (DOC) from three large Asian rivers (the Yellow, Yangtze and Yarlung Tsangpo Rivers) running on the Tibetan Plateau and present the carbon transportation pattern in rivers of the plateau versus other river system in the world. Despite higher discharge rates during the high flow season, the DOC yield of Tibetan Plateau rivers (0.41 gC m-2 yr-1) was lower than most other rivers due to lower concentrations. Radiocarbon ages of the DOC were older/more depleted (511±294 years before present, yr BP) in the Tibetan rivers than those in Arctic and tropical rivers. A positive correlation between radiocarbon age and permafrost watershed coverage was observed, indicating that 14C-deplted/old carbon is exported from permafrost regions of the Tibetan Plateau during periods of high flow. This is in sharp contrast to permafrost regions of the Arctic which export 14C-enriched carbon during high discharge periods.

  1. Bioavailable dissolved and particulate organic carbon flux from coastal temperate rainforest watersheds

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; D'Amore, D. V.; Moll, A.

    2017-12-01

    Coastal temperate rainforest (CTR) watersheds of southeast Alaska have dense soil carbon stocks ( 300 Mg C ha-1) and high specific discharge (1.5-7 m yr-1) driven by frontal storms from the Gulf of Alaska. As a result, dissolved organic carbon (DOC) fluxes from Alaskan CTR watersheds are estimated to exceed 2 Tg yr-1; however, little is known about the export of particulate organic carbon (POC). The magnitude and bioavailability of this land-to-ocean flux of terrigenous organic matter ultimately determines how much metabolic energy is translocated to downstream and coastal marine ecosystems in this region. We sampled streamwater weekly from May through October from four watersheds of varying landcover (gradient of wetland to glacial coverage) to investigate changes in the concentration and flux of DOC and POC exported to the coastal ocean. We also used headspace analysis of CO2 following 14 day laboratory incubations to determine the flux of bioavailable DOC and POC exported from CTR watersheds. Across all sites, bioavailable DOC concentrations ranged from 0.2 to 1.9 mg L-1 but were on average 0.6 mg L-1. For POC, bioavailable concentrations ranged from below detection to 0.3 mg L-1 but were on average 0.1 mg L-1. The concentration, flux and bioavailability of DOC was higher than for POC highlighting the potential importance of DOC as a metabolic subsidy to downstream and coastal environments. Ratios of DOC to POC decreased during high flow events because the increase in POC concentrations with discharge exceeds that for DOC. Overall, our findings suggest that projected increases in precipitation and storm intensity will drive changes in the speciation, magnitude and bioavailability of the organic carbon flux from CTR watersheds.

  2. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  3. A Raman Study of Carbonates and Organic Contents in Five CM Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Farley, C.; Cheung, J. C. H.

    2016-01-01

    Carbonates comprise the second most abundant class of carbon-bearing phases in carbonaceous chondrites after organic matter (approximately 2 wt.%), followed by other C-bearing phases such as diamond, silicon carbide, and graphite. Therefore, understanding the abundances of carbonates and the associated organic matter provide critical insight into the genesis of major carbonaceous components in chondritic materials. Carbonates in CM chondrites mostly occur as calcite (of varying composition) and dolomite. Properly performed, Raman spectroscopy provides a non-destructive technique for characterizing meteorite mineralogy and organic chemistry. It is sensitive to many carbonaceous phases, allows the differentiation of organic from inorganic materials, and the interpretation of their spatial distribution. Here, with the use of Raman spectroscopy, we determine the structure of the insoluble organic matter (IOM) in the matrix and carbonate phases in five CM chondrites: Jbilet Winselwan, Murchison, Nogoya, Santa Cruz, and Wisconsin Range (WIS) 91600, and interpret the relative timing of carbonate precipitation and the extent of the associated alteration events.

  4. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    Science.gov (United States)

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (Porganic carbon fraction in soil, straw soil-returning had the potential to accumulate stable organic carbon fraction. Considering organic carbon sequestration in cropland in the region of Guanzhong plain, maize straw mulching or soil-returning was better than wheat straw, and wheat straw and maize straw soil-returning (WR-MR) were better than wheat and maize straw mulching (WM-MM).

  5. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  6. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  7. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  8. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  9. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition

    DEFF Research Database (Denmark)

    Nickel, Maren; Vandieken, Verona; Brüchert, Volker

    2008-01-01

    station, with seasonally extended ice cover, low organic carbon content and sedimentation rate combined with relatively high concentrations of Mn and Fe(III) oxides favored dissimilatory Fe and Mn reduction (98% of anaerobic carbon oxidation) over sulfate reduction in the top 12 cm of the sediment....... In contrast, in a sediment that had not been ice covered for at least 12 months and with more organic carbon and a higher sedimentation rate, sulfate reduction was the most important anaerobic electron-accepting process (>80% of anaerobic carbon oxidation). In the upper 3 cm, microbial Fe and sulfate...

  11. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  12. Organic carbon input in shallow groundwater at Aspo, southeastern Sweden

    International Nuclear Information System (INIS)

    Wallin, B.

    1993-01-01

    The variation in carbon and oxygen isotopes in calcite fissure fillings and dissolved carbonate from shallow groundwaters has been examined at Aspo, southeastern Sweden. The shallow water lens is refilled by meteoric water and is considered as an open system. The σ 13 C-signatures of the dissolved carbonate fall within a narrow range of -15.8 to -17.4 per-thousand, indicative of organic an organic carbon source. The low σ 13 C-values suggest that input of soil-CO 2 is the dominating carbon source for the system. σ 13 C and σ 18 O-values in the calcite fissure fillings show a wide range in values with a possible two end-member mixing of early post glacial atmospheric CO 2 dominated system to a present day soil-CO 2 dominating carbon source

  13. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  14. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  15. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan

    International Nuclear Information System (INIS)

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-01-01

    In May 2003, high concentrations of organic carbon (OC) in PM 2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM 2.5 in Japan via long-range aerosol transport, the radiocarbon ( 14 C) concentrations of PM 2.5 samples from April 2003 to March 2004 were measured. 14 C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the 14 C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and 14 C. - Highlights: • We analyzed the radiocarbon ( 14 C) concentration of TC in PM 2.5 from Nagoya, Japan. • 14 C concentrations from May to early June in 2003 were elevated. • The air mass at this time in Nagoya likely first passed through East Siberia. • Fire location data from MODIS indicate that fire events were prevalent in East Siberia. • Contemporary carbon emitted from the Siberian

  16. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  17. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  18. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    Science.gov (United States)

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  20. Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed area of Thailand

    Directory of Open Access Journals (Sweden)

    Tomohide Sugino

    2013-12-01

    Full Text Available A long-term field experiment on organic material application and crop rotation with green manure crops has been conducted since 1976 at Lopburi Agricultural Research and Development Center, Department of Agriculture, Lop Buri Province, Thailand, to clarify the effect of organic materials and green manure crop on soil organic carbon changes. The stock change factors that stand for the relative change of soil organic carbon on the carbon stock in a reference condition (native vegetation that is not degraded or improved. Stock change factor for input of organic matter (FI, representing different levels of C input to soil such as organic material application, crop residue treatment and green manure crop cultivation, was computed with the present field experimental results. While the computed FI of "High input with manure" was within the range of IPCC default FI value, some of the computed FI of " High input without manure" was much higher than the IPCC default though it was varied due to the biomass production and nutrient contents of the green manure crops planted as the second crops after corn. Therefore, the FI computed by field experimental results can contribute to more accurate estimation of SOC changes in farm land especially in Southeast Asia because the default FI mostly depends on the experimental data in temperate zones. Moreover, the field experiment has focused the effect of reduced tillage practices on SOC changes and corn yield since 2011. The results of the experiment will be used to compute Stock change factor for management regime (FMG which represents the effects of tillage operations.

  1. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  2. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  3. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    Science.gov (United States)

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  5. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    Science.gov (United States)

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  6. Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Steven J. Deverel

    2007-05-01

    Full Text Available From 2000 to 2003 we quantified drain flow, drain-and ground-water chemistry and hydrogeologic conditions on Twitchell Island in the Sacramento-San Joaquin Delta. The primary objective was to quantify processes affecting organic carbon concentrations and loads in agricultural drainage water. We collected physical and chemical data in southern and northern areas: TN and TS, respectively. Corn grew in both areas during the spring and summer. The peat soils in the TN area are more decomposed than those in the TS area. Results elucidate processes affecting drain flow and concentrations under varying hydrologic conditions. During May through November, groundwater flows from the permanently saturated zone to drainage ditches, and the resulting average drainage-water quality and dissolved organic carbon (DOC concentration was similar to the groundwater; the median DOC loads in the TN and TS study areas ranged from 9 to 27 g C/ha-day. The major ion chemistry and stable isotope data confirmed that groundwater was the primary source of drainflow. In contrast, during December through April the drainwater is supplied from the shallow, variably saturated soil-zone. The DOC concentrations, major-ion chemistry, and stable isotope data indicate that the shallow-zone water is partially evaporated and oxidized. Higher flows and DOC concentrations during these months result in higher median DOC loads, which ranged from 84 to 280 g C/ha-day. During December through April, increasing groundwater levels in the shallow peat layers and mobilization of organic carbon result in high drain flow and increased trihalomethane precursor concentrations and loads. On a per mass DOC basis, drain water collected during high flow periods is less likely to form THMs than during low flow periods. However, the high flows and subsequent high concentrations contribute to substantially higher trihalomethane precursor and DOC loads.

  7. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  8. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  9. Organic carbonates: experiment and ab initio calculations for prediction of thermochemical properties.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A

    2008-10-23

    This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.

  10. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  11. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  12. Hidden cycle of dissolved organic carbon in the deep ocean.

    Science.gov (United States)

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  13. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Science.gov (United States)

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  14. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  15. Soil, vegetation and total organic carbon stock development in self-restoring abandoned vineyards

    Science.gov (United States)

    József Novák, Tibor; Incze, József; Spohn, Marie; Giani, Luise

    2016-04-01

    Abandoned vineyard's soil and vegetation development was studied on Tokaj Nagy-Hill, which is one of the traditional wine-producing regions of Hungary, it is declared as UNESCO World Heritage site as cultural landscape. Spatial distribution and pattern of vineyards were changing during the last several hundreds of years, therefore significant part of abandoned vineyards were subjected to long-term spontaneous secondary succession of vegetation and self-restoration of soils in absence of later cultivation. Two chronosequences of spontaneously regenerating vineyard abandonments, one on south (S-sequence) and one on southwest (SW-sequence) slope with differing times since their abandonment (193, 142, 101, 63, 39 and 14 years), were compiled and studied. The S-sequence was 25-35% sloped and strongly eroded, and the SW-sequence was 17-25% sloped and moderately eroded. The sites were investigated in respect of vegetation characteristics, soil physico-chemical characteristics, total organic carbon stocks (TOC stocks), accumulation rates of total organic carbon (TOC accumulation rates), and soil profiles, which were classified according to the World Reference Base (WRB) 2014. Vegetation development resulted in shrub-grassland mosaics, supplemented frequently by protected forb species and forest development at the earliest abandonment in S-sequence, and predominantly to forest vegetation in SW-sequence, where trees were only absent at the 63 and 14 years old abandonment sites. In all sites soils on level of reference groups according to WRB were classified, and Cambisols, Regosols, Calcisols, Leptosols, Chernozems and Phaeozems were found. Soils of the S-sequence show shallow remnants of loess cover with colluvic and redeposited soil materials containing 15-65% skeletal volcanic rock of weathering products coated by secondary calcium carbonates. The SW-sequence profiles are developed on deep loess or loess derivatives. The calcium-carbonate content was higher in profiles of

  16. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  17. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  18. Carbon Break Even Analysis: Environmental Impact of Tablets in Higher Education

    OpenAIRE

    Fadi Safieddine; Imad Nakhoul

    2016-01-01

    With the growing pace of tablets use and the large focus it is attracting especially in higher education, this paper looks at an important aspect of tablets; their carbon footprint. Studies have suggested that tablets have positive impact on the environment; especially since tablets use less energy than laptops or desktops. Recent manufacturers’ reports on the carbon footprint of tablets have revealed that a significant portion, as much as 80%, of the carbon footprint of tablets comes from pr...

  19. Mini Total Organic Carbon Analyzer (miniTOCA)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this development is to create a prototype hand-held, 1 to 2 liter size battery-powered Total Organic Carbon Analyzer (TOCA). The majority of...

