WorldWideScience

Sample records for higher order dynamics

  1. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    International Nuclear Information System (INIS)

    Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso

    2011-01-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)

  2. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  3. Dynamic Correction of Higher-Order Deflection Aberrations in the Environmental SEM

    Czech Academy of Sciences Publication Activity Database

    Oral, Martin; Neděla, Vilém

    2015-01-01

    Roč. 21, S4 (2015), s. 194-199 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : environmental SEM * ESEM * shifted deflection pivot point * Higher order deflection aberrations * vignetting * dynamic focusing * dynamic stigmator * dynamic correction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  4. Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2016-08-01

    Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.

  5. Higher Order Expectations in Asset Pricing

    OpenAIRE

    Philippe BACCHETTA; Eric VAN WINCOOP

    2004-01-01

    We examine formally Keynes' idea that higher order beliefs can drive a wedge between an asset price and its fundamental value based on expected future payoffs. Higher order expectations add an additional term to a standard asset pricing equation. We call this the higher order wedge, which depends on the difference between higher and first order expectations of future payoffs. We analyze the determinants of this wedge and its impact on the equilibrium price. In the context of a dynamic noisy r...

  6. Power-law scaling of extreme dynamics near higher-order exceptional points

    Science.gov (United States)

    Zhong, Q.; Christodoulides, D. N.; Khajavikhan, M.; Makris, K. G.; El-Ganainy, R.

    2018-02-01

    We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other physical systems as well.

  7. Using Higher-Order Dynamic Bayesian Networks to Model Periodic Data from the Circadian Clock of Arabidopsis Thaliana

    Science.gov (United States)

    Daly, Rónán; Edwards, Kieron D.; O'Neill, John S.; Aitken, Stuart; Millar, Andrew J.; Girolami, Mark

    Modelling gene regulatory networks in organisms is an important task that has recently become possible due to large scale assays using technologies such as microarrays. In this paper, the circadian clock of Arabidopsis thaliana is modelled by fitting dynamic Bayesian networks to luminescence data gathered from experiments. This work differs from previous modelling attempts by using higher-order dynamic Bayesian networks to explicitly model the time lag between the various genes being expressed. In order to achieve this goal, new techniques in preprocessing the data and in evaluating a learned model are proposed. It is shown that it is possible, to some extent, to model these time delays using a higher-order dynamic Bayesian network.

  8. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  9. Skinner-Rusk unified formalism for higher-order systems

    Science.gov (United States)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2012-07-01

    The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.

  10. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  11. Higher-order stochastic differential equations and the positive Wigner function

    Science.gov (United States)

    Drummond, P. D.

    2017-12-01

    General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.

  12. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    Science.gov (United States)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time

  13. Unambiguous formalism for higher order Lagrangian field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris

    2009-01-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  14. An Algorithm for Higher Order Hopf Normal Forms

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1995-01-01

    Full Text Available Normal form theory is important for studying the qualitative behavior of nonlinear oscillators. In some cases, higher order normal forms are required to understand the dynamic behavior near an equilibrium or a periodic orbit. However, the computation of high-order normal forms is usually quite complicated. This article provides an explicit formula for the normalization of nonlinear differential equations. The higher order normal form is given explicitly. Illustrative examples include a cubic system, a quadratic system and a Duffing–Van der Pol system. We use exact arithmetic and find that the undamped Duffing equation can be represented by an exact polynomial differential amplitude equation in a finite number of terms.

  15. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    Science.gov (United States)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  16. A novel condition for stable nonlinear sampled-data models using higher-order discretized approximations with zero dynamics.

    Science.gov (United States)

    Zeng, Cheng; Liang, Shan; Xiang, Shuwen

    2017-05-01

    Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Higher-order (non-)modularity

    DEFF Research Database (Denmark)

    Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue

    2010-01-01

    We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting...... systems modularity of confluence, normalization, and termination can be recovered by imposing suitable linearity constraints....

  18. Dynamics of massless higher spins in the second order in curvatures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A [International Centre for Theoretical Physics, Trieste (Italy)

    1990-04-05

    The consistent equations of motion of interacting massless fields of all spins s=0, 1/2, 1, ..., {infinity} are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (orig.).

  19. Numerical methods of higher order of accuracy for incompressible flows

    Czech Academy of Sciences Publication Activity Database

    Kozel, K.; Louda, Petr; Příhoda, Jaromír

    2010-01-01

    Roč. 80, č. 8 (2010), s. 1734-1745 ISSN 0378-4754 Institutional research plan: CEZ:AV0Z20760514 Keywords : higher order methods * upwind methods * backward-facing step Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010

  20. Dynamics of massless higher spins in the second order in curvatures

    International Nuclear Information System (INIS)

    Vasiliev, M.A.

    1989-08-01

    The consistent equations of motion of interacting fields of all spins s=0,1/2,1...∞ are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (author). 14 refs

  1. Certified higher-order recursive path ordering

    NARCIS (Netherlands)

    Koprowski, A.; Pfenning, F.

    2006-01-01

    The paper reports on a formalization of a proof of wellfoundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the

  2. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  3. Visualization and processing of higher order descriptors for multi-valued data

    CERN Document Server

    Schultz, Thomas

    2015-01-01

    Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization, and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area, and state-of-the-art surveys.   Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics, and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key rese...

  4. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  5. Heavy quark threshold dynamics in higher order

    Energy Technology Data Exchange (ETDEWEB)

    Piclum, J.H.

    2007-05-15

    In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)

  6. Dynamics and phenomenology of higher order gravity cosmological models

    Science.gov (United States)

    Moldenhauer, Jacob Andrew

    2010-10-01

    I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and

  7. On the Entropy Based Associative Memory Model with Higher-Order Correlations

    Directory of Open Access Journals (Sweden)

    Masahiro Nakagawa

    2010-01-01

    Full Text Available In this paper, an entropy based associative memory model will be proposed and applied to memory retrievals with an orthogonal learning model so as to compare with the conventional model based on the quadratic Lyapunov functional to be minimized during the retrieval process. In the present approach, the updating dynamics will be constructed on the basis of the entropy minimization strategy which may be reduced asymptotically to the above-mentioned conventional dynamics as a special case ignoring the higher-order correlations. According to the introduction of the entropy functional, one may involve higer-order correlation effects between neurons in a self-contained manner without any heuristic coupling coefficients as in the conventional manner. In fact we shall show such higher order coupling tensors are to be uniquely determined in the framework of the entropy based approach. From numerical results, it will be found that the presently proposed novel approach realizes much larger memory capacity than that of the quadratic Lyapunov functional approach, e.g., associatron.

  8. Order-sorted Algebraic Specifications with Higher-order Functions

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    1995-01-01

    This paper gives a proposal for how order-sorted algebraic specification languages can be extended with higher-order functions. The approach taken is a generalisation to the order-sorted case of an approach given by Mller, Tarlecki and Wirsing for the many-sorted case. The main idea in the proposal...

  9. Higher-Order Hierarchies

    DEFF Research Database (Denmark)

    Ernst, Erik

    2003-01-01

    This paper introduces the notion of higher-order inheritance hierarchies. They are useful because they provide well-known benefits of object-orientation at the level of entire hierarchies-benefits which are not available with current approaches. Three facets must be adressed: First, it must be po...

  10. Evidence for higher-order effects in L-shell ionization by proton impact

    International Nuclear Information System (INIS)

    Sarkadi, L.; Mukoyama, T.

    1988-01-01

    It is widely believed that higher order processes of ion-atom collisions are negligible in cases of light projectiles like proton. Recent refined experiments tried to prove that the existence of such effects were comperable with the experimental errors, and they showed the unexpected relative importance of the higher order processes. Thus a new coupled channel calculation was performed for proton-gold atom collision in the energy range of 0.15-3.0 MeV, including dynamical subshell coupling effects. The results show that the deviations from the first order cross sections reach 40% at low collision energy. This result made necessary to correct the calculations of L-shell X-ray production cross sections. (D.G.) 6 refs

  11. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  12. HIGHER ORDER THINKING IN TEACHING GRAMMAR

    Directory of Open Access Journals (Sweden)

    Citra Dewi

    2017-04-01

    Full Text Available The aim of this paper discussed about how to enhance students’ higher order thinking that should be done by teacher in teaching grammar. Usually teaching grammar was boring and has the same way to learn like change the pattern of sentence into positive, negative and introgative while the students’ need more various way to develop their thinking. The outcome of students’ competence in grammar sometimes not sufficient enough when the students’ occured some test international standart like Test of English Foreign Language, International English Language Testing. Whereas in TOEFL test it needed higher order thinking answer, so teacher should develop students’ higher order thingking in daily teaching grammar in order to make the students’ enhance their thinking are higher. The method was used in this paper by using field study based on the experience of teaching grammar. It can be shown by students’ toefl score was less in stucture and written expression. The result of this paper was after teacher gave some treatments to enhance students’ higher order thinking in teaching grammar, the students’ toefl scores are sufficient enough as a part of stucture and written expression. It can concluded that it needed some strategies to enhancce students higher order thinking by teaching grammar it can make students’ higher toefl score. Teachers should be creative and inovative to teach the students’ started from giving the students’ question or test in teaching grammar.

  13. Analysis of warping deformation modes using higher order ANCF beam element

    Science.gov (United States)

    Orzechowski, Grzegorz; Shabana, Ahmed A.

    2016-02-01

    Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.

  14. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  15. Higher-Order Program Generation

    DEFF Research Database (Denmark)

    Rhiger, Morten

    for OCaml, a dialect of ML, that provides run-time code generation for OCaml programs. We apply these byte-code combinators in semantics-directed compilation for an imperative language and in run-time specialization using type-directed partial evaluation. Finally, we present an approach to compiling goal......This dissertation addresses the challenges of embedding programming languages, specializing generic programs to specific parameters, and generating specialized instances of programs directly as executable code. Our main tools are higher-order programming techniques and automatic program generation....... It is our thesis that they synergize well in the development of customizable software. Recent research on domain-specific languages propose to embed them into existing general-purpose languages. Typed higher-order languages have proven especially useful as meta languages because they provide a rich...

  16. Frontiers of higher order fuzzy sets

    CERN Document Server

    Tahayori, Hooman

    2015-01-01

    Frontiers of Higher Order Fuzzy Sets, strives to improve the theoretical aspects of general and Interval Type-2 fuzzy sets and provides a unified representation theorem for higher order fuzzy sets. Moreover, the book elaborates on the concept of gradual elements and their integration with the higher order fuzzy sets. This book also introduces new frameworks for information granulation based on general T2FSs, IT2FSs, Gradual elements, Shadowed sets and rough sets. In particular, the properties and characteristics of the new proposed frameworks are studied. Such new frameworks are shown to be more capable to be exploited in real applications. Higher order fuzzy sets that are the result of the integration of general T2FSs, IT2FSs, gradual elements, shadowed sets and rough sets will be shown to be suitable to be applied in the fields of bioinformatics, business, management, ambient intelligence, medicine, cloud computing and smart grids. Presents new variations of fuzzy set frameworks and new areas of applicabili...

  17. Higher order harmonics of reactor neutron equation

    International Nuclear Information System (INIS)

    Li Fu; Hu Yongming; Luo Zhengpei

    1996-01-01

    The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out

  18. XY model with higher-order exchange.

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2017-08-01

    An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.

  19. Higher-Order Minimal Functional Graphs

    DEFF Research Database (Denmark)

    Jones, Neil D; Rosendahl, Mads

    1994-01-01

    We present a minimal function graph semantics for a higher-order functional language with applicative evaluation order. The semantics captures the intermediate calls performed during the evaluation of a program. This information may be used in abstract interpretation as a basis for proving...

  20. Higher-Order Generalized Invexity in Control Problems

    Directory of Open Access Journals (Sweden)

    S. K. Padhan

    2011-01-01

    Full Text Available We introduce a higher-order duality (Mangasarian type and Mond-Weir type for the control problem. Under the higher-order generalized invexity assumptions on the functions that compose the primal problems, higher-order duality results (weak duality, strong duality, and converse duality are derived for these pair of problems. Also, we establish few examples in support of our investigation.

  1. Neural classifiers for learning higher-order correlations

    International Nuclear Information System (INIS)

    Gueler, M.

    1999-01-01

    Studies by various authors suggest that higher-order networks can be more powerful and biologically more plausible with respect to the more traditional multilayer networks. These architecture make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size

  2. Neural Classifiers for Learning Higher-Order Correlations

    Science.gov (United States)

    Güler, Marifi

    1999-01-01

    Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.

  3. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  4. Higher-order relativistic periastron advances and binary pulsars

    International Nuclear Information System (INIS)

    Damour, T.; Schafer, G.

    1988-01-01

    The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star

  5. A Higher-Order Colon Translation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Nielsen, Lasse Reichstein

    2001-01-01

    A lambda-encoding such as the CPS transformation gives rise to administrative redexes. In his seminal article ``Call-by-name, call-by-value and the lambda-calculus'', 25 years ago, Plotkin tackled administrative reductions using a so-called ``colon translation.'' 10 years ago, Danvy and Filinski...... integrated administrative reductions in the CPS transformation, making it operate in one pass. The technique applies to other lambda-encodings (e.g., variants of CPS), but we do not see it used in practice--instead, Plotkin's colon translation appears to be favored. Therefore, in an attempt to link both...... techniques, we recast Plotkin's proof of Indifference and Simulation to the higher-order specification of the one-pass CPS transformation. To this end, we extend his colon translation from first order to higher order...

  6. A Paraconsistent Higher Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2004-01-01

    of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...

  7. Higher-order force gradient symplectic algorithms

    Science.gov (United States)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  8. Higher order temporal finite element methods through mixed formalisms.

    Science.gov (United States)

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

  9. Higher-order harmonics coupling in different free-electron laser codes

    Science.gov (United States)

    Giannessi, L.; Freund, H. P.; Musumeci, P.; Reiche, S.

    2008-08-01

    The capability for simulation of the dynamics of a free-electron laser including the higher-order harmonics in linear undulators exists in several existing codes as MEDUSA [H.P. Freund, S.G. Biedron, and S.V. Milton, IEEE J. Quantum Electron. 27 (2000) 243; H.P. Freund, Phys. Rev. ST-AB 8 (2005) 110701] and PERSEO [L. Giannessi, Overview of Perseo, a system for simulating FEL dynamics in Mathcad, , in: Proceedings of FEL 2006 Conference, BESSY, Berlin, Germany, 2006, p. 91], and has been recently implemented in GENESIS 1.3 [See ]. MEDUSA and GENESIS also include the dynamics of even harmonics induced by the coupling through the betatron motion. In addition MEDUSA, which is based on a non-wiggler averaged model, is capable of simulating the generation of even harmonics in the transversally cold beam regime, i.e. when the even harmonic coupling arises from non-linear effects associated with longitudinal particle dynamics and not to a finite beam emittance. In this paper a comparison between the predictions of the codes in different conditions is given.

  10. Quantifying the impact of scholarly papers based on higher-order weighted citations.

    Science.gov (United States)

    Bai, Xiaomei; Zhang, Fuli; Hou, Jie; Lee, Ivan; Kong, Xiangjie; Tolba, Amr; Xia, Feng

    2018-01-01

    Quantifying the impact of a scholarly paper is of great significance, yet the effect of geographical distance of cited papers has not been explored. In this paper, we examine 30,596 papers published in Physical Review C, and identify the relationship between citations and geographical distances between author affiliations. Subsequently, a relative citation weight is applied to assess the impact of a scholarly paper. A higher-order weighted quantum PageRank algorithm is also developed to address the behavior of multiple step citation flow. Capturing the citation dynamics with higher-order dependencies reveals the actual impact of papers, including necessary self-citations that are sometimes excluded in prior studies. Quantum PageRank is utilized in this paper to help differentiating nodes whose PageRank values are identical.

  11. Higher-order curvature terms and extended inflation

    International Nuclear Information System (INIS)

    Wang Yun

    1990-01-01

    We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles

  12. Nonlinear dynamics of fractional order Duffing system

    International Nuclear Information System (INIS)

    Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian

    2015-01-01

    In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.

  13. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  14. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  15. Conceptualizing and Assessing Higher-Order Thinking in Reading

    Science.gov (United States)

    Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun

    2015-01-01

    Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…

  16. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  17. Higher Order Continuous SI Engine Observers

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert; Houbak, Niels

    1992-01-01

    A nonlinear compensator for the fuel film dynamics and a second order nonlinear observer for a spark ignition engine are presented in this paper. The compensator and observer are realized as continuous differential equations and an especially designed integration algorithm is used to integrate them...

  18. Higher Order Modes Excitation of Micro Cantilever Beams

    KAUST Repository

    Jaber, Nizar

    2014-05-01

    In this study, we present analytical and experimental investigation of electrically actuated micro cantilever based resonators. These devices are fabricated using polyimide and coated with chrome and gold layers from both sides. The cantilevers are highly curled up due to stress gradient, which is a common imperfection in surface micro machining. Using a laser Doppler vibrometer, we applied a noise signal to experimentally find the first four resonance frequencies. Then, using a data acquisition card, we swept the excitation frequency around the first four natural modes of vibrations. Theoretically, we derived a reduced order model using the Galerkin method to simulate the dynamics of the system. Extensive numerical analysis and computations were performed. The numerical analysis was able to provide good matching with experimental values of the resonance frequencies. Also, we proved the ability to excite higher order modes using partial electrodes with shapes that resemble the shape of the mode of interest. Such micro-resonators are shown to be promising for applications in mass and gas sensing.

  19. Quantifying the impact of scholarly papers based on higher-order weighted citations

    Science.gov (United States)

    Bai, Xiaomei; Zhang, Fuli; Hou, Jie; Kong, Xiangjie; Tolba, Amr; Xia, Feng

    2018-01-01

    Quantifying the impact of a scholarly paper is of great significance, yet the effect of geographical distance of cited papers has not been explored. In this paper, we examine 30,596 papers published in Physical Review C, and identify the relationship between citations and geographical distances between author affiliations. Subsequently, a relative citation weight is applied to assess the impact of a scholarly paper. A higher-order weighted quantum PageRank algorithm is also developed to address the behavior of multiple step citation flow. Capturing the citation dynamics with higher-order dependencies reveals the actual impact of papers, including necessary self-citations that are sometimes excluded in prior studies. Quantum PageRank is utilized in this paper to help differentiating nodes whose PageRank values are identical. PMID:29596426

  20. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  1. Higher order Lie-Baecklund symmetries of evolution equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.

    1983-10-01

    We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)

  2. Analogy, higher order thinking, and education.

    Science.gov (United States)

    Richland, Lindsey Engle; Simms, Nina

    2015-01-01

    Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships. © 2015 John Wiley & Sons, Ltd.

  3. Study of higher order modes in superconducting accelerating structures for linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, Marcel

    2011-06-22

    Higher Order Modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor and complex pulse structure. Therefore, the full HOM spectrum has to be analysed in detail to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam dynamics simulation code, Simulation of higher order Mode Dynamics (SMD), focusing on beam-HOM interaction, has been developed in the frame of this project. SMD allows to analyse the beam behaviour under the presence of HOMs, taking into account many important effects, such as for example the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. SMD is used to investigate in detail into the effects of HOMs in the Superconducting Proton Linac (SPL) at CERN and in particular their potential to drive beam instabilities in the longitudinal and transverse direction. Based on these results, HOM damping requirements for the HOM coupler design are then defined. In addition, the linear accelerators of the European Spallation Source (ESS) and the Spallation Neutron Source (SNS) are analysed with respect to HOM impact and the results are compared with the SPL simulations. (orig.)

  4. Electromagnetic cloaking in higher order spherical cloaks

    Science.gov (United States)

    Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.

    2017-06-01

    The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.

  5. Higher-order Jordan Osserman pseudo-Riemannian manifolds

    International Nuclear Information System (INIS)

    Gilkey, Peter B; Ivanova, Raina; Zhang Tan

    2002-01-01

    We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds

  6. Higher-order Jordan Osserman pseudo-Riemannian manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Gilkey, Peter B [Mathematics Department, University of Oregon, Eugene, OR 97403 (United States); Ivanova, Raina [Mathematics Department, University of Hawaii - Hilo, 200 W Kawili St, Hilo, HI 96720 (United States); Zhang Tan [Department of Mathematics and Statistics, Murray State University, Murray, KY 42071 (United States)

    2002-09-07

    We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds.

  7. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.

    Science.gov (United States)

    Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong

    2018-02-01

    The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.

  8. Fractional-order in a macroeconomic dynamic model

    Science.gov (United States)

    David, S. A.; Quintino, D. D.; Soliani, J.

    2013-10-01

    In this paper, we applied the Riemann-Liouville approach in order to realize the numerical simulations to a set of equations that represent a fractional-order macroeconomic dynamic model. It is a generalization of a dynamic model recently reported in the literature. The aforementioned equations have been simulated for several cases involving integer and non-integer order analysis, with some different values to fractional order. The time histories and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the macroeconomic dynamic model proposed here involves the public sector deficit equation, which renders the model more realistic and complete when compared with the ones encountered in the literature. The results reveal that the fractional-order macroeconomic model can exhibit a real reasonable behavior to macroeconomics systems and might offer greater insights towards the understanding of these complex dynamic systems.

  9. Difference equations in massive higher order calculations

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.; Schneider, C.

    2007-07-01

    The calculation of massive 2-loop operator matrix elements, required for the higher order Wilson coefficients for heavy flavor production in deeply inelastic scattering, leads to new types of multiple infinite sums over harmonic sums and related functions, which depend on the Mellin parameter N. We report on the solution of these sums through higher order difference equations using the summation package Sigma. (orig.)

  10. Higher-order harmonics of general limited diffraction Bessel beams

    International Nuclear Information System (INIS)

    Ding De-Sheng; Huang Jin-Huang

    2016-01-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)

  11. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed; Shamma, Jeff S.

    2017-01-01

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population

  12. Higher-order harmonics of general limited diffraction Bessel beams

    Science.gov (United States)

    Ding, De-Sheng; Huang, Jin-Huang

    2016-12-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).

  13. Higher order QCD corrections in small x physics

    International Nuclear Information System (INIS)

    Chachamis, G.

    2006-11-01

    We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as γ * γ * collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the γ*γ* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process γγ→ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)

  14. Higher order QCD corrections in small x physics

    Energy Technology Data Exchange (ETDEWEB)

    Chachamis, G.

    2006-11-15

    We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as {gamma}{sup *}{gamma}{sup *} collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the {gamma}*{gamma}* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process {gamma}{gamma}{yields}ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)

  15. Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions

    International Nuclear Information System (INIS)

    Kavitha, L.; Mohamadou, A.; Parasuraman, E.; Gopi, D.; Akila, N.; Prabhu, A.

    2016-01-01

    The nonlinear localization phenomena in ferromagnetic spin lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the onset of modulational instability of a plane wave in a discrete ferromagnetic spin chain with physically significant higher order dispersive octupole–dipole and dipole–dipole interactions. We derive the discrete nonlinear equation of motion with the aid of Holstein–Primakoff (H–P) transformation combined with Glauber's coherent state representation. We show that the discrete ferromagnetic spin dynamics is governed by an entirely new discrete NLS model with complex coefficients not reported so far. We report the study of modulational instability (MI) of the ferromagnetic chain with long range dispersive interactions both analytically in the frame work of linear stability analysis and numerically by means of molecular dynamics (MD) simulations. Our numerical simulations explore that the analytical predictions correctly describe the onset of instability. It is found that the presence of the various exchange and dispersive higher order interactions systematically favors the local gathering of excitations and thus supports the growth of high amplitude, long-lived discrete breather (DB) excitations. We analytically compute the strongly localized odd and even modes. Further, we employ the Jacobi elliptic function method to solve the nonlinear evolution equation and an exact propagating bubble-soliton solution is explored. - Highlights: • Higher order dispersive interactions plays significant role in ferromagnetic spin chain. • The energy localization is studied both analytically and numerically. • The existence of DBs are studied under the effect of higher order dispersive interaction.

  16. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.; Schö nlieb, Carola-Bibiane

    2010-01-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove

  17. Dynamic analysis of spiral bevel and hypoid gears with high-order transmission errors

    Science.gov (United States)

    Yang, J. J.; Shi, Z. H.; Zhang, H.; Li, T. X.; Nie, S. W.; Wei, B. Y.