  20. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  1. Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Lasternas

    2013-03-01

    Full Text Available The organic carbon fluxes mediated by planktonic communities in two cyclonic eddies (CEs and two anticyclonic eddies (AEs at the Canary Eddy Corridor were studied and compared with the dynamics in two far-field (FF stations located outside the eddies. We observed favorable conditions and signs for upwelling at the center of CEs and for downwelling and mixing at the centers of AEs. CEs were characterized by a higher concentration of nutrients and the highest concentration of chlorophyll a (chl a, associated with the highest abundance of microphytoplankton and diatoms. AEs displayed concentrations of chl a values and nutrients similar to those at the FF stations, except for the highest ammonium concentration occurring at AE and a very low concentration of phosphorus at FF stations. AEs were transient systems characterized by an increasing abundance of picophytoplankton and heterotrophic bacteria. While primary production was similar between the systems, the production of dissolved organic carbon (PDOC was significantly higher in the AEs. Phytoplankton cell mortality was lowest in the CEs, and we found higher cell mortality rates at AE than at FF stations, despite similar chl a concentration. Environmental changes in the AEs have been significantly prejudicial to phytoplankton as indicated by higher phytoplankton cell mortality (60% of diatoms cells were dead and higher cell lysis rates. The adverse conditions for phytoplankton associated with the early-stage anticyclonic systems, mainly triggered by active downwelling, resulted in higher cell mortality, forcing photosynthesized carbon to fuel the dissolved pool.

  2. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  3. The use of activated carbons for removing organic matter from groundwater

    Directory of Open Access Journals (Sweden)

    Kaleta Jadwiga

    2017-09-01

    Full Text Available The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

  4. Organic carbon production, mineralisation and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Liebetrau, V.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2015-03-01

    Carbon cycling in Peruvian margin sediments (11 and 12° S) was examined at 16 stations, from 74 m water depth on the middle shelf down to 1024 m, using a combination of in situ flux measurements, sedimentary geochemistry and modelling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates decreased sharply seaward of the middle shelf and subsequently increased at the deep stations. The organic carbon burial efficiency (CBE) was unusually low on the middle shelf (60%) at the deep oxygenated sites. In line with other studies, CBE was elevated under oxygen-deficient waters in the mid-water oxygen minimum zone. Organic carbon rain rates calculated from the benthic fluxes alluded to efficient mineralisation of organic matter in the water column compared to other oxygen-deficient environments. The observations at the Peruvian margin suggest that a lack of oxygen does not greatly affect the degradation of organic matter in the water column but promotes the preservation of organic matter in sediments.

  5. Sustainable carbon sources for microbial organic acid production with filamentous fungi.

    Science.gov (United States)

    Dörsam, Stefan; Fesseler, Jana; Gorte, Olga; Hahn, Thomas; Zibek, Susanne; Syldatk, Christoph; Ochsenreither, Katrin

    2017-01-01

    The organic acid producer Aspergillus oryzae and Rhizopus delemar are able to convert several alternative carbon sources to malic and fumaric acid. Thus, carbohydrate hydrolysates from lignocellulose separation are likely suitable as substrate for organic acid production with these fungi. Before lignocellulose hydrolysate fractions were tested as substrates, experiments with several mono- and disaccharides, possibly present in pretreated biomass, were conducted for their suitability for malic acid production with A. oryzae. This includes levoglucosan, glucose, galactose, mannose, arabinose, xylose, ribose, and cellobiose as well as cheap and easy available sugars, e.g., fructose and maltose. A. oryzae is able to convert every sugar investigated to malate, albeit with different yields. Based on the promising results from the pure sugar conversion experiments, fractions of the organosolv process from beechwood ( Fagus sylvatica ) and Miscanthus giganteus were further analyzed as carbon source for cultivation and fermentation with A. oryzae for malic acid and R. delemar for fumaric acid production. The highest malic acid concentration of 37.9 ± 2.6 g/L could be reached using beechwood cellulose fraction as carbon source in bioreactor fermentation with A. oryzae and 16.2 ± 0.2 g/L fumaric acid with R. delemar . We showed in this study that the range of convertible sugars for A. oryzae is even higher than known before. We approved the suitability of fiber/cellulose hydrolysate obtained from the organosolv process as carbon source for A. oryzae in shake flasks as well as in a small-scale bioreactor. The more challenging hemicellulose fraction of F. sylvatica was also positively evaluated for malic acid production with A. oryzae .

  6. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  7. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    Science.gov (United States)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  8. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2012-12-04

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  9. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Organic Carbon Storage in China's Urban Areas

    Science.gov (United States)

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  11. Long-term Trends in Particulate Organic Carbon from a Low-Gradient Autotrophic Watershed

    Science.gov (United States)

    Fox, J.; Ford, W. I., III

    2014-12-01

    Recent insights from low-gradient streams dominated by fine surficial sediments have shown fluvial organic matter dynamics are governed by coupled hydrologic and biotic controls at event to seasonal timescales. Notwithstanding the importance of shorter timescales, quantity and quality of carbon in stream ecosystems at annual and decadal scales is of increased interest in order to understand if stream ecosystems are net stores or sinks of carbon and how stream carbon behaves under dynamic climate conditions. As part of an ongoing study in a low-gradient, agricultural watershed in the Bluegrass Region of Central Kentucky, an eight year dataset of transported particulate organic carbon (POC) was analyzed for the present study. The objective was to investigate if POC dynamics at multi-year timescales are governed by biotic or hydrologic processes. A statistical analysis using Empirical Mode Decomposition was performed on an 8 year dataset of transported sediment carbon, temperature, and log-transformed flowrates at the watershed outlet. Simulations from a previously validated, process-based, organic carbon model were utilized as further verification of drivers. Results from the analysis suggest that a 4 degree Celsius mean annual temperature shift corresponds to a 63% increase in organic carbon content at the main-stem, third order outlet and a 33% increase in organic carbon content at the main-stem inlet. Model and stable isotope results for the 8 year study support that long-term increases in organic carbon concentration are governed by biotic growth and humification of algal biomass in which increasing annual temperatures promote increased organic carbon production, relative to ecosystem respiration. This result contradicts conventional wisdom, suggesting projected warming trends will shift autotrophic freshwater systems to net heterotrophic, which has significant implications for the role of benthic stream ecosystems under changing climate conditions. Future work

  12. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  13. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    Science.gov (United States)

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the

  14. Organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210PB chronology

    International Nuclear Information System (INIS)

    Tateda, Y.; Wattayakorn, G.; Nhan, D.D.; Kasuya, Y.

    2004-01-01

    Organic carbon balance estimation of mangrove coastal ecosystem is important for understanding of Asian coastal carbon budget/flux calculation in global carbon cycle modelling which is powerful tool for the prediction of future greenhouse gas effect and evaluation of countermeasure preference. Especially, the organic carbon accumulation rate in mangrove ecosystem was reported to be important sink of carbon as well as that in boreal peat accumulation. For the estimation of 10 3 years scale organic carbon accumulation rates in mangrove coastal ecosystems, 14 C was used as long term chronological tracer, being useful in pristine mangrove forest reserve area. While in case of mangrove plantation of in coastal area, the 210 Pb is suitable for the estimation of decades scale estimation by its half-life. Though it has possibility of bio-/physical- turbation effect in applying 210 Pb chronology that is offset in case of 10 3 years scale estimation, especially in Asian mangrove ecosystem where the anthropogenic physical turbation by coastal fishery is vigorous.In this paper, we studied the organic carbon and 210 Pb accumulation rates in subtropical mangrove coastal ecosystems in Japan, Vietnam and Thailand with 7 Be analyses to make sure the negligible effect of above turbation effects on organic carbon accumulation. We finally concluded that 210 Pb was applicable to estimate organic carbon accumulation rates in these ecosystems even though the physical-/bio-turbation is expected. The measured organic carbon accumulation rates using 210 Pb in mangrove coastal ecosystems of Japan, Vietnam and Thailand were 0.067 4.0 t-C ha -1 y -1 . (author)

  15. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  16. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  17. [Effects of long-term fertilization on soil organic carbon pool and carbon sequestration under double rice cropping].

    Science.gov (United States)

    Sun, Yu-Tao; Liao, Yu-Lin; Zheng, Sheng-Xian; Nie, Jun; Lu, Yan-Hong; Xie, Jian

    2013-03-01

    This paper studied the effects of 30 years (1981-2010) fertilization with chemical N, P, and K, pig manure (PM), and rice straw (RS) on the soil organic carbon (SOC) and its components contents under intensive double rice cropping. The experiment was established on a typic Hapli-Stagnic Anthrosols in Hunan in 1981, and the soil samples were collected in November 2010. In treatment NPK, the contents of SOC, particulate organic C (POC), and KMnO4-oxidizable C (KMnO4-C) were higher than those in treatments NP and NK. The combined application of chemical and organic fertilizers (treatments NK+PM, NP+RS, and NPK+RS) made the contents of SOC, POC, and KMnO4-C have a significant increase, as compared with chemical fertilizations. Treatment NK+PM had the highest contents of SOC (84.71 t C.hm-2), POC (8.94 t C.hm-2), and KMnO4-C (21.09 t C.hm-2) in top soil (0-45 cm), followed by treatment NPK+RS. Treatment NK+PM had the highest C sequestration (485 kg C.hm-2.a-1) , followed by treatment NPK+RS (375 kg C.hm-2.a-1). The C sequestration efficiency (CSE) of SOC in the treatments of chemical fertilizers plus pig manure or rice straw was obviously higher than that in the treatments of chemical fertilizations, and the CSE of the POC in fertilization treatments (ranging from 0.4% and 1.2%) was lower than that of the KMnO4-C (ranging from 3.0% to 8.3%). By using the values of humification constant (h) and the decay constant (k) in Jenkinson' s equation, it was possible to predict the SOC storages in different treatments in the year 2010; and by using Jenkinson' s equation, it was possible to calculate the C input required to maintain the SOC storages in the year 1981 (AE). The increase of the SOC in treatments NK+PM, NP+RS, and NPK+RS was due to the annual C input being higher than the AE. It was considered that in the double rice cropping areas in subtropical region of China, long-term application of chemical fertilizers combined with pig manure or rice straw could promote the

  18. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana

    Science.gov (United States)

    Thomas, Andrew D.

    2012-01-01

    Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706

  19. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Long-range transported dissolved organic matter, ions and black carbon deposited on Central Asian snow covered glaciers

    Science.gov (United States)

    Schmale, Julia; Kang, Shichang; Peltier, Richard

    2014-05-01

    Ninety percent of the Central Asian population depend on water precipitated in the mountains stored in glaciers and snow cover. Accelerated melting of the snow and ice can be induced by the deposition of airborne impurities such as mineral dust, black carbon and co-emitted species leading to significant reductions of the surface albedo. However, Central Asia is a relatively understudied region and data on the source regions, chemical and microphysical characteristics as well as modelling studies of long-range transported air pollution and dust to the Tien Shan mountains is very scarce. We studied the atmospheric aerosol deposited most likely between summer 2012 and summer 2013on three different glaciers in the Kyrgyz Republic. Samples were taken from four snow pits on the glaciers Abramov (2 pits, 39.59 °N, 71.56 °E, 4390 m elevation, 240 cm deep, and 39.62°N, 71.52 °E, 4275 m elevation, 125 cm deep), Ak-Shiirak (41.80 °N, 78.18 °E, 4325 m elevation, 75 cm deep) and Suek (41.78 °N, 77.75 °E, 4341 m elevation, 200 cm deep). The latter two glaciers are located roughly within 6 and 38 km of an operating gold mine. The snow was analyzed for black carbon, ions, metals and organic carbon. We here focus on the results of inorganic ion measurements and organic carbon speciation based on analysis with an Aerodyne high-resolution time-of-flight aerosol spectrometer (HR-ToF-AMS) and potential pollution sources that can be deduced from the chemical information as well as back trajectories. Average contributions of snow impurities measured by the HR-ToF-AMS were dominated by organic carbon. Relative concentrations of organic carbon, sulfate, nitrate and ammonium in snow were 86 %, 3 %, 9 % and 2 % respectively for Abramov, 92 %, 1 %, 5 % and 1 % for Suek, and 95 %, 1 %, 3 % and 1 % for Ak-Shiirak. Generally, impurities on Suek and Ak-Shiirak were three and five times higher than on Abramov. Mass concentrations of organic carbon were on average 6 times higher in samples

  1. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  2. Estimation of organic carbon loss potential in north of Iran

    Science.gov (United States)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  3. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    Findings and recommendations of the workshop on organic soils are summarized. The major finding of the workshop is that organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. If half of the released carbon remains airborne, organic soils contribute 0.6% to 8.0% of the annual rise in CO/sub 2/. Uncertainties in data suggest the actual release could lie outside the range. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. When combined with additional carbon release from other known drainage programs and the possibility of major drainage activity in the tropics, this figure suggests that the lower limit of the world estimate of carbon release from organic soils is too low. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. This estimate is based on only a few studies, however, and precision is probably no better than an order of magnitude. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  4. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  5. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Methodology guideline. Organization of conference neutral in carbon

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  7. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  8. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  9. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    Science.gov (United States)

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  10. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition–atomic absorption spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingjing [College of Chemical Engineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310032 (China); Chakravarty, Pragya [Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (United States); Davidson, Gregg R. [Department of Geology and Geological Engineering, University of Mississippi, University, MS 38677 (United States); Wren, Daniel G.; Locke, Martin A. [National Sedimentation Laboratory, United States Department of Agriculture, Agricultural Research Service, Oxford, MS 38655 (United States); Zhou, Ying, E-mail: yingzhou@zjut.edu.cn [College of Chemical Engineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310032 (China); Brown, Garry [Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (United States); Cizdziel, James V., E-mail: cizdziel@olemiss.edu [Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (United States)

    2015-04-29

    Graphical abstract: Comparison of LOI data obtained by a conventional method and by the DMA. The dark line represents a 1:1 ratio. - Highlights: • A direct mercury analyzer was used to estimate total organic carbon. • Mercury and organic carbon were measured in oxbow lake sediment cores. • Temporal and spatial deposition of Hg in the Mississippi Delta were evaluated. - Abstract: The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p < 0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm{sup −2} yr{sup −1} for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s.