    2018-03-01

    A new gear surface modification methodology based on curvature synthesis is proposed in this study to improve the transmission performance. The generated high-order transmission error (TE) for spiral bevel and hypoid gears is proved to reduce the vibration of geared-rotor system. The method is comprised of the following steps: Firstly, the fully conjugate gear surfaces with pinion flank modified according to the predesigned relative transmission movement are established based on curvature correction. Secondly, a 14-DOF geared-rotor system model considering backlash nonlinearity is used to evaluate the effect of different orders of TE on the dynamic performance a hypoid gear transmission system. For case study, numerical simulation is performed to illustrate the dynamic response of hypoid gear pair with parabolic, fourth-order and sixth-order transmission error derived. The results show that the parabolic TE curve has higher peak to peak amplitude compared to the other two types of TE. Thus, the excited dynamic response also shows larger amplitude at response peaks. Dynamic responses excited by fourth and sixth order TE also demonstrate distinct response components due to their different TE period which is expected to generate different sound quality or other acoustic characteristics.

  18. Higher charges in dynamical spin chains for SYM theory

    International Nuclear Information System (INIS)

    Agarwal, Abhishek; Ferretti, Gabriele

    2005-01-01

    We construct, to the first two non-trivial orders, the next conserved charge in the su(2|3) sector of N = 4 Super Yang-Mills theory. This represents a test of integrability in a sector where the interactions change the number of sites of the chain. The expression for the charge is completely determined by the algebra and can be written in a diagrammatic form in terms of the interactions already present in the hamiltonian. It appears likely that this diagrammatic expression remains valid in the full theory and can be generalized to higher loops and higher charges thus helping in establishing complete integrability for these dynamical chains

  19. Scale-invariant entropy-based theory for dynamic ordering

    International Nuclear Information System (INIS)

    Mahulikar, Shripad P.; Kumari, Priti

    2014-01-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations

  20. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.

    2013-01-01

    on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time

  1. The Meaning of Higher-Order Factors in Reflective-Measurement Models

    Science.gov (United States)

    Eid, Michael; Koch, Tobias

    2014-01-01

    Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…

  2. Nil Bohr-sets and almost automorphy of higher order

    CERN Document Server

    Huang, Wen; Ye, Xiangdong

    2016-01-01

    Two closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any d\\in \\mathbb{N} does the collection of \\{n\\in \\mathbb{Z}: S\\cap (S-n)\\cap\\ldots\\cap (S-dn)\

  3. Higher order cumulants in colorless partonic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S. [Sciences and Technologies Department, University of Ghardaia, Ghardaia, Algiers (Algeria); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ahmed, M. A. A. [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Department of Physics, Taiz University in Turba, Taiz (Yemen); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ladrem, M., E-mail: mladrem@yahoo.fr [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria)

    2016-06-10

    Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to the thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.

  4. On the expressiveness and decidability of higher-order process calculi

    NARCIS (Netherlands)

    Lanese, Ivan; Perez, Jorge A.; Sangiorgi, Davide; Schmitt, Alan

    In higher-order process calculi, the values exchanged in communications may contain processes. A core calculus of higher-order concurrency is studied; it has only the operators necessary to express higher-order communications: input prefix, process output, and parallel composition. By exhibiting a

  5. Multilevel Fast Multipole Method for Higher Order Discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....

  6. Higher-order modulation instability in nonlinear fiber optics.

    Science.gov (United States)

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  7. Explicit higher order symplectic integrator for s-dependent magnetic field

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D.S.

    2001-01-01

    We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings

  8. Higher-order rewriting and partial evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Rose, Kristoffer H.

    1998-01-01

    We demonstrate the usefulness of higher-order rewriting techniques for specializing programs, i.e., for partial evaluation. More precisely, we demonstrate how casting program specializers as combinatory reduction systems (CRSs) makes it possible to formalize the corresponding program...

  9. Higher-Order Separation Logic in Isabelle/HOLCF

    DEFF Research Database (Denmark)

    Varming, Carsten; Birkedal, Lars

    2008-01-01

    We formalize higher-order separation logic for a first-order imperative language with procedures and local variables in Isabelle/HOLCF. The assertion language is modeled in such a way that one may use any theory defined in Isabelle/HOLCF to construct assertions, e.g., primitive recursion, least o...

  10. Meta-Logical Reasoning in Higher-Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor

    The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...

  11. Higher order coupling between rigid-body and elastic motion in flexible mechanisms

    International Nuclear Information System (INIS)

    Esat, I.I.; Ianakiev, A.

    1995-01-01

    The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution

  12. Higher-Order and Symbolic Computation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Mason, Ian

    2008-01-01

    a series of implementaions that properly account for multiple invocations of the derivative-taking opeatro. In "Adapting Functional Programs to Higher-Order Logic," Scott Owens and Konrad Slind present a variety of examples of terminiation proofs of functional programs written in HOL proof systems. Since......-calculus programs, historically. The anaylsis determines the possible locations of ambients and mirrors the temporla sequencing of actions in the structure of types....

  13. A Dynamic Systems Approach to Internationalization of Higher Education

    Science.gov (United States)

    Zhou, Jiangyuan

    2016-01-01

    Research shows that internationalization of higher education is a process rather than an end product. This paper applies the Dynamic Systems Theory to examine the nature and development of internationalization of higher education, and proposes that internationalization of higher education is a dynamic system. A dynamic framework of…

  14. All-fiber Raman Probe using Higher Order Modes

    DEFF Research Database (Denmark)

    Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten

    2013-01-01

    We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....

  15. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2007-01-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  16. On the origin of higher braces and higher-order derivations

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2015-01-01

    Roč. 10, č. 3 (2015), s. 637-667 ISSN 2193-8407 Institutional support: RVO:67985840 Keywords : Koszul braces * Börjeseon braces * higher-order derivation Subject RIV: BA - General Mathematics Impact factor: 0.600, year: 2015 http://link.springer.com/article/10.1007/s40062-014-0079-2

  17. Higher order correlations in computed particle distributions

    International Nuclear Information System (INIS)

    Hanerfeld, H.; Herrmannsfeldt, W.; Miller, R.H.

    1989-03-01

    The rms emittances calculated for beam distributions using computer simulations are frequently dominated by higher order aberrations. Thus there are substantial open areas in the phase space plots. It has long been observed that the rms emittance is not an invariant to beam manipulations. The usual emittance calculation removes the correlation between transverse displacement and transverse momentum. In this paper, we explore the possibility of defining higher order correlations that can be removed from the distribution to result in a lower limit to the realizable emittance. The intent is that by inserting the correct combinations of linear lenses at the proper position, the beam may recombine in a way that cancels the effects of some higher order forces. An example might be the non-linear transverse space charge forces which cause a beam to spread. If the beam is then refocused so that the same non-linear forces reverse the inward velocities, the resulting phase space distribution may reasonably approximate the original distribution. The approach to finding the location and strength of the proper lens to optimize the transported beam is based on work by Bruce Carlsten of Los Alamos National Laboratory. 11 refs., 4 figs

  18. Perturbative theory of higher-order collision-enhanced wave mixing

    International Nuclear Information System (INIS)

    Trebino, R.; Rahn, L.A.

    1989-01-01

    This paper reports on collision-enhanced resonances which represent an interesting class of nonlinear- optical processes. They occur because collisional dephasing can rephase quantum-mechanical amplitudes that ordinarily cancel out exactly, thereby allowing otherwise unobservable wave-mixing resonances to be seen. This is an especially interesting phenomenon because these resonances are coherent effects that are induced by an incoherent process (collisional dephasing). First predicted in the late 1970s and eventually observed in 1981, these novel effects have now been seen in a wide variety of four-wave-mixing experiments, ranging from self-focusing to coherent anti-Stokes Raman spectroscopy. Recently, the authors have extended these observations to higher order, where the authors have shown both experimentally and theoretically the higher-order, collision-enhanced effects exist in nonlinear optics, appearing as subharmonics of two-photon resonances. Indeed, the authors have found that collision-enhanced processes are ideal systems for studying higher-order, nonlinear-optical effects because very high orders can be made to contribute with little or no saturation braodening. Experiments on sodium in a flame using six- and eight-wave-mixing geometries have revealed still higher-order effects (at least as high- order as χ (13) )

  19. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....

  20. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2007-04-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  1. Higher-Order Cyclostationarity Detection for Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Julien Renard

    2010-01-01

    Full Text Available Recent years have shown a growing interest in the concept of Cognitive Radios (CRs, able to access portions of the electromagnetic spectrum in an opportunistic operating way. Such systems require efficient detectors able to work in low Signal-to-Noise Ratio (SNR environments, with little or no information about the signals they are trying to detect. Energy detectors are widely used to perform such blind detection tasks, but quickly reach the so-called SNR wall below which detection becomes impossible Tandra (2005. Cyclostationarity detectors are an interesting alternative to energy detectors, as they exploit hidden periodicities present in man-made signals, but absent in noise. Such detectors use quadratic transformations of the signals to extract the hidden sine-waves. While most of the literature focuses on the second-order transformations of the signals, we investigate the potential of higher-order transformations of the signals. Using the theory of Higher-Order Cyclostationarity (HOCS, we derive a fourth-order detector that performs similarly to the second-order ones to detect linearly modulated signals, at SNR around 0 dB, which may be used if the signals of interest do not exhibit second-order cyclostationarity. More generally this paper reviews the relevant aspects of the cyclostationary and HOCS theory, and shows their potential for spectrum sensing.

  2. Higher-order tensors in diffusion imaging

    NARCIS (Netherlands)

    Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.

    2014-01-01

    Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion

  3. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2016-10-23

    It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.

  4. Theorem Proving In Higher Order Logics

    Science.gov (United States)

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  5. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  6. Self-similarity of higher-order moving averages

    Science.gov (United States)

    Arianos, Sergio; Carbone, Anna; Türk, Christian

    2011-10-01

    In this work, higher-order moving average polynomials are defined by straightforward generalization of the standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the exponent H of the fractional Brownian series and of the detrending moving average variance asymptotically agree for the first-order polynomial. Such asymptotic values are compared with the results obtained by the simulations. The higher-order polynomials correspond to trend estimates at shorter time scales as the degree of the polynomial increases. Importantly, the increase of polynomial degree does not require to change the moving average window. Thus trends at different time scales can be obtained on data sets with the same size. These polynomials could be interesting for those applications relying on trend estimates over different time horizons (financial markets) or on filtering at different frequencies (image analysis).

  7. Preparation and characterization of stable aqueous higher-order fullerenes

    International Nuclear Information System (INIS)

    Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B

    2012-01-01

    Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)

  8. Compiler-Directed Transformation for Higher-Order Stencils

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-20

    As the cost of data movement increasingly dominates performance, developers of finite-volume and finite-difference solutions for partial differential equations (PDEs) are exploring novel higher-order stencils that increase numerical accuracy and computational intensity. This paper describes a new compiler reordering transformation applied to stencil operators that performs partial sums in buffers, and reuses the partial sums in computing multiple results. This optimization has multiple effect son improving stencil performance that are particularly important to higher-order stencils: exploits data reuse, reduces floating-point operations, and exposes efficient SIMD parallelism to backend compilers. We study the benefit of this optimization in the context of Geometric Multigrid (GMG), a widely used method to solvePDEs, using four different Jacobi smoothers built from 7-, 13-, 27-and 125-point stencils. We quantify performance, speedup, andnumerical accuracy, and use the Roofline model to qualify our results. Ultimately, we obtain over 4× speedup on the smoothers themselves and up to a 3× speedup on the multigrid solver. Finally, we demonstrate that high-order multigrid solvers have the potential of reducing total data movement and energy by several orders of magnitude.

  9. Higher-Order Components for Grid Programming

    CERN Document Server

    Dünnweber, Jan

    2009-01-01

    Higher-Order Components were developed within the CoreGRID European Network of Excellence and have become an optional extension of the popular Globus middleware. This book provides the reader with hands-on experience, describing a collection of example applications from various fields of science and engineering, including biology and physics.

  10. Effects of mobility on ordering dynamics

    International Nuclear Information System (INIS)

    Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2009-01-01

    Models of ordering dynamics allow us to understand natural systems in which an initially disordered population homogenizes some traits via local interactions. The simplest of these models, with wide applications ranging from evolutionary to social dynamics, are the Voter and Moran processes, usually defined in terms of static or randomly mixed individuals that interact with a neighbor to copy or modify a discrete trait. Here we study the effects of diffusion in Voter/Moran processes by proposing a generalization of ordering dynamics in a metapopulation framework, in which individuals are endowed with mobility and diffuse through a spatial structure represented as a graph of patches upon which interactions take place. We show that diffusion dramatically affects the time to reach the homogeneous state, independently of the underlying network's topology, while the final consensus emerges through different local/global mechanisms, depending on the mobility strength. Our results highlight the crucial role played by mobility in ordering processes and set up a general framework that allows its effect to be studied on a large class of models, with implications in the understanding of evolutionary and social phenomena. (letter)

  11. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer

    2016-06-01

    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  12. Higher Order Lagrange Finite Elements In M3D

    International Nuclear Information System (INIS)

    Chen, J.; Strauss, H.R.; Jardin, S.C.; Park, W.; Sugiyama, L.E.; Fu, G.; Breslau, J.

    2004-01-01

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles

  13. Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm

    African Journals Online (AJOL)

    In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...

  14. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    Science.gov (United States)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  15. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    Science.gov (United States)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  16. Higher Order and Fractional Diffusive Equations

    Directory of Open Access Journals (Sweden)

    D. Assante

    2015-07-01

    Full Text Available We discuss the solution of various generalized forms of the Heat Equation, by means of different tools ranging from the use of Hermite-Kampé de Fériet polynomials of higher and fractional order to operational techniques. We show that these methods are useful to obtain either numerical or analytical solutions.

  17. Generating higher-order Lie algebras by expanding Maurer-Cartan forms

    International Nuclear Information System (INIS)

    Caroca, R.; Merino, N.; Salgado, P.; Perez, A.

    2009-01-01

    By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0 +V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories.

  18. Modular specification and verification for higher-order languages with state

    DEFF Research Database (Denmark)

    Svendsen, Kasper

    The overall topic of this thesis is modular reasoning for higher-order languages with state. The thesis consists of four mostly independent chapters that each deal with a different aspect of reasoning about higher-order languages with state. The unifying theme throughout all four chapters is higher....... The third chapter of the thesis is a case study of the C# joins library. What makes this library interesting as a case study is that it combines a lot of advanced features (higher-order code with effects, concurrency, recursion through the store, shared mutable state, and fine-grained synchronization...

  19. Dynamics in Higher Education Politics: A Theoretical Model

    Science.gov (United States)

    Kauko, Jaakko

    2013-01-01

    This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…

  20. Finding Higher Order Differentials of MISTY1

    Science.gov (United States)

    Tsunoo, Yukiyasu; Saito, Teruo; Kawabata, Takeshi; Nakagawa, Hirokatsu

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it is recommended for Japanese e-Government ciphers by the CRYPTREC project. In this paper, we report on 12th order differentials in 3-round MISTY1 with FL functions and 44th order differentials in 4-round MISTY1 with FL functions both previously unknown. We also report that both data complexity and computational complexity of higher order differential attacks on 6-round MISTY1 with FL functions and 7-round MISTY1 with FL functions using the 46th order differential can be reduced to as much as 1/22 of the previous values by using multiple 44th order differentials simultaneously.

  1. Practical implementation of a higher order transverse leakage approximation

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević

    2011-01-01

    Transverse integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming in this approach, be it via the Analytic Nodal Method or Nodal Expansion Method, is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher order nodal methods developed some years ago. In this new approach, only information relevant to describing the transverse leak- age terms in the zero-order nodal equations are obtained from the higher order formalism. The method yields accuracy comparable to full higher order methods, but does not suffer from the same computational burden which these methods typically incur. (author)

  2. Higher class groups of Eichler orders

    International Nuclear Information System (INIS)

    Guo Xuejun; Kuku, Aderemi

    2003-11-01

    In this paper, we prove that if A is a quaternion algebra and Λ an Eichler order in A, then the only p-torsion possible in even dimensional higher class groups Cl 2n (Λ) (n ≥ 1) are for those rational primes p which lie under prime ideals of O F at which Λ are not maximal. (author)

  3. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  4. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  5. The Higher Order Structure of Environmental Attitudes: A Cross-Cultural Examination

    Directory of Open Access Journals (Sweden)

    Taciano L. Milfont

    2010-01-01

    Full Text Available Past research has suggested that Preservation and Utilization are the two higher order dimensions forming the hierarchical structure of environmental attitudes. This means that these two higher order dimensions could group all kinds of perceptions or beliefs regarding the natural environment people have. A crosscultural study was conducted in Brazil, New Zealand, and South Africa to test this hierarchical structure of environmental attitudes. Results from single- and multi-group confirmatory factor analyses demonstrated that environmental attitudes are a multidimensional construct, and that their first-order factors associate to each other to form a vertical structure. However, the question whether the vertical structure comprise a single higher order factor or two higher order factors still remains unanswered. These results are discussed and directions for future research trying to demonstrate that Preservation and Utilization, taken as distinct second-order environmental attitudes factors, are more empirically meaningful than a single and generalised environmental attitudes higher order factor are presented.

  6. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  7. Dynamical symmetry restoration for a higher-derivative four-fermion model in an external electromagnetic field

    International Nuclear Information System (INIS)

    Elizalde, E.; Gavrilov, S.P.; Shil'nov, Yu.I.

    2000-01-01

    A four-fermion model with additional higher-derivative terms is investigated in an external electromagnetic field. The effective potential in the leading order of large-N expansion is calculated in external constant magnetic and electric fields. It is shown that, in contrast to the former results concerning the universal character of 'magnetic catalysis' in dynamical symmetry breaking, in the present higher-derivative model the magnetic field restores chiral symmetry broken initially on the tree level. Numerical results describing a second-order phase transition that accompanies the symmetry restoration at the quantum level are presented. (author)

  8. Higher-order chaotic oscillator using active bessel filter

    DEFF Research Database (Denmark)

    Lindberg, Erik; Mykolaitis, Gytis; Bumelien, Skaidra

    2010-01-01

    A higher-order oscillator, including a nonlinear unit and an 8th-order low-pass active Bessel filter is described. The Bessel unit plays the role of "three-in-one": a delay line, an amplifier and a filter. Results of hardware experiments and numerical simulation are presented. Depending...

  9. Higher order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1978-01-01

    The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)

  10. Higher-order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1977-12-01

    Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length

  11. Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease

    Directory of Open Access Journals (Sweden)

    Morozov Alexandre V

    2009-08-01

    individually smaller but may have a collective effect. Together they lead to correlations which could have an important impact on the dynamics of the evolution of cross-resistance, by allowing the virus to pass through otherwise unlikely mutational states. These findings also indicate that pairwise and possibly higher-order effects should be included in the models of protein evolution, instead of assuming that all residues mutate independently of one another.

  12. Dynamic evolution characteristics of a fractional order hydropower station system

    Science.gov (United States)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  13. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  14. Interactions, strings and isotopies in higher order anisotropic superspaces

    CERN Document Server

    Vacaru, Sergiu Ion

    2001-01-01

    The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions, published in J. Math. Phys., Nucl. Phys. B, Ann. Phys. (NY), JHEP, Rep. Math. Phys., Int. J. Theor. Phys. and in some former Soviet Union and Romanian scientific journals. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces with higher order anisotropy and inhomogeneity. The approach proceeds by developing the concept of higher order anisotropic (super)space which unifies the logical and manthematical aspects of modern Kaluza--Klein theories and generalized Lagrange and Finsler geometry and leads to modeling of physical processes on higher order fiber (super)bundles provided with nonlinear and distinguished connections and metric structures. This book can be also considered as a pedagogical survey on the mentioned subjects.

  15. The differential geometry of higher order jets and tangent bundles

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.

    1985-01-01

    This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)

  16. First and second order vortex dynamics

    International Nuclear Information System (INIS)

    Kim, Yoonbai; Lee, Kimyeong

    2002-01-01

    The low energy dynamics of vortices in self-dual Abelian Higgs theory in (2+1)-dimensional spacetime is of second order in vortex velocity and characterized by the moduli space metric. When the Chern-Simons term with a small coefficient is added to the theory, we show that a term linear in vortex velocity appears and can be consistently added to the second order expression. We provide an additional check of the first and second order terms by studying the angular momentum in field theory

  17. Linear matrix differential equations of higher-order and applications

    Directory of Open Access Journals (Sweden)

    Mustapha Rachidi

    2008-07-01

    Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.

  18. Time-resolved photoemission micro-spectrometer using higher-order harmonics of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Azuma, J.; Kamada, M.; Kondo, Y.

    2004-01-01

    Full text: A new photoemission spectrometer is under construction for the photoemission microscopy and the time-resolved pump- probe experiment. The higher order harmonics of the Ti:sapphire laser is used as the light source of the VUV region in this system. Because the fundamental laser is focused tightly into the rare gas jet to generate the higher order harmonics, the spot size of the laser, in other words, the spot size of the VUV light source is smaller than a few tens of micrometer. This smallness of the spot size has advantage for the microscopy. In order to compensate the low flux of the laser harmonics, a multilayer-coated schwaltzshild optics was designed. The multilayers play also as the monochromatic filter. The spatial resolution of this schwaltzshild system is found to be less than 1 micrometer by the ray-tracing calculations. A main chamber of the system is equipped with a time-of-flight energy analyzer to improve the efficiency of the electron detection. The main chamber and the gas chamber are separated by a differential pumping chamber and a thin Al foil. The system is designed for the study of the clean surface. It will be capable to perform the sub-micron photoemission microscopy and the femto-second pump-probe photoemission study for the various photo-excited dynamics on clean surfaces

  19. Higher order corrections in quantum electrodynamics

    International Nuclear Information System (INIS)

    Rafael, E.

    1977-01-01

    Theoretical contributions to high-order corrections in purely leptonic systems, such as electrons and muons, muonium (μ + e - ) and positronium (e + e - ), are reviewed to establish the validity of quantum electrodynamics (QED). Two types of QED contributions to the anomalous magnetic moments are considered, from diagrams with one fermion type lines and those witn two fermion type lines. The contributions up to eighth order are compared to the data available with a different accuracy. Good agreement is stated within the experimental errors. The experimental accuracy of the muonium hyperfine structure and of the radiative corrections to the decay of positronium are compared to the one attainable in theoretical calculations. The need for a higher precision in both experimental data and theoretical calculations is stated

  20. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  1. Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

    KAUST Repository

    Jaber, Nizar

    2016-01-06

    © 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler-Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported.

  2. MIMO processing based on higher-order Poincaré spheres

    Science.gov (United States)

    Fernandes, Gil M.; Muga, Nelson J.; Pinto, Armando N.

    2017-08-01

    A multi-input multi-output (MIMO) algorithm based on higher-order Poincaré spheres is demonstrated for space-division multiplexing (SDM) systems. The MIMO algorithm is modulation format agnostic, robust to frequency offset and does not require training sequences. In this approach, the space-multiplexed signal is decomposed in sets of two tributary signals, with each set represented in a higher-order Poincaré sphere. For any arbitrary complex modulation format, the samples of two tributaries can be represented in a given higher-order Poincaré sphere with a symmetry plane. The crosstalk along propagation changes the spatial orientation of this plane and, therefore, it can be compensated by computing and realigning the best fit plane. We show how the transmitted signal can be successfully recovered using this procedure for all possible combinations of tributaries. Moreover, we analyze the convergence speed for the MIMO technique considering several optical-to-noise ratios.

  3. Time ordering in multi-electron dynamics

    International Nuclear Information System (INIS)

    McGuire, J H; Godunov, A L; Shakov, Kh Kh; Shipakov, V A; Merabet, H; Bruch, R; Hanni, J

    2003-01-01

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data

  4. Time ordering in multi-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J H [Department of Physics, Tulane University, New Orleans, LA (United States); Godunov, A L [Department of Physics, Tulane University, New Orleans, LA (United States); Shakov, Kh Kh [Department of Physics, Tulane University, New Orleans, LA (United States); Shipakov, V A [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H [Department of Physics, University of Nevada Reno, Reno, NV (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV (United States); Hanni, J [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2003-01-28

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data.

  5. Higher order statistical moment application for solar PV potential analysis

    Science.gov (United States)

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  6. Ward identities of higher order Virasoro algebra

    International Nuclear Information System (INIS)

    Zha Chaozeng; Dolate, S.

    1994-11-01

    The general formulations of primary fields versus quasi-primary ones in the context of high order Virasoro algebra (HOVA) and the corresponding Ward identity are explored. The primary fields of conformal spins up to 8 are given in terms of quasi-primary fields, and the general features of the higher order expressions are also discussed. It is observed that the local fields, either primary of quasi-primary, carry the same numbers of central charges, and not all the primary fields contribute to the anomalies in the Ward identities. (author). 6 refs

  7. Higher order perturbation theory - An example for discussion

    International Nuclear Information System (INIS)

    Lewins, J.D.; Parks, G.; Babb, A.L.