  11. Organic loss in drained wetland: managing the carbon footprint

    NARCIS (Netherlands)

    Durham, B.; van de Noort, R.; Martens, V.V.; Vorenhout, M.

    2012-01-01

    The recent installation of land drains at Star Carr, Yorkshire, UK, has been linked with loss of preservation quality in this important Mesolithic buried landscape, challenging the PARIS principle. Historically captured organic carbon, including organic artefacts, is being converted to soluble

  12. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Science.gov (United States)

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  13. Long-Term Effect of Manure and Fertilizer on Soil Organic Carbon Pools in Dryland Farming in Northwest China

    Science.gov (United States)

    Liu, Enke; Yan, Changrong; Mei, Xurong; Zhang, Yanqing; Fan, Tinglu

    2013-01-01

    An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0–100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0–20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0–60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0–60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0–60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0–60 cm depth were increased by 64.9–91.9%, 42.5–56.9%, and 74.7–99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization. PMID:23437161

  14. Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents

    Science.gov (United States)

    Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong

    2018-04-01

    Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.

  15. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  16. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  17. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  18. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    Science.gov (United States)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of

  19. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.

    Science.gov (United States)

    Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang

    2018-01-01

    Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China.

    Science.gov (United States)

    Zhang, Hao; Tang, Jie; Liang, Shuang; Li, Zhaoyang; Wang, Jingjing; Wang, Sining

    2018-03-01

    Variations in soil organic carbon (SOC) have implications for atmospheric CO 2 concentrations and the greenhouse effect. However, the effects of snow cover and straw mulching on the variations in SOC fractions across winter remain largely unknown. In this study, soil samples were collected during different stages of winter from an in situ experiment comprising three treatments: 1) snow removal with no straw mulching (Sn-SM-); 2) snow cover with no straw mulching (SC), and; 3) snow cover with straw mulching (SC + SM+). Results showed that labile organic carbon, semi-labile organic carbon, recalcitrant organic carbon (ROC), the light fraction of organic carbon (LFOC), and easily oxidized organic carbon (EOC) contents did not vary significantly (P > .05) during the unfrozen to hard frost stages. Compared to the unfrozen stage, microbial biomass carbon (MBC) contents decreased by 519.03 mg kg -1 , 325.21 mg kg -1 , and 244.09 mg kg -1 and dissolved organic carbon (DOC) contents increased by 473.36 mg kg -1 , 348.10 mg kg -1 , and 258.89 mg kg -1  at the hard frost stage in Sn-SM-, SC, and SC + SM + treatments, respectively. Throughout all thawing stages, > 61% and 59% of SOC and ROC accumulation, respectively in the three treatments were observed in thawing stage II, indicating that higher temperatures and microbial activities in thawing stage II accelerated the inputs of SOC and ROC. ROC accumulation accounted for >65% of the SOC accumulation and the proportions of ROC in SOC increased in the three treatments during the thawing stages. SC + SM + treatment maintained lower EOC contents during thawing stages than other treatments. The observation of lowest SOC and LFOC accumulation and contents in the SC + SM + treatment during thawing stages showed that SC + SM + experienced the least inputs of SOC in the soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  2. Exploring Soil Organic Carbon Deposits in a Bavarian Catchment

    Science.gov (United States)

    Kriegs, Stefanie; Hobley, Eleanor; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2017-04-01

    The distribution of soil organic carbon (SOC) in the landscape is not homogeneous, but shows high variability from the molecular to the landscape scale. The aims of our work are 1.) to detect hot spots of SOC storage within different positions in a landscape; 2.) to outline differences (or similarities) between SOC characteristics of erosional and accumulative landscape positions; and 3.) to determine whether localised SOC deposits are dominated by fresh and labile organic matter (OM) or old and presumably stable OM. These findings are crucial for the evaluation of the landscapés vulnerability towards SOC losses caused by management or natural disturbances such as erosional rainfall events. Sampling sites of our study are located in a catchment at the foothills of the Bavarian Forest in south-east Germany. Within this area three landform positions were chosen for sampling: a) a slope with both erosional depletion and old colluvial deposits, b) a foothill with recent colluvial deposits and c) a floodplain with alluvial deposits. In order to consider both heterogeneity within a single landform position and between landforms several soil profiles were sampled at every position. Samples were taken to a maximal depth of 150 cm, depending on the presence of rocks or ground-water level, and analysed for bulk density, total carbon (TOC), inorganic carbon (IC) and texture. SOC densities and stocks were calculated. A two-step physical density fractionation using Sodium-Polytungstate (1.8 g/cm3 and 2.4 g/cm3) was applied to determine the contribution of the different soil organic matter fractions to the detected SOC deposits. Literature assumes deep buried SOC to be particularly old and stable, so we applied Accelerator Mass Spectrometry Radiocarbon Dating (AMS 14C) to bulk soil samples in order to verify this hypothesis. The results show that the floodplain soils contain higher amounts of SOC compared with slopes and foothills. Heterogeneity within the sites was smaller

  3. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash.

    Science.gov (United States)

    Arickx, S; De Borger, V; Van Gerven, T; Vandecasteele, C

    2010-07-01

    In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    OpenAIRE

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  5. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  6. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning

    Science.gov (United States)

    Coelho, C. H.; Francisco, J. G.; Nogueira, R. F. P.; Campos, M. L. A. M.

    This work reports on rainwater dissolved organic carbon (DOC) from Ribeirão Preto (RP) and Araraquara over a period of 3 years. The economies of these two cities, located in São Paulo state (Brazil), are based on agriculture and related industries, and the region is strongly impacted by the burning of sugar cane foliage before harvesting. Highest DOC concentrations were obtained when air masses traversed sugar cane fields burned on the same day as the rain event. Significant increases in the DOC volume weighted means (VWM) during the harvest period, for both sites, and a good linear correlation ( r = 0.83) between DOC and K (a biomass burning marker) suggest that regional scale organic carbon emissions prevail over long-range transport. The DOC VWMs and standard deviations were 272 ± 22 μmol L -1 ( n = 193) and 338 ± 40 μmol L -1 ( n = 80) for RP and Araraquara, respectively, values which are at least two times higher than those reported for other regions influenced by biomass burning, such as the Amazon. These high DOC levels are discussed in terms of agricultural activities, particularly the large usage of biogenic fuels in Brazil, as well as the analytical method used in this work, which includes volatile organic carbon when reporting DOC values. Taking into account rainfall volume, estimated annual rainwater DOC fluxes for RP (4.8 g C m -2 yr -1) and Araraquara (5.4 g C m -2 yr -1) were close to that previously found for the Amazon region (4.8 g C m -2 yr -1). This work also discusses whether previous calculations of the global rainwater carbon flux may have been underestimated, since they did not consider large inputs from biomass combustion sources, and suffered from a possible analytical bias.

  7. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Fractionation and characterization of soil organic carbon during transition to organic farming

    Science.gov (United States)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  9. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  10. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China

    International Nuclear Information System (INIS)

    Liu, M. . E-mail mliu@geo.ecnu.edu.cn; Hou, L.J.; Xu, S.Y.; Ou, D.N.; Yang, Y.; Yu, J.; Wang, Q.

    2006-01-01

    The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively -29.8 per mille to - 26.0 per mille and 1.6 per mille -5.5 per mille in the flood season (July), while they were -27.3 per mille to - 25.6 per mille and 1.7 per mille -7.8 per mille in the dry season (February), respectively. The δ 13 C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ 15 N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes

  11. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  12. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    Science.gov (United States)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  13. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  14. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM{sub 2.5} in Nagoya, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ikemori, Fumikazu, E-mail: ikemori@nagoyakankaken.net [Nagoya City Institute for Environmental Sciences, 5-16-8, Toyoda, Minami-ku, Nagoya 457-0841 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601 (Japan); Honjyo, Koji [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601 (Japan); Yamagami, Makiko [Nagoya City Institute for Environmental Sciences, 5-16-8, Toyoda, Minami-ku, Nagoya 457-0841 (Japan); Nakamura, Toshio [Centre for Chronological Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM{sub 2.5} were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM{sub 2.5} in Japan via long-range aerosol transport, the radiocarbon ({sup 14}C) concentrations of PM{sub 2.5} samples from April 2003 to March 2004 were measured. {sup 14}C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the {sup 14}C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and {sup 14}C. - Highlights: • We analyzed the radiocarbon ({sup 14}C) concentration of TC in PM{sub 2.5} from Nagoya, Japan. • {sup 14}C concentrations from May to early June in 2003 were elevated. • The air mass at this time in Nagoya likely first passed through East Siberia. • Fire location data from MODIS indicate that fire events were prevalent in East Siberia.

  15. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  16. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  17. Biomass, organic carbon and calorific content of zooplankton from the Arabian Sea off Central West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R.

    Organic carbon content and calorific values of zooplankton varied from 18.35 to 32.49% (av. 27.8%) and from 2.56 to 4.71 k cal. g-1 dry wt (av. 3.99) respectively. Areawise off Gujarat sustained higher standing stock of zooplankton (77.18 mg m-3...

  18. Influencing factors on δ(13C) of organic matter and carbonate in labke sediments on songnen plain

    International Nuclear Information System (INIS)

    Ou Wenjia; Zhang Chengjun

    2009-01-01

    Carbon isotopic compositions of organic matter and carbonate in surface sediments from lakes in Songnen Plain, northeast of China, were carried out.n-alkanes carbon distribution characteristics of the organic matter in lake sediments were also analyzed to identify the source of organic matter and sedimentary environment in these lakes. With the limnological characteristics of water and sediment, the influencing factors on isotopic composition in sedimentary organic matter and carbonate were discussed. The results showed that types of organic matter affected the carbon isotopic composition. 13 C of carbonate depleted by input of biologic organic matter and enriched by input of oil pollution. (authors)

  19. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, ul. Piotrowo 3, PL-60 965 Poznan (Poland)

    2010-09-01

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H{sub 2}SO{sub 4} electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids. (author)

  20. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  1. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  2. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  3. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    Science.gov (United States)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  4. Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-06-01

    As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including

  5. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    Science.gov (United States)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  6. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  7. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, S7N 5B4 SK (Canada); Chivers, Douglas P.; Niyogi, Som [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-08-15

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production.

  8. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    International Nuclear Information System (INIS)

    Manek, Aditya K.; Ferrari, Maud C.O.; Chivers, Douglas P.; Niyogi, Som

    2014-01-01

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production

  9. Organic Matter Quality and its Influence on Carbon Turnover and Stabilization in Northern Peatlands

    Science.gov (United States)

    Turetsky, M. R.; Wieder, R. K.

    2002-12-01

    Peatlands cover 3-5 % of the world's ice-free land area, but store about 33 % of global terrestrial soil carbon. Peat accumulation in northern regions generally is controlled by slow decomposition, which may be limited by cold temperatures and water-logging. Poor organic matter quality also may limit decay, and microbial activity in peatlands likely is regulated by the availability of labile carbon and/or nutrients. Conversely, carbon in recalcitrant soil structures may be chemically protected from microbial decay, particularly in peatlands where carbon can be buried in anaerobic soils. Soil organic matter quality is controlled by plant litter chemical composition and the susceptibility of organic compounds to decomposition through time. There are a number of techniques available for characterizing organic quality, ranging from chemical proximate or elemental analysis to more qualitative methods such as nuclear magenetic resonance, pyrolysis/mass spectroscopy, and Fourier transform infrared spectroscopy. We generally have relied on proximate analysis for quantitative determination of several organic fractions (i.e., water-soluble carbohydrates, soluble nonpolars, water-soluble phenolics, holocellulose, and acid insoluble material). Our approaches to studying organic matter quality in relation to C turnover in peatlands include 1) 14C labelling of peatland vegetation along a latitudinal gradient in North America, allowing us to follow the fate of 14C tracer in belowground organic fractions under varying climates, 2) litter bag studies focusing on the role of individual moss species in litter quality and organic matter decomposition, and 3) laboratory incubations of peat to explore relationships between organic matter quality and decay. These studies suggest that proximate organic fractions vary in lability, but that turnover of organic matter is influenced both by plant species and climate. Across boreal peatlands, measures of soil recalcitrance such as acid

  10. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  11. Higher temperature sensitivity for stable than for labile soil organic carbon - Evidence from incubations of long-term bare fallow soils

    DEFF Research Database (Denmark)

    Lefèvre, Romain; Barré, Pierre; Moyano, Fernando E.

    2014-01-01

    The impact of climate change on the stability of soil organic carbon (SOC)remains a major source of uncertainty in predicting future changes in atmospheric CO2 levels. One unsettled issue is whether the mineralization response to temperature depends on SOC mineralization rate. Long-term (>25 years......) bare fallow experiments (LTBF) in which the soil is kept free of any vegetation and organic inputs, and their associated archives of soil samples represent a unique research platform to examine this issue as with increasing duration of fallow, the lability of remaining total SOC decreases. We retrieved...... soils from LTBF experiments situated at Askov (Denmark), Grignon (France), Ultuna (Sweden), and Versailles (France) and sampled at the start of the experiments and after 25, 50, 52, and 79 years of bare fallow, respectively. Soils were incubated at 4, 12, 20, and 35 °C and the evolved CO2 monitored...

  12. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  13. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  14. Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats

    Science.gov (United States)

    Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.

    2016-02-01

    Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.

  15. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, Paul Martin; Huser, Raphaë l

    2017-01-01

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications

  16. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  17. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  18. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  19. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  20. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  1. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse

  2. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse

  3. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  4. Accounting for black carbon lowers estimates of blue carbon storage services.

    Science.gov (United States)

    Chew, Swee Theng; Gallagher, John B

    2018-02-07

    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.

  5. What are the effects of agricultural management on soil organic carbon (SOC) stocks?

    DEFF Research Database (Denmark)

    Söderström, Bo; Hedlund, Katarina; Jackson, Louise E.

    2014-01-01

    the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms......Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve......, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies...

  6. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Science.gov (United States)

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  7. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  8. Evaluation of Anaerobic Biodegradation of Organic Carbon Extracted from Aquifer Sediment

    OpenAIRE

    Kelly, Catherine Aileen

    2006-01-01

    In conjunction with ongoing studies to develop a method for quantifying potentially biodegradable organic carbon (Rectanus et al 2005), this research was conducted to evaluate the extent to which organic carbon extracted using this method will biodegrade in anaerobic environments. The ultimate goal is to use this method for the evaluation of chloroethene contaminated sites in order to estimate the long-term sustainability of monitored natural attenuation (MNA) as a remediation strategy. Alt...

  9. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  10. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    Science.gov (United States)

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  11. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  12. Deposition and benthic mineralization of organic carbon: A seasonal study from Faroe Islands

    Science.gov (United States)

    á Norði, Gunnvør; Glud, Ronnie N.; Simonsen, Knud; Gaard, Eilif

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for rates were associated to the spring bloom. The dynamics in the benthic solute exchange were governed by stratification that isolated the bottom water during summer and intensified sediment resuspension during winter. The POC export from the euphotic zone could not sustain the benthic mineralization rate (10.8 mol C m- 2 yr- 1) and the calculated burial rate (9.8 mol C m- 2 yr- 1) of organic material in the central basin. This indicated considerable focusing of material in the central part of the fjord. This was supported by the fact that the measured benthic mineralization rate - in contrast to most investigations - actually increased with increasing water depth. In August, when mineralization was at its maximum, the dissolved inorganic carbon (DIC) release from the sediment increased by 2.2 mmol m- 2 d- 1 for every m increase in water depth at 30-60 m depth. Due to sediment focusing, the OC burial in the deepest part of the fjord was 9.8 mol C m- 2 yr- 1. This was 2.4 times higher than the average OC burial in the fjord, estimated from the total sedimentation, and benthic mineralization accounting for the water depth related changes in activity. The study in Kaldbaksfjørður underscore that fjords are important sites for long time OC burial, but emphasize the need for accounting for spatial variations when extrapolating results from a single or few stations to the scale of the entire fjord.

  13. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    Science.gov (United States)

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  14. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  15. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms: Particle-attached bacteria incorporating organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, Xavier [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mabery, Shalini [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, Peter K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    Here, we investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.

  16. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    Science.gov (United States)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.

    2014-12-01

    The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.

  17. Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas

    NARCIS (Netherlands)

    Alling, Vanja; Sanchez-Garcia, Laura; Porcelli, Don; Pugach, Sveta; Vonk, Jorien E.; Van Dongen, Bart; Mörth, Carl Magnus; Anderson, Leif G.; Sokolov, Alexander; Andersson, Per; Humborg, Christoph; Semiletov, Igor P.; Gustafsson, Örjan

    2010-01-01

    Climate change is expected to have a strong effect on the Eastern Siberian Arctic Shelf (ESAS) region, which includes 40% of the Arctic shelves and comprises the Laptev and East Siberian seas. The largest organic carbon pool, the dissolved organic carbon (DOC), may change significantly due to

  18. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    International Nuclear Information System (INIS)

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  19. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    Science.gov (United States)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  20. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  1. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    )) > sloping farmland (2.13 Mg x hm(-2)), and abandoned land (35.61 Mg x hm(-2)) > woodland (20.38 Mg x hm-(-2)) > orchard (13.83 Mg x hm(-2)) > sloping farmland (6.77 Mg x hm(-2)) in small macroaggregates, and abandoned land (22.44 Mg x hm(-2)) > woodland (10.20 Mg x hm(-2)) > orchard (6.80 Mg x hm(-2)) > sloping farmland (5. 60 Mg x hm(-2)) in microaggregates, and abandoned land (22.21 Mg x hm(-2)) > woodland (17.01 Mg x hm(-2)) > orchard (16.70 Mg x hm(-2)) > sloping farmland (9.85 Mg x hm(-2)) in silt and clay fraction. Storage of organic carbon in each aggregate in the soils of woodland and abandoned land were higher than those in the soils of orchard and sloping farmland, which indicated that reclamation of woodland will lead to a loss of organic carbon in each soil aggregate fraction, while after changing the sloping farmland to abandoned land will contribute to restore and sequestrate the soil organic carbon. In addition, it showed that most organic carbon accumulated in small macroaggregate in soils of woodland and abandoned land, while they are in silt and clay in soils of orchard and sloping farmland, indicating that organic carbon in larger aggregates is unstable and is easier to convert during the land use change.

  2. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  3. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  4. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  5. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea.

    Science.gov (United States)

    Harvey, E Therese; Kratzer, Susanne; Andersson, Agneta

    2015-06-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.

  6. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    Science.gov (United States)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  7. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...

  8. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations.

    Science.gov (United States)

    Egea, Luis G; Jiménez-Ramos, Rocío; Hernández, Ignacio; Bouma, Tjeerd J; Brun, Fernando G

    2018-01-01

    Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the

  9. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC fluxes in seagrass populations.

    Directory of Open Access Journals (Sweden)

    Luis G Egea

    Full Text Available Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important

  10. Impact of shade and cocoa plant densities on soil organic carbon ...

    African Journals Online (AJOL)

    user

    There were no soil organic carbon sequestration in the highest cocoa plant ... It is concluded that cocoa farming could be an effective means to mitigate carbon dioxide ... growth and yield of cocoa at the CRIG substation Bunso (060 13' N,.

  11. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.

    Science.gov (United States)

    Stegen, James C; Johnson, Tim; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Fansler, Sarah J; Graham, Emily B; Kennedy, David W; Resch, Charles T; Tfaily, Malak; Zachara, John

    2018-02-08

    The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.

  13. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    Directory of Open Access Journals (Sweden)

    Krista Williams

    2015-06-01

    Full Text Available Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs. Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs. The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89. Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points and over a limited TOC range (0–1000 µg/L, no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  14. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters.

    Science.gov (United States)

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc; Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc

    2015-06-09

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0-15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32-37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0-1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  15. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  16. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China.

    Science.gov (United States)

    Lu, Yan; Xu, Hongwen

    2014-01-01

    Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0-20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils.

  17. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  18. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  19. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  20. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil

    Science.gov (United States)

    Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo

    2016-11-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.

  1. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  2. Threshold amounts of organic carbon needed to initiate reductive dechlorination in groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Thomas, Lashun K.; Bradley, Paul M.; Rectanus, Heather V.; Widdowson, Mark A.

    2012-01-01

    Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH-extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems.

  3. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    Science.gov (United States)

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  4. Mangroves, a major source of dissolved organic carbon to the oceans

    Science.gov (United States)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  5. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    Science.gov (United States)

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  6. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  7. Responses of Soil Organic Carbon to Long-Term Understory Removal in Subtropical Cinnamomum camphora Stands

    Directory of Open Access Journals (Sweden)

    Yacong Wu

    2014-01-01

    Full Text Available We conducted a study on a 48-year-old Cinnamomum camphora plantation in the subtropics of China, by removing understory gradually and then comparing this treatment with a control (undisturbed. This study analyzed the content and storage soil organic carbon (SOC in a soil depth of 0–60 cm. The results showed that SOC content was lower in understory removal (UR treatment, with a decrease range from 5% to 34%, and a decline of 10.16 g·kg−1 and 8.58 g·kg−1 was noticed in 0–10 cm and 10–20 cm layers, respectively, with significant differences (P<0.05. Carbon storage was reduced in UR, ranging from 2% to 43%, with a particular drastic decline of 15.39 t·hm−2 and 11.58 t·hm−2 in 0–10 cm (P<0.01 and 10–20 cm (P<0.01 layers, respectively. Content of SOC had an extremely significant (P<0.01 correlation with soil nutrients in the two stands, and the correlation coefficients of CK were higher than those of UR. Our data showed that the presence of understory favored the accumulation of soil organic carbon to a large extent. Therefore, long-term practice of understory removal weakens the function of forest ecosystem as a carbon sink.

  8. RECIPROCAL RELATIONSHIPS BETWEEN AGGREGATE STABILITY AND ORGANIC CARBON CHARACTERISTICS IN A FORESTED ECOSYSTEM OF NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2012-10-01

    Full Text Available Soil organic matter associated with different size aggregates differ in structure and function; therefore, play different roles in soil organic carbon (SOC turnover. This study assessed the relationship between aggregate stability and soil organic carbon fractions in a forested soil. Aggregate stability characterized by mean weight diameter (MWD was correlated with the various pools of SOC in a regression model. Mean weight diameter presented a 46% influence on total organic carbon (TOC while, TOC accounts for 21.8% 0f aggregate stability. The unprotected and physically protected soil organic carbon did not significantly dictate stability of these soils. However, chemically protected and biochemically protected SOC influenced significantly aggregate stability of these forested soils.

  9. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  10. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior

    Science.gov (United States)

    Zigah, Prosper K.; Minor, Elizabeth C.; Werne, Josef P.

    2012-03-01

    We present a lake-wide investigation of Lake Superior carbon and organic matter biogeochemistry using radiocarbon, stable isotope, and carbon concentrations. Dissolved inorganic carbon (DIC) abundance in the lake was 121-122 Tg C, with offshore concentration andδ13C values being laterally homogenous and tightly coupled to the physical and thermal regime and biochemical processes. Offshore Δ14C of DIC (50-65‰) exhibited lateral homogeneity and was more 14C enriched than co-occurring atmospheric CO2 (˜38‰); nearshore Δ14C of DIC (36-38‰) was similar to atmospheric CO2. Dissolved organic carbon (DOC) abundance was 14.2-16.4 Tg C. DOC's concentration and δ13C were homogenous in June (mixed lake), but varied laterally during August (stratification) possibly due to spatial differences in lake productivity. Throughout sampling, DOC had modern radiocarbon values (14-58‰) indicating a semilabile nature with a turnover time of ≤60 years. Lake particulate organic carbon (POC, 0.9-1.3 Tg C) was consistently 13C depleted relative to DOC. The δ15N of epilimnetic particulate organic nitrogen shifted to more negative values during stratification possibly indicating greater use of nitrate (rather than ammonium) by phytoplankton in August. POC's radiocarbon was spatially heterogeneous (Δ14C range: 58‰ to -303‰), and generally 14C depleted relative to DOC and DIC. POC 14C depletion could not be accounted for by black carbon in the lake but, because of its spatial and temporal distribution, is attributed to sediment resuspension. The presence of old POC within the epilimnion of the open lake indicates possible benthic-pelagic coupling in the lake's organic carbon cycle; the ultimate fate of this old POC bears further investigation.

  11. Aboveground stock of biomass and organic carbon in stands of Pinus taeda L.

    Directory of Open Access Journals (Sweden)

    Luciano Farinha Watzlawick

    2013-09-01

    Full Text Available This study aimed to estimate biomass and organic carbon in stands of Pinus taeda L. at different ages (14, 16, 19, 21, 22, 23 and 32 years and located in the municipality of General Carneiro (PR. In order to estimate biomass and organic carbon in different tree components (needles, live branches, dead branches, bark and stem wood, the destructive quantification method was used in which seven trees from each age category were randomly sampled across the stand. Stocks of biomass and organic carbon were found to vary between the different age categories, mainly as a result of existing dissimilarities between ages in association with forest management practices such as thinning, pruning and tree density per hectare.

  12. Tracking Organic Carbon Transport From the Stordalen Mire to Glacial Lake Tornetrask, Abisko, Sweden

    Science.gov (United States)

    Beck, M. A.; Hamilton, B. T.; Spry, E.; Johnson, J. E.; Palace, M. W.; McCalley, C. K.; Varner, R. K.; Bothner, W. A.