    1986-01-01

    Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed

  8. Application of Higher-Order Cumulant in Fault Diagnosis of Rolling Bearing

    International Nuclear Information System (INIS)

    Shen, Yongjun; Yang, Shaopu; Wang, Junfeng

    2013-01-01

    In this paper a new method of pattern recognition based on higher-order cumulant and envelope analysis is presented. The core of this new method is to construct analytical signals from the given signals and obtain the envelope signals firstly, then compute and compare the higher-order cumulants of the envelope signals. The higher-order cumulants could be used as a characteristic quantity to distinguish these given signals. As an example, this method is applied in fault diagnosis for 197726 rolling bearing of freight locomotive. The comparisons of the second-order, third-order and fourth-order cumulants of the envelope signals from different vibration signals of rolling bearing show this new method could discriminate the normal and two fault signals distinctly

  9. Higher-order risk preferences in social settings.

    Science.gov (United States)

    Heinrich, Timo; Mayrhofer, Thomas

    2018-01-01

    We study prudence and temperance (next to risk aversion) in social settings. Previous experimental studies have shown that these higher-order risk preferences affect the choices of individuals deciding privately on lotteries that only affect their own payoff. Yet, many risky and financially relevant decisions are made in the social settings of households or organizations. We elicit higher-order risk preferences of individuals and systematically vary how an individual's decision is made (alone or while communicating with a partner) and who is affected by the decision (only the individual or the partner as well). In doing so, we can isolate the effects of other-regarding concerns and communication on choices. Our results reveal that the majority of choices are risk averse, prudent, and temperate across social settings. We also observe that individuals are influenced significantly by the preferences of a partner when they are able to communicate and choices are payoff-relevant for both of them.

  10. Mathematics Teachers’ Interpretation of Higher-Order Thinking in Bloom’s Taxonomy

    OpenAIRE

    Tony Thompson

    2008-01-01

    This study investigated mathematics teachers’ interpretation of higher-order thinking in Bloom’s Taxonomy. Thirty-two high school mathematics teachers from the southeast U.S. were asked to (a) define lower- and higher-order thinking, (b) identify which thinking skills in Bloom’s Taxonomy represented lower- and higher-order thinking, and (c) create an Algebra I final exam item representative of each thinking skill. Results indicate that mathematics teachers have difficulty interpreting the thi...

  11. Numerical Calculation and Experiment of Coupled Dynamics of the Differential Velocity Vane Pump Driven by the Hybrid Higher-order Fourier Non-circular Gears

    Science.gov (United States)

    Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng

    2018-06-01

    The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.

  12. Higher-Order Finite Element Solutions of Option Prices

    DEFF Research Database (Denmark)

    Raahauge, Peter

    2004-01-01

    Kinks and jumps in the payoff function of option contracts prevent an effectiveimplementation of higher-order numerical approximation methods. Moreover, thederivatives (the greeks) are not easily determined around such singularities, even withstandard lower-order methods. This paper suggests...... for prices as well as for first and second order derivatives(delta and gamma). Unlike similar studies, numerical approximation errors aremeasured both as weighted averages and in the supnorm over a state space includingtime-to-maturities down to a split second.KEYWORDS: Numerical option pricing, Transformed...

  13. The Cauchy problem for higher order abstract differential equations

    CERN Document Server

    Xiao, Ti-Jun

    1998-01-01

    This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.

  14. Comparing higher order models for the EORTC QLQ-C30

    DEFF Research Database (Denmark)

    Gundy, Chad M; Fayers, Peter M; Grønvold, Mogens

    2012-01-01

    To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire.......To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire....

  15. Scalar brane backgrounds in higher order curvature gravity

    International Nuclear Information System (INIS)

    Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois

    2003-01-01

    We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)

  16. Dynamics analysis of fractional order Yu-Wang system

    Science.gov (United States)

    Bhalekar, Sachin

    2013-10-01

    Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209-215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.

  17. Higher-order RANS turbulence models for separated flows

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....

  18. Higher order mode damping of a higher harmonic superconducting cavity for SSRF

    International Nuclear Information System (INIS)

    Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Feng Xiqiang; Mao Dongqing

    2012-01-01

    Adopting a higher harmonic cavity on a synchrotron radiation facility can increase the beam lifetime and suppress the beam instability. In this paper, we report the simulation and preliminary design on higher order modes (HOMs) damping of the designed and fabricated higher harmonic superconducting cavity for Shanghai Synchrotron Radiation Facility (SSRF). The requirements for the HOM damping are analyzed, and the length and location of the HOM damper are optimized by using the SEAFISH code. The results show that the design can provide heavy damping for harmful HOMs with decreased impedance, and the beam instability requirement of SSRF can be satisfied. By using the ABCI code, the loss factor is obtained and the HOM power is estimated. (authors)

  19. The power of non-determinism in higher-order implicit complexity

    DEFF Research Database (Denmark)

    Kop, Cynthia Louisa Martina; Simonsen, Jakob Grue

    2017-01-01

    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur...... in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order...... 0. Previous work has shown that adding explicit non-determinism to consfree programs taking data of order 0 does not increase expressivity; we prove that this—dramatically—is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows...

  20. PRE-SERVICE MATHEMATICS TEACHERS’ CONCEPTION OF HIGHER-ORDER THINKING LEVEL IN BLOOM'S TAXONOMY

    OpenAIRE

    Damianus D Samo

    2017-01-01

    The purpose of this study is to explore pre-service mathematics teachers' conception of higher-order thinking in Bloom's Taxonomy, to explore pre-service mathematics teachers' ability in categorizing six cognitive levels of Bloom's Taxonomy as lower-order thinking and higher-order thinking, and pre-service mathematics teachers' ability in identifying some questionable items as lower-order and higher-order thinking. The higher-order thinking is the type of non-algorithm thinking which include ...

  1. Wigner higher-order spectra: definition, properties, computation and application to transient signal analysis

    OpenAIRE

    Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.

    1993-01-01

    The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...

  2. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    International Nuclear Information System (INIS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Aeschlimann, Martin; Cinchetti, Mirko; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G F; Wurmehl, Sabine; Balke, Benjamin

    2015-01-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics.Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co 2 Fe 1 − x Mn x Si. The local ordering is studied by 59 Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  3. Higher-order Skyrme hair of black holes

    Science.gov (United States)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2018-05-01

    Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.

  4. Higher order mode damping in Kaon factory RF cavities

    International Nuclear Information System (INIS)

    Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.

    1989-05-01

    Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report

  5. Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling

    Science.gov (United States)

    Fink, P. W.; Wilton, D. R.; Dobbins, J. A.

    2002-01-01

    In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required

  6. Higher Order Thinking Skills among Secondary School Students in Science Learning

    Science.gov (United States)

    Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah

    2015-01-01

    A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…

  7. Student's Perceived Level and Teachers' Teaching Strategies of Higher Order Thinking Skills: A Study on Higher Educational Institutions in Thailand

    Science.gov (United States)

    Shukla, Divya; Dungsungnoen, Aj Pattaradanai

    2016-01-01

    Higher order thinking skills (HOTS) has portrayed immense industry demand and the major goal of educational institution in imparting education is to inculcate higher order thinking skills. This compiles and mandate the institutions and instructor to develop the higher order thinking skills among students in order to prepare them for effective…

  8. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    Science.gov (United States)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  9. Verifying object-oriented programs with higher-order separation logic in Coq

    DEFF Research Database (Denmark)

    Bengtson, Jesper; Jensen, Jonas Braband; Sieczkowski, Filip

    2011-01-01

    We present a shallow Coq embedding of a higher-order separation logic with nested triples for an object-oriented programming language. Moreover, we develop novel specification and proof patterns for reasoning in higher-order separation logic with nested triples about programs that use interfaces...... and interface inheritance. In particular, we show how to use the higher-order features of the Coq formalisation to specify and reason modularly about programs that (1) depend on some unknown code satisfying a specification or that (2) return objects conforming to a certain specification. All of our results have...

  10. Higher-order force moments of active particles

    Science.gov (United States)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  11. Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012

    OpenAIRE

    Roy, Arnab; Venkatesh, Srinivas Vivek

    2013-01-01

    Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for...

  12. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja

    2011-01-01

    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...

  13. Energy-momentum conserving higher-order time integration of nonlinear dynamics of finite elastic fiber-reinforced continua

    Science.gov (United States)

    Erler, Norbert; Groß, Michael

    2015-05-01

    Since many years the relevance of fibre-reinforced polymers is steadily increasing in fields of engineering, especially in aircraft and automotive industry. Due to the high strength in fibre direction, but the possibility of lightweight construction, these composites replace more and more traditional materials as metals. Fibre-reinforced polymers are often manufactured from glass or carbon fibres as attachment parts or from steel or nylon cord as force transmission parts. Attachment parts are mostly subjected to small strains, but force transmission parts usually suffer large deformations in at least one direction. Here, a geometrically nonlinear formulation is necessary. Typical examples are helicopter rotor blades, where the fibres have the function to stabilize the structure in order to counteract large centrifugal forces. For long-run analyses of rotor blade deformations, we have to apply numerically stable time integrators for anisotropic materials. This paper presents higher-order accurate and numerically stable time stepping schemes for nonlinear elastic fibre-reinforced continua with anisotropic stress behaviour.

  14. Structural damage detection using higher-order finite elements and a scanning laser vibrometer

    Science.gov (United States)

    Jin, Si

    In contrast to conventional non-destructive evaluation methods, dynamics-based damage detection methods are capable of rapid integrity evaluation of large structures and have received considerable attention from aerospace, mechanical, and civil engineering communities in recent years. However, the identifiable damage size using dynamics-based methods is determined by the number of sensors used, level of measurement noise, accuracy of structural models, and signal processing techniques. In this thesis we study dynamics of structures with damage and then derive and experimentally verify new model-independent structural damage detection methods that can locate small damage to structures. To find sensitive damage detection parameters we develop a higher-order beam element that enforces the continuity of displacements, slopes, bending moments, and shear forces at all nodes, and a higher-order rectangular plate element that enforces the continuity of displacements, slopes, and bending and twisting moments at all nodes. These two elements are used to study the dynamics of beams and plates. Results show that high-order spatial derivatives of high-frequency modes are important sensitive parameters that can locate small structural damage. Unfortunately the most powerful and popular structural modeling technique, the finite element method, is not accurate in predicting high-frequency responses. Hence, a model-independent method using dynamic responses obtained from high density measurements is concluded to be the best approach. To increase measurement density and reduce noise a Polytec PI PSV-200 scanning laser vibrometer is used to provide non-contact, dense, and accurate measurements of structural vibration velocities. To avoid the use of structural models and to extract sensitive detection parameters from experimental data, a brand-new structural damage detection method named BED (Boundary-Effect Detection) is developed for pinpointing damage locations using Operational

  15. Order, chaos and nuclear dynamics: An introduction

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1990-08-01

    This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs

  16. Universality of ordering dynamics in conserved multicomponent systems

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mouritsen, Ole G.

    1993-01-01

    A comparative study is performed of the ordering dynamics and spinodal decomposition processes in two-dimensional two-state and three-state ferromagnetic Potts models with conserved order parameter. The models are investigated by Monte Carlo quenching simulations on both square and triangular...

  17. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time

    Science.gov (United States)

    Dhar, Amrit

    2017-01-01

    Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780

  18. The geometry of higher-order Lagrange spaces applications to mechanics and physics

    CERN Document Server

    Miron, Radu

    1997-01-01

    This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology

  19. Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Cauchy Pradhan

    2012-01-01

    Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.

  20. Nonlinear dynamics and chaos in a fractional-order financial system

    International Nuclear Information System (INIS)

    Chen Weiching

    2008-01-01

    This study examines the two most attractive characteristics, memory and chaos, in simulations of financial systems. A fractional-order financial system is proposed in this study. It is a generalization of a dynamic financial model recently reported in the literature. The fractional-order financial system displays many interesting dynamic behaviors, such as fixed points, periodic motions, and chaotic motions. It has been found that chaos exists in fractional-order financial systems with orders less than 3. In this study, the lowest order at which this system yielded chaos was 2.35. Period doubling and intermittency routes to chaos in the fractional-order financial system were found

  1. Higher-order neural network software for distortion invariant object recognition

    Science.gov (United States)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  2. Covariant quantization of infinite spin particle models, and higher order gauge theories

    International Nuclear Information System (INIS)

    Edgren, Ludde; Marnelius, Robert

    2006-01-01

    Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized

  3. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs

    Directory of Open Access Journals (Sweden)

    Eman S. Alaidarous

    2013-01-01

    Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.

  4. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  5. Higher-order-mode damper as beam-position monitors; Higher-Order-Mode Daempfer als Stahllagemonitore

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, C.

    2006-03-15

    In the framework of this thesis a beam-position monitor was developed, which can only because of the signals from the HOM dampers of a linear-accelerator structure determine the beam position with high accuracy. For the unique determination of the beam position in the plane a procedure was developed, which uses the amplitudes and the start-phase difference between a dipole mode and a higher monopole mode. In order tocheck the suitability of the present SBLC-HOM damper as beam position monitor three-dimensional numerical field calculations in the frequency and time range and measurements on the damper cell were performed. For the measurements without beam a beam simulator was constructed, which allows computer-driven measurements with variable depositions of the simulated beam with a resolution of 1.23 {mu}m. Because the complete 6 m long, 180-cell accelerator structure was not available for measurements and could also with the available computers not be three-dimensionally simulated simulated, a one-dimensional equivalent-circuit based model of the multi-cell was studied. The equivalent circuits with 879 concentrated components regards the detuning from cell to cell, the cell losses, the damper losses, and the beam excitation in dependence on the deposition. the measurements and simulations let a resolution of the ready beam-position monitor on the 180-cell in the order of magnitude of 1-10 {mu}m and a relative accuracy smaller 6.2% be expected.

  6. Higher-Order Hierarchical Legendre Basis Functions in Applications

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2007-01-01

    The higher-order hierarchical Legendre basis functions have been developed for effective solution of integral equations with the method of moments. They are derived from orthogonal Legendre polynomials modified to enforce normal continuity between neighboring mesh elements, while preserving a high...

  7. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Ravikumar

    2017-09-01

    Full Text Available Brookhaven National Laboratory (BNL has proposed to build an electron ion collider (EIC as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC. A part of the new design is to use superconducting radio frequency (SRF cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  8. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Science.gov (United States)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon

    2017-09-01

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  9. Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)

    2014-06-26

    We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.

  10. Hamiltonian formulation of theory with higher order derivatives

    International Nuclear Information System (INIS)

    Gitman, D.M.; Lyakhovich, S.L.; Tyutin, I.V.

    1983-01-01

    A method of ''hamiltonization'' of a special theory with higher order derivatives is described. In a nonspecial case the result coincides with the known Ostrogradsky formulation. It is shown that in the nonspecial theory the lagrange equations of motion are reduced to the normal form

  11. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  12. Coaxial higher-order mode damper employing a high-pass filter

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.

    1997-01-01

    Two different types of coaxial higher-order mode (HOM) dampers have been investigated for the Advanced Photon Source (APS) storage ring cavities: e-probe dampers and h-loop dampers. Realization of the h-loop dampers has been difficult because the loop antenna couples not only to the HOMs but also to the accelerating mode and results in loss of Q at the fundamental frequency. Previously, a first-order fundamental rejection filter was tested with unsatisfactory rejection characteristics. This problem can be overcome by using a higher-order high-pass filter between the loop and the matched load. Prototype dampers have been fabricated and tested in a storage ring single-cell cavity and the damping characteristic was analyzed

  13. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  14. Ultra-compact Higher-Order-Mode Pass Filter in a Silicon Waveguide

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide......An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide...

  15. Analysis of Scattering by Inhomogeneous Dielectric Objects Using Higher-Order Hierarchical MoM

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2003-01-01

    An efficient technique for the analysis of electromagnetic scattering by arbitrary shaped inhomogeneous dielectric objects is presented. The technique is based on a higher-order method of moments (MoM) solution of the volume integral equation. This higher-order MoM solution comprises recently...... that the condition number of the resulting MoM matrix is reduced by several orders of magnitude in comparison to existing higher-order hierarchical basis functions and, consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement...

  16. A simplified parsimonious higher order multivariate Markov chain model

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.

  17. Higher Order Differential Attack on 6-Round MISTY1

    Science.gov (United States)

    Tsunoo, Yukiyasu; Saito, Teruo; Nakashima, Hiroki; Shigeri, Maki

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper reports a previously unknown higher order differential characteristic of 4-round MISTY1 with the FL functions. It also shows that a higher order differential attack that utilizes this newly discovered characteristic is successful against 6-round MISTY1 with the FL functions. This attack can recover a partial subkey with a data complexity of 253.7 and a computational complexity of 264.4, which is better than any previous cryptanalysis of MISTY1.

  18. Higher-order automatic differentiation of mathematical functions

    Science.gov (United States)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  19. Computer-Mediated Assessment of Higher-Order Thinking Development

    Science.gov (United States)

    Tilchin, Oleg; Raiyn, Jamal

    2015-01-01

    Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…

  20. Neurodevelopmental outcomes of triplets or higher-order extremely low birth weight infants.

    Science.gov (United States)

    Wadhawan, Rajan; Oh, William; Vohr, Betty R; Wrage, Lisa; Das, Abhik; Bell, Edward F; Laptook, Abbot R; Shankaran, Seetha; Stoll, Barbara J; Walsh, Michele C; Higgins, Rosemary D

    2011-03-01

    Extremely low birth weight twins have a higher rate of death or neurodevelopmental impairment than singletons. Higher-order extremely low birth weight multiple births may have an even higher rate of death or neurodevelopmental impairment. Extremely low birth weight (birth weight 401-1000 g) multiple births born in participating centers of the Neonatal Research Network between 1996 and 2005 were assessed for death or neurodevelopmental impairment at 18 to 22 months' corrected age. Neurodevelopmental impairment was defined by the presence of 1 or more of the following: moderate to severe cerebral palsy; mental developmental index score or psychomotor developmental index score less than 70; severe bilateral deafness; or blindness. Infants who died within 12 hours of birth were excluded. Maternal and infant demographic and clinical variables were compared among singleton, twin, and triplet or higher-order infants. Logistic regression analysis was performed to establish the association between singletons, twins, and triplet or higher-order multiples and death or neurodevelopmental impairment, controlling for confounding variables that may affect death or neurodevelopmental impairment. Our cohort consisted of 8296 singleton, 2164 twin, and 521 triplet or higher-order infants. The risk of death or neurodevelopmental impairment was increased in triplets or higher-order multiples when compared with singletons (adjusted odds ratio: 1.7 [95% confidence interval: 1.29-2.24]), and there was a trend toward an increased risk when compared with twins (adjusted odds ratio: 1.27 [95% confidence: 0.95-1.71]). Triplet or higher-order births are associated with an increased risk of death or neurodevelopmental impairment at 18 to 22 months' corrected age when compared with extremely low birth weight singleton infants, and there was a trend toward an increased risk when compared with twins.

  1. Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2004-01-01

    A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...

  2. A tridiagonal parsimonious higher order multivariate Markov chain model

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

  3. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.

    1987-01-01

    A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt

  4. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1986-01-01

    We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt

  5. Enhancing Higher Order Thinking Skills through Clinical Simulation

    Science.gov (United States)

    Varutharaju, Elengovan; Ratnavadivel, Nagendralingan

    2014-01-01

    Purpose: The study aimed to explore, describe and analyse the design and implementation of clinical simulation as a pedagogical tool in bridging the deficiency of higher order thinking skills among para-medical students, and to make recommendations on incorporating clinical simulation as a pedagogical tool to enhance thinking skills and align the…

  6. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-20

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.

  7. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  8. Order in cold ionic systems: Dynamic effects

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1988-01-01

    The present state and recent developments in Molecular Dynamics calculations modeling cooled heavy-ion beams are summarized. First, a frame of reference is established, summarizing what has happened in the past; then the properties of model systems of cold ions studied in Molecular Dynamics calculations are reviewed, with static boundary conditions with which an ordered state is revealed; finally, more recent results on such modelling, adding the complications in the (time-dependent) boundary conditions that begin to approach real storage rings (ion traps) are reported. 14 refs., 19 figs., 2 tabs

  9. Higher order aberrations in amblyopic children and their role in refractory amblyopia

    Directory of Open Access Journals (Sweden)

    Arnaldo Dias-Santos

    2014-12-01

    Full Text Available Objective: Some studies have hypothesized that an unfavourable higher order aberrometric profile could act as an amblyogenic mechanism and may be responsible for some amblyopic cases that are refractory to conventional treatment or cases of “idiopathic” amblyopia. This study compared the aberrometric profile in amblyopic children to that of children with normal visual development and compared the aberrometric profile in corrected amblyopic eyes and refractory amblyopic eyes with that of healthy eyes. Methods: Cross-sectional study with three groups of children – the CA group (22 eyes of 11 children with unilateral corrected amblyopia, the RA group (24 eyes of 13 children with unilateral refractory amblyopia and the C group (28 eyes of 14 children with normal visual development. Higher order aberrations were evaluated using an OPD-Scan III (NIDEK. Comparisons of the aberrometric profile were made between these groups as well as between the amblyopic and healthy eyes within the CA and RA groups. Results: Higher order aberrations with greater impact in visual quality were not significantly higher in the CA and RA groups when compared with the C group. Moreover, there were no statistically significant differences in the higher order aberrometric profile between the amblyopic and healthy eyes within the CA and RA groups. Conclusions: Contrary to lower order aberrations (e.g., myopia, hyperopia, primary astigmatism, higher order aberrations do not seem to be involved in the etiopathogenesis of amblyopia. Therefore, these are likely not the cause of most cases of refractory amblyopia.

  10. Near integrability of kink lattice with higher order interactions

    Science.gov (United States)

    Jiang, Yun-Guo; Liu, Jia-Zhen; He, Song

    2017-11-01

    We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda. Supported by Shandong Provincial Natural Science Foundation (ZR2014AQ007), National Natural Science Foundation of China (11403015, U1531105), S. He is supported by Max-Planck fellowship in Germany and National Natural Science Foundation of China (11305235)

  11. Emergence of dynamical order synchronization phenomena in complex systems

    CERN Document Server

    Manrubia, Susanna C; Zanette, Damián H

    2004-01-01

    Synchronization processes bring about dynamical order and lead tospontaneous development of structural organization in complex systemsof various origins, from chemical oscillators and biological cells tohuman societies and the brain. This book provides a review and adetailed theoretical analysis of synchronization phenomena in complexsystems with different architectures, composed of elements withperiodic or chaotic individual dynamics. Special attention is paid tostatistical concepts, such as nonequilibrium phase transitions, orderparameters and dynamical glasses.

  12. Developing Higher-Order Thinking Skills through WebQuests

    Science.gov (United States)

    Polly, Drew; Ausband, Leigh

    2009-01-01

    In this study, 32 teachers participated in a year-long professional development project related to technology integration in which they designed and implemented a WebQuest. This paper describes the extent to which higher-order thinking skills (HOTS) and levels of technology implementation (LoTI) occur in the WebQuests that participants designed.…

  13. Higher-order geodesic deviations applied to the Kerr metric

    CERN Document Server

    Colistete, R J; Kerner, R

    2002-01-01

    Starting with an exact and simple geodesic, we generate approximate geodesics by summing up higher-order geodesic deviations within a general relativistic setting, without using Newtonian and post-Newtonian approximations. We apply this method to the problem of closed orbital motion of test particles in the Kerr metric spacetime. With a simple circular orbit in the equatorial plane taken as the initial geodesic, we obtain finite eccentricity orbits in the form of Taylor series with the eccentricity playing the role of a small parameter. The explicit expressions of these higher-order geodesic deviations are derived using successive systems of linear equations with constant coefficients, whose solutions are of harmonic oscillator type. This scheme gives best results when applied to orbits with low eccentricities, but with arbitrary possible values of (GM/Rc sup 2).

  14. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaca, S.

    1992-08-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure

  15. Groups of integral transforms generated by Lie algebras of second-and higher-order differential operators

    International Nuclear Information System (INIS)

    Steinberg, S.; Wolf, K.B.

    1979-01-01

    The authors study the construction and action of certain Lie algebras of second- and higher-order differential operators on spaces of solutions of well-known parabolic, hyperbolic and elliptic linear differential equations. The latter include the N-dimensional quadratic quantum Hamiltonian Schroedinger equations, the one-dimensional heat and wave equations and the two-dimensional Helmholtz equation. In one approach, the usual similarity first-order differential operator algebra of the equation is embedded in the larger one, which appears as a quantum-mechanical dynamic algebra. In a second approach, the new algebra is built as the time evolution of a finite-transformation algebra on the initial conditions. In a third approach, the algebra to inhomogeneous similarity algebra is deformed to a noncompact classical one. In every case, we can integrate the algebra to a Lie group of integral transforms acting effectively on the solution space of the differential equation. (author)

  16. Analysis of higher order harmonics with holographic reflection gratings

    Science.gov (United States)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  17. Higher-order thinking in foreign language learning

    OpenAIRE

    Bastos, Ascensão; Ramos, Altina

    2017-01-01

    A project is being conducted in English as a foreign language (EFL), involving eleventh graders in formal and non-formal learning contexts, in a Portuguese high school. The goal of this study is to examine the impact of cognitive tools and higher-order thinking processes on the learning of EFL and achievement of larger processes oriented to action, involving problem solving, decision-making and creation of new products. YouTube videos emerge as cognitive tools in the process. Final results sh...