    2016-12-01

    In subarctic regions, labile organic carbon from thawing permafrost and productivity of terrestrial and aquatic vegetation are sources of carbon to lake sediments. Methane is produced in lake sediments from the decomposition of organic carbon at rates affected by vegetation presence and type as well as sediment temperature. Recent research in the Stordalen Mire in northern Sweden has suggested that labile organic carbon sources in young, shallow lake sediments yield the highest in situ sediment methane concentrations. Ebullition (or bubbling) of this methane is predominantly controlled by seasonal warming. In this project we sampled stream, glacial and post-glacial lake sediments along a drainage transect through the Stordalen Mire into the large glacial Lake Torneträsk. Our results indicate that the highest methane and total organic carbon (TOC) concentrations were observed in lake and stream sediments in the upper 25 centimeters, consistent with previous studies. C/N ratios range from 8 to 32, and suggest that a mix of aquatic and terrestrial vegetation sources dominate the sedimentary record. Although water transport occurs throughout the mire, major depositional centers for sediments and organic carbon occur within the lakes and prohibit young, labile TOC from entering the larger glacial Lake Torneträsk. The lack of an observed sediment fan at the outlet of the Mire to the lake is consistent with this observation. Our results suggest that carbon produced in the mire stays in the mire, allowing methane production to be greater in the mire bound lakes and streams than in the larger adjacent glacial lake.

  13. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  14. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality.

  15. The Role of Reactive Iron in Organic Carbon Burial of the Wax Lake Delta, Louisiana

    Science.gov (United States)

    Bianchi, T. S.; Shields, M. R.; Gelinas, Y.; Allison, M. A.; Twilley, R.

    2016-02-01

    Deltaic systems are responsible for 41% of the total organic carbon buried on continental shelves (Smith et al., 2015). Furthermore, 21.5 ± 8.6% of the organic carbon in marine sediments is reported to be associated to reactive iron phases (Lalonde et al., 2012). Here, we examine the role of reactive iron in preserving organic carbon across a chronosequence in deltaic soils/sediments of the Wax Lake Delta, Louisiana. This prograding delta is part of the youngest subdelta of the Mississippi River Delta and serves as a model for deltas in an active progradational stage. We report the proportion, δ13C, lignin phenol content, and fatty acid content of organic carbon associated to iron in three unique environments along the delta topset. We found that over 15 % of the organic carbon in the top 0.5 meters was associated to reactive iron phases at our sampling locations. However, this amount varied between the mudflat, meadow, and canopy dominated sites. Moreover, the type of binding shifts from 1:1 sorption in the sediment dominated (mudflat) region to chelation/co-precipitation in the more soil-dominated regions. Acidic lignin phenols are preferentially sorbed in the mudflat region, which likely occurs pre-depositionally. These results add to our knowledge of the carbon burial processes in young deltas and present new questions about the selective preservation of organic compounds in deltaic sediments.

  16. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    Directory of Open Access Journals (Sweden)

    Yuguo Liu

    Full Text Available Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG, thorn shrubbery (TS, forest - shrub transition (FS and secondary forest (F. The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  17. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    Science.gov (United States)

    Hengl, Tomislav

    2016-04-01

    Preliminary results of predicting distribution of soil organic soils (Histosols) and soil organic carbon stock (in tonnes per ha) using global compilations of soil profiles (about 150,000 points) and covariates at 250 m spatial resolution (about 150 covariates; mainly MODIS seasonal land products, SRTM DEM derivatives, climatic images, lithological and land cover and landform maps) are presented. We focus on using a data-driven approach i.e. Machine Learning techniques that often require no knowledge about the distribution of the target variable or knowledge about the possible relationships. Other advantages of using machine learning are (DOI: 10.1371/journal.pone.0125814): All rules required to produce outputs are formalized. The whole procedure is documented (the statistical model and associated computer script), enabling reproducible research. Predicted surfaces can make use of various information sources and can be optimized relative to all available quantitative point and covariate data. There is more flexibility in terms of the spatial extent, resolution and support of requested maps. Automated mapping is also more cost-effective: once the system is operational, maintenance and production of updates are an order of magnitude faster and cheaper. Consequently, prediction maps can be updated and improved at shorter and shorter time intervals. Some disadvantages of automated soil mapping based on Machine Learning are: Models are data-driven and any serious blunders or artifacts in the input data can propagate to order-of-magnitude larger errors than in the case of expert-based systems. Fitting machine learning models is at the order of magnitude computationally more demanding. Computing effort can be even tens of thousands higher than if e.g. linear geostatistics is used. Many machine learning models are fairly complex often abstract and any interpretation of such models is not trivial and require special multidimensional / multivariable plotting and data mining

  18. [Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China].

    Science.gov (United States)

    Pan, Xin-li; Lin, Bo; Liu, Qing

    2008-08-01

    To investigate the effects of elevated temperature on the soil organic carbon content, soil respiration rate, and soil enzyme activities in subalpine Picea asperata plantations in western Sichuan Province of China, a simulation study was conducted in situ with open-top chambers from November 2005 to July 2007. The results showed that under elevated temperature, the mean air temperature and soil temperature were 0.42 degrees C and 0.25 degrees C higher than the control, respectively. In the first and the second year, the increased temperature had somewhat decreasing effects on the soil organic carbon and the C/N ratio at the soil depths of 0-10 cm and 10-20 cm. In the first year the soil organic carbon and the C/N ratio in 0-10 cm soil layer decreased by 8.69%, and 8.52%, respectively; but in the second year, the decrements were lesser. Soil respiration rate was significantly enhanced in the first year of warming, but had no significant difference with the control in the second year. In the first year of warming, the activities of soil invertase, polyphenol oxidase, catalase, protease, and urease increased, and the invertase and polyphenol oxidase activities in 0-10 cm soil layer were significantly higher than the control. In the second year of warming, the activities of invertase, protease and urease still had an increase, but those of catalase and polyphenol oxidase had a downtrend, compared with the control.

  19. Evaluation of Production and Carbon Benefit of Different Vegetables

    Directory of Open Access Journals (Sweden)

    HU Liang

    2016-01-01

    Full Text Available This study analyzed environmental and economic benefits of 8 types of vegetables in 4 different farms over 3 years. The specific results were as follows:(1The input-output ratio and carbon footprint of organic production mode was 18.5% and 87.4% of that of pollution-free mode, respectively; (2Fertilizer and power consumption was the main source of carbon emissions, accounting for 58.76% and 16.67% of total carbon emissions, respectively; (3There were positive correlations between N fertilizer and both carbon emissions and carbon footprint. In other words, higher use of N fertilizer resulted in higher carbon emissions and carbon footprint; (4 When organic fertilizers use reached 122 352 kg·hm-2, the crop production could reach the maximum under organic mode. Under the mode of pollution-free production, when agricultural chemicals input reached 20 103 yuan·hm-2, leafy vegetable production could reach the maximum. Therefore, to increase production and reduce carbon emissions in the process of vegetable production, the main approach was to use organic mode, increase the quantity of organic fertilizer, instead of the use of inorganic N fertilizer and other agricultural chemicals and establish water-saving irrigation system for electricity efficiency.

  20. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    some 6-fold higher than the sum of all physical carbon sinks. This general negative correspondence between I:P ratio and NEM, which occurred among Bay regions, was also evident in data available for organic C fluxes in other coastal ecosystems. An inverse relationship between NEM and P, postulated in a previous study, did not apply to Chesapeake Bay, and closer examination of available data revealed the importance of the loading ratio of DIN:TOC as a key control on coastal NEM. It is proposed here that the general global trend of coastal eutrophication will lead to increasing values of NEM in estuaries worldwide. The management implications of this trend are complex, involving both increased potential fisheries harvest and decreased demersal habitat.

  1. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  2. Methodology guideline. Organization of conference neutral in carbon; Guide methodologique. Organisation de conference neutre en carbone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  3. Flocculation of organic carbon from headwaters to estuary - the impact of soil erosion, water quality and land use on carbon transformation processes in eight streams draining Exmoor, UK

    Science.gov (United States)

    Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.

    2017-12-01

    Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how

  4. Potential Effects of Organic Carbon Production on Ecosystems and Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands in the Sacramento-San Joaquin Delta (Delta is an important component of the Ecosystem Restoration Program of the CALFED Bay-Delta Program (CALFED. CALFED is a collaborative effort among state and federal agencies to restore the ecological health and improve water management of the Delta and San Francisco Bay (Bay. Tidal wetland restoration is intended to provide valuable habitat for organisms and to improve ecosystem productivity through export of various forms of organic carbon, including both algae and plant detritus. However, the Delta also provides all or part of the drinking water for over 22 million Californians. In this context, increasing sources of organic carbon may be a problem because of the potential increase in the production of trihalomethanes and other disinfection by-products created during the process of water disinfection. This paper reviews the existing information about the roles of organic carbon in ecosystem function and drinking water quality in the Bay-Delta system, evaluates the potential for interaction, and considers major uncertainties and potential actions to reduce uncertainty. In the last 10 years, substantial progress has been made on the role of various forms of organic carbon in both ecosystem function and drinking water quality; however, interactions between the two have not been directly addressed. Several ongoing studies are beginning to address these interactions, and the results from these studies should reduce uncertainty and provide focus for further research.

  5. Sequestration of carbon in soil organic matter in Senegal: an overview

    Science.gov (United States)

    Tieszen, Larry L.; Tappan, G. Gray; Toure, A.

    2004-01-01

    Sequestration of Carbon in Soil Organic Matter (SOCSOM) in Senegal is a multi-disciplinary development project planned and refined through two international workshops. The project was implemented by integrating a core of international experts in remote sensing, biogeochemical modeling, community socio-economic assessments, and carbon measurements in a fully collaborative manner with Senegal organizations, national scientists, and local knowledge and expertise. The study addresses the potential role developing countries in semi-arid areas can play in climate mitigation activities. Multiple benefits to smallholders could accrue as a result of management practices to re-establish soil carbon content lost because of land use changes or management practices that are not sustainable. The specific importance for the Sahel is because of the high vulnerability to climate change in already impoverished rural societies.

  6. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  7. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jae Jak [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); National Institute of Agricultural Science and Technology, RDA, 249 Sedun, Suwon 702-701 (Korea, Republic of); Gustafsson, Orjan [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden); Kurt-Karakus, Perihan [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Breivik, Knut [Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, P.O. Box 1033, NO-0315 Oslo (Norway); Steinnes, Eiliv [Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Jones, Kevin C. [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)], E-mail: k.c.jones@lancaster.ac.uk

    2008-12-15

    Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds. - Total organic carbon and black carbon fractions can play an important role in the storage and cycling of persistent organic pollutants in background soils.

  8. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate

    International Nuclear Information System (INIS)

    Nam, Jae Jak; Gustafsson, Orjan; Kurt-Karakus, Perihan; Breivik, Knut; Steinnes, Eiliv; Jones, Kevin C.

    2008-01-01

    Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds. - Total organic carbon and black carbon fractions can play an important role in the storage and cycling of persistent organic pollutants in background soils

  9. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  10. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  11. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  12. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  13. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  14. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  15. Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Peltre, Clément; Bruun, Sander; Du, Changwen

    2014-01-01

    ) degradability. The objective of this study was to assess the potential of FTIR-PAS for the characterisation of the labile fraction of SOC and more classical soil parameters, such as carbon and clay content, for a range of 36 soils collected from various field experiments in Denmark. Partial least squares (PLS...... signal. This also means that it should be advantageous for soil analysis because of its highly opaque nature. However, only a limited number of studies have so far applied FTIR-PAS to soil characterization and investigation is still required into its potential to determine soil organic carbon (SOC......) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralised after 238 days of incubation at 15°C and pF 2 (C238d) taken as an indicator of the labile fraction of SOC. Results showed that it is possible to predict total organic carbon content, total...

  16. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  17. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    Science.gov (United States)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance

  18. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Science.gov (United States)

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  19. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008 from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR, shrubland (SH, as well as in evergreen coniferous (EC, deciduous coniferous (DC and deciduous broadleaved forest (DB, to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.

  1. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  2. A molecular investigation of soil organic carbon composition across a subalpine catchment

    Science.gov (United States)

    Hsu, Hsiao-Tieh; Lawrence, Corey R.; Winnick, Matthew J.; Bargar, John R.; Maher, Katharine

    2018-01-01

    The dynamics of soil organic carbon (SOC) storage and turnover are a critical component of the global carbon cycle. Mechanistic models seeking to represent these complex dynamics require detailed SOC compositions, which are currently difficult to characterize quantitatively. Here, we address this challenge by using a novel approach that combines Fourier transform infrared spectroscopy (FT-IR) and bulk carbon X-ray absorption spectroscopy (XAS) to determine the abundance of SOC functional groups, using elemental analysis (EA) to constrain the total amount of SOC. We used this SOC functional group abundance (SOC-fga) method to compare variability in SOC compositions as a function of depth across a subalpine watershed (East River, Colorado, USA) and found a large degree of variability in SOC functional group abundances between sites at different elevations. Soils at a lower elevation are predominantly composed of polysaccharides, while soils at a higher elevation have more substantial portions of carbonyl, phenolic, or aromatic carbon. We discuss the potential drivers of differences in SOC composition between these sites, including vegetation inputs, internal processing and losses, and elevation-driven environmental factors. Although numerical models would facilitate the understanding and evaluation of the observed SOC distributions, quantitative and meaningful measurements of SOC molecular compositions are required to guide such models. Comparison among commonly used characterization techniques on shared reference materials is a critical next step for advancing our understanding of the complex processes controlling SOC compositions.

  3. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  4. Export of fine particulate organic carbon from redwood-dominated catchments

    Science.gov (United States)

    Madej, Mary Ann

    2015-01-01

    Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old-growth redwood forests has not been evaluated to date. Old-growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km-2 and soil organic carbon can reach 46 800 Mg km-2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old-growth redwood forests. Carbon content, determined through loss-on-ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km-2 yr-1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km-2 yr-1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km-2 yr-1. Because the current extent of old-growth redwood stands is less than 5% of its pre-European-settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public

  5. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  6. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  7. Selection of pecan shell-based activated carbons for removal of organic and inorganic impurities from water.

    Science.gov (United States)

    Niandou, Mohamed A S; Novak, Jeffrey M; Bansode, Rishipal R; Yu, Jianmei; Rehrah, Djaafar; Ahmedna, Mohamed

    2013-01-01

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify their surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soaking shells in 50% (v/v) HPO or 25 to 50% of KOH-NaHCO followed by pyrolysis at 400 to 700°C under a N atmosphere. Physically activated PSACs were produced by pyrolysis at 700°C under N followed by activation with steam or CO at 700 to 900°C. Physicochemical, surface, and adsorption properties of the PSACs were compared with two commercially available activated carbons. The average mass yield of PSACs with respect to the initial mass of the biomass was about 20 and 34% for physically activated and chemically activated carbons, respectively. Acid-activated carbons exhibited higher surface area, higher bulk density, and lower ash content compared with steam- or CO-activated carbons and the two commercial products. Base activation led to the development of biochar with moderate to high surface area with surface charges suitable for adsorption of anionic species. Regardless of the activation method, PSACs had high total surface area ranging from 400 to 1000 m g, better pore size distribution, and more surface charges than commercial samples. Our results also showed that PSACs were effective in removing inorganic contaminants such as Cu and NO as well as organic contaminants such as atrazine and metolachlor. This study showed that pyrolysis conditions and activation had a large influence on the PSAC's surface characteristics, which can limit its effectiveness as a custom sorbent for targeted water contaminants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics

    International Nuclear Information System (INIS)

    Mahara, Y.; Kubota, T.; Wakayama, R.; Nakano-Ohta, T.; Nakamura, T.

    2007-01-01

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of 3 , 1-10 x 10 3 , 10-100 x 10 3 , and > 100 x 10 3 . The organic matter source was land plants, based on the carbon isotope ratios (δ 13 C/ 12 C). The organic matter in surface water originated from presently growing land plants, based on 14 C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter ( 3 ) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment

  9. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    Science.gov (United States)

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water

  10. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  11. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  12. Organic carbon fluxes in stemflow, throughfall and rainfall in an olive orchard

    Science.gov (United States)

    Lombardo, L.; Vanwalleghem, T.; Gomez, J. A.

    2012-04-01

    The importance of rainfall distribution under the vegetation canopy for nutrient cycling of forest ecosystems has been widely studied (e.g. Kolkai et al., 1999, Bath et al., 2011). It has been demonstrated how throughfall and stemflow reach the soil as chemically-enriched water, by incorporating soluble organic and inorganic particles deriving from plant exudates and from atmospheric depositions (dryfall and wetfall) present on the surfaces of the plant (leaves, bark, fruits). Dissolved (DOC) and particulate (POC) organic carbon inputs from stem- and canopy-derived hydrologic fluxes are small but important components of the natural carbon cycle. DOC has also the capability to form complexes that control the transport and solubility of heavy metals in surface and ground waters, being composed for the most part (75-90%) of fulvic, humic or tanninic compounds, and for the resting part of molecules like carbohydrates, hydrocarbons, waxes, fatty acids, amino and hydroxy acids. However, very little data is available for agricultural tree crops, especially olive trees. In this sense, the objective of this work is to investigate the concentration and fluxes of organic carbon in rainfall, throughfall, and stemflow in a mature olive orchard located in Cordoba, in Southern Spain and to relate them to rainfall characteristics and tree physiology. The measurements started in October 2011. Four high density polyethylene bottles with 18-cm-diameter polyethylene funnels for throughfall collection were placed beneath the canopy of each of the three selected olive trees; four more collectors were placed in open spaces in the same orchard for rainfall sampling. Stemflow was collected through PVC spiral tubes wrapped around the trunks and leading into collection bins. The throughflow sampling points were chosen randomly. Total and dissolved organic carbon concentrations in unfiltered (TOC) and filtered (0.45 µm membrane filter, DOC) collected waters were measured using a TOC analyzer

  13. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Science.gov (United States)

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  14. Seasonal carbon cycling in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Sørensen, Heidi L.; Meire, Lorenz; Juul-Pedersen, Thomas

    2015-01-01

    Climate change is expected to have a pronounced effect on biogeochemical cycling in Arctic fjords, but current insight on the biogeochemical functioning of these systems is limited. Here, we present seasonal data on primary production, export of particulate organic carbon (POC), and the coupling...... carbon amounted to 3.2 and 5.3 mol C m−2 yr−1, respectively. Sulfate reduction was the most prominent mineralization pathway, accounting for 69% of the benthic mineralization, while denitrification accounted for 2%. Overall, the carbon mineralization and burial in Kobbefjord were significantly higher...... in ice coverage in higher Arctic Greenlandic fjords will, as a first approximation, entail proportional increases in productivity, mineralization, and burial of organic carbon in the fjords, which will thus become similar to present-day southerly systems....

  15. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  16. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  17. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  18. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  19. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    Science.gov (United States)

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  20. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  1. Organic carbon storage change in China's urban landfills from 1978-2014

    Science.gov (United States)

    Ge, Shidong; Zhao, Shuqing

    2017-10-01

    China has produced increasingly large quantities of waste associated with its accelerated urbanization and economic development and deposited these wastes into landfills, potentially sequestering carbon. However, the magnitude of the carbon storage in China’s urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China’s urban landfills increased nearly 68-fold from the 1970s to the 2010s, and reached 225.2-264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4-157.5 Tg C) in 2014, followed by household waste (67.7-83.8 Tg C), and sewage sludge was the least (19.7-34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country’s carbon stocks in urban ecosystems. The annual increase (i.e. sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean ± 2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also have a respectable contribution to national carbon sequestration.

  2. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    KAUST Repository

    Holding, Johnna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agusti, Susana; Wassmann, Paul; Middelburg, Jack J.

    2017-01-01

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon (OC), however recent research suggests that melt water from sea ice and glaciers could introduce an allochthonous source of OC to the microbial food web with ramifications for the metabolic balance of plankton communities. In this study, we characterized autochthonous and allochthonous sources of OC to the Western Svalbard fjord system using stable isotopes of carbon. We quantified δ13C of eukaryotic and prokaryotic planktonic groups using polar lipid-derived fatty acids as biomarkers in addition to measuring δ13C of marine particulate OC and dissolved OC from glacial runoff. δ13C of bacteria (−22.5‰) was higher than that of glacial runoff OC (−28.5‰) and other phytoplankton groups (−24.7 to −29.1‰), which suggests that marine bacteria preferentially use a third source of OC. We present a Bayesian three-source δ13C mixing model whereby ∼ 60% of bacteria carbon is derived from OC in sea ice, and the remaining carbon is derived from autochthonous production and glacial-derived OC. These results suggest that subsidies of OC from melting glaciers will not likely influence microbial carbon cycling in Svalbard fjords in the future and that further research is needed to determine the effects of melting sea ice on microbial carbon cycling in fjord systems and elsewhere in the Arctic Ocean.

  3. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    KAUST Repository

    Holding, Johnna M.

    2017-03-27

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon (OC), however recent research suggests that melt water from sea ice and glaciers could introduce an allochthonous source of OC to the microbial food web with ramifications for the metabolic balance of plankton communities. In this study, we characterized autochthonous and allochthonous sources of OC to the Western Svalbard fjord system using stable isotopes of carbon. We quantified δ13C of eukaryotic and prokaryotic planktonic groups using polar lipid-derived fatty acids as biomarkers in addition to measuring δ13C of marine particulate OC and dissolved OC from glacial runoff. δ13C of bacteria (−22.5‰) was higher than that of glacial runoff OC (−28.5‰) and other phytoplankton groups (−24.7 to −29.1‰), which suggests that marine bacteria preferentially use a third source of OC. We present a Bayesian three-source δ13C mixing model whereby ∼ 60% of bacteria carbon is derived from OC in sea ice, and the remaining carbon is derived from autochthonous production and glacial-derived OC. These results suggest that subsidies of OC from melting glaciers will not likely influence microbial carbon cycling in Svalbard fjords in the future and that further research is needed to determine the effects of melting sea ice on microbial carbon cycling in fjord systems and elsewhere in the Arctic Ocean.

  4. Biochemical and stable carbon isotope records of mangrove derived organic matter in the sediment cores

    Digital Repository Service at National Institute of Oceanography (India)

    Manju, M.N.; Resmi, P.; RatheeshKumar, C.S.; Gireeshkumar, T.R.; Chandramohanakumar, N.; Joseph, M.M.

    in mangrove sediments. This also confirms the involvement of heterotrophic microorganisms in the organic carbon dynamics of the study area. The bulk elemental ratio (total organic carbon/total nitrogen) varied between 11.39 and 24.14 in the study region...

  5. The Role of Refractory Dissolved Organic Matter in Ocean Carbon Sequestration

    DEFF Research Database (Denmark)

    Jørgensen, Linda

    The ocean assimilates a large amount of atmospheric CO2 and is potentially a buffer for climate change. A fraction of the assimilated CO2 is incorporated into algal biomass and further converted into refractory dissolved organic matter (DOM). Carbon bound in refractory DOM has the potential...... studies the prokaryotic production and degradation of oceanic refractory DOM and discusses the reasons for the persistent nature of this large DOM fraction. The first two papers investigate the microbial carbon pump, i.e. prokaryotic transfor-mation of organic carbon into refractory DOM. The results show...... DOM compounds in the ocean are rare—possibly too rare to sustain viable uptake and assimilation. Hence, the dilute concentration of individual compounds is a possible explanation for the apparent refractory nature of most DOM in the ocean. Understanding the mechanisms that control the quality...

  6. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, Oscar; Lavery, P. S.; Duarte, Carlos M.; Kendrick, Gary A.; Calafat, Antoni; York, P.; Steven, Andy; Macreadie, Peter I.

    2016-01-01

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (C-org) content in terrestrial soils and marine sediments has

  7. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Jukka; Kyroe, Riikka; Junnila, Seppo, E-mail: jukka.heinonen@aalto.fi, E-mail: riikka.kyro@aalto.fi, E-mail: seppo.junnila@aalto.fi [School of Engineering, Department of Surveying, Aalto University, PO Box 11200, 00076 Aalto (Finland)

    2011-07-15

    Hindering urban sprawl is one of the main goals for contemporary urban planning. Urban density is considered crucial in climate change mitigation since it reduces automobile dependence and decreases unit sizes, for example. This letter analyzes the effect of density in a city context. In the study the Finnish capital Helsinki is divided into two areas of different urban densities: the high density downtown area and the more scarcely populated suburbs. The study is a continuation of a recently published study on the implications of urban structure on carbon emissions, and analyzes further the main finding of the first study-that higher urban density might have negligible or even reverse effect on the per capita carbon emissions. Similarly to the previous study, a consumption based tiered hybrid life cycle assessment (LCA) approach is employed in order to produce a comprehensive assessment, free of territorial boundaries and system cutoffs typical of traditional LCAs. Based on the findings of the previous study, it is hypothesized that when assessing city level carbon dioxide emissions from a wider, consumer oriented LCA perspective, increased urban density may not necessarily reduce carbon emissions. Surprisingly, the study finds that carbon dioxide equivalent (CO{sub 2}e) emissions are substantially higher in the dense downtown area than in the surrounding suburbs, which is suggested to imply that the increased consumption due to the higher standard of living increases emissions more than the higher density is able to reduce them. The results demonstrate that, while increasing urban density can be justified from a number of ecological, social and economic viewpoints, density is not necessarily a key parameter in the particular case of climate change. In cities like Helsinki, where wealth is concentrated in the downtown area, climate policies should give higher priority to the energy consumption of buildings, to alternative energy production and distribution modes

  9. Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki

    International Nuclear Information System (INIS)

    Heinonen, Jukka; Kyroe, Riikka; Junnila, Seppo

    2011-01-01

    Hindering urban sprawl is one of the main goals for contemporary urban planning. Urban density is considered crucial in climate change mitigation since it reduces automobile dependence and decreases unit sizes, for example. This letter analyzes the effect of density in a city context. In the study the Finnish capital Helsinki is divided into two areas of different urban densities: the high density downtown area and the more scarcely populated suburbs. The study is a continuation of a recently published study on the implications of urban structure on carbon emissions, and analyzes further the main finding of the first study-that higher urban density might have negligible or even reverse effect on the per capita carbon emissions. Similarly to the previous study, a consumption based tiered hybrid life cycle assessment (LCA) approach is employed in order to produce a comprehensive assessment, free of territorial boundaries and system cutoffs typical of traditional LCAs. Based on the findings of the previous study, it is hypothesized that when assessing city level carbon dioxide emissions from a wider, consumer oriented LCA perspective, increased urban density may not necessarily reduce carbon emissions. Surprisingly, the study finds that carbon dioxide equivalent (CO 2 e) emissions are substantially higher in the dense downtown area than in the surrounding suburbs, which is suggested to imply that the increased consumption due to the higher standard of living increases emissions more than the higher density is able to reduce them. The results demonstrate that, while increasing urban density can be justified from a number of ecological, social and economic viewpoints, density is not necessarily a key parameter in the particular case of climate change. In cities like Helsinki, where wealth is concentrated in the downtown area, climate policies should give higher priority to the energy consumption of buildings, to alternative energy production and distribution modes, as

  10. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach

    Science.gov (United States)

    Herrmann, Maria; Najjar, Raymond G.; Kemp, W. Michael; Alexander, Richard B.; Boyer, Elizabeth W.; Cai, Wei-Jun; Griffith, Peter C.; Kroeger, Kevin D.; McCallister, S. Leigh; Smith, Richard A.