  18. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Exact thermodynamic principles for dynamic order existence and evolution in chaos

    International Nuclear Information System (INIS)

    Mahulikar, Shripad P.; Herwig, Heinz

    2009-01-01

    The negentropy proposed first by Schroedinger is re-examined, and its conceptual and mathematical definitions are introduced. This re-definition of negentropy integrates Schroedinger's intention of its introduction, and the subsequent diverse notions in literature. This negentropy is further corroborated by its ability to state the two exact thermodynamic principles: negentropy principle for dynamic order existence and principle of maximum negentropy production (PMNEP) for dynamic order evolution. These principles are the counterparts of the existing entropy principle and the law of maximum entropy production, respectively. The PMNEP encompasses the basic concepts in the evolution postulates by Darwin and de Vries. Perspectives of dynamic order evolution in literature point to the validity of PMNEP as the law of evolution. These two additional principles now enable unified explanation of order creation, existence, evolution, and destruction; using thermodynamics.

  20. Detrended fluctuation analysis based on higher-order moments of financial time series

    Science.gov (United States)

    Teng, Yue; Shang, Pengjian

    2018-01-01

    In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.

  1. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2004-01-01

    An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...

  2. Higher- and Lower-Order Factor Analyses of the Temperament in Middle Childhood Questionnaire

    Science.gov (United States)

    Kotelnikova, Yuliya; Olino, Thomas M.; Klein, Daniel N.; Mackrell, Sarah V.M.; Hayden, Elizabeth P.

    2017-01-01

    The Temperament in Middle Childhood Questionnaire (TMCQ; Simonds & Rothbart, 2004) is a widely used parent-report measure of temperament. However, neither its lower- nor higher-order structures have been tested via a bottom-up, empirically based approach. We conducted higher- and lower-order exploratory factor analyses (EFAs) of the TMCQ in a large (N = 654) sample of 9-year-olds. Item-level EFAs identified 92 items as suitable (i.e., with loadings ≥.40) for constructing lower-order factors, only half of which resembled a TMCQ scale posited by the measure’s authors. Higher-order EFAs of the lower-order factors showed that a three-factor structure (Impulsivity/Negative Affectivity, Negative Affectivity, and Openness/Assertiveness) was the only admissible solution. Overall, many TMCQ items did not load well onto a lower-order factor. In addition, only three factors, which did not show a clear resemblance to Rothbart’s four-factor model of temperament in middle childhood, were needed to account for the higher-order structure of the TMCQ. PMID:27002124

  3. Influence of higher order modes on angled-facet amplifiers

    DEFF Research Database (Denmark)

    Wang, Z.; Mikkelsen, B.; Stubkjær, Kristian

    1991-01-01

    The influence of the first-order mode on the residual reflectivity of angled-facet amplifiers is analyzed. For a 7 degrees angled-facet ridge waveguide amplifier with a single-layer antireflective (AR) coating, a gain ripple lower than 1-dB at 25-dB gain can be obtained independent...... of the polarization, even in the presence of a first-order mode with a 15-dB gain. The tolerances for the thickness and refractive index of the AR coating are reduced by a factor of three compared to operation in the fundamental mode only. The influence of the higher order mode can virtually be suppressed...

  4. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-03-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present simple and efficient closed-form expression to the higher order moments of the channel capacity of dual hop transmission system with Rayleigh fading channels. In order to analyze the behavior of the higher order capacity statistics and investigate the usefulness of the mathematical analysis, some selected numerical and simulation results are presented. Our results are found to be in perfect agreement. © 2012 IEEE.

  5. Generating superpositions of higher order bessel beams [Conference paper

    CSIR Research Space (South Africa)

    Vasilyeu, R

    2009-10-01

    Full Text Available An experimental setup to generate a superposition of higher-order Bessel beams by means of a spatial light modulator and ring aperture is presented. The experimentally produced fields are in good agreement with those calculated theoretically....

  6. Protein scaffolds and higher-order complexes in synthetic biology

    NARCIS (Netherlands)

    den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.

    2017-01-01

    Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and

  7. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaco, S.

    1992-01-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure. (Author) 3 refs., 2 figs., tab

  8. Dynamic Stability Analysis Using High-Order Interpolation

    Directory of Open Access Journals (Sweden)

    Juarez-Toledo C.

    2012-10-01

    Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

  9. Higher-order terms in the nuclear-energy-density functional

    International Nuclear Information System (INIS)

    Carlsson, B. G.; Borucki, M.; Dobaczewski, J.

    2009-01-01

    One of the current projects at the Department of Physics in the University of Jyvaeskylae is to explore more general forms of the Skyrme energy-density functional (EDF). The aim is to find new phenomenological terms which are sensitive to experimental data. In this context we have extended the Skyrme functional by including terms which contain higher orders of derivatives allowing for a better description of finite range effects. This was done by employing an expansion in derivatives in a spherical-tensor formalism [1] motivated by ideas of the density-matrix expansion. The resulting functionals have different number of free parameters depending on the order in derivatives and assumed symmetries, see Fig. 1. The usual Skyrme EDF is obtained as a second order expansion while we keep terms up to sixth order.(author)

  10. Higher-order techniques for some problems of nonlinear control

    Directory of Open Access Journals (Sweden)

    Sarychev Andrey V.

    2002-01-01

    Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.

  11. Hybrid approximations via second order combined dynamic derivatives on time scales

    Directory of Open Access Journals (Sweden)

    Qin Sheng

    2007-09-01

    Full Text Available This article focuses on the approximation of conventional second order derivative via the combined (diamond-$\\alpha$ dynamic derivative on time scales with necessary smoothness conditions embedded. We will show the constraints under which the second order dynamic derivative provides a consistent approximation to the conventional second derivative; the cases where the dynamic derivative approximates the derivative only via a proper modification of the existing formula; and the situations in which the dynamic derivative can never approximate consistently even with the help of available structure correction methods. Constructive error analysis will be given via asymptotic expansions for practical hybrid modeling and computational applications.

  12. First-order and higher order sequence learning in specific language impairment.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-02-01

    A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Dynamic behaviours and control of fractional-order memristor-based ...

    Indian Academy of Sciences (India)

    Dynamics of fractional-order memristor circuit system and its control are investigated in this paper. With the help of stability theory of fractional-order systems, stability of its equilibrium points is analysed. Then, the chaotic behaviours are validated using phase portraits, the Lyapunov exponents and bifurcation diagrams with ...

  14. Higher-order resonant electronic recombination as a manifestation of configuration interaction

    International Nuclear Information System (INIS)

    Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R

    2013-01-01

    Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)

  15. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  16. Oscillation of solutions of some higher order linear differential equations

    Directory of Open Access Journals (Sweden)

    Hong-Yan Xu

    2009-11-01

    Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.

  17. Improved Multilevel Fast Multipole Method for Higher-Order discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...

  18. The Political Dynamics of Higher Education Policy

    Science.gov (United States)

    Dar, Luciana

    2012-01-01

    This paper presents a framework informed by spatial models of politics to explain the dynamics of political competition in higher education policy and, in particular, the observed instability in the relationship between political variables and policy outcomes. To this end, I explore competing hypotheses for the relationship between government…

  19. Higher-order momentum distributions and locally affine LDDMM registration

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune

    2013-01-01

    description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...

  20. Gamow-Jordan vectors and non-reducible density operators from higher-order S-matrix poles

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Puentmann, C.; Gadella, M.

    1997-01-01

    In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at z R =E R -iΓ/2 leads to r generalized eigenvectors of order k=0,1,hor-ellipsis,r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E R -iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. copyright 1997 American Institute of Physics

  1. The Role of Formative Feedback in Promoting Higher Order ...

    African Journals Online (AJOL)

    DrNneka

    An International Multi-disciplinary Journal, Ethiopia. AFRREV ... make contribution to this research gap by proposing a theoretical feedback model that can promote higher order thinking skills in the classroom. The proposed ..... process; students provided with tasks that are novel, complex, creative, and non- algorithmic ...

  2. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    Science.gov (United States)

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  3. Higher-order phase transitions on financial markets

    Science.gov (United States)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched

  4. Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Ren Ji; Ruan Hangyu

    2008-01-01

    We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained

  5. Dynamic Question Ordering in Online Surveys

    Directory of Open Access Journals (Sweden)

    Early Kirstin

    2017-09-01

    Full Text Available Online surveys have the potential to support adaptive questions, where later questions depend on earlier responses. Past work has taken a rule-based approach, uniformly across all respondents. We envision a richer interpretation of adaptive questions, which we call Dynamic Question Ordering (DQO, where question order is personalized. Such an approach could increase engagement, and therefore response rate, as well as imputation quality. We present a DQO framework to improve survey completion and imputation. In the general survey-taking setting, we want to maximize survey completion, and so we focus on ordering questions to engage the respondent and collect hopefully all information, or at least the information that most characterizes the respondent, for accurate imputations. In another scenario, our goal is to provide a personalized prediction. Since it is possible to give reasonable predictions with only a subset of questions, we are not concerned with motivating users to answer all questions. Instead, we want to order questions to get information that reduces prediction uncertainty, while not being too burdensome. We illustrate this framework with two case studies, for the prediction and survey-taking settings. We also discuss DQO for national surveys and consider connections between our statistics-based question-ordering approach and cognitive survey methodology.

  6. On realization of nonlinear systems described by higher-order differential equations

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1987-01-01

    We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the

  7. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  8. Constrained variational calculus for higher order classical field theories

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)

    2010-11-12

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  9. Constrained variational calculus for higher order classical field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn

    2010-01-01

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  10. Decidable Fragments of a Higher Order Calculus with Locations

    DEFF Research Database (Denmark)

    Bundgaard, Mikkel; Godskesen, Jens Christian; Huttel, Hans

    2009-01-01

    Homer is a higher order process calculus with locations. In this paper we study Homer in the setting of the semantic finite control property, which is a finite reachability criterion that implies decidability of barbed bisimilarity. We show that strong and weak barbed bisimilarity are undecidable...

  11. Dynamics of platicons due to third-order dispersion

    Science.gov (United States)

    Lobanov, Valery E.; Cherenkov, Artem V.; Shitikov, Artem E.; Bilenko, Igor A.; Gorodetsky, Michael L.

    2017-07-01

    Dynamics of platicons caused by the third-order dispersion is studied. It is shown that under the influence of the third-order dispersion platicons obtain angular velocity depending both on dispersion and on detuning value. A method of tuning of platicon associated optical frequency comb repetition rate is proposed. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  12. Quantum Noether identities for non-local transformations in higher-order derivatives theories

    International Nuclear Information System (INIS)

    Li, Z.P.; Long, Z.W.

    2003-01-01

    Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)

  13. The role of formative feedback in promoting higher order thinking ...

    African Journals Online (AJOL)

    The role of formative feedback in promoting higher order thinking skills in ... activities, task characteristics, validating students' thinking, and providing feedback. ... Keywords: classroom environment, formative assessment, formative feedback, ...

  14. Algebraic Specifications, Higher-order Types and Set-theoretic Models

    DEFF Research Database (Denmark)

    Kirchner, Hélène; Mosses, Peter David

    2001-01-01

    , and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard......In most algebraic  specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces...... set-theoretic models are considered, and conditions are given for the existence of initial reduct's of such models. Algebraic specifications for various set-theoretic concepts are considered....

  15. Squeezing of higher order Hermite-Gauss modes

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard

    2008-01-01

    The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...

  16. Systematic expansion in the order parameter for replica theory of the dynamical glass transition.

    Science.gov (United States)

    Jacquin, Hugo; Zamponi, Francesco

    2013-03-28

    It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.

  17. Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes

    DEFF Research Database (Denmark)

    Bendtsen, Kirstine L; Brodersen, Ditlev E

    2017-01-01

    Toxin-antitoxin systems are widespread in the bacterial kingdom, including in pathogenic species, where they allow rapid adaptation to changing environmental conditions through selective inhibition of key cellular processes, such as DNA replication or protein translation. Under normal growth...... that allow auto-regulation of transcription by direct binding to promoter DNA. In this chapter, we review our current understanding of the structural characteristics of type II toxin-antitoxin complexes in bacterial cells, with a special emphasis on the staggering variety of higher-order architecture...... conditions, type II toxins are inhibited through tight protein-protein interaction with a cognate antitoxin protein. This toxin-antitoxin complex associates into a higher-order macromolecular structure, typically heterotetrameric or heterooctameric, exposing two DNA binding domains on the antitoxin...

  18. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in the Bigraphical Programming Languages (BPL) Tool

    DEFF Research Database (Denmark)

    Bundgaard, Mikkel; Glenstrup, Arne John; Hildebrandt, Thomas

    is the starting point of an endeavor to provide a completely formalized and extensible business process engine within the Computer Supported Mobile Adaptive Business Processes (CosmoBiz) research project at the IT University of Copenhagen. Building upon the formalization of WS-BPEL we propose and formalize Home......BPEL, a higher-order WS-BPEL-like business process execution language where processes are first-class values that can be stored in variables, passed as messages, and activated as embedded sub-instances. A sub-instance is similar to a WS-BPEL scope, except that it can be dynamically frozen and stored as a process...

  19. Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-12-01

    Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.

  20. Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback

    International Nuclear Information System (INIS)

    Wen, Shao-Fang; Shen, Yong-Jun; Yang, Shao-Pu; Wang, Jun

    2017-01-01

    Highlights: • The analytical solution for Mathieu–Duffing oscillator with fractional-order delayed feedback is obtained. • The fractional-order delayed feedback has both the functions of delayed velocity feedback and delayed displacement feedback. • The special effects of time delay on nonzero periodic solutions are analyzed in detail. • The effects of the fractional-order parameters on system response are characterized. - Abstract: In this paper, the dynamical response of Mathieu–Duffing oscillator under fractional-order delayed feedback is investigated. At first, the approximate analytical solution and the amplitude-frequency equation are obtained based on the averaging method. The equivalent stiffness coefficient and equivalent damping coefficient are defined by the feedback coefficient, fractional order and time delay et al. The effects of feedback coefficient, fractional order and time delay on these two equivalent parameters are analyzed. It is found that the fractional-order delayed feedback has not only the function of delayed velocity feedback, but also the function of delayed displacement feedback. Then, the comparison of the amplitude-frequency curves obtained by the analytical and numerical solutions verifies the correctness and satisfactory precision of the approximate analytical solution. The effects of the parameters in the fractional-order delayed feedback on the complex dynamical behaviors of Mathieu–Duffing oscillator are studied. It could be found that fractional-order delayed feedback has important influences on the dynamical behavior of Mathieu–Duffing oscillator, and the results are very helpful to design, analyze or control in vibration engineering.

  1. Liquidity Dynamics in the Xetra Order Book

    Science.gov (United States)

    Schmidinger, Christoph

    2010-09-01

    In this paper we show how to reconstruct the limit order book of the 30 stocks constituting the DAX30 index based on the trading protocol of the Xetra Trading System at the Frankfurt Stock Exchange. The algorithm used is innovative as it captures all trading phases, including auctions, and delivers a reconstruction of the orderbook either from a trader's view or a supervisory view including hidden volume as well. Based on the rebuilt order book, liquidity dynamics are examined. In contrats to findings for dealer markets, past market returns play a minor role in the determination of liquidity and liquidity commonality in Xetra, a pure limit order book market. Consequently, we provide evidence that liquidity provision by multiple sources in Xetra mitigates systemic liquidity risk introduced by the interrelation of return and liquidity.

  2. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    Science.gov (United States)

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  3. Higher-order blackhole solutions in N=2 supergravity and Calabi-Yau string backgrounds

    NARCIS (Netherlands)

    Behrndt, K.; Cardoso, G.L.; de Wit, B.Q.P.J.; Lüst, D.; Mohaupt, T.; Sabra, W.A.

    1998-01-01

    Based on special geometry, we consider corrections to N=2 extremal black-hole solutions and their entropies originating from higher-order derivative terms in N=2 supergravity. These corrections are described by a holomorphic function, and the higher-order black-hole solutions can be expressed in

  4. Effect of third-order aberrations on dynamic accommodation.

    Science.gov (United States)

    López-Gil, Norberto; Rucker, Frances J; Stark, Lawrence R; Badar, Mustanser; Borgovan, Theodore; Burke, Sean; Kruger, Philip B

    2007-03-01

    We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1-3D, 0.2Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 microm) and coma (0.34, 0.94 microm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.

  5. Non-Poisson Dichotomous Noise: Higher-Order Correlation Functions and Aging

    National Research Council Canada - National Science Library

    Allegrini, Paolo; Grigolini, Paolo; Palatella, Luigi; West, Bruce J

    2004-01-01

    .... The transition of psi(tau) from the exponential to the nonexponential condition yields the breakdown of the usual factorization condition of higher-order correlation functions, as well as the birth of aging effects...

  6. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    Science.gov (United States)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  7. Inseparability inequalities for higher order moments for bipartite systems

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    There are several examples of bipartite entangled states of continuous variables for which the existing criteria for entanglement using the inequalities involving the second-order moments are insufficient. We derive new inequalities involving higher order correlation, for testing entanglement in non-Gaussian states. In this context, we study an example of a non-Gaussian state, which is a bipartite entangled state of the form Ψ(x a , x b ) ∝ (αx a + βx b ) e -(x a 2 +x b 2 )/2 . Our results open up an avenue to search for new inequalities to test entanglement in non-Gaussian states

  8. Higher order corrections to energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Rinker, G.A. Jr.; Steffen, R.M.

    1975-08-01

    In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references

  9. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  10. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    Science.gov (United States)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  11. Higher order effects of pseudoparticles in QCD

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.

    1977-01-01

    Gauge invariant Green's functions of quark-antiquark bilinear densities in massless, two-color QCD are studied. Nonzero-energy fermion modes, pseudoparticle solutions with topological charge absolute value ν > 1, and n-point functions with n > 2. Some general properties of the O(Dirac constant) approximation are developed, enabling one to isolate and define the terms which contribute to a general n-point function. The higher effects it is found preserve the symmetry breakdown found earlier in the 2-point function (U(2) x U(2) → SU(2) x SU(2) x U(1)). It is shown that a previous 2-point function analysis is exact to order Dirac constant

  12. Higher order modes of coupled optical fibres

    International Nuclear Information System (INIS)

    Alexeyev, C N; Yavorsky, M A; Boklag, N A

    2010-01-01

    The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security

  13. Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach

    Science.gov (United States)

    Wang, Shouhong; Wang, Hai

    2011-01-01

    One vision of education evolution is to change the modes of thinking of students. Critical thinking, design thinking, and system thinking are higher order thinking paradigms that are specifically pertinent to business education. A model-directed approach to teaching and learning higher order thinking is proposed. An example of application of the…

  14. Higher-order threshold resummation for semi-inclusive e+e- annihilation

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2009-08-01

    The complete soft-enhanced and virtual-gluon contributions are derived for the quark coefficient functions in semi-inclusive e + e - annihilation to the third order in massless perturbative QCD. These terms enable us to extend the soft-gluon resummation for the fragmentation functions by two orders to the next-to-next-to-next-to-leading logarithmic (N 3 LL) accuracy. The resummation exponent is found to be the same as for the structure functions in inclusive deep-inelastic scattering. This finding, together with known results on the higher-order quark form factor, facilitates the determination of all soft and virtual contributions of the fourth-order difference of the coefficient functions for these two processes. Unlike the previous (N 2 LL) order in the exponentiation, the numerical effect of the N 3 LL contributions turns out to be negligible at LEP energies. (orig.)

  15. Outer synchronization between two different fractional-order general complex dynamical networks

    International Nuclear Information System (INIS)

    Xiang-Jun, Wu; Hong-Tao, Lu

    2010-01-01

    Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order α can be chosen appropriately to adjust the synchronization effect effectively. (general)

  16. Equivalence of two Fixed-Point Semantics for Definitional Higher-Order Logic Programs

    Directory of Open Access Journals (Sweden)

    Angelos Charalambidis

    2015-09-01

    Full Text Available Two distinct research approaches have been proposed for assigning a purely extensional semantics to higher-order logic programming. The former approach uses classical domain theoretic tools while the latter builds on a fixed-point construction defined on a syntactic instantiation of the source program. The relationships between these two approaches had not been investigated until now. In this paper we demonstrate that for a very broad class of programs, namely the class of definitional programs introduced by W. W. Wadge, the two approaches coincide (with respect to ground atoms that involve symbols of the program. On the other hand, we argue that if existential higher-order variables are allowed to appear in the bodies of program rules, the two approaches are in general different. The results of the paper contribute to a better understanding of the semantics of higher-order logic programming.

  17. Geometrical optics in general relativity: A study of the higher order corrections

    International Nuclear Information System (INIS)

    Anile, A.M.

    1976-01-01

    The higher order corrections to geometrical optics are studied in general relativity for an electromagnetic test wave. An explicit expression is found for the average energy--momentum tensor which takes into account the first-order corrections. Finally the first-order corrections to the well-known area-intensity law of geometrical optics are derived

  18. Contribution of higher order terms in the reductive perturbation theory, 2

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Mitsuhashi, Teruo; Konno, Kimiaki.

    1977-01-01

    Contribution of higher order terms in the reductive perturbation theory has been investigated for nonlinear propagation of strongly dispersive ion plasma wave. The basic set of fluid equation is reduced to a coupled set of the nonlinear Schroedinger equation for the first order perturbed potential and a linear inhomogeneous equation for the second order perturbed potential. A steady state solution of the coupled set of equations has been solved analytically in the asymptotic limit of small wave number. (auth.)

  19. Adaptive synchronization between two different order and topology dynamical systems

    International Nuclear Information System (INIS)

    Bowong, S.; Moukam Kakmeni, F.M.; Yamapi, R.

    2006-07-01

    This contribution studies adaptive synchronization between two dynamical systems of different order whose topological structure is also different. By order we mean the number of first order differential equations. The problem is closely related to the synchronization of strictly different systems. The master system is given by a sixth order equation with chaotic behavior whereas the slave system is a fourth-order nonautonomous with rational nonlinear terms. Based on the Lyapunov stability theory, sufficient conditions for the synchronization have been analyzed theoretically and numerically. (author)

  20. Oscillation of certain higher-order neutral partial functional differential equations.

    Science.gov (United States)

    Li, Wei Nian; Sheng, Weihong

    2016-01-01

    In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.

  1. Dynamical models of happiness with fractional order

    Science.gov (United States)

    Song, Lei; Xu, Shiyun; Yang, Jianying

    2010-03-01

    This present study focuses on a dynamical model of happiness described through fractional-order differential equations. By categorizing people of different personality and different impact factor of memory (IFM) with different set of model parameters, it is demonstrated via numerical simulations that such fractional-order models could exhibit various behaviors with and without external circumstance. Moreover, control and synchronization problems of this model are discussed, which correspond to the control of emotion as well as emotion synchronization in real life. This study is an endeavor to combine the psychological knowledge with control problems and system theories, and some implications for psychotherapy as well as hints of a personal approach to life are both proposed.

  2. Dynamical stability of the holographic system with two competing orders

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Lan, Shan-Quan [Department of Physics, Beijing Normal University,Beijing 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2016-01-04

    We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.

  3. Order Aggressiveness and Order Book Dynamics

    OpenAIRE

    Anthony D. Hall; Nikolaus Hautsch

    2004-01-01

    In this paper, we study the determinants of order aggressiveness and traders' order submission strategy in an open limit order book market. Using order book data from the Australian Stock Exchange, we model traders' aggressiveness in market trading, limit order trading as well as in order cancellations on both sides of the market using a six-dimensional autoregressive intensity model. The information revealed by the open order book plays an important role in explaining the degree of order agg...

  4. Transverse vibrations of shear-deformable beams using a general higher order theory

    Science.gov (United States)

    Kosmatka, J. B.

    1993-01-01

    A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.

  5. Practical Programming with Higher-Order Encodings and Dependent Types

    DEFF Research Database (Denmark)

    Poswolsky, Adam; Schürmann, Carsten

    2008-01-01

    , tedious, and error-prone. In this paper, we describe the underlying calculus of Delphin. Delphin is a fully implemented functional-programming language supporting reasoning over higher-order encodings and dependent types, while maintaining the benefits of HOAS. More specifically, just as representations...... for instantiation from those that will remain uninstantiated, utilizing a variation of Miller and Tiu’s ∇-quantifier [1]....

  6. Dynamics of phase ordering of nematics in a pore

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Chakrabarti, A.

    1994-06-01

    We study the kinetics of phase ordering of a nematic liquid crystal, modeled by a spin-rotor Hamiltonian, confined within a parallel piped pore. The dynamics of the rotor obeys the time-dependent Ginzburg-Landau equation. We study the generation and evolution of a variety of defect structures, and the growth of domains, with different anchoring conditions at the pore surface. Unlike in binary fluids, mere confinement with no anchoring field, does not result in slow dynamics. Homeotropic anchoring, however, leads to slow logarithmic growth. Interestingly, homogeneous anchoring dynamically generates wall defects, resulting in an Ising like structure factor at late times. (author). 27 refs, 4 figs

  7. Symmetries, invariants and generating functions: higher-order statistics of biased tracers

    Science.gov (United States)

    Munshi, Dipak

    2018-01-01

    Gravitationally collapsed objects are known to be biased tracers of an underlying density contrast. Using symmetry arguments, generalised biasing schemes have recently been developed to relate the halo density contrast δh with the underlying density contrast δ, divergence of velocity θ and their higher-order derivatives. This is done by constructing invariants such as s, t, ψ,η. We show how the generating function formalism in Eulerian standard perturbation theory (SPT) can be used to show that many of the additional terms based on extended Galilean and Lifshitz symmetry actually do not make any contribution to the higher-order statistics of biased tracers. Other terms can also be drastically simplified allowing us to write the vertices associated with δh in terms of the vertices of δ and θ, the higher-order derivatives and the bias coefficients. We also compute the cumulant correlators (CCs) for two different tracer populations. These perturbative results are valid for tree-level contributions but at an arbitrary order. We also take into account the stochastic nature bias in our analysis. Extending previous results of a local polynomial model of bias, we express the one-point cumulants Script SN and their two-point counterparts, the CCs i.e. Script Cpq, of biased tracers in terms of that of their underlying density contrast counterparts. As a by-product of our calculation we also discuss the results using approximations based on Lagrangian perturbation theory (LPT).

  8. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-31

    This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.

  9. A higher-order tensor vessel tractography for segmentation of vascular structures.

    Science.gov (United States)

    Cetin, Suheyla; Unal, Gozde

    2015-10-01

    A new vascular structure segmentation method, which is based on a cylindrical flux-based higher order tensor (HOT), is presented. On a vessel structure, the HOT naturally models branching points, which create challenges for vessel segmentation algorithms. In a general linear HOT model embedded in 3D, one has to work with an even order tensor due to an enforced antipodal-symmetry on the unit sphere. However, in scenarios such as in a bifurcation, the antipodally-symmetric tensor embedded in 3D will not be useful. In order to overcome that limitation, we embed the tensor in 4D and obtain a structure that can model asymmetric junction scenarios. During construction of a higher order tensor (e.g. third or fourth order) in 4D, the orientation vectors lie on the unit 3-sphere, in contrast to the unit 2-sphere in 3D tensor modeling. This 4D tensor is exploited in a seed-based vessel segmentation algorithm, where the principal directions of the 4D HOT is obtained by decomposition, and used in a HOT tractography approach. We demonstrate quantitative validation of the proposed algorithm on both synthetic complex tubular structures as well as real cerebral vasculature in Magnetic Resonance Angiography (MRA) datasets and coronary arteries from Computed Tomography Angiography (CTA) volumes.

  10. Higher-order fluctuation-dissipation relations in plasma physics: Binary Coulomb systems

    Science.gov (United States)

    Golden, Kenneth I.

    2018-05-01

    A recent approach that led to compact frequency domain formulations of the cubic and quartic fluctuation-dissipation theorems (FDTs) for the classical one-component plasma (OCP) [Golden and Heath, J. Stat. Phys. 162, 199 (2016), 10.1007/s10955-015-1395-6] is generalized to accommodate binary ionic mixtures. Paralleling the procedure followed for the OCP, the basic premise underlying the present approach is that a (k ,ω ) 4-vector rotational symmetry, known to be a pivotal feature in the frequency domain architectures of the linear and quadratic fluctuation-dissipation relations for a variety of Coulomb plasmas [Golden et al., J. Stat. Phys. 6, 87 (1972), 10.1007/BF01023681; J. Stat. Phys. 29, 281 (1982), 10.1007/BF01020787; Golden, Phys. Rev. E 59, 228 (1999), 10.1103/PhysRevE.59.228], is expected to be a pivotal feature of the frequency domain architectures of the higher-order members of the FDT hierarchy. On this premise, each member, in its most tractable form, connects a single (p +1 )-point dynamical structure function to a linear combination of (p +1 )-order p density response functions; by definition, such a combination must also remain invariant under rotation of their (k1,ω1) ,(k2,ω2) ,...,(kp,ωp) , (k1+k2+⋯+kp,ω1+ω2+⋯+ωp) 4-vector arguments. Assigned to each 4-vector is a species index that corotates in lock step. Consistency is assured by matching the static limits of the resulting frequency domain cubic and quartic FDTs to their exact static counterparts independently derived in the present work via a conventional time-independent perturbation expansion of the Liouville distribution function in its macrocanonical form. The proposed procedure entirely circumvents the daunting issues of entangled Liouville space paths and nested Poisson brackets that one would encounter if one attempted to use the conventional time-dependent perturbation-theoretic Kubo approach to establish the frequency domain FDTs beyond quadratic order.

  11. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    Science.gov (United States)

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  12. Oscillation criteria for fourth-order nonlinear delay dynamic equations

    Directory of Open Access Journals (Sweden)

    Yunsong Qi

    2013-03-01

    Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples

  13. Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals

    Science.gov (United States)

    Deimert, C.; Potter, M. E.; Okoniewski, M.

    2016-12-01

    The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.

  14. Order aggressiveness and order book dynamics

    DEFF Research Database (Denmark)

    Hall, Anthony D.; Hautsch, Nikolaus

    2006-01-01

    In this paper, we study the determinants of order aggressiveness and traders’ order submission strategy in an open limit order book market. Applying an order classification scheme, we model the most aggressive market orders, limit orders as well as cancellations on both sides of the market...... employing a six-dimensional autoregressive conditional intensity model. Using order book data from the Australian Stock Exchange, we find that market depth, the queued volume, the bid-ask spread, recent volatility, as well as recent changes in both the order flow and the price play an important role...... in explaining the determinants of order aggressiveness. Overall, our empirical results broadly confirm theoretical predictions on limit order book trading. However, we also find evidence for behavior that can be attributed to particular liquidity and volatility effects...

  15. ANOVA-HDMR structure of the higher order nodal diffusion solution

    International Nuclear Information System (INIS)

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-01-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  16. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea

    2013-03-16

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2018-06-01

    Full Text Available We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs located before, between, and after them. Oscillations of ∼100  kHz in the vertical plane and ∼380  kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000  pC/b. However, the effects were much reduced at 100  pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.

  18. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    Science.gov (United States)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  19. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    International Nuclear Information System (INIS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-01-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants. (author)

  20. Higher-order Brunnian structures and possible physical realizations

    DEFF Research Database (Denmark)

    A. Baas, Nils; V. Fedorov, D.; S. Jensen, A.

    2014-01-01

    We consider few-body bound state systems and provide precise definitions of Borromean and Brunnian systems. The initial concepts are more than a hundred years old and originated in mathematical knot-theory as purely geometric considerations. About thirty years ago they were generalized and applied...... to the binding of systems in nature. It now appears that recent generalization to higher order Brunnian structures may potentially be realized as laboratory made or naturally occurring systems. With the binding energy as measure, we discuss possibilities of physical realization in nuclei, cold atoms...

  1. Integrable higher order deformations of Heisenberg supermagnetic model

    International Nuclear Information System (INIS)

    Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong

    2009-01-01

    The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.

  2. Theory of a higher-order Sturm-Liouville equation

    CERN Document Server

    Kozlov, Vladimir

    1997-01-01

    This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.

  3. Programming real-time executives in higher order language

    Science.gov (United States)

    Foudriat, E. C.

    1982-01-01

    Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.

  4. Higher order Bose-Einstein correlations in identical particle production

    International Nuclear Information System (INIS)

    Biyajima, M.

    1990-01-01

    A diagram technique to calculate the higher order Bose-Einstein correlations is formulated. This technique is applied to derive explicit expressions for the n-pion correlation functions for n = 2, 3, 4, and 5, and numerical predictions are given. In a comparison with the AFS and NA23 data on two-pion and three-pion Bose-Einstein correlations good agreement is obtained. 21 refs., 5 figs. (Authors)

  5. Solution of volume-surface integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2007-01-01

    The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....

  6. Unraveling hidden order in the dynamics of developed and emerging markets.

    Science.gov (United States)

    Berman, Yonatan; Shapira, Yoash; Ben-Jacob, Eshel

    2014-01-01

    The characterization of asset price returns is an important subject in modern finance. Traditionally, the dynamics of stock returns are assumed to lack any temporal order. Here we present an analysis of the autocovariance of stock market indices and unravel temporal order in several major stock markets. We also demonstrate a fundamental difference between developed and emerging markets in the past decade - emerging markets are marked by positive order in contrast to developed markets whose dynamics are marked by weakly negative order. In addition, the reaction to financial crises was found to be reversed among developed and emerging markets, presenting large positive/negative autocovariance spikes following the onset of these crises. Notably, the Chinese market shows neutral or no order while being regarded as an emerging market. These findings show that despite the coupling between international markets and global trading, major differences exist between different markets, and demonstrate that the autocovariance of markets is correlated with their stability, as well as with their state of development.

  7. Thermal analysis of smart composite laminated angle-ply using higher order shear deformation theory with zig zag function

    Science.gov (United States)

    YagnaSri, P.; Siddiqui, Maimuna; Vijaya Nirmala, M.

    2018-03-01

    The objective of the work is to develop the higher order theory for piezoelectric composite laminated plates with zigzag function and to determine the thermal characteristics of piezoelectric laminated plate with zig zag function for different aspect ratios (a/h), thickness ratios (z/h) and voltage and also to evaluate electric potential function by solving second order differential equation satisfying electric boundary conditions along the thickness direction of piezoelectric layer. The related functions and derivations for equation of motion are obtained using the dynamic version of the principle of virtual work or Hamilton’s principle. The solutions are obtained by using Navier’s stokes method for anti-symmetric angle-ply with specific type of simply supported boundary conditions. Computer programs have been developed for realistic prediction of stresses and deflections for various sides to thickness ratios (a/h) and voltages.

  8. Higher-order Bessel like beams with z-dependent cone angles

    CSIR Research Space (South Africa)

    Ismail, Y

    2010-08-01

    Full Text Available .64.81.22. Terms of Use: http://spiedl.org/terms Fig.5: Optical design to generate z-dependent Bessel-like beams 4. CONSIDERING A MATHEMATICAL APPROACH TO EXPLAINING Z-DEPENDENT BLB?S The stationary phase method is implemented in order to confirm... on higher-order z-dependent BLB?s [6]. 5. EXPERIMENTALLY GENERATED Z-DEPENDENT BESSEL-LIKE BEAMS From the above in can be deduced that these beams are Bessel-like hence they are so named z-dependent Bessel-like beams. These beams are produced however...

  9. Fractional equivalent Lagrangian densities for a fractional higher-order equation

    International Nuclear Information System (INIS)

    Fujioka, J

    2014-01-01

    In this communication we show that the equivalent Lagrangian densities (ELDs) of a fractional higher-order nonlinear Schrödinger equation with stable soliton-like solutions can be related in a hitherto unknown way. This new relationship is described in terms of a new fractional operator that includes both left- and right-sided fractional derivatives. Using this operator it is possible to generate new ELDs that contain different fractional parts, in addition to the already known ELDs, which only differ by a sum of first-order partial derivatives of two arbitrary functions. (fast track communications)

  10. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    Directory of Open Access Journals (Sweden)

    Hua Tong

    2018-03-01

    Full Text Available The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t, following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity is maximized with a characteristic length ξ_{4}, when t reaches the relaxation time τ_{α}. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t=0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ∼ξ_{4}, indicating that the static length ξ grows coherently with the dynamic one ξ_{4} upon cooling. This further suggests an intrinsic link between τ_{α} and ξ: the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ, which control dynamics in local and nonlocal manners, resulting

  11. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    Science.gov (United States)

    Tong, Hua; Tanaka, Hajime

    2018-01-01

    The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t , following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity) is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t =0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ˜ξ4, indicating that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an intrinsic link between τα and ξ : the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ , which control dynamics in local and nonlocal manners, resulting in the emergence of the two

  12. Higher-order radiative corrections for b b ¯→H-W+

    Science.gov (United States)

    Kidonakis, Nikolaos

    2018-02-01

    I present higher-order radiative corrections from collinear and soft-gluon emission for the associated production of a charged Higgs boson with a W boson. The calculation uses expressions from resummation at next-to-leading-logarithm accuracy. From the resummed cross section I derive analytical formulas at approximate next-to-next-to-leading order and next-to-next-to-next-to-leading order. Total cross sections are presented for the process b b ¯→H-W+ at various LHC energies. The transverse momentum and rapidity distributions of the charged Higgs boson are also calculated.

  13. Higher-order schemes for the Laplace transformation method for parabolic problems

    KAUST Repository

    Douglas, C.

    2011-01-01

    In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.

  14. Foundational (co)datatypes and (co)recursion for higher-order logic

    NARCIS (Netherlands)

    Biendarra, Julian; Blanchette, Jasmin Christian; Bouzy, Aymeric; Desharnais, Martin; Fleury, Mathias; Hölzl, Johannes; Kunčar, Ondřej; Lochbihler, Andreas; Meier, Fabian; Panny, Lorenz; Popescu, Andrei; Sternagel, Christian; Thiemann, René; Traytel, Dmitriy; Dixon, C.; Finger, M.

    2017-01-01

    We describe a line of work that started in 2011 towards enriching Isabelle/HOL’s language with coinductive datatypes, which allow infinite values, and with a more expressive notion of inductive datatype than previously supported by any system based on higher-order logic. These (co)datatypes are

  15. Superpositions of higher-order bessel beams and nondiffracting speckle fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2009-08-01

    Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...

  16. Authentic Instruction for 21st Century Learning: Higher Order Thinking in an Inclusive School

    Science.gov (United States)

    Preus, Betty

    2012-01-01

    The author studied a public junior high school identified as successfully implementing authentic instruction. Such instruction emphasizes higher order thinking, deep knowledge, substantive conversation, and value beyond school. To determine in what ways higher order thinking was fostered both for students with and without disabilities, the author…

  17. Resilience and Higher Order Thinking

    Directory of Open Access Journals (Sweden)

    Ioan Fazey

    2010-09-01

    Full Text Available To appreciate, understand, and tackle chronic global social and environmental problems, greater appreciation of the importance of higher order thinking is required. Such thinking includes personal epistemological beliefs (PEBs, i.e., the beliefs people hold about the nature of knowledge and how something is known. These beliefs have profound implications for the way individuals relate to each other and the world, such as how people understand complex social-ecological systems. Resilience thinking is an approach to environmental stewardship that includes a number of interrelated concepts and has strong foundations in systemic ways of thinking. This paper (1 summarizes a review of educational psychology literature on PEBs, (2 explains why resilience thinking has potential to facilitate development of more sophisticated PEBs, (3 describes an example of a module designed to teach resilience thinking to undergraduate students in ways conducive to influencing PEBs, and (4 discusses a pilot study that evaluates the module's impact. Theoretical and preliminary evidence from the pilot evaluation suggests that resilience thinking which is underpinned by systems thinking has considerable potential to influence the development of more sophisticated PEBs. To be effective, however, careful consideration of how resilience thinking is taught is required. Finding ways to encourage students to take greater responsibility for their own learning and ensuring close alignment between assessment and desired learning outcomes are particularly important.

  18. Robust rooftop extraction from visible band images using higher order CRF

    KAUST Repository

    Li, Er

    2015-08-01

    In this paper, we propose a robust framework for building extraction in visible band images. We first get an initial classification of the pixels based on an unsupervised presegmentation. Then, we develop a novel conditional random field (CRF) formulation to achieve accurate rooftops extraction, which incorporates pixel-level information and segment-level information for the identification of rooftops. Comparing with the commonly used CRF model, a higher order potential defined on segment is added in our model, by exploiting region consistency and shape feature at segment level. Our experiments show that the proposed higher order CRF model outperforms the state-of-the-art methods both at pixel and object levels on rooftops with complex structures and sizes in challenging environments. © 1980-2012 IEEE.

  19. Higher-order meshing of implicit geometries, Part II: Approximations on manifolds

    Science.gov (United States)

    Fries, T. P.; Schöllhammer, D.

    2017-11-01

    A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.

  20. Security Analysis of 7-Round MISTY1 against Higher Order Differential Attacks

    Science.gov (United States)

    Tsunoo, Yukiyasu; Saito, Teruo; Shigeri, Maki; Kawabata, Takeshi

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper shows that higher order differential attacks can be successful against 7-round versions of MISTY1 with FL functions. The attack on 7-round MISTY1 can recover a partial subkey with a data complexity of 254.1 and a computational complexity of 2120.8, which signifies the first successful attack on 7-round MISTY1 with no limitation such as a weak key. This paper also evaluates the complexity of this higher order differential attack on MISTY1 in which the key schedule is replaced by a pseudorandom function. It is shown that resistance to the higher order differential attack is not substantially improved even in 7-round MISTY1 in which the key schedule is replaced by a pseudorandom function.

  1. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  2. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  3. An Investigation of Higher-Order Thinking Skills in Smaller Learning Community Social Studies Classrooms

    Science.gov (United States)

    Fischer, Christopher; Bol, Linda; Pribesh, Shana

    2011-01-01

    This study investigated the extent to which higher-order thinking skills are promoted in social studies classes in high schools that are implementing smaller learning communities (SLCs). Data collection in this mixed-methods study included classroom observations and in-depth interviews. Findings indicated that higher-order thinking was rarely…

  4. Toward an Understanding of Higher-Order Thinking among Minority Students.

    Science.gov (United States)

    Armour-Thomas, Eleanor; And Others

    1992-01-01

    Used principal-factors extraction with varimax rotation analysis to clarify nature and function of higher-order thinking among minority high school students (n=107) from economically disadvantaged backgrounds. Results allowed for specification of mental processes associated with the construct and the extent to which students reported awareness and…

  5. Higher order net-proton number cumulants dependence on the centrality definition and other spurious effects

    Science.gov (United States)

    Sombun, S.; Steinheimer, J.; Herold, C.; Limphirat, A.; Yan, Y.; Bleicher, M.

    2018-02-01

    We study the dependence of the normalized moments of the net-proton multiplicity distributions on the definition of centrality in relativistic nuclear collisions at a beam energy of \\sqrt{{s}{NN}}=7.7 {GeV}. Using the ultra relativistic quantum molecular dynamics model as event generator we find that the centrality definition has a large effect on the extracted cumulant ratios. Furthermore we find that the finite efficiency for the determination of the centrality introduces an additional systematic uncertainty. Finally, we quantitatively investigate the effects of event-pile up and other possible spurious effects which may change the measured proton number. We find that pile-up alone is not sufficient to describe the data and show that a random double counting of events, adding significantly to the measured proton number, affects mainly the higher order cumulants in most central collisions.

  6. Transferring Instantly the State of Higher-Order Linear Descriptor (Regular Differential Systems Using Impulsive Inputs

    Directory of Open Access Journals (Sweden)

    Athanasios D. Karageorgos

    2009-01-01

    Full Text Available In many applications, and generally speaking in many dynamical differential systems, the problem of transferring the initial state of the system to a desired state in (almost zero-time time is desirable but difficult to achieve. Theoretically, this can be achieved by using a linear combination of Dirac -function and its derivatives. Obviously, such an input is physically unrealizable. However, we can think of it approximately as a combination of small pulses of very high magnitude and infinitely small duration. In this paper, the approximation process of the distributional behaviour of higher-order linear descriptor (regular differential systems is presented. Thus, new analytical formulae based on linear algebra methods and generalized inverses theory are provided. Our approach is quite general and some significant conditions are derived. Finally, a numerical example is presented and discussed.

  7. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins

    DEFF Research Database (Denmark)

    Maragakis, Paul; Lindorff-Larsen, Kresten; Eastwood, Michael P

    2008-01-01

    . Molecular dynamics (MD) simulation provides a complementary approach to the study of protein dynamics on similar time scales. Comparisons between NMR spectroscopy and MD simulations can be used to interpret experimental results and to improve the quality of simulation-related force fields and integration......A molecular-level understanding of the function of a protein requires knowledge of both its structural and dynamic properties. NMR spectroscopy allows the measurement of generalized order parameters that provide an atomistic description of picosecond and nanosecond fluctuations in protein structure...... methods. However, apparent systematic discrepancies between order parameters extracted from simulations and experiments are common, particularly for elements of noncanonical secondary structure. In this paper, results from a 1.2 micros explicit solvent MD simulation of the protein ubiquitin are compared...

  8. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    Science.gov (United States)

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  9. On higher-order corrections in M theory

    International Nuclear Information System (INIS)

    Howe, P.S.; Tsimpis, D.

    2003-01-01

    A theoretical analysis of higher-order corrections to D=11 supergravity is given in a superspace framework. It is shown that any deformation of D=11 supergravity for which the lowest-dimensional component of the four-form G 4 vanishes is trivial. This implies that the equations of motion of D=11 supergravity are specified by an element of a certain spinorial cohomology group and generalises previous results obtained using spinorial or pure spinor cohomology to the fully non-linear theory. The first deformation of the theory is given by an element of a different spinorial cohomology group with coefficients which are local tensorial functions of the massless supergravity fields. The four-form Bianchi Identities are solved, to first order and at dimension -{1/2}, in the case that the lowest-dimensional component of G 4 is non-zero. Moreover, it is shown how one can calculate the first-order correction to the dimension-zero torsion and thus to the supergravity equations of motion given an explicit expression for this object in terms of the supergravity fields. The version of the theory with both a four-form and a seven-form is discussed in the presence of the five-brane anomaly-cancelling term. It is shown that the supersymmetric completion of this term exists and it is argued that it is the unique anomaly-cancelling invariant at this dimension which is at least quartic in the fields. This implies that the first deformation of the theory is completely determined by the anomaly term from which one can, in principle, read off the corrections to all of the superspace field strength tensors. (author)

  10. Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes

    Directory of Open Access Journals (Sweden)

    Jinhua Bao

    2009-01-01

    Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.

  11. A stable higher order space time Galerkin marching-on-in-time scheme

    KAUST Repository

    Pray, Andrew J.

    2013-07-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.

  12. A Content Analysis of General Chemistry Laboratory Manuals for Evidence of Higher-Order Cognitive Tasks

    Science.gov (United States)

    Domin, Daniel S.

    1999-01-01

    The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.

  13. Three weights higher order Hardy type inequalities

    Directory of Open Access Journals (Sweden)

    Aigerim A. Kalybay

    2006-01-01

    Full Text Available We investigate the following three weights higher order Hardy type inequality (0.1 ‖g‖q,u≤  C‖Dρkg‖p,v where Dρi denotes the following weighted differential operator: {dig(tdti,i=0,1,...,m−1,di−mdti−m(p(tdmg(tdtm,i=m,m+1,...,k, for a weight function ρ(⋅. A complete description of the weights u, v and ρ so that (0.1 holds was given in [4] for the case 1

  14. A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.

    Science.gov (United States)

    Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn

    2015-11-01

    Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Modeling Human Behaviour with Higher Order Logic: Insider Threats

    DEFF Research Database (Denmark)

    Boender, Jaap; Ivanova, Marieta Georgieva; Kammuller, Florian

    2014-01-01

    it to the sociological process of logical explanation. As a case study on modeling human behaviour, we present the modeling and analysis of insider threats as a Higher Order Logic theory in Isabelle/HOL. We show how each of the three step process of sociological explanation can be seen in our modeling of insider’s state......, its context within an organisation and the effects on security as outcomes of a theorem proving analysis....

  16. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    OpenAIRE

    Erkinjon Karimov; Sardor Pirnafasov

    2017-01-01

    In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  17. Asymptotic estimates and exponential stability for higher-order monotone difference equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2005-01-01

    Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.

  18. Asymptotic estimates and exponential stability for higher-order monotone difference equations

    Directory of Open Access Journals (Sweden)

    Mihály Pituk

    2005-03-01

    Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.

  19. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    Science.gov (United States)

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.

  20. Higher-order human telomeric G-quadruplex DNA metalloenzymes enhance enantioselectivity in the Diels-Alder reaction.

    Science.gov (United States)

    Li, Yinghao; Jia, Guoqing; Wang, Changhao; Cheng, Mingpan; Li, Can

    2015-03-02

    Short human telomeric (HT) DNA sequences form single G-quadruplex (G4 ) units and exhibit structure-based stereocontrol for a series of reactions. However, for more biologically relevant higher-order HT G4 -DNAs (beyond a single G4 unit), the catalytic performances are unknown. Here, we found that higher-order HT G4 -DNA copper metalloenzymes (two or three G4 units) afford remarkably higher enantioselectivity (>90 % ee) and a five- to sixfold rate increase, compared to a single G4 unit, for the Diels-Alder reaction. Electron paramagnetic resonance (EPR) and enzymatic kinetic studies revealed that the distinct catalytic function between single and higher-order G4 -DNA copper metalloenzymes can be attributed to different Cu(II) coordination environments and substrate specificity. Our finding suggests that, like protein enzymes and ribozymes, higher-order structural organization is crucial for G4 -DNA-based catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On a higher order multi-term time-fractional partial differential equation involving Caputo-Fabrizio derivative

    OpenAIRE

    Pirnapasov, Sardor; Karimov, Erkinjon

    2017-01-01

    In the present work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. We investigate a boundary value problem for fractional heat equation involving higher order Caputo-Fabrizio derivatives in time-variable. Using method of separation of variables and integration by parts, we reduce fractional order PDE to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  2. Facilitating the development of higher-order thinking skills (HOTS) of novice nursing postgraduates in Africa.

    Science.gov (United States)

    Roets, Lizeth; Maritz, Jeanette

    2017-02-01

    International research in nursing education has shown to be deficient regarding both the quality of research produced and the building of disciplinary capacity. The CHENMA (Collaboration for Higher Education of Nurses and Midwives in Africa) project aimed to strengthen nursing and midwifery expertise in Africa. Sixteen French-speaking students of the Democratic Republic of the Congo (DRC) enrolled for a master's degree in nursing midwifery at a South African university in 2008. Ten of the initial 16 students graduated with a master's degree in 2012. One student withdrew and five students completed a postgraduate diploma in midwifery. The objective of this paper is to explore the quality of the output of those master's degree students, namely their dissertation (with specific reference to the demonstration of HOTS). An exploratory, evaluative, single, descriptive case study was utilised. Realist, purposeful sampling was used. Six of the 10 completed final dissertations were evaluated as well as three reflective reports from the supervisor, translator and critical reader. The findings indicated that most dissertations fell below the expected standard, with a paucity of higher-order thinking and application skills. Language, and possibly cultural dynamics, seemed to be the largest barrier to learning and communication. The dissertations lacked conceptual skills, scientific writing skills, logical order of thought and congruency. Analysis of the dissertations revealed a limited ability of novice scholars to explore the nature of information and to interpret and manipulate the data in a novel way. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Ding, Yunhong; Frandsen, Lars Hagedorn

    2015-01-01

    An ultra-compact and broadband higher order-mode pass filter in a 1D photonic crystal silicon waveguide is proposed and experimentally demonstrated. The photonic crystal is designed for the lower order mode to work in the photonic band gap, while the higher order mode is located in the air band....... Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a similar to 15-mu m-long first-order-mode pass...

  4. Optimizing students’ scientific communication skills through higher order thinking virtual laboratory (HOTVL)

    Science.gov (United States)

    Sapriadil, S.; Setiawan, A.; Suhandi, A.; Malik, A.; Safitri, D.; Lisdiani, S. A. S.; Hermita, N.

    2018-05-01

    Communication skill is one skill that is very needed in this 21st century. Preparing and teaching this skill in teaching physics is relatively important. The focus of this research is to optimizing of students’ scientific communication skills after the applied higher order thinking virtual laboratory (HOTVL) on topic electric circuit. This research then employed experimental study particularly posttest-only control group design. The subject in this research involved thirty senior high school students which were taken using purposive sampling. A sample of seventy (70) students participated in the research. An equivalent number of thirty five (35) students were assigned to the control and experimental group. The results of this study found that students using higher order thinking virtual laboratory (HOTVL) in laboratory activities had higher scientific communication skills than students who used the verification virtual lab.

  5. Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.

    Science.gov (United States)

    Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto

    2014-06-10

    Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.

  6. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)

    1995-09-01

    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  7. Higher-order gravity and the classical equivalence principle

    Science.gov (United States)

    Accioly, Antonio; Herdy, Wallace

    2017-11-01

    As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.

  8. Intention Recognition for Partial-Order Plans Using Dynamic Bayesian Networks

    OpenAIRE

    Krauthausen, Peter; Hanebeck, Uwe D.

    2009-01-01

    In this paper, a novel probabilistic approach to intention recognition for partial-order plans is proposed. The key idea is to exploit independences between subplans to substantially reduce the state space sizes in the compiled Dynamic Bayesian Networks. This makes inference more efficient. The main con- tributions are the computationally exploitable definition of subplan structures, the introduction of a novel Lay- ered Intention Model and a Dynamic Bayesian Net- work representation with an ...

  9. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    Science.gov (United States)

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  10. Higher-order topological insulators and superconductors protected by inversion symmetry

    Science.gov (United States)

    Khalaf, Eslam

    2018-05-01

    We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.

  11. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    Directory of Open Access Journals (Sweden)

    Erkinjon Karimov

    2017-10-01

    Full Text Available In this work we discuss higher order multi-term partial differential equation (PDE with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  12. Advances in studying order and dynamics in condensed matter by NMR

    International Nuclear Information System (INIS)

    Voda, M.A.

    2006-01-01

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  13. Advances in studying order and dynamics in condensed matter by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Voda, M.A.

    2006-07-13

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  14. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    Science.gov (United States)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  15. Higher-order Peregrine combs and Peregrine walls for the variable-coefficient Lenells-Fokas equation

    Science.gov (United States)

    Wang, Zi-Qi; Wang, Xin; Wang, Lei; Sun, Wen-Rong; Qi, Feng-Hua

    2017-02-01

    In this paper, we study the variable-coefficient Lenells-Fokas (LF) model. Under large periodic modulations in the variable coefficients of the LF model, the generalized Akhmediev breathers develop into the breather multiple births (BMBs) from which we obtain the Peregrine combs (PCs). The PCs can be considered as the limiting case of the BMBs and be transformed into the Peregrine walls (PWs) with a specific amplitude of periodic modulation. We further investigate the spatiotemporal characteristics of the PCs and PWs analytically. Based on the second-order breather and rogue-wave solutions, we derive the corresponding higher-order structures (higher-order PCs and PWs) under proper periodic modulations. What is particularly noteworthy is that the second-order PC can be converted into the Peregrine pyramid which exhibits the higher amplitude and thickness. Our results could be helpful for the design of experiments in the optical fiber communications.

  16. Threshold resummation and higher order effects in QCD

    International Nuclear Information System (INIS)

    Ringer, Felix Maximilian

    2015-01-01

    Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.

  17. Nonlinear Dynamics of Memristor Based 2nd and 3rd Order Oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz

    2011-05-01

    Exceptional behaviours of Memristor are illustrated in Memristor based second order (Wien oscillator) and third order (phase shift oscillator) oscillator systems in this Thesis. Conventional concepts about sustained oscillation have been argued by demonstrating the possibility of sustained oscillation with oscillating resistance and dynamic poles. Mathematical models are also proposed for analysis and simulations have been presented to support the surprising characteristics of the Memristor based oscillator systems. This thesis also describes a comparative study among the Wien family oscillators with one Memristor. In case of phase shift oscillator, one Memristor and three Memristors systems are illustrated and compared to generalize the nonlinear dynamics observed for both 2nd order and 3rd order system. Detail explanations are provided with analytical models to simplify the unconventional properties of Memristor based oscillatory systems.

  18. Higher-order asymptotic homogenization of periodic materials with low scale separation

    NARCIS (Netherlands)

    Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D

    2016-01-01

    In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical

  19. First Measurements of Higher Order Optics Parameters in the LHC

    CERN Document Server

    Vanbavinckhove, G; Bartolini, R; Calaga, R; Giovannozzi, M; Maclean, E H; Miyamoto, R; Schmidt, F; Tomas, R

    2011-01-01

    Higher order effects can play an important role in the performance of the LHC. Lack of knowledge of these pa- rameters can increase the tune footprint and compromise the beam lifetime. First measurements of these parameters at injection and flattop have been conducted. Detailed sim- ulations are compared to the measurements together with discussions on the measurement limitations.

  20. Development of higher order mode couplers at Cornell

    International Nuclear Information System (INIS)

    Amato, J.C.

    1988-01-01

    Higher order mode (HOM) couplers are integral parts of a superconducting accelerator cavity. The damping which the couplers must provide is dictated by the frequency and shunt impedance of the cavity modes as well as by the stability requirements of the accelerator incorporating the cavities. Cornell's 5-cell 1500 MHz elliptical cavity was designed for use in a 50 x 50 GeV electron-positron storage ring with a total beam current of 3.5 mA (CESR-II). HOM couplers for the Cornell cavity were designed and evaluated with this machine in mind. The development of these couplers is described in this paper. 8 references, 8 figures

  1. Higher order branching of periodic orbits from polynomial isochrones

    Directory of Open Access Journals (Sweden)

    B. Toni

    1999-09-01

    Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.

  2. Predictors of third and Higher order births in India

    Directory of Open Access Journals (Sweden)

    Payal Singh

    2015-12-01

    Full Text Available Background: Total fertility rate (TFR reflecting population growth is closely related to higher order parity progression. Many Indian states reached replacement level of TFR, but still states constituting nearly 40% population are with TFR ≥ 3. The predictors are the desire of son’s, poor contraceptives practices, younger age at marriage, child loss and shorter birth spacing. Objective: This analysis assessed the degree of relation of 3rd and higher order parity progression with the above mentioned predictors. Material and Methods: State/Union Territories wise proportions of women: progressing to ≥3 births, more sons desire, birth spacing <24 months, adopting modern contraception and median marriage age <18 years along with infant mortality rate (IMR were taken from NFHS-III report. Correlation matrix and stepwise forward multiple regression carried. Significance was seen at 5%. Results: Hindi speaking states constituting 38.92% nation population recorded TFR ≥3. Positive correlation of mothers progressing ≥ 3 births was highest (0.746 with those desiring more sons followed by IMR (0.445; while maximum negative correlation with those practicing modern contraceptives (-0.565 followed by median age at marriage (-0.391. Multiple regression analysis in order identified desire of more sons, practicing modern contraception and shorter birth spacing as the significant predictors and jointly explained 77.9% of the total variation with gain of 15.5% by adding modern contraceptive practice and 8.3% by adding shorter birth spacing. Conclusions: Desire of more sons appeared the most important predictor to progress ≥3 births that is governed by society culture and educational attainment, require attitudinal change. Further, mothers need motivation to practice both spacing and terminal methods once family is complete.

  3. OSCILLATION CRITERIA FOR A FOURTH ORDER SUBLINEAR DYNAMIC EQUATION ON TIME SCALE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Some new criteria for the oscillation of a fourth order sublinear and/or linear dynamic equation on time scale are established. Our results are new for the corresponding fourth order differential equations as well as difference equations.

  4. Dynamical hierarchies - A summary

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, S.; Barrett, C.L. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, NM (United States); Olesen, M.W. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    This paper summarizes some of the problems associated with the generation of higher order emergent structures in formal dynamical systems. In biological systems, higher order hyperstructures occur both in an intuitive and a formal sense: monomers, polymers, membranes, organelles, cells, tissues, organs, etc. constitute an observable hierarchy, apparently generated by the underlying biomolecular process. However, in models and simulations of these systems, it has turned out to be quite difficult to produce higher order emergent structures from first principles. The first problem is to agree on what a higher order structure is. An emergent structure can be defined through an introduction of an observational function. If a property can be observed in the dynamics, but not at the level of the fundamental first order interacting structures, we define it to be emergent. It is well known that second order structures occur relatively easy in simulation, so the problem is how to proceed to third and higher order without external interference. A third order structure is defined through the interaction of second order structures forming a new observable not found at the lower levels.

  5. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  6. Higher-Order Blind Signal Feature Separation: An Enabling Technology for Battlefield Awareness

    National Research Council Canada - National Science Library

    Su, Wei; Kosinski, John A

    2006-01-01

    Higher-order transform blind signal feature classification is discussed for separating bar-shaped, circular, squared, circular-squared, and offset-diamonded constellation patterns of digital linear signals...

  7. Experimental investigations of higher-order springing and whipping-WILS project

    Directory of Open Access Journals (Sweden)

    Hong Sa Young

    2014-12-01

    Full Text Available Springing and whipping are becoming increasingly important considerations in ship design as container ships increase in size. In this study, the springing and whipping characteristics of a large container ship were investigated through a series of systematic model tests in waves. A multi-segmented hull model with a backbone was adopted for measurement of springing and whipping signals. A conversion method for extracting torsion springing and whipping is described in this paper for the case of an open-section backbone. Higher-order springing, higher-mode torsion responses, and the effects of linear and nonlinear springing in irregular waves are highlighted in the discussion.

  8. A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series

    International Nuclear Information System (INIS)

    Selvi, Eşref; Selver, M Alper; Güzeliş, Cüneyt; Dicle, Oǧuz

    2014-01-01

    Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks

  9. Equivalence of two formalisms for calculating higher order synchrotron sideband spin resonances

    International Nuclear Information System (INIS)

    Mane, S.R.

    1988-01-01

    Synchrotron sideband resonances of a first order spin resonance are generally regarded as the most important higher order spin resonances in a high-energy storage ring. Yokoya's formula for these resonances is rederived, including some extra terms, which he neglected, but which turn out to be of comparable magnitude to the terms retained. Including these terms, Yokoya's formalism and the SMILE algorithm are shown to be equivalent to leading order in the resonance strengths. The theoretical calculations are shown to agree with certain measurements from SPEAR

  10. Multipacting and higher order mode analysis of 325 MHz single spoke resonators

    International Nuclear Information System (INIS)

    Pal, Mukesh Kumar; Gaur, Rahul; Kumar, Vinit

    2015-01-01

    Superconducting Single Spoke Resonators (SSRs) will be used to accelerate the H - ions from 3 MeV to 160 MeV in the injector linac for the proposed Indian Spallation Neutron Source (ISNS) at RRCAT. Electromagnetic design studies of 325 MHz SSRs have been performed for βg = 0.11, 0.22 and 0.42. Performance of SSRs are typically limited by multipacting phenomenon and higher order modes. In our design, we have performed detailed studies of electron multipacting phenomenon, which is a resonant process, using a computer code CST-PS. Based on this analysis, refinements in the geometry of the SSRs have been made, in order to reduce the growth rate of multipacting. We have also carried out extensive analysis of Higher Order Mode (HOM) for the SSR structure, using the computer code CST-MWS, where the R/Q parameter has been calculated for monopole, dipole and quadrupole HaMs. Details of these calculations will be presented in this paper. (author)

  11. A note on simulation and dynamical hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, S.; Barrett, C.L. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, Sante Fe, NM (United States); Baas, N.A. [Trondheim Univ. (Norway). Dept. of Mathematical Sciences; Olesen, M.W. [Los Alamos National Lab., NM (United States)

    1996-02-22

    This paper summarizes some of the problems associated with the generation of higher order emergent structures in formal dynamical systems as well as some of the formal properties of dynamical systems capable of generating higher order structures.

  12. Higher-order aberrations and visual acuity after LASEK.

    Science.gov (United States)

    Urgancioglu, Berrak; Bilgihan, Kamil; Ozturk, Sertac

    2008-08-01

    To determine ocular higher-order aberrations (HOAs) in eyes with supernormal vision after myopic astigmatic laser subepithelial keratomileusis (LASEK) and to compare the findings with those in eyes with natural supernormal vision. Ocular HOAs were measured after LASEK in 20 eyes of 12 myopic astigmatic patients with postoperative uncorrected visual acuity (UCVA) of >20/16 (group 1). Patients who were included in the study had no visual symptoms like glare, halo or double vision. The measurements were taken 8.3 +/- 3 months after LASEK surgery. In group 2 ocular HOAs were examined in 20 eyes of 10 subjects with natural UCVA of >20/16 as a control. Measurements were taken across a pupil with a diameter of 4.0 mm and 6.0 mm. Root-mean-square (RMS) values of HOAs, Z(3)-1, Z(3)1, Z(4)0, Z(5)-1, Z(5)1 and Z(6)0 were analyzed. The mean RMS values for each order were higher in group 1 when compared with group 2 at 4.0 mm and 6.0 mm pupil diameters. There was no statistically significant difference between groups in spherical and coma aberrations (P > 0.05). Mean RMS values for total HOAs were 0.187 +/- 0.09 microm at 4.0 mm and 0.438 +/- 0.178 microm at 6.0 mm pupil in group 1 and 0.120 +/- 0.049 microm at 4.0 mm and 0.344 +/- 0.083 microm at 6.0 mm pupil in group 2. The difference between groups in total HOAs was statistically significant at 4.0 mm and 6.0 mm pupil diameters (P < 0.05). Ocular HOAs exist in eyes with supernormal vision. After LASEK, the amount of HOAs of the eye increases under both mesopic and photopic conditions. However the amount of HOA increase does not seem to be consistent with visual symptoms.

  13. TADs are 3D structural units of higher-order chromosome organization in Drosophila

    Science.gov (United States)

    Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo

    2018-01-01

    Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869

  14. A review of higher order strain gradient theories of plasticity: Origins ...

    Indian Academy of Sciences (India)

    require higher order boundary conditions that enable us to model effects of disloca- ..... where ǫ0 is a reference strain, σ0 the yield stress and n the strain hardening exponent. The ...... Petch N J 1953 J. Iron Steel Inst. London 173: 25. Pantleon ...

  15. MHD stability analysis using higher order spline functions

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Akihiro [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi (Japan); Todoroki, Jiro; Sanuki, Heiji

    1999-04-01

    The eigenvalue problem of the linearized magnetohydrodynamic (MHD) equation is formulated by using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline functions of degree p{sub 1} (degree p{sub 2}), which is continuously c{sub 1}-th (c{sub 2}-th) differentiable on neighboring finite elements, the sufficient conditions for the good approximation is given by p{sub 1}{>=}p{sub 2}+1, c{sub 1}{<=}c{sub 2}+1, (c{sub 1}{>=}1, p{sub 2}{>=}c{sub 2}{>=}0). The influence of the numerical integration upon the convergence of calculated eigenvalues is discussed. (author)

  16. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    Science.gov (United States)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  17. From "Hello" to Higher-Order Thinking: The Effect of Coaching and Feedback on Online Chats

    Science.gov (United States)

    Stein, David S.; Wanstreet, Constance E.; Slagle, Paula; Trinko, Lynn A.; Lutz, Michelle

    2013-01-01

    This exploratory study examined the effect of a coaching and feedback intervention in teaching presence and social presence on higher-order thinking in an online community of inquiry. Coaching occurred before each chat, and feedback was provided immediately afterwards. The findings suggest that over time, the frequency of higher-order thinking…

  18. Multi-domain, higher order level set scheme for 3D image segmentation on the GPU

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Zhang, Qin; Anton, François

    2010-01-01

    to evaluate level set surfaces that are $C^2$ continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming...

  19. Predicting early academic achievement: The role of higher-versus lower-order personality traits

    Directory of Open Access Journals (Sweden)

    Zupančič Maja

    2011-01-01

    Full Text Available The study explored the role of children’s (N = 193 individual differences and parental characteristics at the beginning of the first year of schooling in predicting students’ attainment of academic standards at the end of the year. Special attention was paid to children’s personality as perceived by the teachers’ assistants. Along with parents’ education, parenting practices and first-graders’ cognitive ability, the incremental predictive power of children’s higher-order (robust personality traits was compared to the contribution of lower-order (specific traits in explaining academic achievement. The specific traits provided a somewhat more accurate prediction than the robust traits. Unique contributions of maternal authoritative parenting, children’s cognitive ability, and personality to academic achievement were established. The ratings of first-graders’ conscientiousness (a higher-order trait improved the prediction of academic achievement based on parenting and cognitive ability by 12%, whereas assistant teacher’s perceived children’s intelligence and low antagonism (lower-order traits improved the prediction by 17%.

  20. Holographic conductivity of holographic superconductors with higher-order corrections

    Energy Technology Data Exchange (ETDEWEB)

    Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghazanfari, Afsoon; Dehyadegari, Amin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2018-02-15

    We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω/T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature. (orig.)

  1. The higher order flux mapping method in large size PHWRs

    International Nuclear Information System (INIS)

    Kulkarni, A.K.; Balaraman, V.; Purandare, H.D.

    1997-01-01

    A new higher order method is proposed for obtaining flux map using single set of expansion mode. In this procedure, one can make use of the difference between predicted value of detector reading and their actual values for determining the strength of local fluxes around detector site. The local fluxes are arising due to constant perturbation changes (both extrinsic and intrinsic) taking place in the reactor. (author)

  2. Connection between weighted LPC and higher-order statistics for AR model estimation

    NARCIS (Netherlands)

    Kamp, Y.; Ma, C.

    1993-01-01

    This paper establishes the relationship between a weighted linear prediction method used for robust analysis of voiced speech and the autoregressive modelling based on higher-order statistics, known as cumulants

  3. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  4. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  5. Hamilton-Jacobi approach for first order actions and theories with higher derivatives

    International Nuclear Information System (INIS)

    Bertin, M.C.; Pimentel, B.M.; Pompeia, P.J.

    2008-01-01

    In this work, we analyze systems described by Lagrangians with higher order derivatives in the context of the Hamilton-Jacobi formalism for first order actions. Two different approaches are studied here: the first one is analogous to the description of theories with higher derivatives in the hamiltonian formalism according to [D.M. Gitman, S.L. Lyakhovich, I.V. Tyutin, Soviet Phys. J. 26 (1983) 730; D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, New York, Berlin, 1990] the second treats the case where degenerate coordinate are present, in an analogy to reference [D.M. Gitman, I.V. Tyutin, Nucl. Phys. B 630 (2002) 509]. Several examples are analyzed where a comparison between both approaches is made

  6. Compound waves in a higher order nonlinear model of thermoviscous fluids

    DEFF Research Database (Denmark)

    Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.

    2016-01-01

    A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...

  7. H2O2-induced higher order chromatin degradation: A novel ...

    Indian Academy of Sciences (India)

    Unknown

    mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic ... clease works through a single strand scission mechanism ... a great mutagenic risk to the surviving cells, because en-.

  8. Dynamic Monte Carlo Simulations of Phase Ordering in Br Electrosorption on Ag(100)

    Science.gov (United States)

    Mitchell, S. J.; Brown, G.; Rikvold, P. A.

    2000-03-01

    We study the dynamics of Br electrosorption on single-crystal Ag(100) by Monte Carlo simulation. The system has a second-order phase transition from a low-coverage disordered phase at more negative potentials to a doubly degenerate c(2× 2) ordered phase at more positive potentials.(B.M. Ocko, et al.), Phys. Rev. Lett. 79, 1511 (1997). Effective lateral interactions were estimated by fitting equilibrium Monte Carlo isotherms to experiments. These are well described by nearest-neighbor exclusion and repulsive 1/r^3 interactions.(M.T.M. Koper, J. Electroanal. Chem. 450), 189 (1997). Considering adsorption/desorption and diffusion with barriers estimated from ab-initio calculations,(A. Ignaczak and J.A.N.F. Gomes, J. Electroanal. Chem. 420), 71 (1997). we simulate the time dependent Br coverage, order parameter, and x-ray scattering intensity following sudden potential steps across the phase boundary. For steps far into the ordered phase, dynamical scaling is observed. For smaller steps, the dynamics are more complicated. We also analyze hysteresis in a simulated cyclic-voltammetry experiment. Movies at http://www.scri.fsu.edu/ ~mitchell/.

  9. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    Science.gov (United States)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  10. Transition, coexistence, and interaction of vector localized waves arising from higher-order effects

    International Nuclear Information System (INIS)

    Liu, Chong; Yang, Zhan-Ying; Zhao, Li-Chen; Yang, Wen-Li

    2015-01-01

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.

  11. Transition, coexistence, and interaction of vector localized waves arising from higher-order effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chong [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); Zhao, Li-Chen, E-mail: zhaolichen3@163.com [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xi’an 710069 (China)

    2015-11-15

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.

  12. In-Service Teacher Education: Asking Questions for Higher Order Thinking in Visual Literacy

    Science.gov (United States)

    Moodley, Visvaganthie

    2013-01-01

    The kinds of questions teachers ask may thwart or promote learner high-order thinking; teachers themselves must have expertise in questioning skills to promote higher order cognition among learners. Drawing on experiential knowledge of assessment, and as an English-teaching professional development programme (PDP) facilitator, I demonstrate that…

  13. The Relationship between Higher Order Thinking Skills and Academic Performance of Student in Mathematics Instruction

    Science.gov (United States)

    Tanujaya, Benidiktus; Mumu, Jeinne; Margono, Gaguk

    2017-01-01

    Higher order thinking skills (HOTS) is one of important aspects in education. Students with high level of higher order thinking skills tend to be more successful. However, do this phenomenon also happen in the learning of Mathematics? To answer this question, this research aims to study the relationship between HOTS and students' academic…

  14. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  15. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Wang, Han, E-mail: wang-han@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China); Gao, Xingyu; Song, Haifeng [Institute of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China); Laboratory of Computational Physics, Beijing (China)

    2016-06-28

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn–Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.

  16. Dynamical Consensus Algorithm for Second-Order Multi-Agent Systems Subjected to Communication Delay

    International Nuclear Information System (INIS)

    Liu Chenglin; Liu Fei

    2013-01-01

    To solve the dynamical consensus problem of second-order multi-agent systems with communication delay, delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results. (interdisciplinary physics and related areas of science and technology)

  17. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    Science.gov (United States)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  18. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories

    International Nuclear Information System (INIS)

    Garrahan, Juan P; Jack, Robert L; Lecomte, Vivien; Duijvendijk, Kristina van; Wijland, Frederic van; Pitard, Estelle

    2009-01-01

    We investigate the dynamics of kinetically constrained models of glass formers by analysing the statistics of trajectories of the dynamics, or histories, using large deviation function methods. We show that, in general, these models exhibit a first-order dynamical transition between active and inactive dynamical phases. We argue that the dynamical heterogeneities displayed by these systems are a manifestation of dynamical first-order phase coexistence. In particular, we calculate dynamical large deviation functions, both analytically and numerically, for the Fredrickson-Andersen model, the East model, and constrained lattice gas models. We also show how large deviation functions can be obtained from a Landau-like theory for dynamical fluctuations. We discuss possibilities for similar dynamical phase-coexistence behaviour in other systems with heterogeneous dynamics

  19. Higher order mode analysis of the SNS superconducting linac

    CERN Document Server

    Sang Ho Kim; Dong Jeon; Sundelin, R

    2001-01-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...

  20. Correlated stopping, proton clusters and higher order proton cumulants

    Energy Technology Data Exchange (ETDEWEB)

    Bzdak, Adam [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Skokov, Vladimir [RIKEN/BNL, Brookhaven National Laboratory, Upton, NY (United States)

    2017-05-15

    We investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N{sub part} lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √(s) = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originate either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton). (orig.)

  1. Higher-order Nielsen numbers

    Directory of Open Access Journals (Sweden)

    Saveliev Peter

    2005-01-01

    Full Text Available Suppose , are manifolds, are maps. The well-known coincidence problem studies the coincidence set . The number is called the codimension of the problem. More general is the preimage problem. For a map and a submanifold of , it studies the preimage set , and the codimension is . In case of codimension , the classical Nielsen number is a lower estimate of the number of points in changing under homotopies of , and for an arbitrary codimension, of the number of components of . We extend this theory to take into account other topological characteristics of . The goal is to find a "lower estimate" of the bordism group of . The answer is the Nielsen group defined as follows. In the classical definition, the Nielsen equivalence of points of based on paths is replaced with an equivalence of singular submanifolds of based on bordisms. We let , then the Nielsen group of order is the part of preserved under homotopies of . The Nielsen number of order is the rank of this group (then . These numbers are new obstructions to removability of coincidences and preimages. Some examples and computations are provided.

  2. Structure and Dynamics of Quasi-Ordered Systems

    International Nuclear Information System (INIS)

    Eckert, J.; Redondo, A.; Henson, N.J.; Wang, W.; Hay, P.J.

    1999-01-01

    The functionality of many materials of both fundamental and technological interest is often critically dependent on the nature and extent of any disorder that may be present. In addition, it is often difficult to understand the nature of disorder in quite well ordered systems. There is therefore an urgent need to develop better tools, both experimental and computational, for the study of such quasi-ordered systems. To this end, the authors have used neutron diffraction studies in an attempt to locate small metal clusters or molecules randomly distributed inside microporous catalytic materials. Specifically, they have used pair distribution function (PDF) analysis, as well as inelastic neutron scattering (INS) spectroscopy, to study interactions between adsorbate molecules and a microporous matrix. They have interfaced these experimental studies with computations of PDF analysis as well as modeling of the dynamics of adsorbates. These techniques will be invaluable in elucidating the local structure and function of many of these classes of materials

  3. Analyzes of students’ higher-order thinking skills of heat and temperature concept

    Science.gov (United States)

    Slamet Budiarti, Indah; Suparmi, A.; Sarwanto; Harjana

    2017-11-01

    High order thinking skills refer to three highest domains of the revised Bloom Taxonomy. The aims of the research were to analyze the student’s higher-order thinking skills of heat and temperature concept. The samples were taken by purposive random sampling technique consisted of 85 high school students from 3 senior high schools in Jayapura city. The descriptive qualitative method was employed in this study. The data were collected by using tests and interviews regarding the subject matters of heat and temperature. Based on the results of data analysis, it was concluded that 68.24% of the students have a high order thinking skills in the analysis, 3.53% of the students have a high order thinking skills in evaluating, and 0% of the students have a high order thinking skills in creation.

  4. Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

    Science.gov (United States)

    Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong

    2017-09-01

    In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council

  5. Alignment of learning objectives and assessments in therapeutics courses to foster higher-order thinking.

    Science.gov (United States)

    FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri

    2015-02-17

    To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.

  6. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    Science.gov (United States)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  7. Shape invariant higher-order Bessel-like beams carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Ismail, Y

    2012-09-01

    Full Text Available -1 Journal of Optics September 2012/ Vol. 14 Shape invariant higher-order Bessel-like beams carrying orbital angular momentum Y Ismail1,2, N Khilo3, V Belyi3 and A Forbes1,2 1 School of Physics, University of KwaZulu-Natal, Private Bag X54001...

  8. An initial framework for the language of higher-order thinking mathematics practices

    Science.gov (United States)

    Staples, Megan E.; Truxaw, Mary P.

    2012-09-01

    This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: language of generalisation, language of comparison, language of proportional reasoning, and language of analysing impact. These categories were developed out of our collaborative work to design and implement higher-order thinking tasks with a group of Grade 9 (14- and 15-year-olds) teachers teaching in a linguistically diverse setting; analyses of student work samples on these tasks; and our knowledge of the literature. We describe each type of language demand and then analyse student work in each category to reveal linguistic challenges facing students as they engage these mathematical tasks. Implications for teaching and professional development are discussed.

  9. General relativity and gauge gravity theories of higher order

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1998-01-01

    It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one

  10. A New Model of the Fractional Order Dynamics of the Planetary Gears

    Directory of Open Access Journals (Sweden)

    Vera Nikolic-Stanojevic

    2013-01-01

    Full Text Available A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of vibrations and noise in the gear transmission. Dynamic model of the planetary gears with four degrees of freedom is used. Applying the basic principles of analytical mechanics and taking the initial and boundary conditions into consideration, it is possible to obtain the system of equations representing physical meshing process between the two or more gears. This investigation was focused to a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are obtained, and a visualization is presented. By using MathCAD the solution is obtained.

  11. Impact of higher-order flows in the moment equations on Pfirsch-Schlüter friction coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M., E-mail: honda.mitsuru@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2014-09-15

    The impact of the higher-order flows in the moment approach on an estimate of the friction coefficients is numerically examined. The higher-order flows are described by the lower-order hydrodynamic flows using the collisional plasma assumption. Their effects have not been consistently taken into account thus far in the widely used neoclassical transport codes based on the moment equations in terms of the Pfirsch-Schlüter flux. Due to numerically solving the friction-flow matrix without using the small-mass ratio expansion, it is clearly revealed that incorporating the higher-order flow effects is of importance especially for plasmas including multiple hydrogenic ions and other lighter species with similar masses.

  12. Limit cycles via higher order perturbations for some piecewise differential systems

    Science.gov (United States)

    Buzzi, Claudio A.; Lima, Maurício Firmino Silva; Torregrosa, Joan

    2018-05-01

    A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x‧ ,y‧) =(- y + εf(x , y , ε) , x + εg(x , y , ε)) . In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n , no more than Nn - 1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Liénard differential systems providing better upper bounds for higher order perturbation in ε, showing also when they are reached. The Poincaré-Pontryagin-Melnikov theory is the main technique used to prove all the results.

  13. Higher Order Thinking in the Australian Army Suite of Logistic Officer Courses

    National Research Council Canada - National Science Library

    Bradford, Scott R

    2006-01-01

    .... The current Suite of Logistic Officer Courses (SOLOC) has been recently criticized for failing to meet this requirement, with the general perception that there is a distinct lack of higher-order thinking competencies within this continuum...

  14. A higher-order numerical framework for stochastic simulation of chemical reaction systems.

    KAUST Repository

    Székely, Tamás

    2012-07-15

    BACKGROUND: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for example in gene regulation, biochemical cascades and cell-cell interaction. However most discrete stochastic simulation techniques are slow. We apply Richardson extrapolation to the moments of three fixed-step methods, the Euler, midpoint and θ-trapezoidal τ-leap methods, to demonstrate the power of stochastic extrapolation. The extrapolation framework can increase the order of convergence of any fixed-step discrete stochastic solver and is very easy to implement; the only condition for its use is knowledge of the appropriate terms of the global error expansion of the solver in terms of its stepsize. In practical terms, a higher-order method with a larger stepsize can achieve the same level of accuracy as a lower-order method with a smaller one, potentially reducing the computational time of the system. RESULTS: By obtaining a global error expansion for a general weak first-order method, we prove that extrapolation can increase the weak order of convergence for the moments of the Euler and the midpoint τ-leap methods, from one to two. This is supported by numerical simulations of several chemical systems of biological importance using the Euler, midpoint and θ-trapezoidal τ-leap methods. In almost all cases, extrapolation results in an improvement of accuracy. As in the case of ordinary and stochastic differential equations, extrapolation can be repeated to obtain even higher-order approximations. CONCLUSIONS: Extrapolation is a general framework for increasing the order of accuracy of any fixed-step stochastic solver. This enables the simulation of complicated systems in less time, allowing for more realistic biochemical problems to be solved.

  15. Growth of meromorphic solutions of higher-order linear differential equations

    Directory of Open Access Journals (Sweden)

    Wenjuan Chen

    2009-01-01

    Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.

  16. Higher-order processes in x-ray photoionization of atoms

    International Nuclear Information System (INIS)

    Kanter, E. P.; Dunford, R. W.; Krassig, B.; Southworth, S. H.; Young, L.

    2006-01-01

    There are several fourth-generation X-ray light source projects now underway around the world and it is anticipated that by the end of the decade, one or more of these X-ray free-electron lasers will be operational. In this contribution, we describe recent measurements and future plans to study both multielectron and multiphoton atomic photoionization. Although such higher-order processes are rare with present third-generation sources, they will be commonplace in experimental work with the new sources. The topics we discuss here are double K-shell ionization and two-photon X-ray photoionization

  17. A Frank mixture copula family for modeling higher-order correlations of neural spike counts

    International Nuclear Information System (INIS)

    Onken, Arno; Obermayer, Klaus

    2009-01-01

    In order to evaluate the importance of higher-order correlations in neural spike count codes, flexible statistical models of dependent multivariate spike counts are required. Copula families, parametric multivariate distributions that represent dependencies, can be applied to construct such models. We introduce the Frank mixture family as a new copula family that has separate parameters for all pairwise and higher-order correlations. In contrast to the Farlie-Gumbel-Morgenstern copula family that shares this property, the Frank mixture copula can model strong correlations. We apply spike count models based on the Frank mixture copula to data generated by a network of leaky integrate-and-fire neurons and compare the goodness of fit to distributions based on the Farlie-Gumbel-Morgenstern family. Finally, we evaluate the importance of using proper single neuron spike count distributions on the Shannon information. We find notable deviations in the entropy that increase with decreasing firing rates. Moreover, we find that the Frank mixture family increases the log likelihood of the fit significantly compared to the Farlie-Gumbel-Morgenstern family. This shows that the Frank mixture copula is a useful tool to assess the importance of higher-order correlations in spike count codes.

  18. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    Science.gov (United States)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  19. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  20. Minimization of heat slab nodes with higher order boundary conditions

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1992-01-01

    The accuracy of a numerical solution can be limited by the numerical approximation to the boundary conditions rather than the accuracy of the equations which describe the interior. The study presented in this paper compares the results from two different numerical formulations of the convective boundary condition on the face of a heat transfer slab. The standard representation of the boundary condition in a test problem yielded an unacceptable error even when the heat transfer slab was partitioned into over 300 nodes. A higher order boundary condition representation was obtained by using a second order approximation for the first derivative at the boundary and combining it with the general equation used for inner nodes. This latter formulation produced reasonable results when as few as ten nodes were used

  1. Generation of higher-order squeezing of quantum electromagnetic fields by degenerate four-wave mixing and other processes

    International Nuclear Information System (INIS)

    Li Xizeng; Shan Ying; Mandel, L.

    1988-11-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of degenerate four-wave mixing exhibits higher-order squeezing to all even order. The degree of squeezing increases with the order N, and the higher-order squeeze parameter q N may approach -1. (author). 3 refs, 2 figs

  2. Higher-order multipole amplitude measurement in psi ' -> gamma chi(c2)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Alberto, D.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tian, H. L.; Toth, D.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2011-01-01

    Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2

  3. Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.

    Science.gov (United States)

    Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-09-01

    Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A stable higher order space time Galerkin marching-on-in-time scheme

    KAUST Repository

    Pray, Andrew J.; Shanker, Balasubramaniam; Bagci, Hakan

    2013-01-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order

  5. Exploring item and higher order factor structure with the Schmid-Leiman solution: syntax codes for SPSS and SAS.

    Science.gov (United States)

    Wolff, Hans-Georg; Preising, Katja

    2005-02-01

    To ease the interpretation of higher order factor analysis, the direct relationships between variables and higher order factors may be calculated by the Schmid-Leiman solution (SLS; Schmid & Leiman, 1957). This simple transformation of higher order factor analysis orthogonalizes first-order and higher order factors and thereby allows the interpretation of the relative impact of factor levels on variables. The Schmid-Leiman solution may also be used to facilitate theorizing and scale development. The rationale for the procedure is presented, supplemented by syntax codes for SPSS and SAS, since the transformation is not part of most statistical programs. Syntax codes may also be downloaded from www.psychonomic.org/archive/.

  6. Mixed Higher Order Variational Model for Image Recovery

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2014-01-01

    Full Text Available A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR and restoration quality.

  7. Deformation from symmetry for Schrodinger equations of higher order on unbounded domains

    Directory of Open Access Journals (Sweden)

    Addolorata Salvatore

    2003-06-01

    Full Text Available By means of a perturbation method recently introduced by Bolle, we discuss the existence of infinitely many solutions for a class of perturbed symmetric higher order Schrodinger equations with non-homogeneous boundary data on unbounded domains.

  8. Discrete Maximum Principle for Higher-Order Finite Elements in 1D

    Czech Academy of Sciences Publication Activity Database

    Vejchodský, Tomáš; Šolín, Pavel

    2007-01-01

    Roč. 76, č. 260 (2007), s. 1833-1846 ISSN 0025-5718 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20760514 Keywords : discrete maximum principle * discrete Grren´s function * higher-order elements Subject RIV: BA - General Mathematics Impact factor: 1.230, year: 2007

  9. Higher-order chromatin structure in DSB induction, repair and misrepair

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Kozubek, Stanislav

    2010-01-01

    Roč. 704, 1-3 (2010), s. 88-100 ISSN 1383-5742 R&D Projects: GA MŠk ME 919; GA AV ČR(CZ) IAA500040802; GA AV ČR(CZ) 1QS500040508 Grant - others:GA MŠk(CZ) LC535 Program:LC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA double strand breaks * DSB repair * higher-order chromatin structure Subject RIV: BO - Biophysics Impact factor: 8.741, year: 2010

  10. SMAP Multi-Temporal Soil Moisture and Vegetation Optical Depth Retrievals in Vegetated Regions Including Higher-Order Soil-Canopy Interactions

    Science.gov (United States)

    Feldman, A.; Akbar, R.; Konings, A. G.; Piles, M.; Entekhabi, D.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission utilizes a zeroth order radiative transfer model, known as the tau-omega model, to retrieve soil moisture from microwave brightness temperature observations. This model neglects first order scattering which is significant at L-Band in vegetated regions, or 30% of land cover. Previous higher order algorithms require extensive in-situ measurements and characterization of canopy layer physical properties. We propose a first order retrieval algorithm that approximately characterizes the eight first order emission pathways using rough surface reflectivity, vegetation optical depth (VOD), and scattering albedo terms. The recently developed Multi-Temporal Dual Channel Algorithm (MT-DCA) then retrieves these three parameters in a forward model without ancillary information under the assumption of temporally static albedo and constant vegetation water content between three day SMAP revisits. The approximated scattering terms are determined to be conservative estimates of analytically derived first order scattering terms. In addition, we find the first order algorithm to be more sensitive to surface emission than the tau-omega model. The simultaneously retrieved VOD, previously demonstrated to be proportional to vegetation water content, can provide insight into vegetation dynamics in regions with significant phenology. Specifically, dry tropical forests exhibit an increase in VOD during the dry season in alignment with prior studies that suggest that certain vegetative species green up during the dry season despite limited water availability. VOD retrieved using the first order algorithm and MT-DCA framework can therefore contribute to understanding of tropical forests' role in the carbon, energy, and water cycles, which has yet to be fully explained.

  11. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.

    Science.gov (United States)

    Wan, Zhong Yi; Vlachas, Pantelis; Koumoutsakos, Petros; Sapsis, Themistoklis

    2018-01-01

    The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in

  12. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.

    Directory of Open Access Journals (Sweden)

    Zhong Yi Wan

    Full Text Available The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more

  13. Oscillation of second order neutral dynamic equations with distributed delay

    Directory of Open Access Journals (Sweden)

    Qiaoshun Yang

    2016-06-01

    Full Text Available In this paper, we establish new oscillation criteria for second order neutral dynamic equations with distributed delay by employing the generalized Riccati transformation. The obtained theorems essentially improve the oscillation results in the literature. And two examples are provided to illustrate to the versatility of our main results.

  14. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    Science.gov (United States)

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  15. Educating Grade 6 students for higher-order thinking and its influence on creativity

    Directory of Open Access Journals (Sweden)

    Wajeeh Daher

    2017-08-01

    Full Text Available Educating students for higher-order thinking provides them with tools that turn them into more critical thinkers. This supports them in overcoming life problems that they encounter, as well as becoming an integral part of the society. This students’ education is attended to by educational organisations that emphasise the positive consequences of educating students for higher-order thinking, including creative thinking. One way to do that is through educational programmes that educate for higher-order thinking. One such programme is the Cognitive Research Trust (CoRT thinking programme. The present research intended to examine the effect of the participation of Grade 6 students in a CoRT programme on their creative thinking. Fifty-three students participated in the research; 27 participated in a CoRT programme, while 26 did not participate in such programme. The ANCOVA test showed that the students who participated in the CoRT programme outperformed significantly, in creative thinking, the students who did not. Moreover, the students in the CoRT programme whose achievement scores were between 86 and 100 outperformed significantly the other achievement groups of students. Furthermore, students with reported high ability outperformed significantly the other ability groups of students. The results did not show statistically significant differences in students’ creativity attributed to gender.

  16. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  17. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    Science.gov (United States)

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  18. John Carroll’s Views on Intelligence: Bi-Factor vs. Higher-Order Models

    Directory of Open Access Journals (Sweden)

    A. Alexander Beaujean

    2015-10-01

    Full Text Available The development of factor models is inextricably tied to the history of intelligence research. One of the most commonly-cited scholars in the field is John Carroll, whose three-stratum theory of cognitive ability has been one of the most influential models of cognitive ability in the past 20 years. Nonetheless, there is disagreement about how Carroll conceptualized the factors in his model. Some argue that his model is best represented through a higher-order model, while others argue that a bi-factor model is a better representation. Carroll was explicit about what he perceived the best way to represent his model, but his writings are not always easy to understand. In this article, I clarify his position by first describing the details and implications of bi-factor and higher-order models then show that Carroll’s published views are better represented by a bi-factor model.

  19. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    Science.gov (United States)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  20. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  1. Neutron scattering studies on chromatin higher-order structure

    International Nuclear Information System (INIS)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.

    1994-01-01

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist

  2. Tunnelling effects of solitons in optical fibers with higher-order effects

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Qing [Zhejiang A and F Univ., Lin' an (China). School of Sciences; Suzhou Univ., Jiangsu (China). School of Physical Science and Technology; Zhu, Hai-Ping [Zhejiang Lishui Univ., Zhejiang (China). School of Science; Zheng, Chun-Long [Shaoguan Univ., Guangdong (China). College of Physics and Electromechanical Engineering

    2012-06-15

    We construct four types of analytical soliton solutions for the higher-order nonlinear Schroedinger equation with distributed coefficients. These solutions include bright solitons, dark solitons, combined solitons, and M-shaped solitons. Moreover, the explicit functions which describe the evolution of the width, peak, and phase are discussed exactly. We finally discuss the nonlinear soliton tunnelling effect for four types of femtosecond solitons. (orig.)

  3. Physical uniqueness of higher-order Korteweg-de Vries theory for continuously stratified fluids without background shear

    Science.gov (United States)

    Shimizu, Kenji

    2017-10-01

    The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.

  4. Controlled generation of higher-order Poincaré sphere beams from a laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2016-03-01

    Full Text Available . 10: 327-332 Controlled generation of higher-order Poincaré sphere beams from a laser Naidoo D Roux FS Dudley A Litvin I Piccirillo B Marrucci L Forbes A ABSTRACT: The angular momentum of light can be described by positions on a...

  5. Method of applying single higher order polynomial basis function over multiple domains

    CSIR Research Space (South Africa)

    Lysko, AA

    2010-03-01

    Full Text Available A novel method has been devised where one set of higher order polynomial-based basis functions can be applied over several wire segments, thus permitting to decouple the number of unknowns from the number of segments, and so from the geometrical...

  6. Higher order hierarchical discretization scheme for surface integral equations for layered media

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Kim, Oleksiy S.; Meincke, Peter

    2004-01-01

    This paper presents an efficient technique for the analysis of electromagnetic scattering by arbitrarily shaped perfectly conducting objects in layered media. The technique is based on a higher order method of moments (MoM) solution of the electric field, magnetic field, or combined-field integra...

  7. A numerical study of the second-order wave excitation of ship springing by a higher-order boundary element method

    Directory of Open Access Journals (Sweden)

    Shao Yan-Lin

    2014-12-01

    Full Text Available This paper presents some of the efforts by the authors towards numerical prediction of springing of ships. A time-domain Higher Order Boundary Element Method (HOBEM based on cubic shape function is first presented to solve a complete second-order problem in terms of wave steepness and ship motions in a consistent manner. In order to avoid high order derivatives on the body surfaces, e.g. mj-terms, a new formulation of the Boundary Value Problem in a body-fixed coordinate system has been proposed instead of traditional formulation in inertial coordinate system. The local steady flow effects on the unsteady waves are taken into account. Double-body flow is used as the basis flow which is an appropriate approximation for ships with moderate forward speed. This numerical model was used to estimate the complete second order wave excitation of springing of a displacement ship at constant forward speeds.

  8. Multi-soliton and rogue-wave solutions of the higher-order Hirota system for an erbium-doped nonlinear fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Da-Wei [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics; Shijiazhuang Tiedao University (China). Dept. of Mathematics and Physics; Gao, Yi-Tian; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics

    2014-10-15

    The nonlinear Schroedinger (NLS) equation appears in fluid mechanics, plasma physics, etc., while the Hirota equation, a higher-order NLS equation, has been introduced. In this paper, a higher-order Hirota system is investigated, which describes the wave propagation in an erbium-doped nonlinear fiber with higher-order dispersion. By virtue of the Darboux transformation and generalized Darboux transformation, multi-soliton solutions and higher-order rogue-wave solutions are derived, beyond the published first-order consideration. Wave propagation and interaction are analyzed: (i) Bell-shape solitons, bright- and dark-rogue waves are found; (ii) the two-soliton interaction is elastic, i.e., the amplitude and velocity of each soliton remain unchanged after the interaction; (iii) the coefficient in the system affects the direction of the soliton propagation, patterns of the soliton interaction, distance, and direction of the first-order rogue-wave propagation, as well as the range and direction of the second-order rogue-wave interaction.

  9. Dynamical Tangles in Third-Order Oscillator with Single Jump Function

    Directory of Open Access Journals (Sweden)

    Jiří Petržela

    2014-01-01

    Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

  10. International Symposium on Dynamics of Ordering Processes in Condensed Matter

    CERN Document Server

    Furukawa, H

    1988-01-01

    The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci­ ety of Japan. The symposium was financially supported by the four orga­ nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un­ stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...

  11. Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops.

    Science.gov (United States)

    Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu

    2014-04-01

    The correspondence between exotic quantum holonomy, which occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expression of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, is obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher-order EP, which is broken into lower-order EPs with the application of small perturbations. The stability of exotic holonomy against such bifurcation is demonstrated.

  12. Molecular dynamics simulation of the rotational order-disorder phase transition in calcite

    International Nuclear Information System (INIS)

    Kawano, Jun; Miyake, Akira; Shimobayashi, Norimasa; Kitamura, Masao

    2009-01-01

    Molecular dynamics (MD) simulation of calcite was carried out with the interatomic potential model based on ab initio calculations to elucidate the phase relations for calcite polymorphs and the mechanism of the rotational order-disorder transition of calcite at high temperature at the atomic scale. From runs of MD calculations with increasing temperature within a pressure range of 1 atm and 2 GPa, the transition of calcite with R3-barc symmetry into a high-temperature phase with R3-barm symmetry was reproduced. In the high-temperature R3-barm phase, CO 3 groups vibrate with large amplitudes either around the original positions in the R3-barc structure or around other positions rotated ± 60 deg., and their positions change continuously with time. Moreover, contrary to the suggestion of previous investigators, the motion of CO 3 groups is not two-dimensional. At 1 atm, the transition between R3-barc and R3-barm is first order in character. Upon increasing temperature at high pressure, however, first a first-order isosymmetric phase transition between the R3-barc phases occurs, which corresponds to the start of ± 120 deg. flipping of CO 3 groups. Then, at higher temperatures, the transition of R3-barc to R3-barm phases happens, which can be considered second order. This set of two types of transitions at elevated pressure can be characterized by the appearance of an 'intermediate' R3-barc phase between the stable region of calcite and the high-temperature R3-barm phase, which may correspond to the CaCO 3 -IV phase.

  13. Adaptive grouping for the higher-order multilevel fast multipole method

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Jørgensen, Erik; Meincke, Peter

    2014-01-01

    An alternative parameter-free adaptive approach for the grouping of the basis function patterns in the multilevel fast multipole method is presented, yielding significant memory savings compared to the traditional Octree grouping for most discretizations, particularly when using higher-order basis...... functions. Results from both a uniformly and nonuniformly meshed scatterer are presented, showing how the technique is worthwhile even for regular meshes, and demonstrating that there is no loss of accuracy in spite of the large reduction in memory requirements and the relatively low computational cost....

  14. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  15. Higher-order QCD corrections to inclusive particle production in panti p collisions

    International Nuclear Information System (INIS)

    Borzumati, F.M.; Kniehl, B.A.; Kramer, G.

    1992-10-01

    Inclusive single-particle production cross sections have been calculated including higher-order QCD corrections. Transverse-momentum and rapidity distributions are presented and the scale dependence is studied. The results are compared with experimental data from the CERN Spanti pS Collider and the Fermilab Tevatron. (orig.)

  16. Superpositions of higher-order bessel beams and nondiffracting speckle fields - (SAIP 2009)

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2009-07-01

    Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...

  17. Reduced order dynamic model for polysaccharides molecule attached to an atomic force microscope

    International Nuclear Information System (INIS)

    Tang Deman; Li Aiqin; Attar, Peter; Dowell, Earl H.

    2004-01-01

    A dynamic analysis and numerical simulation has been conducted of a polysaccharides molecular structure (a ten (10) single-α-D-glucose molecule chain) connected to a moving atomic force microscope (AFM). Sinusoidal base excitation of the AFM cantilevered beam is considered. First a linearized perturbation model is constructed for the complex polysaccharides molecular structure. Then reduced order (dynamic) models based upon a proper orthogonal decomposition (POD) technique are constructed using global modes for both the linearized perturbation model and for the full nonlinear model. The agreement between the original and reduced order models (ROM/POD) is very good even when only a few global modes are included in the ROM for either the linear case or for the nonlinear case. The computational advantage of the reduced order model is clear from the results presented

  18. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    Science.gov (United States)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  19. On the formulations of higher-order strain gradient crystal plasticity models

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2008-01-01

    Recently, several higher-order extensions to the crystal plasticity theory have been proposed to incorporate effects of material length scales that were missing links in the conventional continuum mechanics. The extended theories are classified into work-conjugate and non-work-conjugate types. A ...... deformation. In this paper, the discussion is extended to a more general situation, i.e. the context of multiple and three-dimensional slip deformations....

  20. The advantage of higher-order theory of mind in the game of limited bidding

    NARCIS (Netherlands)

    De Weerd, H.; Verheij, B.; van Eijck, J.; Verbrugge, L. C.

    2011-01-01

    Higher-order theory of mind is the ability to recursively model mental states of other agents. It is known that adults in general can reason adequately at the second order (covering attributions like "Alice knows that Bob knows that she wrote a novel under pseudonym"), but there are cognitive limits

  1. Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay

    Directory of Open Access Journals (Sweden)

    Xia Huang

    2013-01-01

    Full Text Available A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical phenomena, including single-periodic, multiple-periodic, and chaotic motions, are found to exist. The existence of chaotic attractors is verified by the bifurcation diagram and phase portraits as well.

  2. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  3. Higher order corrections to asymptotic-de Sitter inflation

    Science.gov (United States)

    Mohsenzadeh, M.; Yusofi, E.

    2017-08-01

    Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.

  4. The detection of higher-order acoustic transitions is reflected in the N1 ERP.

    Science.gov (United States)

    Weise, Annekathrin; Schröger, Erich; Horváth, János

    2018-01-30

    The auditory system features various types of dedicated change detectors enabling the rapid parsing of auditory stimulation into distinct events. The activity of such detectors is reflected by the N1 ERP. Interestingly, certain acoustic transitions show an asymmetric N1 elicitation pattern: whereas first-order transitions (e.g., a change from a segment of constant frequency to a frequency glide [c-to-g change]) elicit N1, higher-order transitions (e.g., glide-to-constant [g-to-c] changes) do not. Consensus attributes this asymmetry to the absence of any available sensory mechanism that is able to rapidly detect higher-order changes. In contrast, our study provides compelling evidence for such a mechanism. We collected electrophysiological and behavioral data in a transient-detection paradigm. In each condition, a random (50%-50%) sequence of two types of tones occurred, which did or did not contain a transition (e.g., c-to-g and constant stimuli or g-to-c and glide tones). Additionally, the rate of pitch change of the glide varied (i.e., 10 vs. 40 semitones per second) in order to increase the number of responding neural assemblies. The rate manipulation modulated transient ERPs and behavioral detection performance for g-to-c transitions much stronger than for c-to-g transitions. The topographic and tomographic analyses suggest that the N1 response to c-to-g and also to g-to-c transitions emerged from the superior temporal gyrus. This strongly supports a sensory mechanism that allows the fast detection of higher-order changes. © 2018 Society for Psychophysiological Research.

  5. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  6. Robust adaptive multivariable higher-order sliding mode flight control for air-breathing hypersonic vehicle with actuator failures

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-10-01

    Full Text Available This article proposes an adaptive multivariable higher-order sliding mode control for the longitudinal model of an air-breathing vehicle under system uncertainties and actuator failures. Firstly, a fast finite-time control law is designed for a chain of integrators. Secondly, based on the input/output feedback linearization technique, the system uncertainty and external disturbances are modeled as additive certainty and the actuator failures are modeled as multiplicative uncertainty. By using the proposed fast finite-time control law, a robust multivariable higher-order sliding mode control is designed for the air-breathing hypersonic vehicle with actuator failures. Finally, adaptive laws are proposed for the adaptation of the parameters in the robust multivariable higher-order sliding mode control. Thus, the bounds of the uncertainties are not needed in the control system design. Simulation results show the effectiveness of the proposed robust adaptive multivariable higher-order sliding mode control.

  7. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.

    Science.gov (United States)

    Li, Shujuan; Schmidt, Burkhard

    2015-03-21

    The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-carbon interaction. As a function of the CNT diameter, the water density displays several oscillations before converging to the bulk value. Based on these results, the water structures encapsulated in 10 nm long armchair CNTs (n,n) with 5 ≤ n ≤ 10, are investigated under NVT conditions. Inside the smallest nanotubes (n = 5, 6) highly ferroelectric (FE), quasi-one-dimensional water chains are found while inside the other CNTs water molecules assemble into single-walled ice nanotubes (INTs). There are several, near-degenerate minimum energy INT structures: single helical structures were found for 7 ≤ n ≤ 10, in all cases in FE arrangement. In addition, a double helical INT structure was found for n = 8 with an even higher polarization. Prism-like structures were found only for 8 ≤ n ≤ 10 with various FE, ferrielectric (FI), and antiferroelectric (AF, n = 9, 10) proton ordering. The coexistence of the nearly iso-energetic FE, FI, and AF INT structures separated by high barriers renders the molecular dynamics highly metastable, typically with nanosecond timescales at room temperature. Hence, the replica exchange simulation method is used to obtain populations of different INT states at finite temperatures. Many of the FE INT structures confined in low-diameter CNTs are still prevalent at room temperature. Both helix-helix and helix-prism structural transitions are detected which can be either continuous (around 470 K for n = 8) or discontinuous (at 218 K for n = 9). Also melting-like transitions are found in which the INT structures are disrupted leading to a loss of FE

  8. A Study of Enhanced, Higher Order Boussinesq-Type Equations and Their Numerical Modelling

    DEFF Research Database (Denmark)

    Banijamali, Babak

    model is designated for the solution of higher-order Boussinesq-type equations, formulated in terms of the horizontal velocity at an arbitrary depth vector. Various discretisation techniques and grid definitions have been considered in this endeavour, undertaking a detailed analysis of the selected......This project has encompassed efforts in two separate veins: on the one hand, the acquiring of highly accurate model equations of the Boussinesq-type, and on the other hand, the theoretical and practical work in implementing such equations in the form of conventional numerical models, with obvious...... potential for applications to the realm of numerical modelling in coastal engineering. The derivation and analysis of several forms of higher-order in dispersion and non-linearity Boussinesq-type equations have been undertaken, obtaining and investigating the properties of a new and generalised class...

  9. Compositional modeling of three-phase flow with gravity using higher-order finite element methods

    KAUST Repository

    Moortgat, Joachim

    2011-05-11

    A wide range of applications in subsurface flow involve water, a nonaqueous phase liquid (NAPL) or oil, and a gas phase, such as air or CO2. The numerical simulation of such processes is computationally challenging and requires accurate compositional modeling of three-phase flow in porous media. In this work, we simulate for the first time three-phase compositional flow using higher-order finite element methods. Gravity poses complications in modeling multiphase processes because it drives countercurrent flow among phases. To resolve this issue, we propose a new method for the upwinding of three-phase mobilities. Numerical examples, related to enhanced oil recovery and carbon sequestration, are presented to illustrate the capabilities of the proposed algorithm. We pay special attention to challenges associated with gravitational instabilities and take into account compressibility and various phase behavior effects, including swelling, viscosity changes, and vaporization. We find that the proposed higher-order method can capture sharp solution discontinuities, yielding accurate predictions of phase boundaries arising in computational three-phase flow. This work sets the stage for a broad extension of the higher-order methods for numerical simulation of three-phase flow for complex geometries and processes.

  10. Massive, massless and ghost modes of gravitational waves from higher-order gravity

    DEFF Research Database (Denmark)

    Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia

    We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...

  11. EXISTENCE OF PERIODIC SOLUTION TO HIGHER ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,using the coincidence degree theory of Mawhin,we investigate the existence of periodic solutions to higher order differential equations with deviating argument. Some new results on the existence of periodic solutions to the equations are obtained. In addition,we give an example to illustrate the main results.

  12. Order parameters in the Landau–de Gennes theory – the static and dynamic scenarios

    KAUST Repository

    Majumdar, Apala

    2011-02-17

    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies in our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations. © 2011 Taylor & Francis.

  13. Order parameters in the Landau–de Gennes theory – the static and dynamic scenarios

    KAUST Repository

    Majumdar, Apala

    2011-01-01

    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies in our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations. © 2011 Taylor & Francis.

  14. Predicting perceptual learning from higher-order cortical processing.

    Science.gov (United States)

    Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan

    2016-01-01

    Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present

  16. Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng

    2004-01-01

    Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair

  17. Integrated Software Development System/Higher Order Software Conceptual Description (ISDS/HOS)

    Science.gov (United States)

    1976-11-01

    Structured Flowchart Conventions 270 6.3.5.3 Design Diagram Notation 273 xii HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS...associated with the process steps. They also reference other HIPO diagrams as well an non-HIPO documentation such as flowcharts or decision tables of...syntax that is easy to learn and must provide the novice with some prompting to help him avoid classic beginner errors. Desirable editing capabilities

  18. Higher-order Cn dispersion coefficients for the alkali-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2005-01-01

    The van der Waals coefficients, from C 11 through to C 16 resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C n /r n potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C 10 /r 10 results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a 0 . This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C 11 ,C 13 ,C 15 ) and attractive (C 12 ,C 14 ,C 16 ) dispersion forces

  19. Conservative fourth-order time integration of non-linear dynamic systems

    DEFF Research Database (Denmark)

    Krenk, Steen

    2015-01-01

    An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...

  20. Critical Combinations of Higher-Order Terms in Einstein-Maxwell Theory and Compactification

    Directory of Open Access Journals (Sweden)

    Nahomi Kan

    2015-01-01

    Full Text Available We discuss the role of a particular combination of higher derivative terms in higher dimensional theories, particularly in the background of spontaneous compactification. Two classes of theories are proposed in this paper. The first model as a generalization of the critical gravity with the Maxwell field could have a de Sitter solution. We consider the Lanczos-Lovelock term and Horndeski term as well as the higher-order Maxwell term for the second model, which contains a possible longer expansion time for the inflationary phase. It is interesting that both models can be regarded as the generalization of the Randjbar-Daemi, Salam and Strathdee (RSS model and give the well behavior for inflation stage under the specific assumptions.

  1. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  2. Encouraging Higher-Order Thinking in General Chemistry by Scaffolding Student Learning Using Marzano's Taxonomy

    Science.gov (United States)

    Toledo, Santiago; Dubas, Justin M.

    2016-01-01

    An emphasis on higher-order thinking within the curriculum has been a subject of interest in the chemical and STEM literature due to its ability to promote meaningful, transferable learning in students. The systematic use of learning taxonomies could be a practical way to scaffold student learning in order to achieve this goal. This work proposes…

  3. High order curvilinear finite elements for elastic–plastic Lagrangian dynamics

    International Nuclear Information System (INIS)

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2014-01-01

    This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow

  4. Electron bunch train excited higher-order modes in a superconducting RF cavity

    Science.gov (United States)

    Gao, Yong-Feng; Huang, Sen-Lin; Wang, Fang; Feng, Li-Wen; Zhuang, De-Hao; Lin, Lin; Zhu, Feng; Hao, Jian-Kui; Quan, Sheng-Wen; Liu, Ke-Xin

    2017-04-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effective and convenient in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including a theoretical model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University. Supported by National Natural Science Foundation of China (11275014)

  5. Higher order multiple pregnancy outcomes in the Maltese islands 2000-2004

    OpenAIRE

    Savona-Ventura, Charles; Gatt, Miriam; Vella, Katya; Grima, Stephen

    2008-01-01

    Higher order multiple births have increased significantly in the last decades throughout the developed world. In spite of advances in obstetric care seen throughout the second half of the twentieth century, the perinatal outcomes associated with a multiple pregnancy remain associated with increased morbidity and mortality for the mother and the infants. This study attempts to assess the characteristics and outcomes of these maternities in the Maltese population. The National maternity data fo...

  6. Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels

    International Nuclear Information System (INIS)

    Vogt, A; Soar, G.; Vermaseren, J.A.M.

    2010-01-01

    We have studied the physical evolution kernels for nine non-singlet observables in deep-inelastic scattering (DIS), semi-inclusive e + e - annihilation and the Drell-Yan (DY) process, and for the flavour-singlet case of the photon- and heavy-top Higgs-exchange structure functions (F 2 , F φ ) in DIS. All known contributions to these kernels show an only single-logarithmic large-x enhancement at all powers of (1-x). Conjecturing that this behaviour persists to (all) higher orders, we have predicted the highest three (DY: two) double logarithms of the higher-order non-singlet coefficient functions and of the four-loop singlet splitting functions. The coefficient-function predictions can be written as exponentiations of 1/N-suppressed contributions in Mellin-N space which, however, are less predictive than the well-known exponentiation of the ln k N terms. (orig.)

  7. On the dynamics of k-essence models

    International Nuclear Information System (INIS)

    Jorge, Pedro; Mimoso, Jose P; Wands, David

    2007-01-01

    We investigate cosmological dynamics of models with higher-order corrections to the canonical (second-order) kinetic lagrangian for a scalar field, which have been termed k -essence . We study the qualitative dynamics of simple purely kinetic k-essence models and find that the simplest attempts to construct non-singular cosmological models by including higher-order terms in the kinetic lagrangian fail because of a different type of singularity where the scalar field theory becomes ill-defined

  8. Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres

    International Nuclear Information System (INIS)

    Liu Chunping

    2005-01-01

    First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed

  9. A simplified parsimonious higher order multivariate Markov chain model with new convergence condition

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.

  10. Higher Order Corrections in the CoLoRFulNNLO Framework

    Science.gov (United States)

    Somogyi, G.; Kardos, A.; Szőr, Z.; Trócsányi, Z.

    We discuss the CoLoRFulNNLO method for computing higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the calculation of event shapes and jet rates in three-jet production in electron-positron annihilation. We validate our code by comparing our predictions to previous results in the literature and present the jet cone energy fraction distribution at NNLO accuracy. We also present preliminary NNLO results for the three-jet rate using the Durham jet clustering algorithm matched to resummed predictions at NLL accuracy, and a comparison to LEP data.

  11. Jacobian projection reduced-order models for dynamic systems with contact nonlinearities

    Science.gov (United States)

    Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.

    2018-02-01

    In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.

  12. Unifying refinement and hoare-style reasoning in a logic for higher-order concurrency

    DEFF Research Database (Denmark)

    Turon, Aaron; Dreyer, Derek; Birkedal, Lars

    2013-01-01

    Modular programming and modular verification go hand in hand, but most existing logics for concurrency ignore two crucial forms of modularity: *higher-order functions*, which are essential for building reusable components, and *granularity abstraction*, a key technique for hiding the intricacies ...

  13. In-service teacher education: asking questions for higher order thinking in visual literacy

    Directory of Open Access Journals (Sweden)

    Visvaganthie Moodley

    2013-01-01

    Full Text Available The kinds of questions teachers ask may thwart or promote learner high-order thinking; teachers themselves must have expertise in questioning skills to promote higher order cognition among learners. Drawing on experiential knowledge of assessment, and as an English-teaching professional development programme (PDP facilitator, I demonstrate that within the framework of a carefully structured subject-specific PDP, teachers can be taught how to enhance thinking skills in the English visual literacy (VL learning classroom. Guided by an earlier taxonomy of cognition, and using qualitative methodology, the paper analyses data obtained from: (i observation notes and examination equivalents of 40 teachers from various public schools in Gauteng who were engaged in the Advanced Certificate in Education (ACE, English specialization programme; and (ii a case study of three teachers by means of semi-structured interviews, and a study of their lesson plans and worksheets.The paper examines, specifically, teachers' choice of texts and questions asked, for English second-language learners for the teaching of VL. It concludes by suggesting that if teachers themselves are first engaged in the cognitive processes they wish learners to acquire, they are better positioned to promote higher order among their learners.

  14. Dynamics and order-disorder transitions in bidisperse diblock copolymer blends

    International Nuclear Information System (INIS)

    Wang Yueqiang; Li Xuan; Tang Ping; Yang Yuliang

    2011-01-01

    We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G' corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, (χN) ODT , whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in (χN) ODT . To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in (χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT. -- Research highlights: → Order-disorder transition in AB diblock copolymer mixtures is investigated using DSCFT. → Microphase separation strength at the ODT increases with PDI in the majority block. → Microphase separation strength at the ODT decreases with PDI in the minority block. → Introduction of polydispersity is efficient to control microphase separation strength at the ODT.

  15. Higher-order Nielsen numbers

    Directory of Open Access Journals (Sweden)

    Peter Saveliev

    2005-04-01

    Full Text Available Suppose X, Y are manifolds, f,g:X→Y are maps. The well-known coincidence problem studies the coincidence set C={x:f(x=g(x}. The number m=dim X−dim Y is called the codimension of the problem. More general is the preimage problem. For a map f:X→Z and a submanifold Y of Z, it studies the preimage set C={x:f(x∈Y}, and the codimension is m=dim X+dim Y−dim Z. In case of codimension 0, the classical Nielsen number N(f,Y is a lower estimate of the number of points in C changing under homotopies of f, and for an arbitrary codimension, of the number of components of C. We extend this theory to take into account other topological characteristics of C. The goal is to find a “lower estimate” of the bordism group Ωp(C of C. The answer is the Nielsen group Sp(f,Y defined as follows. In the classical definition, the Nielsen equivalence of points of C based on paths is replaced with an equivalence of singular submanifolds of C based on bordisms. We let Sp'(f,Y=Ωp(C/∼N, then the Nielsen group of order p is the part of Sp'(f,Y preserved under homotopies of f. The Nielsen number Np(F,Y of order p is the rank of this group (then N(f,Y=N0(f,Y. These numbers are new obstructions to removability of coincidences and preimages. Some examples and computations are provided.

  16. Higher-Order-Mode Diagnostics and Suppression in Superconducting Cavities (HOMSC12)

    Science.gov (United States)

    Jones, Roger M.

    2014-01-01

    From the 25th of June through Wednesday lunchtime of the 27th of June 2012 the Cockcroft Institute and ASTeC hosted an ICFA supported mini workshop on Higher-Order-Mode Diagnostics and Suppression in Superconducting Cavities (HOMSC12). The local organizing committee for this international workshop was chaired by S. Buckley (ASTeC/STFC), conference administration by S. Waller (ASTeC/STFC), and the scientific program committee by R.M. Jones (Cockcroft Institute/University of Manchester).

  17. Higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials

    OpenAIRE

    Kim, Dae San; Kim, Taekyun

    2013-01-01

    In this paper, we investigate some properties of higher-order Cauchy of the second kind and poly-Cauchy of the second mixed type polynomials with umbral calculus viewpoint. From our investigation, we derive many interesting identities of higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials.

  18. Experimental investigation of coupling between widely spaced modes of a beam using higher-order spectra

    International Nuclear Information System (INIS)

    Khan, K.A.

    2001-01-01

    Experimental studies related to a thin isotropic steel beam are presented. The beam was harmonically excited along its axis creating a situation of parametric excitation. A possible two-to-one internal resonance was considered between the third and fourth modes of the beam with an external resonance of its fourth mode. The coupling phenomenon responsible for transfer of energy from high frequency modes to a widely spaced low frequency mode was studied by using conventional tools and higher-order spectra (third-order spectrum (bispectrum) and fourth-order spectrum (trispectrum)). Pointwise dimensions of the attractors were examined to ascertain their chaotic character. The potential of higher-order spectra in detecting the quadratic and cubic phase couplings among the participating modes during bifurcations, periodically modulated motions, and chaotically modulated motions was also examined. The experimental results are provided in the form of power spectra, fractal dimensions, bispectra, bicoherence spectra, and trispectrum. Experimental observations of transitions from periodic to periodically modulated to chaotically-modulated motions are also presented. (author)

  19. A Hybrid PO - Higher-Order Hierarchical MoM Formulation using Curvilinear Geometry Modeling

    DEFF Research Database (Denmark)

    Jørgensen, E.; Meincke, Peter; Breinbjerg, Olav

    2003-01-01

    which implies a very modest memory requirement. Nevertheless, the hierarchical feature of the basis functions maintains the ability to treat small geometrical details efficiently. In addition, the scatterer is modelled with higher-order curved patches which allows accurate modelling of curved surfaces...

  20. Higher-order Cn dispersion coefficients for hydrogen

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2005-01-01

    The complete set of second-, third-, and fourth-order van der Waals coefficients C n up to n=32 for the H(1s)-H(1s) dimer have been determined. They are computed by diagonalizing the nonrelativistic Hamiltonian for hydrogen to obtain a set of pseudostates that are used to evaluate the appropriate sum rules. A study of the convergence pattern for n≤16 indicates that all the C n/16 coefficients are accurate to 13 significant digits. The relative size of the fourth-order C n (4) to the second-order C n (2) coefficients is seen to increase as n increases and at n=32 the fourth-order term is actually larger