    2015-01-01

    Net ecosystem production (NEP) and the overall organic carbon budget for the estuaries along the East Coast of the United States are estimated. We focus on the open estuarine waters, excluding the fringing wetlands. We developed empirical models relating NEP to loading ratios of dissolved inorganic nitrogen to total organic carbon, and carbon burial in the sediment to estuarine water residence time and total nitrogen input across the landward boundary. Output from a data-constrained water quality model was used to estimate inputs of total nitrogen and organic carbon to the estuaries across the landward boundary, including fluvial and tidal-wetland sources. Organic carbon export from the estuaries to the continental shelf was computed by difference, assuming steady state. Uncertainties in the budget were estimated by allowing uncertainties in the supporting model relations. Collectively, U.S. East Coast estuaries are net heterotrophic, with the area-integrated NEP of −1.5 (−2.8, −1.0) Tg C yr−1 (best estimate and 95% confidence interval) and area-normalized NEP of −3.2 (−6.1, −2.3) mol C m−2 yr−1. East Coast estuaries serve as a source of organic carbon to the shelf, exporting 3.4 (2.0, 4.3) Tg C yr−1 or 7.6 (4.4, 9.5) mol C m−2 yr−1. Organic carbon inputs from fluvial and tidal-wetland sources for the region are estimated at 5.4 (4.6, 6.5) Tg C yr−1 or 12 (10, 14) mol C m−2 yr−1 and carbon burial in the open estuarine waters at 0.50 (0.33, 0.78) Tg C yr−1 or 1.1 (0.73, 1.7) mol C m−2 yr−1. Our results highlight the importance of estuarine systems in the overall coastal budget of organic carbon, suggesting that in the aggregate, U.S. East Coast estuaries assimilate (via respiration and burial) ~40% of organic carbon inputs from fluvial and tidal-wetland sources and allow ~60% to be exported to the shelf.

  11. Fossil and non-fossil sources of organic carbon (OC and elemental carbon (EC in Göteborg, Sweden

    Directory of Open Access Journals (Sweden)

    S. Szidat

    2009-03-01

    Full Text Available Particulate matter was collected at an urban site in Göteborg (Sweden in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC, organic carbon (OC, water-insoluble OC (WINSOC, and water-soluble OC (WSOC were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS. For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.

  12. Satellite observation of particulate organic carbon dynamics on the Louisiana continental shelf

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical process...

  13. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effects of natural organic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications.

    Science.gov (United States)

    Fairey, Julian L; Wahman, David G; Lowry, Gregory V

    2010-01-01

    In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.

  15. Self-organized global control of carbon emissions

    Science.gov (United States)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  16. The Rise of Oxygen in the Earth's Atmosphere Controlled by the Efficient Subduction of Organic Carbon

    Science.gov (United States)

    Duncan, M. S.; Dasgupta, R.

    2017-12-01

    Carbon cycling between the Earth's surface environment, i.e., the ocean-atmosphere system, and the Earth's interior is critical for differentiation, redox evolution, and long-term habitability of the planet. This carbon cycle is influenced heavily by the extent of carbon subduction. While the fate of carbonates during subduction has been discussed in numerous studies [e.g., 1], little is known how organic carbon is quantitatively transferred from the Earth's surface to the interior. Efficient subduction of organic carbon would remove reduced carbon from the surface environment over the long-term (≥100s Myrs) while release at subduction zone arc volcanoes would result in degassing of CO2. Here we conducted high pressure-temperature experiments to determine the carbon carrying capacity of slab derived, rhyolitic melts under graphite-saturated conditions over a range of P (1.5-3.0 GPa) and T (1100-1400 °C) at a fixed melt H2O content (2 wt.%) [2]. Based on our experimental data, we developed a thermodynamic model of CO2 dissolution in C-saturated slab melts, that allows us to quantify the extent of organic carbon mobility as a function of slab P, T, and fO2 during subduction through time. Our experimental data and thermodynamic model suggest that the subduction of graphitized organic C, and graphite/diamond formed by reduction of carbonates with depth [e.g., 3], remained efficient even in ancient, hotter subduction zones - conditions at which subduction of carbonates likely remained limited [1]. Considering the efficiency the subduction of organic C and potential conditions for ancient subduction, we suggest that the lack of remobilization in subduction zones and deep sequestration of organic C in the mantle facilitated the rise and maintenance atmospheric oxygen in the Paleoproterozoic and is causally linked to the Great Oxidation Event (GOE). Our modeling shows that episodic subduction and organic C sequestration pre-GOE may also explain occasional whiffs of

  17. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  19. Organic matter in North Bohemian Tertiavy and Cretaceous sediments with uranium mineralization

    International Nuclear Information System (INIS)

    Simanek, V.

    1979-01-01

    Significant variability was found in the qualitative and the quantitative compositions of dispersed organic matter in Tertiary rocks with uranium ore content between hundredths and units of percentage of the rocks. In Cretaceous rocks with similar proportion of uranium in w.% the variability is much smaller. In rocks with higher organic carbon and uranium levels the organic matter is in a more advanced stage of carbonification metamorphosis than in rocks with lower levels of the components. A statistical correlation test showed free positive correlation between the levels of uranium and organic carbon and the levels of uranium and strongly carbonified organic components and negative correlation between uranium level and humic substances on one hand and the uranium level and bitumens on the other. In Cretaceous sediments, the individual organic compounds were analytically determined in addition to the total level of organic carbon, the strongly carbonified organic components, humic substances and bitumens. Higher fatty acids in ppm concentrations were also found. Their distribution corresponds to the usual distribution in sediments. Rocks with lower contents of organic matter and uranium usually contain phenol aldehydes bound to glycosides while those with higher contents of uranium and organic carbon contain higher amounts of free phenol aldehydes. The composition of amino acids indicates genetic links to the microbial activity. (author)

  20. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Science.gov (United States)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  1. Assimilation and transformation of benzene by higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Durmishidze, S V; Ugrekhelidze, D Sh; Dzhikiya, A N

    1974-01-01

    Higher plants are capable of assimilating benzene, the molecules of which are subjected to deep chemical transformations; the products of its metabolism move along the plant. Taking part in total metabolism, carbon atoms of benzene molecules incorporate into composition of low-molecular compounds of the plant cell. The bulk of benzene carbon incorporates into composition of organic acids and a comparatively small part - into composition of amino acids. In the metabolism process benzene carbon localizes mainly in the chloroplasts. Phenol, muconic acid and CO/sub 2/ are isolated and identified from the products of benzene enzymatic oxidation. A range of benzene assimilation by higher plants is extremely wide. 9 references, 5 tables.

  2. Exploration on relationship between uranium and organic materials in carbonate-siliceous pelite type uranium ore deposits

    International Nuclear Information System (INIS)

    Dong Yongjie

    1996-01-01

    The author determines the content of uranium and organic carbon of part specimen of surrounding rocks and ores, which sampled from carbonate and black shale type uranium deposits in Xiushui, Jiangxi Province, and Tongcheng, Hubei Province. According to the analytical operation regulations of organic materials, extraction and separation of chloroform pitch is carried out. Internal relationships between uranium and organic derivative is discussed. The conclusion shows that: (1) certain co-relationship between U and organic carbon and chloroform extract is detected; (2) evolutionary processes of organic materials in the exogenetic uranium deposits are not all the same; (3) non-hydrocarbon is closely related to uranium, so it can be regarded as indicator of uranium gathering in exogenetic uranium deposits

  3. Changes of Organic Carbon Quantity and Quality in Temperate Forest Soils

    Science.gov (United States)

    Kühnel, Anna; Satwika Lestari, Annisa; Schubert, Alfred; Wiesmeier, Martin; Spörlein, Peter; Schilling, Bernd; Kögel-Knabner, Ingrid

    2017-04-01

    Climate change will have profound impacts on organic matter stocks and thus on the functionality of soils. Soil organic carbon (SOC) content in soil is mainly regulated by the fluxes of organic matter which are highly associated with the aboveground and root litter production and their decompositions into CO2 by soil microorganism. The predicted rising temperatures in Bavaria might lead to an increased decomposition and release of soil carbon into the atmosphere, which would deteriorate a number of important soil functions. Here, we present an assessment of SOC stocks in three temperate forest sites over the last 30 years. Soil to a depth of 30 cm was analysed with density fractionation to evaluate SOC stocks and distribution in different pools. Additionally, tree-aboveground organic carbon (OC) stocks were measured to assess their influence on SOC. SOC stocks decreased between 1988 and 2004 and increased between 2004 and 2016. OC changes of litter + O layer and mineral soil differed. Highest changes of SOC occurred in the light fractions, followed by the mineral fractions. Tree-aboveground biomass, stand composition, and changing climate had an influence on SOC stocks. Precipitation change was correlated with the litter + O layer OC stocks. Further studies on the changes of each SOC fraction and the influence of other edaphic factors are needed to better understand the changes in SOC stocks and quality.

  4. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, Oscar

    2016-09-07

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (C-org) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes <63 mu m), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between C-org and mud contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil C-org content. We also combined these data with the delta C-13 signatures of the soil C-org to understand the sources of Corg stores. The results showed that mud is positively correlated with soil C-org content only when the contribution of seagrass-derived C-org to the sedimentary C-org pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil C-org content, related to a higher contribution of seagrass-derived C-org to the sedimentary C-org pool in these meadows. The relatively high soil C-org contents with relatively low mud contents (e.g., mud-C-org saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil C-org and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil C-org content for

  5. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  6. Carbon and prospective: international colloquium jointly organized by the prospective modeling chair and ETSAP

    International Nuclear Information System (INIS)

    Maizi, N.; Hourcade, J.Ch.; Selosse, S.

    2009-01-01

    The inauguration of the prospective modeling chair in favour of sustainable development is the result of the joint effort of several schools, organizations and companies, in particular: Mines ParisTech, Ponts ParisTech, Agro ParisTech, the higher education and research pole of ParisTech, the Ecole des Ponts foundation, the mineral, mining and metallurgic industries foundation (FI3M), with the partnership of Ademe, EdF, Renault, Schneider Electric and Total. The main goal of this chair is to perpetuate modeling tools with sustainable development stakes. The scientific program and the expertise of this chair are based on the joint and complementary experience of its two co-founder research teams in the domain of long-term prospective of energy, economy and environment-related questions: the applied mathematics centre (CMA - Mines ParisTech) and the international centre of environment and sustainable development research (CIRED). An inaugural colloquium was organized at the occasion of the launching of this chair. During round tables, representatives of the different intervening parties explained the stakes of this huge project and their expectations, in particular from the scientific, economical and societal point of view. A workshop on the topic 'carbon and prospective' followed the round tables. Six presentations were given about the following topics: energy policy scenarios for 2050 (Moncomble, J.E.), the shadow price of carbon (Chambolle T.), mitigation targets and carbon values: insights from TIMES-FR (Assoumou E.), climate protection and infrastructures (Sassi O.), China's energy and carbon options (Wenying C.), EU 20-20 policy implications on the energy system of Germany - an analysis with TIMES PanEU (Blesl M.). This book gathers the proceedings of both parts of this colloquium, the debates during the round tables (in French) and the presentations given during the workshop (in English). (J.S.)

  7. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  8. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  9. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  10. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  11. Do soil organic carbon levels affect potential yields and nitrogen use efficiency?

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields......, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of variables...

  12. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    Science.gov (United States)

    Canuel, Elizabeth A.; Cammer, Sarah S.; McIntosh, Hadley A.; Pondell, Christina R.

    2012-05-01

    Estuaries are among the most altered and vulnerable marine ecosystems. These ecosystems will likely continue to deteriorate owing to increased population growth in coastal regions, expected temperature and precipitation changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer, transformation, and burial of carbon and other biogenic elements exchanged between the land and ocean systems. Climate change has the potential to influence the carbon cycle through anticipated changes to organic matter production in estuaries and through the alteration of carbon transformation and export processes. This review discusses the effects of climate change on processes influencing the cycling of organic carbon in estuaries, including examples from three temperate estuaries in North America. Our goal is to evaluate the impact of climate change on the connectivity of terrestrial, estuarine, and coastal ocean carbon cycles.

  13. Evaluation of robustness in the validation of total organic carbon (TOC) methodology

    International Nuclear Information System (INIS)

    Benedetti, Stella; Monteiro, Elisiane G.; Almeida, Erika V.; Oliveira, Ideli M.; Cerqueira Filho, Ademar C.; Mengatti, Jair; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.

    2009-01-01

    Water is used in many steps of production and quality control as raw material for reagent preparation or dilution of solutions and for cleaning apparatus and room areas in the pharmaceutical industry, including radiopharmaceutical plants. Regulatory requirements establish specifications of purified water for different purposes. The quality of water is essential to guarantee the safe utilization of radiopharmaceuticals. A variety of methods and systems can be used to produce purified water and water for injection and all of them must fulfill the requirements for their specific use, which include TOC (total organic carbon) analysis, an indirect measurement of organic molecules present in water. The principle of TOC method is the oxidation of organic molecules to carbon dioxide, related to the carbon concentration. The aim of this study was to evaluate the parameters of robustness in TOC method in water used in the production and quality control procedures in the Radiopharmacy Directory (DIRF), according to Resolution 899 from ANVISA (National Sanitary Agency). Purified water were obtained from Milli-RX45 system. TOC standard solutions in the range of 100-1000 ppb were prepared with potassium hydrogen phthalate anhydride, transferred to vials and sequentially analyzed by a catalytic photo-oxidation reaction with a TOC model Vwp equipment from Shimadzu Corporation (Japan). The evaluated parameters were: oxidizing volume from 0.5 to 2.5 mL, acidifying volume from 1 to 5%, integration time for TC (total carbon) and IC (inorganic carbon) curves from 2 to 10 minutes. (author)

  14. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    Science.gov (United States)

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  15. Soil organic carbon stocks under native vegetation - revised estimates for use with the simple assessment option of the Carbon Benefits Project system

    NARCIS (Netherlands)

    Batjes, N.H.

    2011-01-01

    The Carbon Benefits Project (CBP) is developing a standardized system for sustainable land management projects to measure, model and report changes in carbon stocks and greenhouse gas (GHG) emissions for use at varying scales. A global framework of soil organic carbon (SOC) stocks under native

  16. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    Science.gov (United States)

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B

  17. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water

  18. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  19. Organic carbon storage change in China's urban landfills from 1978 to 2014

    Science.gov (United States)

    Ge, S.; Zhao, S.

    2017-12-01

    China has produced increasingly large quantities of waste associated with her accelerated urbanization and economic development and deposited these wastes into landfills potentially sequestering carbon. However, the magnitude of the carbon storage in China's urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China's urban landfills increased nearly 68 folds from the 1970s to the 2010s, and reached 225.2 - 264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4 - 157.5 Tg C) in 2014, followed by household waste (67.7 - 83.8 Tg C), and sewage sludge was the least (19.7 - 34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country's carbon stocks in urban ecosystems. The annual increase (i.e., sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean±2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also contribute respectably to national carbon sequestration.

  20. Cropland versus Gariga schrubland on soil organic carbon storage under Mediterranen climatic condition of Sicily

    Science.gov (United States)

    Novara, A.; Gristina, L.; Santoro, A.; Poma, I.

    2009-04-01

    Soil organic carbon (SOC) pool is the largest among the terrestrial pool and it plays a key role to mitigate climate change. The restoration of SOC pool represents a potential sink for atmospheric CO2. Land use is one of the most important factors controlling organic carbon content. The main land uses throughout the Mediterranean are croplands (olive, wheat and vineyards) and scrublands. The land abandonment or the reclamation of land is changing the cover of scrubland and cropland. This will change the carbon cycle. The aim of this work is determining the direction and magnitude of soil organic change associated with land use change under Mediterranean Climatic Conditions. Using both historic record and land cover crop maps we estimated the effect of land cover change on the stock carbon from 1972 to 2008 in Sicily. A system of paired plots was established on Mollic Gypsiric cambisol and Gypsiric cambisol on agriculture and rangeland land uses. The study sites were selected at the natural reserve "Grotta di S. Ninfa", in the West of Sicily. Soil samples (24) were taken at 20 and 40 cm depth, air dried and sieved at 2 mm. Dry aggregate size fractions selected were >1000 µm, 1000-500 µm, 500-250 µm, 250-63 µm, 63-25 µm and <25 µm. The results show that gariga increase the organic matter in soil, mainly on the organic horizon. Key worlds: Land use change, Soil organic Carbon , Mediterranean, aggregates, gariga, cropland.

  1. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  2. Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean

    Science.gov (United States)

    Fischer, G.; Karakaş, G.

    2009-01-01

    The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling

  3. Organic carbon in the sediments of Mandovi estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    Total organic carbon (TOC) in surficial sediments in Mandovi Estuary, Goa, India varies widely from 0.1 to 3% (av. 1.05%). Highest values of TOC (2.4-3%) lie close to the mouth region and indicate no definite trend in its variation in the estuarine...

  4. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  5. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  6. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  7. The Potential Of The Soil For Stabilisation Of Organic Carbon In Soil Aggregates

    Directory of Open Access Journals (Sweden)

    Tobiašová Erika

    2015-06-01

    Full Text Available Carbon stabilisation in soil is the result of interaction between the chemical and physical mechanisms of protection and the dominance of the mechanism depends not only on the long-term constant characteristics of soil but also on the properties, which can be partly influenced by human activities. In this study, the potential of the soil for stabilisation of carbon (Ps in different soil types depending on soil properties was compared. Experiment included six soils (Eutric Fluvisol, Mollic Fluvisol, Haplic Chernozem, Haplic Luvisol, Eutric Cambisol, and Rendzic Leptosol of different land uses (forest, meadow, urban, and agro-ecosystem in Slovakia. Ps was determined with dependence on the ratio of labile and stable fractions of carbon in the soil macro-aggregates. Ps was in an exponential dependence (r = 0.942; P < 0.01 with production potential of the soil, and the fractions of dry-sieved aggregates larger than 3 mm play an important role in the first stages of the carbon stabilisation. The suitable parameter, which reflects the changes in carbon stability in the soil is the ratio of the labile carbon and non-labile carbon in the soil macro-aggregates (L/NL. Lower values of L/NL that indicate a higher stability of carbon were determined at a higher pH, at the higher content of carbonates and exchangeable basic cations, and at a higherportion of humic acids free and bound with mobile sesquioxides R2O3.

  8. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    International Nuclear Information System (INIS)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya.

    1982-01-01

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C 2 and C 3 fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO 2 appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown. (author)

  9. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya. (Ministerstvo Geologii SSR, Moscow)

    1982-02-10

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C/sub 2/ and C/sub 3/ fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO/sub 2/ appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown.

  10. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  11. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  12. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    International Nuclear Information System (INIS)

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  13. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  14. SOIL ORGANIC CARBON FRACTIONS AS INFLUENCED BY SOYBEAN CROPPING IN THE HUMID PAMPA OF ARGENTINA

    Directory of Open Access Journals (Sweden)

    Marta E. Conti

    2014-07-01

    Full Text Available The sustainability of continuous cropping systems depends heavily on the years of intensive agricultural production and the choice of crop sequence that alters the fractions of soil organic matter. The aim of this study was to evaluate the impact of continuous soybean cultivation on fractions of organic carbon in the vertic Argiudolls of the Argentinean Pampas. Total organic carbon (TOC, particulate organic carbon (POC , fulvic acids (FA, humic acids (HA, humin (H and carbon produced by microbial respiration (Cresp were assessed in plots with continuous production of soybean for over 15 years (SP and grassland plots that were considered the change control (GP. A significant reduction of TOC and POC variables in cultured soybean SP plots, relative to grassland GP, was observed. The POC / TOC and Cresp / TOC ratios were significantly lower in soybean plots than in grasslands used as controls. These ratios were interpreted as a preferential tendency to maintain high rates of mineralization of labile carbon forms and increased biological stability of humified forms in cultured soybean plots. The shapes of the humic fractions of less complexity, FA and HA, were significantly reduced in the latter plots compared with grasslands, while no significant changes occurred in the more stable and recalcitrant forms of carbon, such as humin, in either plot type.

  15. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Directory of Open Access Journals (Sweden)

    M. Sillanpää

    2005-01-01

    Full Text Available A series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn, Prague (winter, Amsterdam (winter, Helsinki (spring, Barcelona (spring and Athens (summer. The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5 and coarse (PM2.5-10 size ranges. From the collected filter samples, elemental (EC and organic (OC carbon contents were analysed with a thermal-optical carbon analyser (TOA; total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF; As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS; Ca2+, succinate, malonate and oxalate by ion chromatography (IC; and the sum of levoglucosan+galactosan+mannosan (∑MA by liquid chromatography mass spectrometry (LC/MS. The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9% than to PM2.5-10 (1-6% in all the six campaigns. Carbonate (C(CO3, that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested

  16. Organic carbon in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  17. The large variation in organic carbon consumption in spring in the East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Chen

    2013-05-01

    Full Text Available A tremendous amount of organic carbon respired by plankton communities has been found in summer in the East China Sea (ECS, and this rate has been significantly correlated with fluvial discharge from the Changjiang River. However, respiration data has rarely been collected in other seasons. To evaluate and reveal the potential controlling mechanism of organic carbon consumption in spring in the ECS, two cruises covering almost the entire ECS shelf were conducted in the spring of 2009 and 2010. These results showed that although the fluvial discharge rates were comparable to the high riverine flow in summer, the plankton community respiration (CR varied widely between the two springs. In 2009, the level of CR was double that of 2010, with mean (± SD values of 111.7 (±76.3 and 50.7 (±62.9 mg C m−3 d−1, respectively. The CR was positively correlated with concentrations of particulate organic carbon and/or chlorophyll a (Chl a in 2009 (all p 2 (fCO2 in the surface waters, even with a significant amount of inorganic carbon regenerated via CR. In 2010, even more riverine runoff nutrients were measured in the ECS than in 2009. Surprisingly, the growth of phytoplankton in 2010 was not stimulated by enriched nutrients, and its growth was likely limited by low water temperature and/or low light intensity. Low temperature might also suppress planktonic metabolism, which could explain why the CR was lower in 2010. During this period, lower surface water fCO2 may have been driven mainly by physical process(es. To conclude, these results indicate that high organic carbon consumption (i.e. CR in the spring of 2009 could be attributed to high planktonic biomasses, and the lower CR rate during the cold spring of 2010 might be likely limited by low temperature in the ECS. This further suggests that the high inter-annual variability of organic carbon consumption needs to be kept in mind when budgeting the annual carbon balance.

  18. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  19. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    NARCIS (Netherlands)

    Holding, Johnna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agustí, Susana; Wassmann, Paul; Middelburg, Jack J.

    2017-01-01

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon

  20. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    NARCIS (Netherlands)

    Holding, Johna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agusti, Susana; Wassmann, Paul; Middelburg, Jack J.

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon

  1. Organic carbon exportation in a tobacco cropped watershed

    Science.gov (United States)

    de Mello, N.; Merten, G.; Pontarolo, E.

    2009-04-01

    The agricultural land use is indispensable for survival of the humankind; but inadequate agricultural use may disturb or modify steady states generating environmental damage. The amount of organic carbon (OC) in the soil is a result of the balance between addition by primary production and carbon losses, mainly by the oxidation and mineralization by microorganisms activity and depletion by erosion process. The losses will ultimately reduce the primary production, affecting the additions and undermining the soil quality, moving it away from the sustainability. Areas under tobacco (Nicotiana tabacum L.) cropping are generally potential for environmental contamination, because they are based on intensive agricultural operations, with low OC addition, due the removal of almost the totality of the biomass of the main crop. In tobacco, the leaves are the part of commercial interest. This removal, associated with the conventional management of soils makes difficult to preserve the soil OC budget which ends up being rapidly degraded. However, the soil management system also can raise the soil OC content, if not to the original levels, as in the areas under native vegetation, at least, in adequate levels to ensure the soil quality. The organic carbon of an agricultural area may be exported associated to sediments in the fraction associated with minerals (CAM) as in the particulate fraction (POC), or in dissolved form (DOC), however the processes of losses and translocation occurs in distinct ways, as a function of different factors, as soil type, slope length, soil management and climate. The results may also be changed when different scale of observation is adopted. This work was carried out in a rural watershed, cropped with tobacco mainly under conventional management system. Tobacco is still a crop of economic importance in developing countries, such as Brazil. The study was conducted during four years in small plots, hillslopes and catchment scale. In the small plots

  2. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  3. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study

  4. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  5. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland