Adaptive approximation of higher order posterior statistics
Lee, Wonjung
2014-02-01
Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively. © 2013 Elsevier Inc.
Practical implementation of a higher order transverse leakage approximation
International Nuclear Information System (INIS)
Prinsloo, Rian H.; Tomašević
2011-01-01
Transverse integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming in this approach, be it via the Analytic Nodal Method or Nodal Expansion Method, is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher order nodal methods developed some years ago. In this new approach, only information relevant to describing the transverse leak- age terms in the zero-order nodal equations are obtained from the higher order formalism. The method yields accuracy comparable to full higher order methods, but does not suffer from the same computational burden which these methods typically incur. (author)
Higher Order Improvements for Approximate Estimators
DEFF Research Database (Denmark)
Kristensen, Dennis; Salanié, Bernard
Many modern estimation methods in econometrics approximate an objective function, through simulation or discretization for instance. The resulting "approximate" estimator is often biased; and it always incurs an efficiency loss. We here propose three methods to improve the properties of such appr......Many modern estimation methods in econometrics approximate an objective function, through simulation or discretization for instance. The resulting "approximate" estimator is often biased; and it always incurs an efficiency loss. We here propose three methods to improve the properties...... of such approximate estimators at a low computational cost. The first two methods correct the objective function so as to remove the leading term of the bias due to the approximation. One variant provides an analytical bias adjustment, but it only works for estimators based on stochastic approximators......, such as simulation-based estimators. Our second bias correction is based on ideas from the resampling literature; it eliminates the leading bias term for non-stochastic as well as stochastic approximators. Finally, we propose an iterative procedure where we use Newton-Raphson (NR) iterations based on a much finer...
Higher-Order Approximation of Cubic-Quintic Duffing Model
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Babazadeh, H.
2011-01-01
We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...
Higher-order meshing of implicit geometries, Part II: Approximations on manifolds
Fries, T. P.; Schöllhammer, D.
2017-11-01
A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.
Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.
2018-02-01
We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.
Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Alvarez, M L; Mendez, D I; Yebra, M S; Hernandez, A
2009-01-01
A modified He's homotopy perturbation method is used to calculate the periodic solutions of a nonlinear pendulum. The method has been modified by truncating the infinite series corresponding to the first-order approximate solution and substituting a finite number of terms in the second-order linear differential equation. As can be seen, the modified homotopy perturbation method works very well for high values of the initial amplitude. Excellent agreement of the analytical approximate period with the exact period has been demonstrated not only for small but also for large amplitudes A (the relative error is less than 1% for A < 152 deg.). Comparison of the result obtained using this method with the exact ones reveals that this modified method is very effective and convenient.
Ganji, S. S.; Domairry, G.; Davodi, A. G.; Babazadeh, H.; Seyedalizadeh Ganji, S. H.
The main objective of this paper is to apply the parameter expansion technique (a modified Lindstedt-Poincaré method) to calculate the first, second, and third-order approximations of motion of a nonlinear oscillator arising in rigid rod rocking back. The dynamics and frequency of motion of this nonlinear mechanical system are analyzed. A meticulous attention is carried out to the study of the introduced nonlinearity effects on the amplitudes of the oscillatory states and on the bifurcation structures. We examine the synchronization and the frequency of systems using both the strong and special method. Numerical simulations and computer's answers confirm and complement the results obtained by the analytical approach. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. The solutions of this method are compared with the exact ones in order to validate the approach, and assess the accuracy of the solutions. In particular, APL-PM works well for the whole range of oscillation amplitudes and excellent agreement of the approximate frequency with the exact one has been demonstrated. The approximate period derived here is accurate and close to the exact solution. This method has a distinguished feature which makes it simple to use, and also it agrees with the exact solutions for various parameters.
Approximate solution of space and time fractional higher order phase field equation
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
Practical error estimates for Reynolds' lubrication approximation and its higher order corrections
Energy Technology Data Exchange (ETDEWEB)
Wilkening, Jon
2008-12-10
Reynolds lubrication approximation is used extensively to study flows between moving machine parts, in narrow channels, and in thin films. The solution of Reynolds equation may be thought of as the zeroth order term in an expansion of the solution of the Stokes equations in powers of the aspect ratio {var_epsilon} of the domain. In this paper, we show how to compute the terms in this expansion to arbitrary order on a two-dimensional, x-periodic domain and derive rigorous, a-priori error bounds for the difference between the exact solution and the truncated expansion solution. Unlike previous studies of this sort, the constants in our error bounds are either independent of the function h(x) describing the geometry, or depend on h and its derivatives in an explicit, intuitive way. Specifically, if the expansion is truncated at order 2k, the error is O({var_epsilon}{sup 2k+2}) and h enters into the error bound only through its first and third inverse moments {integral}{sub 0}{sup 1} h(x){sup -m} dx, m = 1,3 and via the max norms {parallel} 1/{ell}! h{sup {ell}-1}{partial_derivative}{sub x}{sup {ell}}h{parallel}{sub {infinity}}, 1 {le} {ell} {le} 2k + 2. We validate our estimates by comparing with finite element solutions and present numerical evidence that suggests that even when h is real analytic and periodic, the expansion solution forms an asymptotic series rather than a convergent series.
On the application of the Williams-Weizsaecker-method to higher order S-matrix-approximations
International Nuclear Information System (INIS)
Ziegelbecker, R.C.
1983-05-01
In this paper the method of quasireal processes is investigated using a special example - pair production in the stationary field of a nucleus by an incident electron. As a result, the semi-classical version of the Williams-Weizsaecker-method is confirmed on the basis of all 3sup(rd)-order Feynman-diagrams. The spectra of quasireal processes, derived from quantum field theory, can also be applied simultaneously in several vertex points on one diagram and are valid for higher photon energies than the semiclassical spectrum; the restriction #betta# [de
Directory of Open Access Journals (Sweden)
Christer Dalen
2017-10-01
Full Text Available A model reduction technique based on optimization theory is presented, where a possible higher order system/model is approximated with an unstable DIPTD model by using only step response data. The DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Numerous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto Optimal controller is used as a reference controller.
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Higher order saddlepoint approximations in the Vasicek portfolio credit loss model
Huang, X.; Oosterlee, C.W.; van der Weide, J.A.M.
2006-01-01
This paper utilizes the saddlepoint approximation as an efficient tool to estimate the portfolio credit loss distribution in the Vasicek model. Value at Risk (VaR), the risk measure chosen in the Basel II Accord for the evaluation of capital requirement, can then be found by inverting the loss
Higher-order convex approximations of Young measures in optimal control
Czech Academy of Sciences Publication Activity Database
Matache, A. M.; Roubíček, Tomáš; Schwab, Ch.
2003-01-01
Roč. 19, č. 1 (2003), s. 73-97 ISSN 1019-7168 R&D Projects: GA ČR GA201/00/0768; GA AV ČR IAA1075005 Institutional research plan: CEZ:AV0Z1075907 Keywords : Young measures * approximation * error estimation Subject RIV: BA - General Mathematics Impact factor: 0.926, year: 2003
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Fernandez, E; Neipp, C; Belendez, T
2008-01-01
A modified He's homotopy perturbation method is used to calculate higher-order analytical approximate solutions to the relativistic and Duffing-harmonic oscillators. The He's homotopy perturbation method is modified by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation, and so on. We find this modified homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. The approximate formulae obtained show excellent agreement with the exact solutions, and are valid for small as well as large amplitudes of oscillation, including the limiting cases of amplitude approaching zero and infinity. For the relativistic oscillator, only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate frequency of less than 1.6% for small and large values of oscillation amplitude, while this relative error is 0.65% for two iterations with two harmonics and as low as 0.18% when three harmonics are considered in the second approximation. For the Duffing-harmonic oscillator the relative error is as low as 0.078% when the second approximation is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance methods reveals that the former is very effective and convenient
Zeng, Cheng; Liang, Shan; Xiang, Shuwen
2017-05-01
Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Ernst, Erik
2003-01-01
This paper introduces the notion of higher-order inheritance hierarchies. They are useful because they provide well-known benefits of object-orientation at the level of entire hierarchies-benefits which are not available with current approaches. Three facets must be adressed: First, it must be po...
DEFF Research Database (Denmark)
Israelsen, Stine Møller
This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...
Certified higher-order recursive path ordering
Koprowski, A.; Pfenning, F.
2006-01-01
The paper reports on a formalization of a proof of wellfoundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the
Adaptive approximation of higher order posterior statistics
Lee, Wonjung
2014-01-01
Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization
A Paraconsistent Higher Order Logic
DEFF Research Database (Denmark)
Villadsen, Jørgen
2004-01-01
of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...
Higher-order force gradient symplectic algorithms
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
Nonlocal higher order evolution equations
Rossi, Julio D.; Schö nlieb, Carola-Bibiane
2010-01-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove
Higher-Order Program Generation
DEFF Research Database (Denmark)
Rhiger, Morten
for OCaml, a dialect of ML, that provides run-time code generation for OCaml programs. We apply these byte-code combinators in semantics-directed compilation for an imperative language and in run-time specialization using type-directed partial evaluation. Finally, we present an approach to compiling goal......This dissertation addresses the challenges of embedding programming languages, specializing generic programs to specific parameters, and generating specialized instances of programs directly as executable code. Our main tools are higher-order programming techniques and automatic program generation....... It is our thesis that they synergize well in the development of customizable software. Recent research on domain-specific languages propose to embed them into existing general-purpose languages. Typed higher-order languages have proven especially useful as meta languages because they provide a rich...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Classical higher-order processes
DEFF Research Database (Denmark)
Montesi, Fabrizio
2017-01-01
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....
Resilience and Higher Order Thinking
Directory of Open Access Journals (Sweden)
Ioan Fazey
2010-09-01
Full Text Available To appreciate, understand, and tackle chronic global social and environmental problems, greater appreciation of the importance of higher order thinking is required. Such thinking includes personal epistemological beliefs (PEBs, i.e., the beliefs people hold about the nature of knowledge and how something is known. These beliefs have profound implications for the way individuals relate to each other and the world, such as how people understand complex social-ecological systems. Resilience thinking is an approach to environmental stewardship that includes a number of interrelated concepts and has strong foundations in systemic ways of thinking. This paper (1 summarizes a review of educational psychology literature on PEBs, (2 explains why resilience thinking has potential to facilitate development of more sophisticated PEBs, (3 describes an example of a module designed to teach resilience thinking to undergraduate students in ways conducive to influencing PEBs, and (4 discusses a pilot study that evaluates the module's impact. Theoretical and preliminary evidence from the pilot evaluation suggests that resilience thinking which is underpinned by systems thinking has considerable potential to influence the development of more sophisticated PEBs. To be effective, however, careful consideration of how resilience thinking is taught is required. Finding ways to encourage students to take greater responsibility for their own learning and ensuring close alignment between assessment and desired learning outcomes are particularly important.
Directory of Open Access Journals (Sweden)
Saveliev Peter
2005-01-01
Full Text Available Suppose , are manifolds, are maps. The well-known coincidence problem studies the coincidence set . The number is called the codimension of the problem. More general is the preimage problem. For a map and a submanifold of , it studies the preimage set , and the codimension is . In case of codimension , the classical Nielsen number is a lower estimate of the number of points in changing under homotopies of , and for an arbitrary codimension, of the number of components of . We extend this theory to take into account other topological characteristics of . The goal is to find a "lower estimate" of the bordism group of . The answer is the Nielsen group defined as follows. In the classical definition, the Nielsen equivalence of points of based on paths is replaced with an equivalence of singular submanifolds of based on bordisms. We let , then the Nielsen group of order is the part of preserved under homotopies of . The Nielsen number of order is the rank of this group (then . These numbers are new obstructions to removability of coincidences and preimages. Some examples and computations are provided.
Directory of Open Access Journals (Sweden)
Peter Saveliev
2005-04-01
Full Text Available Suppose X, Y are manifolds, f,g:XÃ¢Â†Â’Y are maps. The well-known coincidence problem studies the coincidence set C={x:f(x=g(x}. The number m=dimÃ¢Â€Â‰XÃ¢ÂˆÂ’dimÃ¢Â€Â‰Y is called the codimension of the problem. More general is the preimage problem. For a map f:XÃ¢Â†Â’Z and a submanifold Y of Z, it studies the preimage set C={x:f(xÃ¢ÂˆÂˆY}, and the codimension is m=dimÃ¢Â€Â‰X+dimÃ¢Â€Â‰YÃ¢ÂˆÂ’dimÃ¢Â€Â‰Z. In case of codimension 0, the classical Nielsen number N(f,Y is a lower estimate of the number of points in C changing under homotopies of f, and for an arbitrary codimension, of the number of components of C. We extend this theory to take into account other topological characteristics of C. The goal is to find a Ã¢Â€Âœlower estimateÃ¢Â€Â of the bordism group ÃŽÂ©p(C of C. The answer is the Nielsen group Sp(f,Y defined as follows. In the classical definition, the Nielsen equivalence of points of C based on paths is replaced with an equivalence of singular submanifolds of C based on bordisms. We let Sp'(f,Y=ÃŽÂ©p(C/Ã¢ÂˆÂ¼N, then the Nielsen group of order p is the part of Sp'(f,Y preserved under homotopies of f. The Nielsen number Np(F,Y of order p is the rank of this group (then N(f,Y=N0(f,Y. These numbers are new obstructions to removability of coincidences and preimages. Some examples and computations are provided.
Higher order field equations. II
International Nuclear Information System (INIS)
Tolhoek, H.A.
1977-01-01
In a previous paper wave propagation was studied according to a sixth-order partial differential equation involving a complex mass M. The corresponding Yang-Feldman integral equations (indicated as SM-YF-equations), were formulated using modified Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x), which then incorporate the partial differential equation together with certain boundary conditions. In this paper certain limit properties of these modified Green's functions are derived: (a) It is shown that for mod(M)→infinity the Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) approach the Green's functions Δsub(R)(x) and Δsub(A)(x) of the corresponding KG-equation (Klein-Gordon equation). (b) It is further shown that the asymptotic behaviour of Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) is the same as of Δsub(R)(x) and Δsub(A)(x)-and also the same as for Dsub(R)(x) and Dsub(A)(x) for t→+-infinity;, where Dsub(R) and Dsub(A) are the Green's functions for the KG-equation with mass zero. It is essential to take limits in the sense of distribution theory in both cases (a) and (b). The property (b) indicates that the wave propagation properties of the SM-YF-equations, the KG-equation with finite mass and the KG-equation with mass zero are closely related in an asymptotic sense. (Auth.)
Higher order correlations in computed particle distributions
International Nuclear Information System (INIS)
Hanerfeld, H.; Herrmannsfeldt, W.; Miller, R.H.
1989-03-01
The rms emittances calculated for beam distributions using computer simulations are frequently dominated by higher order aberrations. Thus there are substantial open areas in the phase space plots. It has long been observed that the rms emittance is not an invariant to beam manipulations. The usual emittance calculation removes the correlation between transverse displacement and transverse momentum. In this paper, we explore the possibility of defining higher order correlations that can be removed from the distribution to result in a lower limit to the realizable emittance. The intent is that by inserting the correct combinations of linear lenses at the proper position, the beam may recombine in a way that cancels the effects of some higher order forces. An example might be the non-linear transverse space charge forces which cause a beam to spread. If the beam is then refocused so that the same non-linear forces reverse the inward velocities, the resulting phase space distribution may reasonably approximate the original distribution. The approach to finding the location and strength of the proper lens to optimize the transported beam is based on work by Bruce Carlsten of Los Alamos National Laboratory. 11 refs., 4 figs
Gauge-invariant intense-field approximations to all orders
International Nuclear Information System (INIS)
Faisal, F H M
2007-01-01
We present a gauge-invariant formulation of the so-called strong-field KFR approximations in the 'velocity' and 'length' gauges and demonstrate their equivalence in all orders. The theory thus overcomes a longstanding discrepancy between the strong-field velocity and the length-gauge approximations for non-perturbative processes in intense laser fields. (fast track communication)
Ordering, symbols and finite-dimensional approximations of path integrals
International Nuclear Information System (INIS)
Kashiwa, Taro; Sakoda, Seiji; Zenkin, S.V.
1994-01-01
We derive general form of finite-dimensional approximations of path integrals for both bosonic and fermionic canonical systems in terms of symbols of operators determined by operator ordering. We argue that for a system with a given quantum Hamiltonian such approximations are independent of the type of symbols up to terms of O(ε), where ε of is infinitesimal time interval determining the accuracy of the approximations. A new class of such approximations is found for both c-number and Grassmannian dynamical variables. The actions determined by the approximations are non-local and have no classical continuum limit except the cases of pq- and qp-ordering. As an explicit example the fermionic oscillator is considered in detail. (author)
Higher order mode optical fiber Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.
2016-01-01
We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....
Challenges in higher order mode Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk
2015-01-01
A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...
Higher Order Expectations in Asset Pricing
Philippe BACCHETTA; Eric VAN WINCOOP
2004-01-01
We examine formally Keynes' idea that higher order beliefs can drive a wedge between an asset price and its fundamental value based on expected future payoffs. Higher order expectations add an additional term to a standard asset pricing equation. We call this the higher order wedge, which depends on the difference between higher and first order expectations of future payoffs. We analyze the determinants of this wedge and its impact on the equilibrium price. In the context of a dynamic noisy r...
Higher order effects of pseudoparticles in QCD
International Nuclear Information System (INIS)
Hietarinta, J.; Palmer, W.F.
1977-01-01
Gauge invariant Green's functions of quark-antiquark bilinear densities in massless, two-color QCD are studied. Nonzero-energy fermion modes, pseudoparticle solutions with topological charge absolute value ν > 1, and n-point functions with n > 2. Some general properties of the O(Dirac constant) approximation are developed, enabling one to isolate and define the terms which contribute to a general n-point function. The higher effects it is found preserve the symmetry breakdown found earlier in the 2-point function (U(2) x U(2) → SU(2) x SU(2) x U(1)). It is shown that a previous 2-point function analysis is exact to order Dirac constant
Higher-order harmonics of general limited diffraction Bessel beams
International Nuclear Information System (INIS)
Ding De-Sheng; Huang Jin-Huang
2016-01-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)
Higher-order harmonics of general limited diffraction Bessel beams
Ding, De-Sheng; Huang, Jin-Huang
2016-12-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).
Higher order harmonics of reactor neutron equation
International Nuclear Information System (INIS)
Li Fu; Hu Yongming; Luo Zhengpei
1996-01-01
The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out
DEFF Research Database (Denmark)
Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue
2010-01-01
We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting...... systems modularity of confluence, normalization, and termination can be recovered by imposing suitable linearity constraints....
Approximation of Analytic Functions by Bessel's Functions of Fractional Order
Directory of Open Access Journals (Sweden)
Soon-Mo Jung
2011-01-01
Full Text Available We will solve the inhomogeneous Bessel's differential equation x2y″(x+xy′(x+(x2-ν2y(x=∑m=0∞amxm, where ν is a positive nonintegral number and apply this result for approximating analytic functions of a special type by the Bessel functions of fractional order.
Higher-order techniques in computational electromagnetics
Graglia, Roberto D
2016-01-01
Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.
Homogeneous approximation property for continuous shearlet transforms in higher dimensions
Directory of Open Access Journals (Sweden)
Yu Su
2016-07-01
Full Text Available Abstract This paper is concerned with the generalization of the homogeneous approximation property (HAP for a continuous shearlet transform to higher dimensions. First, we give a pointwise convergence result on the inverse shearlet transform in higher dimensions. Second, we show that every pair of admissible shearlets possess the HAP in the sense of L 2 ( R d $L^{2}(R^{d}$ . Third, we give a sufficient condition for the pointwise HAP to hold, which depends on both shearlets and functions to be reconstructed.
Order-sorted Algebraic Specifications with Higher-order Functions
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth
1995-01-01
This paper gives a proposal for how order-sorted algebraic specification languages can be extended with higher-order functions. The approach taken is a generalisation to the order-sorted case of an approach given by Mller, Tarlecki and Wirsing for the many-sorted case. The main idea in the proposal...
Difference equations in massive higher order calculations
International Nuclear Information System (INIS)
Bierenbaum, I.; Bluemlein, J.; Klein, S.; Schneider, C.
2007-07-01
The calculation of massive 2-loop operator matrix elements, required for the higher order Wilson coefficients for heavy flavor production in deeply inelastic scattering, leads to new types of multiple infinite sums over harmonic sums and related functions, which depend on the Mellin parameter N. We report on the solution of these sums through higher order difference equations using the summation package Sigma. (orig.)
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed
2015-07-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.
Symmetries of th-Order Approximate Stochastic Ordinary Differential Equations
Fredericks, E.; Mahomed, F. M.
2012-01-01
Symmetries of $n$ th-order approximate stochastic ordinary differential equations (SODEs) are studied. The determining equations of these SODEs are derived in an Itô calculus context. These determining equations are not stochastic in nature. SODEs are normally used to model nature (e.g., earthquakes) or for testing the safety and reliability of models in construction engineering when looking at the impact of random perturbations.
HIGHER ORDER THINKING IN TEACHING GRAMMAR
Directory of Open Access Journals (Sweden)
Citra Dewi
2017-04-01
Full Text Available The aim of this paper discussed about how to enhance students’ higher order thinking that should be done by teacher in teaching grammar. Usually teaching grammar was boring and has the same way to learn like change the pattern of sentence into positive, negative and introgative while the students’ need more various way to develop their thinking. The outcome of students’ competence in grammar sometimes not sufficient enough when the students’ occured some test international standart like Test of English Foreign Language, International English Language Testing. Whereas in TOEFL test it needed higher order thinking answer, so teacher should develop students’ higher order thingking in daily teaching grammar in order to make the students’ enhance their thinking are higher. The method was used in this paper by using field study based on the experience of teaching grammar. It can be shown by students’ toefl score was less in stucture and written expression. The result of this paper was after teacher gave some treatments to enhance students’ higher order thinking in teaching grammar, the students’ toefl scores are sufficient enough as a part of stucture and written expression. It can concluded that it needed some strategies to enhancce students higher order thinking by teaching grammar it can make students’ higher toefl score. Teachers should be creative and inovative to teach the students’ started from giving the students’ question or test in teaching grammar.
Higher-order rewriting and partial evaluation
DEFF Research Database (Denmark)
Danvy, Olivier; Rose, Kristoffer H.
1998-01-01
We demonstrate the usefulness of higher-order rewriting techniques for specializing programs, i.e., for partial evaluation. More precisely, we demonstrate how casting program specializers as combinatory reduction systems (CRSs) makes it possible to formalize the corresponding program...
Understanding operational risk capital approximations: First and second orders
Directory of Open Access Journals (Sweden)
Gareth W. Peters
2013-07-01
Full Text Available We set the context for capital approximation within the framework of the Basel II / III regulatory capital accords. This is particularly topical as the Basel III accord is shortly due to take effect. In this regard, we provide a summary of the role of capital adequacy in the new accord, highlighting along the way the significant loss events that have been attributed to the Operational Risk class that was introduced in the Basel II and III accords. Then we provide a semi-tutorial discussion on the modelling aspects of capital estimation under a Loss Distributional Approach (LDA. Our emphasis is to focuss on the important loss processes with regard to those that contribute most to capital, the so called “high consequence, low frequency" loss processes. This leads us to provide a tutorial overview of heavy tailed loss process modelling in OpRisk under Basel III, with discussion on the implications of such tail assumptions for the severity model in an LDA structure. This provides practitioners with a clear understanding of the features that they may wish to consider when developing OpRisk severity models in practice. From this discussion on heavy tailed severity models, we then develop an understanding of the impact such models have on the right tail asymptotics of the compound loss process and we provide detailed presentation of what are known as first and second order tail approximations for the resulting heavy tailed loss process. From this we develop a tutorial on three key families of risk measures and their equivalent second order asymptotic approximations: Value-at-Risk (Basel III industry standard; Expected Shortfall (ES and the Spectral Risk Measure. These then form the capital approximations. We then provide a few example case studies to illustrate the accuracy of these asymptotic captial approximations, the rate of the convergence of the assymptotic result as a function of the LDA frequency and severity model parameters, the sensitivity
Higher-Order Minimal Functional Graphs
DEFF Research Database (Denmark)
Jones, Neil D; Rosendahl, Mads
1994-01-01
We present a minimal function graph semantics for a higher-order functional language with applicative evaluation order. The semantics captures the intermediate calls performed during the evaluation of a program. This information may be used in abstract interpretation as a basis for proving...
Two angle dependent reactive infinite order sudden approximation
International Nuclear Information System (INIS)
Jellinek, J.; Kouri, D.J.
1984-01-01
The reactive infinite order sudden approximation is redeveloped in a manner in which the initial and final arrangement internal angles γ/sub lambda/ amd γ/sub ν/ enter as independent quantities. The analysis follows parallel to that due to Khare, Kouri, and Baer except that matching of the wave function from different arrangements is done in a manner such that no single γ/sub ν/ angle is associated with a particular γ/sub lambda/ angle. As a consequence, the matching surface parameter B/sub lambdanu/ does not occur
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Energy Technology Data Exchange (ETDEWEB)
Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
XY model with higher-order exchange.
Žukovič, Milan; Kalagov, Georgii
2017-08-01
An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.
The association between higher education and approximate number system acuity
Lindskog, Marcus; Winman, Anders; Juslin, Peter
2014-01-01
Humans are equipped with an approximate number system (ANS) supporting non-symbolic numerosity representation. Studies indicate a relationship between ANS-precision (acuity) and math achievement. Whether the ANS is a prerequisite for learning mathematics or if mathematics education enhances the ANS remains an open question. We investigated the association between higher education and ANS acuity with university students majoring in subjects with varying amounts of mathematics (mathematics, business, and humanities), measured either early (First year) or late (Third year) in their studies. The results suggested a non-significant trend where students taking more mathematics had better ANS acuity and a significant improvement in ANS acuity as a function of study length that was mainly confined to the business students. The results provide partial support for the hypothesis that education in mathematics can enhance the ANS acuity. PMID:24904478
The association between higher education and approximate number system acuity.
Lindskog, Marcus; Winman, Anders; Juslin, Peter
2014-01-01
Humans are equipped with an approximate number system (ANS) supporting non-symbolic numerosity representation. Studies indicate a relationship between ANS-precision (acuity) and math achievement. Whether the ANS is a prerequisite for learning mathematics or if mathematics education enhances the ANS remains an open question. We investigated the association between higher education and ANS acuity with university students majoring in subjects with varying amounts of mathematics (mathematics, business, and humanities), measured either early (First year) or late (Third year) in their studies. The results suggested a non-significant trend where students taking more mathematics had better ANS acuity and a significant improvement in ANS acuity as a function of study length that was mainly confined to the business students. The results provide partial support for the hypothesis that education in mathematics can enhance the ANS acuity.
The Association Between Higher Education and Approximate Number System Acuity
Directory of Open Access Journals (Sweden)
Marcus eLindskog
2014-05-01
Full Text Available Humans are equipped with an Approximate Number System (ANS supporting non-symbolic numerosity representation. Studies indicate a relationship between ANS-precision (acuity and math achievement. Whether the ANS is a prerequisite for learning mathematics or if mathematics education enhances the ANS remains an open question. We investigated the association between higher education and ANS acuity with university students majoring in subjects with varying amounts of mathematics (mathematics, business, and humanities, measured either early (1th year or late (3rd year in their studies. The results suggested a non-significant trend where students taking more mathematics had better ANS acuity and a significant improvement in ANS acuity as a function of study length that was mainly confined to the business students. The results provide partial support for the hypothesis that education in mathematics can enhance the ANS acuity.
Electromagnetic cloaking in higher order spherical cloaks
Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.
2017-06-01
The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.
Finding Higher Order Differentials of MISTY1
Tsunoo, Yukiyasu; Saito, Teruo; Kawabata, Takeshi; Nakagawa, Hirokatsu
MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it is recommended for Japanese e-Government ciphers by the CRYPTREC project. In this paper, we report on 12th order differentials in 3-round MISTY1 with FL functions and 44th order differentials in 4-round MISTY1 with FL functions both previously unknown. We also report that both data complexity and computational complexity of higher order differential attacks on 6-round MISTY1 with FL functions and 7-round MISTY1 with FL functions using the 46th order differential can be reduced to as much as 1/22 of the previous values by using multiple 44th order differentials simultaneously.
Wave vector modification of the infinite order sudden approximation
International Nuclear Information System (INIS)
Sachs, J.G.; Bowman, J.M.
1980-01-01
A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities P/sub n/1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=such thatub f/-n/sub i/ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison
Wave vector modification of the infinite order sudden approximation
Sachs, Judith Grobe; Bowman, Joel M.
1980-10-01
A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities Pn1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=‖nf-ni‖ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.
Higher-Order Finite Element Solutions of Option Prices
DEFF Research Database (Denmark)
Raahauge, Peter
2004-01-01
Kinks and jumps in the payoff function of option contracts prevent an effectiveimplementation of higher-order numerical approximation methods. Moreover, thederivatives (the greeks) are not easily determined around such singularities, even withstandard lower-order methods. This paper suggests...... for prices as well as for first and second order derivatives(delta and gamma). Unlike similar studies, numerical approximation errors aremeasured both as weighted averages and in the supnorm over a state space includingtime-to-maturities down to a split second.KEYWORDS: Numerical option pricing, Transformed...
Frontiers of higher order fuzzy sets
Tahayori, Hooman
2015-01-01
Frontiers of Higher Order Fuzzy Sets, strives to improve the theoretical aspects of general and Interval Type-2 fuzzy sets and provides a unified representation theorem for higher order fuzzy sets. Moreover, the book elaborates on the concept of gradual elements and their integration with the higher order fuzzy sets. This book also introduces new frameworks for information granulation based on general T2FSs, IT2FSs, Gradual elements, Shadowed sets and rough sets. In particular, the properties and characteristics of the new proposed frameworks are studied. Such new frameworks are shown to be more capable to be exploited in real applications. Higher order fuzzy sets that are the result of the integration of general T2FSs, IT2FSs, gradual elements, shadowed sets and rough sets will be shown to be suitable to be applied in the fields of bioinformatics, business, management, ambient intelligence, medicine, cloud computing and smart grids. Presents new variations of fuzzy set frameworks and new areas of applicabili...
Higher-order tensors in diffusion imaging
Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.
2014-01-01
Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion
Higher Order and Fractional Diffusive Equations
Directory of Open Access Journals (Sweden)
D. Assante
2015-07-01
Full Text Available We discuss the solution of various generalized forms of the Heat Equation, by means of different tools ranging from the use of Hermite-Kampé de Fériet polynomials of higher and fractional order to operational techniques. We show that these methods are useful to obtain either numerical or analytical solutions.
Analogy, higher order thinking, and education.
Richland, Lindsey Engle; Simms, Nina
2015-01-01
Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships. © 2015 John Wiley & Sons, Ltd.
Higher-Order Components for Grid Programming
Dünnweber, Jan
2009-01-01
Higher-Order Components were developed within the CoreGRID European Network of Excellence and have become an optional extension of the popular Globus middleware. This book provides the reader with hands-on experience, describing a collection of example applications from various fields of science and engineering, including biology and physics.
Higher order antibunching in intermediate states
International Nuclear Information System (INIS)
Verma, Amit; Sharma, Navneet K.; Pathak, Anirban
2008-01-01
Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters
Higher class groups of Eichler orders
International Nuclear Information System (INIS)
Guo Xuejun; Kuku, Aderemi
2003-11-01
In this paper, we prove that if A is a quaternion algebra and Λ an Eichler order in A, then the only p-torsion possible in even dimensional higher class groups Cl 2n (Λ) (n ≥ 1) are for those rational primes p which lie under prime ideals of O F at which Λ are not maximal. (author)
A Higher-Order Colon Translation
DEFF Research Database (Denmark)
Danvy, Olivier; Nielsen, Lasse Reichstein
2001-01-01
A lambda-encoding such as the CPS transformation gives rise to administrative redexes. In his seminal article ``Call-by-name, call-by-value and the lambda-calculus'', 25 years ago, Plotkin tackled administrative reductions using a so-called ``colon translation.'' 10 years ago, Danvy and Filinski...... integrated administrative reductions in the CPS transformation, making it operate in one pass. The technique applies to other lambda-encodings (e.g., variants of CPS), but we do not see it used in practice--instead, Plotkin's colon translation appears to be favored. Therefore, in an attempt to link both...... techniques, we recast Plotkin's proof of Indifference and Simulation to the higher-order specification of the one-pass CPS transformation. To this end, we extend his colon translation from first order to higher order...
Higher order cumulants in colorless partonic plasma
Energy Technology Data Exchange (ETDEWEB)
Cherif, S. [Sciences and Technologies Department, University of Ghardaia, Ghardaia, Algiers (Algeria); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ahmed, M. A. A. [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Department of Physics, Taiz University in Turba, Taiz (Yemen); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ladrem, M., E-mail: mladrem@yahoo.fr [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria)
2016-06-10
Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to the thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.
Ward identities of higher order Virasoro algebra
International Nuclear Information System (INIS)
Zha Chaozeng; Dolate, S.
1994-11-01
The general formulations of primary fields versus quasi-primary ones in the context of high order Virasoro algebra (HOVA) and the corresponding Ward identity are explored. The primary fields of conformal spins up to 8 are given in terms of quasi-primary fields, and the general features of the higher order expressions are also discussed. It is observed that the local fields, either primary of quasi-primary, carry the same numbers of central charges, and not all the primary fields contribute to the anomalies in the Ward identities. (author). 6 refs
Higher-Order and Symbolic Computation
DEFF Research Database (Denmark)
Danvy, Olivier; Mason, Ian
2008-01-01
a series of implementaions that properly account for multiple invocations of the derivative-taking opeatro. In "Adapting Functional Programs to Higher-Order Logic," Scott Owens and Konrad Slind present a variety of examples of terminiation proofs of functional programs written in HOL proof systems. Since......-calculus programs, historically. The anaylsis determines the possible locations of ambients and mirrors the temporla sequencing of actions in the structure of types....
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.
1987-01-01
A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1986-01-01
We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt
Gauge formulation for higher order gravity
International Nuclear Information System (INIS)
Cuzinatto, R.R.; Medeiros, L.G.; Melo, C.A.M. de; Pompeia, P.J.
2008-01-01
This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=∂F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification. (orig.)
Higher-order force moments of active particles
Nasouri, Babak; Elfring, Gwynn J.
2018-04-01
Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.
Higher order corrections in quantum electrodynamics
International Nuclear Information System (INIS)
Rafael, E.
1977-01-01
Theoretical contributions to high-order corrections in purely leptonic systems, such as electrons and muons, muonium (μ + e - ) and positronium (e + e - ), are reviewed to establish the validity of quantum electrodynamics (QED). Two types of QED contributions to the anomalous magnetic moments are considered, from diagrams with one fermion type lines and those witn two fermion type lines. The contributions up to eighth order are compared to the data available with a different accuracy. Good agreement is stated within the experimental errors. The experimental accuracy of the muonium hyperfine structure and of the radiative corrections to the decay of positronium are compared to the one attainable in theoretical calculations. The need for a higher precision in both experimental data and theoretical calculations is stated
Higher order modes of coupled optical fibres
International Nuclear Information System (INIS)
Alexeyev, C N; Yavorsky, M A; Boklag, N A
2010-01-01
The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security
Integral approximants for functions of higher monodromic dimension
Energy Technology Data Exchange (ETDEWEB)
Baker, G.A. Jr.
1987-01-01
In addition to the description of multiform, locally analytic functions as covering a many sheeted version of the complex plane, Riemann also introduced the notion of considering them as describing a space whose ''monodromic'' dimension is the number of linearly independent coverings by the monogenic analytic function at each point of the complex plane. I suggest that this latter concept is natural for integral approximants (sub-class of Hermite-Pade approximants) and discuss results for both ''horizontal'' and ''diagonal'' sequences of approximants. Some theorems are now available in both cases and make clear the natural domain of convergence of the horizontal sequences is a disk centered on the origin and that of the diagonal sequences is a suitably cut complex-plane together with its identically cut pendant Riemann sheets. Some numerical examples have also been computed.
Theorem Proving In Higher Order Logics
Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene
2002-01-01
The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low
International Nuclear Information System (INIS)
Belendez, A.; Hernandez, A.; Belendez, T.; Neipp, C.; Marquez, A.
2008-01-01
He's homotopy perturbation method is used to calculate higher-order approximate periodic solutions of a nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(x). We find He's homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 1.56% for all values of oscillation amplitude, while this relative error is 0.30% for the second iteration and as low as 0.057% when the third-order approximation is considered. Comparison of the result obtained using this method with those obtained by different harmonic balance methods reveals that He's homotopy perturbation method is very effective and convenient
Three weights higher order Hardy type inequalities
Directory of Open Access Journals (Sweden)
Aigerim A. Kalybay
2006-01-01
Full Text Available We investigate the following three weights higher order Hardy type inequality (0.1 ‖g‖q,u≤ C‖Dρkg‖p,v where Dρi denotes the following weighted differential operator: {dig(tdti,i=0,1,...,m−1,di−mdti−m(p(tdmg(tdtm,i=m,m+1,...,k, for a weight function ρ(⋅. A complete description of the weights u, v and ρ so that (0.1 holds was given in [4] for the case 1
Higher-order geodesic deviations applied to the Kerr metric
Colistete, R J; Kerner, R
2002-01-01
Starting with an exact and simple geodesic, we generate approximate geodesics by summing up higher-order geodesic deviations within a general relativistic setting, without using Newtonian and post-Newtonian approximations. We apply this method to the problem of closed orbital motion of test particles in the Kerr metric spacetime. With a simple circular orbit in the equatorial plane taken as the initial geodesic, we obtain finite eccentricity orbits in the form of Taylor series with the eccentricity playing the role of a small parameter. The explicit expressions of these higher-order geodesic deviations are derived using successive systems of linear equations with constant coefficients, whose solutions are of harmonic oscillator type. This scheme gives best results when applied to orbits with low eccentricities, but with arbitrary possible values of (GM/Rc sup 2).
Lowest order Virtual Element approximation of magnetostatic problems
Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A.
2018-04-01
We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field $\\mathbf{H}$ on each edge, and the vertex values of the Lagrange multiplier $p$ (used to enforce the solenoidality of the magnetic induction $\\mathbf{B}=\\mu\\mathbf{H}$). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\\'ed\\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions.
Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.
Lao, Ka Un; Herbert, John M
2012-03-22
We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society
Minimization of heat slab nodes with higher order boundary conditions
International Nuclear Information System (INIS)
Solbrig, C.W.
1992-01-01
The accuracy of a numerical solution can be limited by the numerical approximation to the boundary conditions rather than the accuracy of the equations which describe the interior. The study presented in this paper compares the results from two different numerical formulations of the convective boundary condition on the face of a heat transfer slab. The standard representation of the boundary condition in a test problem yielded an unacceptable error even when the heat transfer slab was partitioned into over 300 nodes. A higher order boundary condition representation was obtained by using a second order approximation for the first derivative at the boundary and combining it with the general equation used for inner nodes. This latter formulation produced reasonable results when as few as ten nodes were used
Heavy quark threshold dynamics in higher order
Energy Technology Data Exchange (ETDEWEB)
Piclum, J.H.
2007-05-15
In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)
Another higher order Langevin algorithm for QCD
International Nuclear Information System (INIS)
Kronfeld, A.S.
1986-01-01
This note provides an algorithm for integrating the Langevin equation which is second order. It introduces a term into the drift force which is a product of the Gaussian noise and a second derivative of the action. The specific application presented here is for nonabelian gauge theories interacting with fermions, e.g. QCD, for which it requires less memory than the Runge-Kutta algorithm of the same order. The memory and computational requirements of Euler, Runge-Kutta, and the present algorithm are compared. (orig.)
Higher Order Continuous SI Engine Observers
DEFF Research Database (Denmark)
Vesterholm, Thomas; Hendricks, Elbert; Houbak, Niels
1992-01-01
A nonlinear compensator for the fuel film dynamics and a second order nonlinear observer for a spark ignition engine are presented in this paper. The compensator and observer are realized as continuous differential equations and an especially designed integration algorithm is used to integrate them...
The instruments of higher order thinking skills
Ahmad, S.; Prahmana, R. C. I.; Kenedi, A. K.; Helsa, Y.; Arianil, Y.; Zainil, M.
2017-12-01
This research developed the standard of instrument for measuring the High Order Thinking Skill (HOTS) ability of PGSD students. The research method used is development research with eight steps namely theoretical studies, operational definition, designation construct, dimensions and indicators, the preparation of the lattice, the preparation of grain, an analysis of legibility and Social desirability, field trials, and data analysis. In accordance with the type of data to be obtained in this study, the research instrument using validation sheet, implementation observation, and questionnaire. The results show that the instruments are valid and feasible to be used by expert and have been tested on PGSD students with 60% of PGSD students with low categorization.
Higher order temporal finite element methods through mixed formalisms.
Kim, Jinkyu
2014-01-01
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.
MHD stability analysis using higher order spline functions
Energy Technology Data Exchange (ETDEWEB)
Ida, Akihiro [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi (Japan); Todoroki, Jiro; Sanuki, Heiji
1999-04-01
The eigenvalue problem of the linearized magnetohydrodynamic (MHD) equation is formulated by using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline functions of degree p{sub 1} (degree p{sub 2}), which is continuously c{sub 1}-th (c{sub 2}-th) differentiable on neighboring finite elements, the sufficient conditions for the good approximation is given by p{sub 1}{>=}p{sub 2}+1, c{sub 1}{<=}c{sub 2}+1, (c{sub 1}{>=}1, p{sub 2}{>=}c{sub 2}{>=}0). The influence of the numerical integration upon the convergence of calculated eigenvalues is discussed. (author)
Analysis of higher order harmonics with holographic reflection gratings
Mas-Abellan, P.; Madrigal, R.; Fimia, A.
2017-05-01
Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.
Concept Mapping for Higher Order Thinking
Directory of Open Access Journals (Sweden)
Susan Marie Zvacek
2013-02-01
Full Text Available Engineering education is facing a changing world in which how one thinks is becoming more important than what one thinks; that is, our course content is important but constantly changing and we need to help students learn how to think about that content.Today’s students have grown accustomed to immediate rewards, multi-channel stimuli, and rapid-fire communications. As a result, they are often impatient and suffer a lack of focus. When reflection is called for in the learning process - a time consuming practice - students may find it difficult to overcome the conflict between their typically speedy management of priorities and the focused, time-intensive thinking required to acquire a strong foundation of declarative knowledge.Therefore, the exploration of tools to facilitate the formation of deep knowledge structures is essential. One instructional strategy that shows promise is the use of concept mapping, a learning activity that requires students to explain their understanding of important ideas and the relationships among those ideas. This paper describes a pilot project to integrate concept mapping into a Mechanical Engineering Course and the preliminary results of that project.This project has been established within the Working Group of “Tools for Developing High Order Thinking Skills”, of the Portuguese Society for Engineering Education, in which the first author is the leader and the other two co-authors, are working group members
Developing Higher-Order Materials Knowledge Systems
Fast, Anthony Nathan
2011-12-01
Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these
An improved corrective smoothed particle method approximation for second‐order derivatives
Korzilius, S.P.; Schilders, W.H.A.; Anthonissen, M.J.H.
2013-01-01
To solve (partial) differential equations it is necessary to have good numerical approximations. In SPH, most approximations suffer from the presence of boundaries. In this work a new approximation for the second-order derivative is derived and numerically compared with two other approximation
Second-order symmetric eikonal approximation for electron capture at high energies
Energy Technology Data Exchange (ETDEWEB)
Deco, G R; Rivarola, R D [Rosario Univ. Nacional (Argentina). Dept. de Fisica
1985-06-14
A symmetric eikonal approximation for electron capture in ion-atom collisions at high energies has been developed within the Dodd and Greider (1966, Phys. Rev. 146 675) formalism. Implicit intermediate states are included through the choice of distorted initial and final wavefunctions. Explicit intermediate state are considered by the introduction of a free-particle Green's function G/sup +//sub 0/. The model is applied for the resonant charge exchange in H/sup +/+H(1s) collisions. Also, the characteristic dip of the continuum distorted-wave model is analysed when higher orders are included at 'realistic' high energies.
Skinner-Rusk unified formalism for higher-order systems
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-07-01
The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.
Conceptualizing and Assessing Higher-Order Thinking in Reading
Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun
2015-01-01
Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…
Recognition of higher order patterns in proteins: immunologic kernels.
Directory of Open Access Journals (Sweden)
Robert D Bremel
Full Text Available By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC-I and MHC-II binding peptides. Such "immunologic kernel" peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.
HQET at order 1/m. Pt. 3. Decay constants in the quenched approximation
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS et Paris-Sud XI Univ., Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica e Inst. de Fisica Teorica IFT-UAM/CSIC; Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hippel, Georg von [Mainz Univ. (Germany). Inst. fuer Kernphysik; DESY, Zeuthen (Germany). NIC; Mendes, Tereza [DESY, Zeuthen (Germany). NIC; Sao Paulo Univ., Sao Carlos (Brazil). IFSC; Simma, Hubert; Sommer, Rainer [DESY, Zeuthen (Germany). NIC
2010-06-15
We report on the computation of the B{sub s} meson decay constant in Heavy Quark Effective Theory on the lattice. The next to leading order corrections in the HQET expansion are included non-perturbatively. We estimate higher order contributions to be very small. The results are extrapolated to the continuum limit, the main systematic error affecting the computation is therefore the quenched approximation used here. The Generalized Eigenvalue Problem and the use of all-to-all propagators are important technical ingredients of our approach that allow to keep statistical and systematic errors under control. We also report on the decay constant f{sub B{sub s}{sup '}} of the first radially excited state in the B{sub s} sector, computed in the static limit. (orig.)
HQET at order 1/m. Pt. 3. Decay constants in the quenched approximation
International Nuclear Information System (INIS)
Blossier, Benoit; Della Morte, Michele; Garron, Nicolas; Edinburgh Univ.; Hippel, Georg von; DESY, Zeuthen; Mendes, Tereza; Sao Paulo Univ., Sao Carlos; Simma, Hubert; Sommer, Rainer
2010-06-01
We report on the computation of the B s meson decay constant in Heavy Quark Effective Theory on the lattice. The next to leading order corrections in the HQET expansion are included non-perturbatively. We estimate higher order contributions to be very small. The results are extrapolated to the continuum limit, the main systematic error affecting the computation is therefore the quenched approximation used here. The Generalized Eigenvalue Problem and the use of all-to-all propagators are important technical ingredients of our approach that allow to keep statistical and systematic errors under control. We also report on the decay constant f B s ' of the first radially excited state in the B s sector, computed in the static limit. (orig.)
Fast and Analytical EAP Approximation from a 4th-Order Tensor
Directory of Open Access Journals (Sweden)
Aurobrata Ghosh
2012-01-01
Full Text Available Generalized diffusion tensor imaging (GDTI was developed to model complex apparent diffusivity coefficient (ADC using higher-order tensors (HOTs and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP. Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF, since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.
Fast and Analytical EAP Approximation from a 4th-Order Tensor.
Ghosh, Aurobrata; Deriche, Rachid
2012-01-01
Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.
Virial theorem and the Born-Oppenheimer approximation at different orders of perturbation
International Nuclear Information System (INIS)
Olivier, Gabriel; Weislinger, Edmond
1977-01-01
The link between the virial theorem and the adiabatic approximation is studied for a few orders of perturbation. It is shown that the total energy of the system is distributed between the mean values of kinetic and potential energy of the nuclei and the electrons in each order of perturbation. No static approximation connected with the Hellmann-Feynman theorem is made [fr
Nodal approximations of varying order by energy group for solving the diffusion equation
International Nuclear Information System (INIS)
Broda, J.T.
1992-02-01
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined
Generalized frameworks for first-order evolution inclusions based on Yosida approximations
Directory of Open Access Journals (Sweden)
Ram U. Verma
2011-04-01
Full Text Available First, general frameworks for the first-order evolution inclusions are developed based on the A-maximal relaxed monotonicity, and then using the Yosida approximation the solvability of a general class of first-order nonlinear evolution inclusions is investigated. The role the A-maximal relaxed monotonicity is significant in the sense that it not only empowers the first-order nonlinear evolution inclusions but also generalizes the existing Yosida approximations and its characterizations in the current literature.
Higher-order phase transitions on financial markets
Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.
2010-08-01
Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched
Hybrid approximations via second order combined dynamic derivatives on time scales
Directory of Open Access Journals (Sweden)
Qin Sheng
2007-09-01
Full Text Available This article focuses on the approximation of conventional second order derivative via the combined (diamond-$\\alpha$ dynamic derivative on time scales with necessary smoothness conditions embedded. We will show the constraints under which the second order dynamic derivative provides a consistent approximation to the conventional second derivative; the cases where the dynamic derivative approximates the derivative only via a proper modification of the existing formula; and the situations in which the dynamic derivative can never approximate consistently even with the help of available structure correction methods. Constructive error analysis will be given via asymptotic expansions for practical hybrid modeling and computational applications.
Higher-order harmonics of limited diffraction Bessel beams
Ding; Lu
2000-03-01
We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.
Higher-Order Generalized Invexity in Control Problems
Directory of Open Access Journals (Sweden)
S. K. Padhan
2011-01-01
Full Text Available We introduce a higher-order duality (Mangasarian type and Mond-Weir type for the control problem. Under the higher-order generalized invexity assumptions on the functions that compose the primal problems, higher-order duality results (weak duality, strong duality, and converse duality are derived for these pair of problems. Also, we establish few examples in support of our investigation.
Nil Bohr-sets and almost automorphy of higher order
Huang, Wen; Ye, Xiangdong
2016-01-01
Two closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any d\\in \\mathbb{N} does the collection of \\{n\\in \\mathbb{Z}: S\\cap (S-n)\\cap\\ldots\\cap (S-dn)\
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Solanko, Lukasz Michal; Nåbo, Lina J.
2014-01-01
2) wave function coupled to PCM, we introduce dynamical PCM solvent effects only in the Random Phase Approximation (RPA) part of the SOPPA response equations while the static solvent contribution is kept in both the RPA terms as well as in the higher order correlation matrix components of the SOPPA...... response equations. By dynamic terms, we refer to contributions that describe a change in environmental polarization which, in turn, reflects a change in the core molecular charge distribution upon an electronic excitation. This new combination of methods is termed PCM-SOPPA/RPA. We apply this newly...... defined method to the challenging cases of solvent effects on the lowest and intense electronic transitions in o-, m- and p-nitroaniline and o-, m- and p-nitrophenol and compare the performance of PCM-SOPPA/RPA with more conventional approaches. Compared to calculations based on time-dependent density...
A comparative study of the second-order Born and Faddeev-Watson approximations: Pt. 3
International Nuclear Information System (INIS)
Roberts, M.J.
1988-01-01
Singularities which arise in the second-order Born and Faddeev-Watson approximations for ionisation processes are examined. A regularisation procedure for the latter is suggested. Comparison with He(e,2e)He + experimental data in symmetric coplanar energy-sharing kinematics shows that the second-order Faddeev-Watson approximation is inferior to the second Born results of Byron et al. (1985. J. Phys. B: At. Mol. Phys. 18, 3203). (author)
Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm
African Journals Online (AJOL)
In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...
Higher-order Jordan Osserman pseudo-Riemannian manifolds
International Nuclear Information System (INIS)
Gilkey, Peter B; Ivanova, Raina; Zhang Tan
2002-01-01
We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds
Higher-order Jordan Osserman pseudo-Riemannian manifolds
Energy Technology Data Exchange (ETDEWEB)
Gilkey, Peter B [Mathematics Department, University of Oregon, Eugene, OR 97403 (United States); Ivanova, Raina [Mathematics Department, University of Hawaii - Hilo, 200 W Kawili St, Hilo, HI 96720 (United States); Zhang Tan [Department of Mathematics and Statistics, Murray State University, Murray, KY 42071 (United States)
2002-09-07
We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds.
Exact solutions to two higher order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Xu Liping; Zhang Jinliang
2007-01-01
Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)
Higher order Lie-Baecklund symmetries of evolution equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.
1983-10-01
We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)
Neural classifiers for learning higher-order correlations
International Nuclear Information System (INIS)
Gueler, M.
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and biologically more plausible with respect to the more traditional multilayer networks. These architecture make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size
Neural Classifiers for Learning Higher-Order Correlations
Güler, Marifi
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
On the validity of localized approximation for an on-axis zeroth-order Bessel beam
International Nuclear Information System (INIS)
Gouesbet, Gérard; Lock, J.A.; Ambrosio, L.A.; Wang, J.J.
2017-01-01
Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles. - Highlights: • The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams. • The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam. • It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles. • It is easily argued that this result must remain true for any kind of Bessel beams.
Higher-order scene statistics of breast images
Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.
2009-02-01
Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.
First-order corrections to random-phase approximation GW calculations in silicon and diamond
Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.
1998-01-01
We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency
The differential geometry of higher order jets and tangent bundles
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)
Protein scaffolds and higher-order complexes in synthetic biology
den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.
2017-01-01
Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and
Generating superpositions of higher order bessel beams [Conference paper
CSIR Research Space (South Africa)
Vasilyeu, R
2009-10-01
Full Text Available An experimental setup to generate a superposition of higher-order Bessel beams by means of a spatial light modulator and ring aperture is presented. The experimentally produced fields are in good agreement with those calculated theoretically....
Higher-order curvature terms and extended inflation
International Nuclear Information System (INIS)
Wang Yun
1990-01-01
We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles
Unambiguous formalism for higher order Lagrangian field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris
2009-01-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Higher-order RANS turbulence models for separated flows
National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....
A simplified parsimonious higher order multivariate Markov chain model
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
A tridiagonal parsimonious higher order multivariate Markov chain model
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
The role of formative feedback in promoting higher order thinking ...
African Journals Online (AJOL)
The role of formative feedback in promoting higher order thinking skills in ... activities, task characteristics, validating students' thinking, and providing feedback. ... Keywords: classroom environment, formative assessment, formative feedback, ...
Higher Order Lagrange Finite Elements In M3D
International Nuclear Information System (INIS)
Chen, J.; Strauss, H.R.; Jardin, S.C.; Park, W.; Sugiyama, L.E.; Fu, G.; Breslau, J.
2004-01-01
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2007-04-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order PoincarÃƒÂ© difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2007-01-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Higher order aberrations of the eye: Part one
Directory of Open Access Journals (Sweden)
Marsha Oberholzer
2016-06-01
Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer
All-fiber Raman Probe using Higher Order Modes
DEFF Research Database (Denmark)
Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten
2013-01-01
We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....
Linear matrix differential equations of higher-order and applications
Directory of Open Access Journals (Sweden)
Mustapha Rachidi
2008-07-01
Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.
International Nuclear Information System (INIS)
He Qiu-Yan; Yuan Xiao; Yu Bo
2017-01-01
The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary order, is presented in this paper. The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained. K-index, P-index, O-index, and complexity index are introduced to contribute to performance analysis. Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order, these rational approximation impedance functions calculated by the iterating function meet computational rationality, positive reality, and operational validity. Then they are capable of having the operational performance of fractional operators and being physical realization. The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited. (paper)
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.
2013-01-01
on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time
Meta-Logical Reasoning in Higher-Order Logic
DEFF Research Database (Denmark)
Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor
The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...
Higher-order chaotic oscillator using active bessel filter
DEFF Research Database (Denmark)
Lindberg, Erik; Mykolaitis, Gytis; Bumelien, Skaidra
2010-01-01
A higher-order oscillator, including a nonlinear unit and an 8th-order low-pass active Bessel filter is described. The Bessel unit plays the role of "three-in-one": a delay line, an amplifier and a filter. Results of hardware experiments and numerical simulation are presented. Depending...
Higher-Order Integral Equation Methods in Computational Electromagnetics
DEFF Research Database (Denmark)
Jørgensen, Erik; Meincke, Peter
Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...
Higher-Order Separation Logic in Isabelle/HOLCF
DEFF Research Database (Denmark)
Varming, Carsten; Birkedal, Lars
2008-01-01
We formalize higher-order separation logic for a first-order imperative language with procedures and local variables in Isabelle/HOLCF. The assertion language is modeled in such a way that one may use any theory defined in Isabelle/HOLCF to construct assertions, e.g., primitive recursion, least o...
Multilevel Fast Multipole Method for Higher Order Discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....
The Cauchy problem for higher order abstract differential equations
Xiao, Ti-Jun
1998-01-01
This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
Convex order approximations in case of cash flows of mixed signs
Dhaene, J.; Goovaerts, M.J.; Vanmaele, M.; van Weert, K.
2012-01-01
In Van Weert et al. (2010), results are obtained showing that, when allowing some of the cash flows to be negative, convex order lower bound approximations can still be used to solve general investment problems in a context of provisioning or terminal wealth. In this paper, a correction and further
Higher order QCD corrections in small x physics
International Nuclear Information System (INIS)
Chachamis, G.
2006-11-01
We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as γ * γ * collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the γ*γ* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process γγ→ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)
Higher order QCD corrections in small x physics
Energy Technology Data Exchange (ETDEWEB)
Chachamis, G.
2006-11-15
We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as {gamma}{sup *}{gamma}{sup *} collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the {gamma}*{gamma}* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process {gamma}{gamma}{yields}ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)
Interactions, strings and isotopies in higher order anisotropic superspaces
Vacaru, Sergiu Ion
2001-01-01
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions, published in J. Math. Phys., Nucl. Phys. B, Ann. Phys. (NY), JHEP, Rep. Math. Phys., Int. J. Theor. Phys. and in some former Soviet Union and Romanian scientific journals. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces with higher order anisotropy and inhomogeneity. The approach proceeds by developing the concept of higher order anisotropic (super)space which unifies the logical and manthematical aspects of modern Kaluza--Klein theories and generalized Lagrange and Finsler geometry and leads to modeling of physical processes on higher order fiber (super)bundles provided with nonlinear and distinguished connections and metric structures. This book can be also considered as a pedagogical survey on the mentioned subjects.
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society
Approximating second-order vector differential operators on distorted meshes in two space dimensions
International Nuclear Information System (INIS)
Hermeline, F.
2008-01-01
A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)
Higher order multipoles and splines in plasma simulations
International Nuclear Information System (INIS)
Okuda, H.; Cheng, C.Z.
1978-01-01
The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)
Higher-order multipoles and splines in plasma simulations
International Nuclear Information System (INIS)
Okuda, H.; Cheng, C.Z.
1977-12-01
Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length
Oscillation of solutions of some higher order linear differential equations
Directory of Open Access Journals (Sweden)
Hong-Yan Xu
2009-11-01
Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.
Higher order perturbation theory - An example for discussion
International Nuclear Information System (INIS)
Lewins, J.D.; Parks, G.; Babb, A.L.
1986-01-01
Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed
New second order Mumford-Shah model based on Γ-convergence approximation for image processing
Duan, Jinming; Lu, Wenqi; Pan, Zhenkuan; Bai, Li
2016-05-01
In this paper, a second order variational model named the Mumford-Shah total generalized variation (MSTGV) is proposed for simultaneously image denoising and segmentation, which combines the original Γ-convergence approximated Mumford-Shah model with the second order total generalized variation (TGV). For image denoising, the proposed MSTGV can eliminate both the staircase artefact associated with the first order total variation and the edge blurring effect associated with the quadratic H1 regularization or the second order bounded Hessian regularization. For image segmentation, the MSTGV can obtain clear and continuous boundaries of objects in the image. To improve computational efficiency, the implementation of the MSTGV does not directly solve its high order nonlinear partial differential equations and instead exploits the efficient split Bregman algorithm. The algorithm benefits from the fast Fourier transform, analytical generalized soft thresholding equation, and Gauss-Seidel iteration. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed model.
COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER
Directory of Open Access Journals (Sweden)
Khomchenko A.
2017-12-01
Full Text Available The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.
Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang
2014-01-01
An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.
The Role of Formative Feedback in Promoting Higher Order ...
African Journals Online (AJOL)
DrNneka
An International Multi-disciplinary Journal, Ethiopia. AFRREV ... make contribution to this research gap by proposing a theoretical feedback model that can promote higher order thinking skills in the classroom. The proposed ..... process; students provided with tasks that are novel, complex, creative, and non- algorithmic ...
Developing Higher-Order Thinking Skills through WebQuests
Polly, Drew; Ausband, Leigh
2009-01-01
In this study, 32 teachers participated in a year-long professional development project related to technology integration in which they designed and implemented a WebQuest. This paper describes the extent to which higher-order thinking skills (HOTS) and levels of technology implementation (LoTI) occur in the WebQuests that participants designed.…
Hamiltonian formulation of theory with higher order derivatives
International Nuclear Information System (INIS)
Gitman, D.M.; Lyakhovich, S.L.; Tyutin, I.V.
1983-01-01
A method of ''hamiltonization'' of a special theory with higher order derivatives is described. In a nonspecial case the result coincides with the known Ostrogradsky formulation. It is shown that in the nonspecial theory the lagrange equations of motion are reduced to the normal form
Numerical methods of higher order of accuracy for incompressible flows
Czech Academy of Sciences Publication Activity Database
Kozel, K.; Louda, Petr; Příhoda, Jaromír
2010-01-01
Roč. 80, č. 8 (2010), s. 1734-1745 ISSN 0378-4754 Institutional research plan: CEZ:AV0Z20760514 Keywords : higher order methods * upwind methods * backward-facing step Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010
First Measurements of Higher Order Optics Parameters in the LHC
Vanbavinckhove, G; Bartolini, R; Calaga, R; Giovannozzi, M; Maclean, E H; Miyamoto, R; Schmidt, F; Tomas, R
2011-01-01
Higher order effects can play an important role in the performance of the LHC. Lack of knowledge of these pa- rameters can increase the tune footprint and compromise the beam lifetime. First measurements of these parameters at injection and flattop have been conducted. Detailed sim- ulations are compared to the measurements together with discussions on the measurement limitations.
Decidable Fragments of a Higher Order Calculus with Locations
DEFF Research Database (Denmark)
Bundgaard, Mikkel; Godskesen, Jens Christian; Huttel, Hans
2009-01-01
Homer is a higher order process calculus with locations. In this paper we study Homer in the setting of the semantic finite control property, which is a finite reachability criterion that implies decidability of barbed bisimilarity. We show that strong and weak barbed bisimilarity are undecidable...
Computer-Mediated Assessment of Higher-Order Thinking Development
Tilchin, Oleg; Raiyn, Jamal
2015-01-01
Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…
Constrained variational calculus for higher order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)
2010-11-12
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Constrained variational calculus for higher order classical field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn
2010-01-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Enhancing Higher Order Thinking Skills through Clinical Simulation
Varutharaju, Elengovan; Ratnavadivel, Nagendralingan
2014-01-01
Purpose: The study aimed to explore, describe and analyse the design and implementation of clinical simulation as a pedagogical tool in bridging the deficiency of higher order thinking skills among para-medical students, and to make recommendations on incorporating clinical simulation as a pedagogical tool to enhance thinking skills and align the…
Improved Multilevel Fast Multipole Method for Higher-Order discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...
Higher-Order Hierarchical Legendre Basis Functions in Applications
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2007-01-01
The higher-order hierarchical Legendre basis functions have been developed for eﬀective solution of integral equations with the method of moments. They are derived from orthogonal Legendre polynomials modiﬁed to enforce normal continuity between neighboring mesh elements, while preserving a high...
International Nuclear Information System (INIS)
Estiot, J.C.; Salvatores, M.; Palmiotti, G.
1981-01-01
We present the characteristics of SAMPO, a one dimension transport theory code system, which is used for the following types of calculation: sensitivity analysis for functional linear or bi-linear on the direct or adjoint flux and their ratios; classic perturbation analysis. First order calculations, as well higher order, can be presented
Self-similarity of higher-order moving averages
Arianos, Sergio; Carbone, Anna; Türk, Christian
2011-10-01
In this work, higher-order moving average polynomials are defined by straightforward generalization of the standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the exponent H of the fractional Brownian series and of the detrending moving average variance asymptotically agree for the first-order polynomial. Such asymptotic values are compared with the results obtained by the simulations. The higher-order polynomials correspond to trend estimates at shorter time scales as the degree of the polynomial increases. Importantly, the increase of polynomial degree does not require to change the moving average window. Thus trends at different time scales can be obtained on data sets with the same size. These polynomials could be interesting for those applications relying on trend estimates over different time horizons (financial markets) or on filtering at different frequencies (image analysis).
Higher order mode damping in Kaon factory RF cavities
International Nuclear Information System (INIS)
Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.
1989-05-01
Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report
An Algorithm for Higher Order Hopf Normal Forms
Directory of Open Access Journals (Sweden)
A.Y.T. Leung
1995-01-01
Full Text Available Normal form theory is important for studying the qualitative behavior of nonlinear oscillators. In some cases, higher order normal forms are required to understand the dynamic behavior near an equilibrium or a periodic orbit. However, the computation of high-order normal forms is usually quite complicated. This article provides an explicit formula for the normalization of nonlinear differential equations. The higher order normal form is given explicitly. Illustrative examples include a cubic system, a quadratic system and a Duffing–Van der Pol system. We use exact arithmetic and find that the undamped Duffing equation can be represented by an exact polynomial differential amplitude equation in a finite number of terms.
Higher-Order Cyclostationarity Detection for Spectrum Sensing
Directory of Open Access Journals (Sweden)
Julien Renard
2010-01-01
Full Text Available Recent years have shown a growing interest in the concept of Cognitive Radios (CRs, able to access portions of the electromagnetic spectrum in an opportunistic operating way. Such systems require efficient detectors able to work in low Signal-to-Noise Ratio (SNR environments, with little or no information about the signals they are trying to detect. Energy detectors are widely used to perform such blind detection tasks, but quickly reach the so-called SNR wall below which detection becomes impossible Tandra (2005. Cyclostationarity detectors are an interesting alternative to energy detectors, as they exploit hidden periodicities present in man-made signals, but absent in noise. Such detectors use quadratic transformations of the signals to extract the hidden sine-waves. While most of the literature focuses on the second-order transformations of the signals, we investigate the potential of higher-order transformations of the signals. Using the theory of Higher-Order Cyclostationarity (HOCS, we derive a fourth-order detector that performs similarly to the second-order ones to detect linearly modulated signals, at SNR around 0 dB, which may be used if the signals of interest do not exhibit second-order cyclostationarity. More generally this paper reviews the relevant aspects of the cyclostationary and HOCS theory, and shows their potential for spectrum sensing.
Higher-Order Hamiltonian Model for Unidirectional Water Waves
Bona, J. L.; Carvajal, X.; Panthee, M.; Scialom, M.
2018-04-01
Formally second-order correct, mathematical descriptions of long-crested water waves propagating mainly in one direction are derived. These equations are analogous to the first-order approximations of KdV- or BBM-type. The advantage of these more complex equations is that their solutions corresponding to physically relevant initial perturbations of the rest state may be accurate on a much longer timescale. The initial value problem for the class of equations that emerges from our derivation is then considered. A local well-posedness theory is straightforwardly established by a contraction mapping argument. A subclass of these equations possess a special Hamiltonian structure that implies the local theory can be continued indefinitely.
HQET at order 1/m. Pt. 1. Non-perturbative parameters in the quenched approximation
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Edinburgh Univ. (United Kingdom). School of Physics and Astronomy - SUPA; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-01-15
We determine non-perturbatively the parameters of the lattice HQET Lagrangian and those of heavy-light axial-vector and vector currents in the quenched approximation. The HQET expansion includes terms of order 1/m{sub b}. Our results allow to compute, for example, the heavy-light spectrum and B-meson decay constants in the static approximation and to order 1/m{sub b} in HQET. The determination of the parameters is separated into universal and non-universal parts. The universal results can be used to determine the parameters for various discretizations. The computation reported in this paper uses the plaquette gauge action and the ''HYP1/2'' action for the b-quark described by HQET. The parameters of the currents also depend on the light-quark action, for which we choose non-perturbatively O(a)-improved Wilson fermions. (orig.)
HQET at order 1/m. Pt. 1. Non-perturbative parameters in the quenched approximation
International Nuclear Information System (INIS)
Blossier, Benoit; Della Morte, Michele; Garron, Nicolas; Edinburgh Univ.; Sommer, Rainer
2010-01-01
We determine non-perturbatively the parameters of the lattice HQET Lagrangian and those of heavy-light axial-vector and vector currents in the quenched approximation. The HQET expansion includes terms of order 1/m b . Our results allow to compute, for example, the heavy-light spectrum and B-meson decay constants in the static approximation and to order 1/m b in HQET. The determination of the parameters is separated into universal and non-universal parts. The universal results can be used to determine the parameters for various discretizations. The computation reported in this paper uses the plaquette gauge action and the ''HYP1/2'' action for the b-quark described by HQET. The parameters of the currents also depend on the light-quark action, for which we choose non-perturbatively O(a)-improved Wilson fermions. (orig.)
Relaxation approximations to second-order traffic flow models by high-resolution schemes
International Nuclear Information System (INIS)
Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.
2015-01-01
A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers
A second-order approximation of particle motion in the fringing field of a dipole magnet
International Nuclear Information System (INIS)
Tarantin, N.I.
1980-01-01
The radial and axial motion of charged particles in the fringing field of an arbitrary dipole magnet has been considered with accuracy to the second-order of small quantities. The dipole magnet has an inhomogeneous field and oblique entrance and exit boundaries in the form of second-order curves. The region of the fringing field has a variable extension. A new definition of the effective boundary of the real fringing field has a variable extension. A new definition of the effective boundary of the real fringing field of the dipole magnet is used. A better understanding of the influence of the fringing magnetic field on the motion of charged particles in the pole gap of the dipole magnet has been obtained. In particular, it is shown that it is important to take into account, in the second approximation, some terms related formally to the next approximations. The results are presented in a form convenient for practical calculations. (orig.)
Second order approximation for optical polaron in the strong coupling case
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.
1993-11-01
Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs
Directory of Open Access Journals (Sweden)
Veyis Turut
2013-01-01
Full Text Available Two tecHniques were implemented, the Adomian decomposition method (ADM and multivariate Padé approximation (MPA, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo sense. First, the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM, then power series solution of fractional differential equation was put into multivariate Padé series. Finally, numerical results were compared and presented in tables and figures.
Kiefer, Claus; Wichmann, David
2018-06-01
We extend the Born-Oppenheimer type of approximation scheme for the Wheeler-DeWitt equation of canonical quantum gravity to arbitrary orders in the inverse Planck mass squared. We discuss in detail the origin of unitarity violation in this scheme and show that unitarity can be restored by an appropriate modification which requires back reaction from matter onto the gravitational sector. In our analysis, we heavily rely on the gauge aspects of the standard Born-Oppenheimer scheme in molecular physics.
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
International Nuclear Information System (INIS)
FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations
Second-order Born approximation for the ionization of molecules by electron and positron impact
Energy Technology Data Exchange (ETDEWEB)
Dal Cappello, C. [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, Institut Jean Barriol (FR2843), 1 Boulevard Arago, F-57078 Metz Cedex 3 (France); Rezkallah, Z.; Houamer, S. [Laboratoire de Physique Quantique et Systemes Dynamiques, Departement de Physique, Faculte des Sciences Universite Ferhat Abbas, Setif 19000 (Algeria); Charpentier, I. [Universite Paul Verlaine-Metz, Laboratoire de Physique et Mecanique des Materiaux UMR 7554, Ile du Saulcy, F-57045 Metz Cedex 1 (France); Hervieux, P. A. [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 Rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Ruiz-Lopez, M. F. [Nancy-University, Equipe de Chimie et Biochimie Theoriques, UMR CNRS-UHP 7565, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Dey, R. [Max-Planck Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)
2011-09-15
Second-order Born approximation is applied to study the ionization of molecules. The initial and final states are described by single-center wave functions. For the initial state a Gaussian wave function is used while for the ejected electron it is a distorted wave. Results of the present model are compared with recent (e,2e) experiments on the water molecule. Preliminary results are also presented for the ionization of the thymine molecule by electrons and positrons.
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
Fan, W C; Powell, J L
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
High-order harmonic generation in solid slabs beyond the single-active-electron approximation
Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter
2017-11-01
High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.
Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms
Directory of Open Access Journals (Sweden)
Cauchy Pradhan
2012-01-01
Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.
Higher-order structure of Saccharomyces cerevisiae chromatin
International Nuclear Information System (INIS)
Lowary, P.T.; Widom, J.
1989-01-01
We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure
Higher-order dynamical effects in Coulomb dissociation
International Nuclear Information System (INIS)
Esbensen, H.
1994-06-01
We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)
Inseparability inequalities for higher order moments for bipartite systems
International Nuclear Information System (INIS)
Agarwal, G S; Biswas, Asoka
2005-01-01
There are several examples of bipartite entangled states of continuous variables for which the existing criteria for entanglement using the inequalities involving the second-order moments are insufficient. We derive new inequalities involving higher order correlation, for testing entanglement in non-Gaussian states. In this context, we study an example of a non-Gaussian state, which is a bipartite entangled state of the form Ψ(x a , x b ) ∝ (αx a + βx b ) e -(x a 2 +x b 2 )/2 . Our results open up an avenue to search for new inequalities to test entanglement in non-Gaussian states
Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order
Directory of Open Access Journals (Sweden)
Taher S. Hassan
2016-01-01
Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t, i=1,…,n-1, with x0=x, ϕβ(u≔uβsgnu, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.
Higher Order Differential Attack on 6-Round MISTY1
Tsunoo, Yukiyasu; Saito, Teruo; Nakashima, Hiroki; Shigeri, Maki
MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper reports a previously unknown higher order differential characteristic of 4-round MISTY1 with the FL functions. It also shows that a higher order differential attack that utilizes this newly discovered characteristic is successful against 6-round MISTY1 with the FL functions. This attack can recover a partial subkey with a data complexity of 253.7 and a computational complexity of 264.4, which is better than any previous cryptanalysis of MISTY1.
Higher-order risk preferences in social settings.
Heinrich, Timo; Mayrhofer, Thomas
2018-01-01
We study prudence and temperance (next to risk aversion) in social settings. Previous experimental studies have shown that these higher-order risk preferences affect the choices of individuals deciding privately on lotteries that only affect their own payoff. Yet, many risky and financially relevant decisions are made in the social settings of households or organizations. We elicit higher-order risk preferences of individuals and systematically vary how an individual's decision is made (alone or while communicating with a partner) and who is affected by the decision (only the individual or the partner as well). In doing so, we can isolate the effects of other-regarding concerns and communication on choices. Our results reveal that the majority of choices are risk averse, prudent, and temperate across social settings. We also observe that individuals are influenced significantly by the preferences of a partner when they are able to communicate and choices are payoff-relevant for both of them.
The higher order flux mapping method in large size PHWRs
International Nuclear Information System (INIS)
Kulkarni, A.K.; Balaraman, V.; Purandare, H.D.
1997-01-01
A new higher order method is proposed for obtaining flux map using single set of expansion mode. In this procedure, one can make use of the difference between predicted value of detector reading and their actual values for determining the strength of local fluxes around detector site. The local fluxes are arising due to constant perturbation changes (both extrinsic and intrinsic) taking place in the reactor. (author)
Practical Programming with Higher-Order Encodings and Dependent Types
DEFF Research Database (Denmark)
Poswolsky, Adam; Schürmann, Carsten
2008-01-01
, tedious, and error-prone. In this paper, we describe the underlying calculus of Delphin. Delphin is a fully implemented functional-programming language supporting reasoning over higher-order encodings and dependent types, while maintaining the benefits of HOAS. More specifically, just as representations...... for instantiation from those that will remain uninstantiated, utilizing a variation of Miller and Tiu’s ∇-quantifier [1]....
Modeling Human Behaviour with Higher Order Logic: Insider Threats
DEFF Research Database (Denmark)
Boender, Jaap; Ivanova, Marieta Georgieva; Kammuller, Florian
2014-01-01
it to the sociological process of logical explanation. As a case study on modeling human behaviour, we present the modeling and analysis of insider threats as a Higher Order Logic theory in Isabelle/HOL. We show how each of the three step process of sociological explanation can be seen in our modeling of insider’s state......, its context within an organisation and the effects on security as outcomes of a theorem proving analysis....
Higher order Bose-Einstein correlations in identical particle production
International Nuclear Information System (INIS)
Biyajima, M.
1990-01-01
A diagram technique to calculate the higher order Bose-Einstein correlations is formulated. This technique is applied to derive explicit expressions for the n-pion correlation functions for n = 2, 3, 4, and 5, and numerical predictions are given. In a comparison with the AFS and NA23 data on two-pion and three-pion Bose-Einstein correlations good agreement is obtained. 21 refs., 5 figs. (Authors)
Influence of higher order modes on angled-facet amplifiers
DEFF Research Database (Denmark)
Wang, Z.; Mikkelsen, B.; Stubkjær, Kristian
1991-01-01
The influence of the first-order mode on the residual reflectivity of angled-facet amplifiers is analyzed. For a 7 degrees angled-facet ridge waveguide amplifier with a single-layer antireflective (AR) coating, a gain ripple lower than 1-dB at 25-dB gain can be obtained independent...... of the polarization, even in the presence of a first-order mode with a 15-dB gain. The tolerances for the thickness and refractive index of the AR coating are reduced by a factor of three compared to operation in the fundamental mode only. The influence of the higher order mode can virtually be suppressed...
Higher-order momentum distributions and locally affine LDDMM registration
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune
2013-01-01
description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...
Near integrability of kink lattice with higher order interactions
Jiang, Yun-Guo; Liu, Jia-Zhen; He, Song
2017-11-01
We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda. Supported by Shandong Provincial Natural Science Foundation (ZR2014AQ007), National Natural Science Foundation of China (11403015, U1531105), S. He is supported by Max-Planck fellowship in Germany and National Natural Science Foundation of China (11305235)
Compiler-Directed Transformation for Higher-Order Stencils
Energy Technology Data Exchange (ETDEWEB)
Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-07-20
As the cost of data movement increasingly dominates performance, developers of finite-volume and finite-difference solutions for partial differential equations (PDEs) are exploring novel higher-order stencils that increase numerical accuracy and computational intensity. This paper describes a new compiler reordering transformation applied to stencil operators that performs partial sums in buffers, and reuses the partial sums in computing multiple results. This optimization has multiple effect son improving stencil performance that are particularly important to higher-order stencils: exploits data reuse, reduces floating-point operations, and exposes efficient SIMD parallelism to backend compilers. We study the benefit of this optimization in the context of Geometric Multigrid (GMG), a widely used method to solvePDEs, using four different Jacobi smoothers built from 7-, 13-, 27-and 125-point stencils. We quantify performance, speedup, andnumerical accuracy, and use the Roofline model to qualify our results. Ultimately, we obtain over 4× speedup on the smoothers themselves and up to a 3× speedup on the multigrid solver. Finally, we demonstrate that high-order multigrid solvers have the potential of reducing total data movement and energy by several orders of magnitude.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea
2013-01-01
Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.
High-order harmonic propagation in gases within the discrete dipole approximation
International Nuclear Information System (INIS)
Hernandez-Garcia, C.; Perez-Hernandez, J. A.; Ramos, J.; Jarque, E. Conejero; Plaja, L.; Roso, L.
2010-01-01
We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole approximation. In contrast with other approaches, our strategy is based on computing the total field as the superposition of the driving field with the field radiated by the elemental emitters of the sample. In this way we avoid the numerical integration of the wave equation, as Maxwell's equations have an analytical solution for an elementary (pointlike) emitter. The present strategy is valid for low-pressure gases interacting with strong fields near the saturation threshold (i.e., partially ionized), which is a common situation in the experiments of high-order harmonic generation. We use this tool to study the dependence of phase matching of high-order harmonics with the relative position between the beam focus and the gas jet.
An efficient higher order family of root finders
Petkovic, Ljiljana D.; Rancic, Lidija; Petkovic, Miodrag S.
2008-06-01
A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen-Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss-Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.
Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.
2018-02-01
In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.
A new implementation of the second-order polarization propagator approximation (SOPPA)
DEFF Research Database (Denmark)
Packer, Martin J.; Dalskov, Erik K.; Enevoldsen, Thomas
1996-01-01
We present a new implementation of the second-order polarization propagator approximation (SOPPA) using a direct linear transformation approach, in which the SOPPA equations are solved iteratively. This approach has two important advantages over its predecessors. First, the direct linear...... and triplet transitions for benzene and naphthalene. The results compare well with experiment and CASPT2 values, calculated with identical basis sets and molecular geometries. This indicates that SOPPA can provide reliable values for excitation energies and response properties for relatively large molecular...
An approximate framework for quantum transport calculation with model order reduction
Energy Technology Data Exchange (ETDEWEB)
Chen, Quan, E-mail: quanchen@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Li, Jun [Department of Chemistry, The University of Hong Kong (Hong Kong); Yam, Chiyung [Beijing Computational Science Research Center (China); Zhang, Yu [Department of Chemistry, The University of Hong Kong (Hong Kong); Wong, Ngai [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Chen, Guanhua [Department of Chemistry, The University of Hong Kong (Hong Kong)
2015-04-01
A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.
Convergence acceleration for time-independent first-order PDE using optimal PNB-approximations
Energy Technology Data Exchange (ETDEWEB)
Holmgren, S.; Branden, H. [Uppsala Univ. (Sweden)
1996-12-31
We consider solving time-independent (steady-state) flow problems in 2D or 3D governed by hyperbolic or {open_quotes}almost hyperbolic{close_quotes} systems of partial differential equations (PDE). Examples of such PDE are the Euler and the Navier-Stokes equations. The PDE is discretized using a finite difference or finite volume scheme with arbitrary order of accuracy. If the matrix B describes the discretized differential operator and u denotes the approximate solution, the discrete problem is given by a large system of equations.
Scalar brane backgrounds in higher order curvature gravity
International Nuclear Information System (INIS)
Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois
2003-01-01
We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)
Higher order corrections to energy levels of muonic atoms
International Nuclear Information System (INIS)
Rinker, G.A. Jr.; Steffen, R.M.
1975-08-01
In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references
Higher-order Skyrme hair of black holes
Gudnason, Sven Bjarke; Nitta, Muneto
2018-05-01
Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.
Higher-order automatic differentiation of mathematical functions
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Higher order branching of periodic orbits from polynomial isochrones
Directory of Open Access Journals (Sweden)
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
Higher-order conditioning is impaired by hippocampal lesions.
Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon
2014-09-22
Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.
Higher-order Brunnian structures and possible physical realizations
DEFF Research Database (Denmark)
A. Baas, Nils; V. Fedorov, D.; S. Jensen, A.
2014-01-01
We consider few-body bound state systems and provide precise definitions of Borromean and Brunnian systems. The initial concepts are more than a hundred years old and originated in mathematical knot-theory as purely geometric considerations. About thirty years ago they were generalized and applied...... to the binding of systems in nature. It now appears that recent generalization to higher order Brunnian structures may potentially be realized as laboratory made or naturally occurring systems. With the binding energy as measure, we discuss possibilities of physical realization in nuclei, cold atoms...
Development of higher order mode couplers at Cornell
International Nuclear Information System (INIS)
Amato, J.C.
1988-01-01
Higher order mode (HOM) couplers are integral parts of a superconducting accelerator cavity. The damping which the couplers must provide is dictated by the frequency and shunt impedance of the cavity modes as well as by the stability requirements of the accelerator incorporating the cavities. Cornell's 5-cell 1500 MHz elliptical cavity was designed for use in a 50 x 50 GeV electron-positron storage ring with a total beam current of 3.5 mA (CESR-II). HOM couplers for the Cornell cavity were designed and evaluated with this machine in mind. The development of these couplers is described in this paper. 8 references, 8 figures
Theory of a higher-order Sturm-Liouville equation
Kozlov, Vladimir
1997-01-01
This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.
Integrable higher order deformations of Heisenberg supermagnetic model
International Nuclear Information System (INIS)
Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong
2009-01-01
The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.
Programming real-time executives in higher order language
Foudriat, E. C.
1982-01-01
Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.
Squeezing of higher order Hermite-Gauss modes
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard
2008-01-01
The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...
Higher-order thinking in foreign language learning
Bastos, Ascensão; Ramos, Altina
2017-01-01
A project is being conducted in English as a foreign language (EFL), involving eleventh graders in formal and non-formal learning contexts, in a Portuguese high school. The goal of this study is to examine the impact of cognitive tools and higher-order thinking processes on the learning of EFL and achievement of larger processes oriented to action, involving problem solving, decision-making and creation of new products. YouTube videos emerge as cognitive tools in the process. Final results sh...
A practical implementation of the higher-order transverse-integrated nodal diffusion method
International Nuclear Information System (INIS)
Prinsloo, Rian H.; Tomašević, Djordje I.; Moraal, Harm
2014-01-01
Highlights: • A practical higher-order nodal method is developed for diffusion calculations. • The method resolves the issue of the transverse leakage approximation. • The method achieves much superior accuracy as compared to standard nodal methods. • The calculational cost is only about 50% greater than standard nodal methods. • The method is packaged in a module for connection to existing nodal codes. - Abstract: Transverse-integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming of this approach is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work, an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher-order nodal methods developed some years ago. Further, a number of iteration schemes are developed around this consistent quadratic leakage approximation which yields accurate node average results in much improved calculational times. The most promising of these iteration schemes results from utilizing the consistent leakage approximation as a correction method to the standard quadratic leakage approximation. Numerical results are demonstrated on a set of benchmark problems and further applied to a realistic reactor problem, particularly the SAFARI-1 reactor, operating at Necsa, South Africa. The final optimal solution strategy is packaged into a standalone module which may simply be coupled to existing nodal diffusion codes
Charge and finite size corrections for virtual photon spectra in second order Born approximation
International Nuclear Information System (INIS)
Durgapal, P.
1982-01-01
The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations
Higher-order relativistic periastron advances and binary pulsars
International Nuclear Information System (INIS)
Damour, T.; Schafer, G.
1988-01-01
The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star
Holographic conductivity of holographic superconductors with higher-order corrections
Energy Technology Data Exchange (ETDEWEB)
Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghazanfari, Afsoon; Dehyadegari, Amin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2018-02-15
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω/T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature. (orig.)
On the origin of higher braces and higher-order derivations
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2015-01-01
Roč. 10, č. 3 (2015), s. 637-667 ISSN 2193-8407 Institutional support: RVO:67985840 Keywords : Koszul braces * Börjeseon braces * higher-order derivation Subject RIV: BA - General Mathematics Impact factor: 0.600, year: 2015 http://link.springer.com/article/10.1007/s40062-014-0079-2
Predictors of third and Higher order births in India
Directory of Open Access Journals (Sweden)
Payal Singh
2015-12-01
Full Text Available Background: Total fertility rate (TFR reflecting population growth is closely related to higher order parity progression. Many Indian states reached replacement level of TFR, but still states constituting nearly 40% population are with TFR ≥ 3. The predictors are the desire of son’s, poor contraceptives practices, younger age at marriage, child loss and shorter birth spacing. Objective: This analysis assessed the degree of relation of 3rd and higher order parity progression with the above mentioned predictors. Material and Methods: State/Union Territories wise proportions of women: progressing to ≥3 births, more sons desire, birth spacing <24 months, adopting modern contraception and median marriage age <18 years along with infant mortality rate (IMR were taken from NFHS-III report. Correlation matrix and stepwise forward multiple regression carried. Significance was seen at 5%. Results: Hindi speaking states constituting 38.92% nation population recorded TFR ≥3. Positive correlation of mothers progressing ≥ 3 births was highest (0.746 with those desiring more sons followed by IMR (0.445; while maximum negative correlation with those practicing modern contraceptives (-0.565 followed by median age at marriage (-0.391. Multiple regression analysis in order identified desire of more sons, practicing modern contraception and shorter birth spacing as the significant predictors and jointly explained 77.9% of the total variation with gain of 15.5% by adding modern contraceptive practice and 8.3% by adding shorter birth spacing. Conclusions: Desire of more sons appeared the most important predictor to progress ≥3 births that is governed by society culture and educational attainment, require attitudinal change. Further, mothers need motivation to practice both spacing and terminal methods once family is complete.
Average gluon and quark jet multiplicities at higher orders
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, Paolo; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, Anatoly V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics
2013-05-15
We develop a new formalism for computing and including both the perturbative and nonperturbative QCD contributions to the scale evolution of average gluon and quark jet multiplicities. The new method is motivated by recent progress in timelike small-x resummation obtained in the MS factorization scheme. We obtain next-to-next-to-leading-logarithmic (NNLL) resummed expressions, which represent generalizations of previous analytic results. Our expressions depend on two nonperturbative parameters with clear and simple physical interpretations. A global fit of these two quantities to all available experimental data sets that are compatible with regard to the jet algorithms demonstrates by its goodness how our results solve a longstanding problem of QCD. We show that the statistical and theoretical uncertainties both do not exceed 5% for scales above 10 GeV. We finally propose to use the jet multiplicity data as a new way to extract the strong-coupling constant. Including all the available theoretical input within our approach, we obtain {alpha}{sub s}{sup (5)}(M{sub Z})=0.1199{+-}0.0026 in the MS scheme in an approximation equivalent to next-to-next-to-leading order enhanced by the resummations of ln(x) terms through the NNLL level and of ln Q{sup 2} terms by the renormalization group, in excellent agreement with the present world average.
Threshold resummation and higher order effects in QCD
International Nuclear Information System (INIS)
Ringer, Felix Maximilian
2015-01-01
Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.
Directory of Open Access Journals (Sweden)
Wang Yajun
2008-12-01
Full Text Available In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM based on the harmonious finite element (HFE technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
Kataev, A. L.; Kazantsev, A. E.; Stepanyantz, K. V.
2018-01-01
We calculate the Adler D-function for N = 1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N = 1 SQCD is found in this scheme to the order O (αs2). The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.
Directory of Open Access Journals (Sweden)
A.L. Kataev
2018-01-01
Full Text Available We calculate the Adler D-function for N=1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N=1 SQCD is found in this scheme to the order O(αs2. The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.
International Nuclear Information System (INIS)
Gougam, L.A.; Taibi, H.; Chikhi, A.; Mekideche-Chafa, F.
2009-01-01
The problem of determining the analytical description for a set of data arises in numerous sciences and applications and can be referred to as data modeling or system identification. Neural networks are a convenient means of representation because they are known to be universal approximates that can learn data. The desired task is usually obtained by a learning procedure which consists in adjusting the s ynaptic weights . For this purpose, many learning algorithms have been proposed to update these weights. The convergence for these learning algorithms is a crucial criterion for neural networks to be useful in different applications. The aim of the present contribution is to use a training algorithm for feed forward wavelet networks used for function approximation. The training is based on the minimization of the least-square cost function. The minimization is performed by iterative second order gradient-based methods. We make use of the Levenberg-Marquardt algorithm to train the architecture of the chosen network and, then, the training procedure starts with a simple gradient method which is followed by a BFGS (Broyden, Fletcher, Glodfarb et Shanno) algorithm. The performances of the two algorithms are then compared. Our method is then applied to determine the energy of the ground state associated to a sextic potential. In fact, the Schrodinger equation does not always admit an exact solution and one has, generally, to solve it numerically. To this end, the sextic potential is, firstly, approximated with the above outlined wavelet network and, secondly, implemented into a numerical scheme. Our results are in good agreement with the ones found in the literature.
Neutron scattering studies on chromatin higher-order structure
Energy Technology Data Exchange (ETDEWEB)
Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)
1994-12-31
We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.
Mixed Higher Order Variational Model for Image Recovery
Directory of Open Access Journals (Sweden)
Pengfei Liu
2014-01-01
Full Text Available A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR and restoration quality.
Higher order corrections to asymptotic-de Sitter inflation
Mohsenzadeh, M.; Yusofi, E.
2017-08-01
Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.
Neutron scattering studies on chromatin higher-order structure
International Nuclear Information System (INIS)
Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.
1994-01-01
We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist
Higher order statistical moment application for solar PV potential analysis
Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan
2016-10-01
Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.
Higher-order radiative corrections for b b ¯→H-W+
Kidonakis, Nikolaos
2018-02-01
I present higher-order radiative corrections from collinear and soft-gluon emission for the associated production of a charged Higgs boson with a W boson. The calculation uses expressions from resummation at next-to-leading-logarithm accuracy. From the resummed cross section I derive analytical formulas at approximate next-to-next-to-leading order and next-to-next-to-next-to-leading order. Total cross sections are presented for the process b b ¯→H-W+ at various LHC energies. The transverse momentum and rapidity distributions of the charged Higgs boson are also calculated.
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.
Comparison of the methods for discrete approximation of the fractional-order operator
Directory of Open Access Journals (Sweden)
Zborovjan Martin
2003-12-01
Full Text Available In this paper we will present some alternative types of discretization methods (discrete approximation for the fractional-order (FO differentiator and their application to the FO dynamical system described by the FO differential equation (FDE. With analytical solution and numerical solution by power series expansion (PSE method are compared two effective methods - the Muir expansion of the Tustin operator and continued fraction expansion method (CFE with the Tustin operator and the Al-Alaoui operator. Except detailed mathematical description presented are also simulation results. From the Bode plots of the FO differentiator and FDE and from the solution in the time domain we can see, that the CFE is a more effective method according to the PSE method, but there are some restrictions for the choice of the time step. The Muir expansion is almost unusable.
High-order above-threshold ionization beyond the electric dipole approximation
Brennecke, Simon; Lein, Manfred
2018-05-01
Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.
Zeroth order regular approximation approach to electric dipole moment interactions of the electron
Gaul, Konstantin; Berger, Robert
2017-07-01
A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
Higher order effects in electroweak theory 1981-12 (KEK)
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1982-01-01
This is a brief report on the higher order or loop effects in electroweak theory. The discussion is based on the Weinberg Salam model and QCD. The loop correction to weak interaction is described. The renormalization conditions were applied to physical parameters, α(QED), M(W) and M(Z). It is expected to obtain experimentally the values of M(W) and M(Z) with the accuracy of 0.1 percent. In this scheme, the parameters were fixed loop by loop. The correction was evaluated along the present on-shell scheme. The general estimation of the order of correction was performed. The evaluation of the size of terms in one-loop correction was made. The examples of one loop analysis are presented. The leading logarithmic correction such as α ln(m 2 q 2 /M 2 ) is discussed. The system was described by H(eff) with the local operator O(i), in which the propagator of heavy particles was contracted. The effective interaction was obtained as C(i) (q 2 ) O(i), where C(i)(q 2 ) satisfies a proper equation of a renormalization group. As the practical examples, μ-decay, charged current and neutral current were studied. The correction to electron neutral current and the shift of M(W) and M(Z) were numerically obtained. Comments on quark mass and the uncertainty of sin 2 (theta) from the νN reaction are presented. (Kato, T.)
Estimation of uncertainties from missing higher orders in perturbative calculations
International Nuclear Information System (INIS)
Bagnaschi, E.
2015-05-01
In this proceeding we present the results of our recent study (hep-ph/1409.5036) of the statistical performances of two different approaches, Scale Variation (SV) and the Bayesian model of Cacciari and Houdeau (CH)(hep-ph/1105.5152) (which we also extend to observables with initial state hadrons), to the estimation of Missing Higher-Order Uncertainties (MHOUs)(hep-ph/1307.1843) in perturbation theory. The behavior of the models is determined by analyzing, on a wide set of observables, how the MHOU intervals they produce are successful in predicting the next orders. We observe that the Bayesian model behaves consistently, producing intervals at 68% Degree of Belief (DoB) comparable with the scale variation intervals with a rescaling factor r larger than 2 and closer to 4. Concerning SV, our analysis allows the derivation of a heuristic Confidence Level (CL) for the intervals. We find that assigning a CL of 68% to the intervals obtained with the conventional choice of varying the scales within a factor of two with respect to the central scale could potentially lead to an underestimation of the uncertainties in the case of observables with initial state hadrons.
Higher order mode analysis of the SNS superconducting linac
Sang Ho Kim; Dong Jeon; Sundelin, R
2001-01-01
Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...
Correlated stopping, proton clusters and higher order proton cumulants
Energy Technology Data Exchange (ETDEWEB)
Bzdak, Adam [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Skokov, Vladimir [RIKEN/BNL, Brookhaven National Laboratory, Upton, NY (United States)
2017-05-15
We investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N{sub part} lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √(s) = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originate either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton). (orig.)
Higher Order Modes Excitation of Micro Cantilever Beams
Jaber, Nizar
2014-05-01
In this study, we present analytical and experimental investigation of electrically actuated micro cantilever based resonators. These devices are fabricated using polyimide and coated with chrome and gold layers from both sides. The cantilevers are highly curled up due to stress gradient, which is a common imperfection in surface micro machining. Using a laser Doppler vibrometer, we applied a noise signal to experimentally find the first four resonance frequencies. Then, using a data acquisition card, we swept the excitation frequency around the first four natural modes of vibrations. Theoretically, we derived a reduced order model using the Galerkin method to simulate the dynamics of the system. Extensive numerical analysis and computations were performed. The numerical analysis was able to provide good matching with experimental values of the resonance frequencies. Also, we proved the ability to excite higher order modes using partial electrodes with shapes that resemble the shape of the mode of interest. Such micro-resonators are shown to be promising for applications in mass and gas sensing.
Higher-order gravity and the classical equivalence principle
Accioly, Antonio; Herdy, Wallace
2017-11-01
As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.
On higher-order corrections in M theory
International Nuclear Information System (INIS)
Howe, P.S.; Tsimpis, D.
2003-01-01
A theoretical analysis of higher-order corrections to D=11 supergravity is given in a superspace framework. It is shown that any deformation of D=11 supergravity for which the lowest-dimensional component of the four-form G 4 vanishes is trivial. This implies that the equations of motion of D=11 supergravity are specified by an element of a certain spinorial cohomology group and generalises previous results obtained using spinorial or pure spinor cohomology to the fully non-linear theory. The first deformation of the theory is given by an element of a different spinorial cohomology group with coefficients which are local tensorial functions of the massless supergravity fields. The four-form Bianchi Identities are solved, to first order and at dimension -{1/2}, in the case that the lowest-dimensional component of G 4 is non-zero. Moreover, it is shown how one can calculate the first-order correction to the dimension-zero torsion and thus to the supergravity equations of motion given an explicit expression for this object in terms of the supergravity fields. The version of the theory with both a four-form and a seven-form is discussed in the presence of the five-brane anomaly-cancelling term. It is shown that the supersymmetric completion of this term exists and it is argued that it is the unique anomaly-cancelling invariant at this dimension which is at least quartic in the fields. This implies that the first deformation of the theory is completely determined by the anomaly term from which one can, in principle, read off the corrections to all of the superspace field strength tensors. (author)
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
Energy Technology Data Exchange (ETDEWEB)
Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)
2017-03-15
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)
General relativity and gauge gravity theories of higher order
International Nuclear Information System (INIS)
Konopleva, N.P.
1998-01-01
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
Predicting perceptual learning from higher-order cortical processing.
Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan
2016-01-01
Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.
Preparation and characterization of stable aqueous higher-order fullerenes
International Nuclear Information System (INIS)
Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B
2012-01-01
Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)
ANOVA-HDMR structure of the higher order nodal diffusion solution
International Nuclear Information System (INIS)
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-01-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
Examining the accuracy of the infinite order sudden approximation using sensitivity analysis
International Nuclear Information System (INIS)
Eno, L.; Rabitz, H.
1981-01-01
A method is developed for assessing the accuracy of scattering observables calculated within the framework of the infinite order sudden (IOS) approximation. In particular, we focus on the energy sudden assumption of the IOS method and our approach involves the determination of the sensitivity of the IOS scattering matrix S/sup IOS/ with respect to a parameter which reintroduces the internal energy operator h 0 into the IOS Hamiltonian. This procedure is an example of sensitivity analysis of missing model components (h 0 in this case) in the reference Hamiltonian. In contrast to simple first-order perturbation theory a finite result is obtained for the effect of h 0 on S/sup IOS/. As an illustration, our method of analysis is applied to integral state-to-state cross sections for the scattering of an atom and rigid rotor. Results are generated within the He+H 2 system and a comparison is made between IOS and coupled states cross sections and the corresponding IOS sensitivities. It is found that the sensitivity coefficients are very useful indicators of the accuracy of the IOS results. Finally, further developments and applications are discussed
Examining the accuracy of the infinite order sudden approximation using sensitivity analysis
Eno, Larry; Rabitz, Herschel
1981-08-01
A method is developed for assessing the accuracy of scattering observables calculated within the framework of the infinite order sudden (IOS) approximation. In particular, we focus on the energy sudden assumption of the IOS method and our approach involves the determination of the sensitivity of the IOS scattering matrix SIOS with respect to a parameter which reintroduces the internal energy operator ?0 into the IOS Hamiltonian. This procedure is an example of sensitivity analysis of missing model components (?0 in this case) in the reference Hamiltonian. In contrast to simple first-order perturbation theory a finite result is obtained for the effect of ?0 on SIOS. As an illustration, our method of analysis is applied to integral state-to-state cross sections for the scattering of an atom and rigid rotor. Results are generated within the He+H2 system and a comparison is made between IOS and coupled states cross sections and the corresponding IOS sensitivities. It is found that the sensitivity coefficients are very useful indicators of the accuracy of the IOS results. Finally, further developments and applications are discussed.
Morphing Continuum Theory: A First Order Approximation to the Balance Laws
Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James
2017-11-01
Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Higher order mode damping of a higher harmonic superconducting cavity for SSRF
International Nuclear Information System (INIS)
Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Feng Xiqiang; Mao Dongqing
2012-01-01
Adopting a higher harmonic cavity on a synchrotron radiation facility can increase the beam lifetime and suppress the beam instability. In this paper, we report the simulation and preliminary design on higher order modes (HOMs) damping of the designed and fabricated higher harmonic superconducting cavity for Shanghai Synchrotron Radiation Facility (SSRF). The requirements for the HOM damping are analyzed, and the length and location of the HOM damper are optimized by using the SEAFISH code. The results show that the design can provide heavy damping for harmful HOMs with decreased impedance, and the beam instability requirement of SSRF can be satisfied. By using the ABCI code, the loss factor is obtained and the HOM power is estimated. (authors)
Higher order energy transfer. Quantum electrodynamical calculations and graphical representation
International Nuclear Information System (INIS)
Jenkins, R.D.
2000-01-01
In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)
Higher-order aberrations and visual acuity after LASEK.
Urgancioglu, Berrak; Bilgihan, Kamil; Ozturk, Sertac
2008-08-01
To determine ocular higher-order aberrations (HOAs) in eyes with supernormal vision after myopic astigmatic laser subepithelial keratomileusis (LASEK) and to compare the findings with those in eyes with natural supernormal vision. Ocular HOAs were measured after LASEK in 20 eyes of 12 myopic astigmatic patients with postoperative uncorrected visual acuity (UCVA) of >20/16 (group 1). Patients who were included in the study had no visual symptoms like glare, halo or double vision. The measurements were taken 8.3 +/- 3 months after LASEK surgery. In group 2 ocular HOAs were examined in 20 eyes of 10 subjects with natural UCVA of >20/16 as a control. Measurements were taken across a pupil with a diameter of 4.0 mm and 6.0 mm. Root-mean-square (RMS) values of HOAs, Z(3)-1, Z(3)1, Z(4)0, Z(5)-1, Z(5)1 and Z(6)0 were analyzed. The mean RMS values for each order were higher in group 1 when compared with group 2 at 4.0 mm and 6.0 mm pupil diameters. There was no statistically significant difference between groups in spherical and coma aberrations (P > 0.05). Mean RMS values for total HOAs were 0.187 +/- 0.09 microm at 4.0 mm and 0.438 +/- 0.178 microm at 6.0 mm pupil in group 1 and 0.120 +/- 0.049 microm at 4.0 mm and 0.344 +/- 0.083 microm at 6.0 mm pupil in group 2. The difference between groups in total HOAs was statistically significant at 4.0 mm and 6.0 mm pupil diameters (P < 0.05). Ocular HOAs exist in eyes with supernormal vision. After LASEK, the amount of HOAs of the eye increases under both mesopic and photopic conditions. However the amount of HOA increase does not seem to be consistent with visual symptoms.
Analysis of wheezes using wavelet higher order spectral features.
Taplidou, Styliani A; Hadjileontiadis, Leontios J
2010-07-01
. This paves the way for the use of the wavelet higher order spectral features as an input vector to an efficient classifier. Apparently, this would integrate the intrinsic characteristics of wheezes within computerized diagnostic tools toward their more efficient evaluation.
Higher-order-mode damper as beam-position monitors; Higher-Order-Mode Daempfer als Stahllagemonitore
Energy Technology Data Exchange (ETDEWEB)
Peschke, C.
2006-03-15
In the framework of this thesis a beam-position monitor was developed, which can only because of the signals from the HOM dampers of a linear-accelerator structure determine the beam position with high accuracy. For the unique determination of the beam position in the plane a procedure was developed, which uses the amplitudes and the start-phase difference between a dipole mode and a higher monopole mode. In order tocheck the suitability of the present SBLC-HOM damper as beam position monitor three-dimensional numerical field calculations in the frequency and time range and measurements on the damper cell were performed. For the measurements without beam a beam simulator was constructed, which allows computer-driven measurements with variable depositions of the simulated beam with a resolution of 1.23 {mu}m. Because the complete 6 m long, 180-cell accelerator structure was not available for measurements and could also with the available computers not be three-dimensionally simulated simulated, a one-dimensional equivalent-circuit based model of the multi-cell was studied. The equivalent circuits with 879 concentrated components regards the detuning from cell to cell, the cell losses, the damper losses, and the beam excitation in dependence on the deposition. the measurements and simulations let a resolution of the ready beam-position monitor on the 180-cell in the order of magnitude of 1-10 {mu}m and a relative accuracy smaller 6.2% be expected.
Higher-order scalar interactions and SM vacuum stability
Energy Technology Data Exchange (ETDEWEB)
Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł [Institute of Theoretical Physics, Faculty of Physics, University of Warsawul. Hoża 69, Warsaw (Poland)
2014-05-26
Investigation of the structure of the Standard Model effective potential at very large field strengths opens a window towards new phenomena and can reveal properties of the UV completion of the SM. The map of the lifetimes of the vacua of the SM enhanced by nonrenormalizable scalar couplings has been compiled to show how new interactions modify stability of the electroweak vacuum. Whereas it is possible to stabilize the SM by adding Planck scale suppressed interactions and taking into account running of the new couplings, the generic effect is shortening the lifetime and hence further destabilisation of the SM electroweak vacuum. These findings have been illustrated with phase diagrams of modified SM-like models. It has been demonstrated that stabilisation can be achieved by lowering the suppression scale of higher order operators while picking up such combinations of new couplings, which do not deepen the new minima of the potential. Our results show the dependence of the lifetime of the electroweak minimum on the magnitude of the new couplings, including cases with very small couplings (which means very large effective suppression scale) and couplings vastly different in magnitude (which corresponds to two different suppression scales)
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.
Directory of Open Access Journals (Sweden)
Brendan Chambers
2016-08-01
Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.
Effective description of higher-order scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Langlois, David [APC—Astroparticule et Cosmologie, Université Paris Diderot Paris 7, 75013 Paris (France); Mancarella, Michele; Vernizzi, Filippo [Institut de physique théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: michele.mancarella@cea.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: filippo.vernizzi@cea.fr [Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Parc de Grandmont, 37200 Tours (France)
2017-05-01
Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
asking questions for higher order thinking in visual literacy
African Journals Online (AJOL)
Numerous factors such as socio-economic back- ground of .... questions should comprise 40% low-order questions (Knowledge), 40% middle-order questions ... The data obtained from the class participants comprise details of a two-step tea-.
Shukla, Divya; Dungsungnoen, Aj Pattaradanai
2016-01-01
Higher order thinking skills (HOTS) has portrayed immense industry demand and the major goal of educational institution in imparting education is to inculcate higher order thinking skills. This compiles and mandate the institutions and instructor to develop the higher order thinking skills among students in order to prepare them for effective…
1957-2007: 50 Years of Higher Order Programming Languages
Directory of Open Access Journals (Sweden)
Alen Lovrenčić
2009-06-01
Full Text Available Fifty years ago one of the greatest breakthroughs in computer programming and in the history of computers happened -- the appearance of FORTRAN, the first higher-order programming language. From that time until now hundreds of programming languages were invented, different programming paradigms were defined, all with the main goal to make computer programming easier and closer to as many people as possible. Many battles were fought among scientists as well as among developers around concepts of programming, programming languages and paradigms. It can be said that programming paradigms and programming languages were very often a trigger for many changes and improvements in computer science as well as in computer industry. Definitely, computer programming is one of the cornerstones of computer science.Today there are many tools that give a help in the process of programming, but there is still a programming tasks that can be solved only manually. Therefore, programming is still one of the most creative parts of interaction with computers.Programmers should chose programming language in accordance to task they have to solve, but very often, they chose it in accordance to their personal preferences, their beliefs and many other subjective reasons.Nevertheless, the market of programming languages can be merciless to languages as history was merciless to some people, even whole nations. Programming languages and developers get born, live and die leaving more or less tracks and successors, and not always the best survives. The history of programming languages is closely connected to the history of computers and computer science itself. Every single thing from one of them has its reflexions onto the other. This paper gives a short overview of last fifty years of computer programming and computer programming languages, but also gives many ideas that influenced other aspects of computer science. Particularly, programming paradigms are described, their
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
Pazner, Will; Persson, Per-Olof
2018-02-01
In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.
Dynamics and phenomenology of higher order gravity cosmological models
Moldenhauer, Jacob Andrew
2010-10-01
I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and
Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H
2008-05-01
To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.
Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.
2017-12-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4
Analysis of warping deformation modes using higher order ANCF beam element
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
Extensions of guiding center motion to higher order
International Nuclear Information System (INIS)
Northrop, T.G.; Rome, J.A.
1978-01-01
In a static magnetic field, some well-known guiding center equations maintain their form when extended to next order in gyroradius. In these cases, it is only necessary to include the next order term in the magnetic moment series. The differential equation for guiding center motion which describes both the parallel and perpendicular velocities correctly through first order in gyroradius is given. The question of how to define the guiding center position through second order arises and is discussed, and second order drifts are derived for one usual definition. The toroidal canonical angular momentum, P/sub phi/, of the guiding center in an axisymmetric field is shown to be conserved using the guiding center velocity correct through first order. When second-order motion is included, P/sub phi/ is no longer a constant. The above extensions of guiding center theory help to resolve the different tokamak orbits obtained either by using the guiding center equations of motion or by using conservation of P/sub phi/
Extensions of guiding center motion to higher order
International Nuclear Information System (INIS)
Northrop, T.G.; Rome, J.A.
1977-07-01
In a static magnetic field, some well-known guiding center equations maintain their form when extended to next order in gyroradius. In these cases, it is only necessary to include the next order term in the magnetic moment series. The differential equation for guiding center motion which describes both the parallel and perpendicular velocities correctly through first order in gyroradius is given. The question of how to define the guiding center position through second order arises and is discussed, and second order drifts are derived for one usual definition. The toroidal canonical angular momentum, P/sub phi/, of the guiding center in an axisymmetric field is shown to be conserved using the guiding center velocity correct through first order. When second order motion is included, P/sub phi/ is no longer a constant. The above extensions of guiding center theory help to resolve the different tokamak orbits obtained either by using the guiding center equations of motion or by using conservation of P/sub phi/
A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems
Hoen, K.M.R.; Güllü, R.; van Houtum, Geert-Jan; Vliegen, Ingrid
2010-01-01
In this paper we consider an Assemble-to-Order system with multiple end-products. Demands for an end-product follow a Poisson process and each end-product requires a fixed set of components. We are interested in the order fill rates, i.e., the percentage of demands for which all requested components
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
International Nuclear Information System (INIS)
Martin, P.; Zamudio-Cristi, J.
1982-01-01
A method is described to obtain fractional approximations for linear first order differential equations with polynomial coefficients. This approximation can give good accuracy in a large region of the complex variable plane that may include all the real axis. The parameters of the approximation are solutions of algebraic equations obtained through the coefficients of the highest and lowest power of the variable after the sustitution of the fractional approximation in the differential equation. The method is more general than the asymptotical Pade method, and it is not required to determine the power series or asymptotical expansion. A simple approximation for the exponential integral is found, which give three exact digits for most of the real values of the variable. Approximations of higher accuracy and of the same degree than other authors are also obtained. (Author) [pt
Higher-order Cn dispersion coefficients for hydrogen
International Nuclear Information System (INIS)
Mitroy, J.; Bromley, M.W.J.
2005-01-01
The complete set of second-, third-, and fourth-order van der Waals coefficients C n up to n=32 for the H(1s)-H(1s) dimer have been determined. They are computed by diagonalizing the nonrelativistic Hamiltonian for hydrogen to obtain a set of pseudostates that are used to evaluate the appropriate sum rules. A study of the convergence pattern for n≤16 indicates that all the C n/16 coefficients are accurate to 13 significant digits. The relative size of the fourth-order C n (4) to the second-order C n (2) coefficients is seen to increase as n increases and at n=32 the fourth-order term is actually larger
Higher order derivatives via Hamilton-Jacobi approach
International Nuclear Information System (INIS)
Bertin, M.C.; Pimentel, B.M.; Pompeia, P.J.
2006-01-01
In this work we will show how can be derived a general method for dealing with Lagrangians containing high order derivatives using the Hamilton-Jacobi Formalism for singular systems. By the expansion the configuration space of a n dimensional system we will be able to introduce first order actions and build the equations of motion of the system. We will work with the Generalized Electrodynamics of Podolsky as an example. (author)
Higher order Cambell techniques for neutron flux measurement. Pt. 1
International Nuclear Information System (INIS)
Lux, I.; Baranyai, A.
1982-01-01
An exact mathematical description of arbitrary high order Campbell techniques for measuring particle fluxes is given. The nth order Campbell technique assumes the measurement of the moments of the outcoming voltage up to the nth one. A simple relation is derived among the various moments of the total measured voltage and of the detector signal caused by one incident particle. It is proven that in the monoparticle case combination of the measured moments up to the order n provides an expression proportional to the particle flux and to the nth moment of the detector signal. Generalization to several different particles is given and it is shown that if the flux of the particle causing the largest detector signal is measured with a relative error epsilon in the dc method and the error is due to the signals of other particles, then in the nth order campbelling the error will be of order epsilonsup(n). The effect of a random background on the measured voltage is also investigated and it is established that the nth order campbelling supresses the noise according to the nth power of the relative amplitude of the noise to the signal. The results concerning constant fluxes are generalized to time dependent particle fluxes and a method assuming a Fourier transform of the measured quantities is proposed for their determination. (orig.)
Four-quadrant propeller modeling: A low-order harmonic approximation
Digital Repository Service at National Institute of Oceanography (India)
Haeusler, A.J; Saccon, A.; Hauser, J; Pascoal, A.M.; Aguiar, A.P.
. We explore the connection between the propeller thrust, torque, and efficiency curves and the lift and drag curves of the propeller blades. The model originates from a well-known four-quadrant model, based on a sinusoidal approximation...
Higher order harmonic generation in the intense laser pulse
International Nuclear Information System (INIS)
Parvizi, R.; Bahrampour, A.; Karimi, M.
2006-01-01
The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.
Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering
Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten
2015-04-01
The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.
Higher order heavy quark corrections to deep-inelastic scattering
International Nuclear Information System (INIS)
Bluemlein, J.; Freitas, A. de; Johannes Kepler Univ., Linz; Schneider, C.
2014-11-01
The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q 2 . We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring α s (M Z ), the charm quark mass m c , and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.
First-order and higher order sequence learning in specific language impairment.
Clark, Gillian M; Lum, Jarrad A G
2017-02-01
A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
International Nuclear Information System (INIS)
Fargher, H.E.; Roberts, M.J.
1983-01-01
Simplified versions of the second-order Born and Faddeev-Watson approximations are applied to the excitation of the n=2 levels of atomic hydrogen by the impact of 54.4 eV electrons. The theories are compared with the measurements of differential cross sections and angular correlation parameters. The results indicate that the Born approximation is better at low angles of scattering but that the Faddeev-Watson approximation is better at high angles. The importance of the phases of the two-body T matrices in the Faddeev-Watson approximation is illustrated. (author)
On discrete 2D integrable equations of higher order
International Nuclear Information System (INIS)
Adler, V E; Postnikov, V V
2014-01-01
We study two-dimensional discrete integrable equations of order 1 with respect to one independent variable and m with respect to another one. A generalization of the multidimensional consistency property is proposed for this type of equations. The examples are related to the Bäcklund–Darboux transformations for the lattice equations of Bogoyavlensky type. (paper)
Fractional Hamiltonian analysis of higher order derivatives systems
International Nuclear Information System (INIS)
Baleanu, Dumitru; Muslih, Sami I.; Tas, Kenan
2006-01-01
The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives
Higher order methods for burnup calculations with Bateman solutions
International Nuclear Information System (INIS)
Isotalo, A.E.; Aarnio, P.A.
2011-01-01
Highlights: → Average microscopic reaction rates need to be estimated at each step. → Traditional predictor-corrector methods use zeroth and first order predictions. → Increasing predictor order greatly improves results. → Increasing corrector order does not improve results. - Abstract: A group of methods for burnup calculations solves the changes in material compositions by evaluating an explicit solution to the Bateman equations with constant microscopic reaction rates. This requires predicting representative averages for the one-group cross-sections and flux during each step, which is usually done using zeroth and first order predictions for their time development in a predictor-corrector calculation. In this paper we present the results of using linear, rather than constant, extrapolation on the predictor and quadratic, rather than linear, interpolation on the corrector. Both of these are done by using data from the previous step, and thus do not affect the stepwise running time. The methods were tested by implementing them into the reactor physics code Serpent and comparing the results from four test cases to accurate reference results obtained with very short steps. Linear extrapolation greatly improved results for thermal spectra and should be preferred over the constant one currently used in all Bateman solution based burnup calculations. The effects of using quadratic interpolation on the corrector were, on the other hand, predominantly negative, although not enough so to conclusively decide between the linear and quadratic variants.
Special Issue of Higher-Order and Symbolic Computation
DEFF Research Database (Denmark)
2003-01-01
from a paper presented at ICFP'01, the 2001 International Conference on Functional Programming [2]. The three articles were subjected to the usual process of journal reviewing. "Non-standard semantics for program slicing" builds on Cousot's semantics hierarchy of transition systems and presents a new...... method for designing compositional semantics of programs in a way that enables reasoning about program transformations that may alter the termination behavior of a program. A preliminary version of this work was presented at PEPM'02. "Path Dependent Analysis of Logic Programs" presents a framework...... for designing context-sensitive abstract interpretations of logic programs. It introduces call strings of fixed length and the corresponding abstract domains. The resulting analysis approximates the context in which predicates are called. A preliminary version of this work was presented at PEPM'02. "Automatic...
Encouraging Student Autonomy through Higher Order Thinking Skills
Smith, Victoria D.; Darvas, Janet W.
2017-01-01
This article discusses how to empower students to work, think, and act independently in the higher education setting. Inspiring students to progress through the stages of Bloom's Taxonomy emboldens them to discover intrinsic motivation and self-regulated learning. This article defines and focuses on the importance of teaching intrinsic motivation…
Higher-order probabilistic perceptrons as Bayesian inference engines
International Nuclear Information System (INIS)
Clark, J.W.; Ristig, M.L.
1994-08-01
This letter makes explicit a structural connection between the Bayes optimal classifier operating on K binary input variables and corresponding two-layer perceptron having normalized output activities and couplings from input to output units of all orders up to K. Given a large and unbiased training set and an effective learning algorithm, such a neural network should be able to learn the statistics of the classification problem and match the a posteriori probabilities given by the Bayes optimal classifier. (author). 18 refs
Machine learning using a higher order correlation network
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.C.; Doolen, G.; Chen, H.H.; Sun, G.Z.; Maxwell, T.; Lee, H.Y.
1986-01-01
A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.
Efficient analytic computation of higher-order QCD amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.
1995-01-01
The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints
Loop vertex expansion for higher-order interactions
Rivasseau, Vincent
2018-05-01
This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.
INARCH(1) processes: Higher-order moments and jumps
Weiß , Christian H.
2010-01-01
Abstract The INARCH(1) model is a simple but practically relevant, two-parameter model for processes of overdispersed counts with an autoregressive serial dependence structure. We derive closed-form expressions for the joint (central) moments and cumulants of the INARCH(1) model up to order 4. These expressions are applied to derive moments of jumps in INARCH(1) processes. We illustrate this kind of application with a real-data example, and outline further potential applications. ...
Higher order differential calculus on SLq(N)
International Nuclear Information System (INIS)
Heckenberger, I.; Schueler, A.
1997-01-01
Let Γ be a bicovariant first order differential calculus on a Hopf algebra A. There are three possibilities to construct a differential N 0 -graded Hopf algebra Γcirconflex which contains Γ as its first order part. In all cases Γcirconflex is a quotient Γcirconflex = Γ x /J of the tensor algebra by some suitable ideal. We distinguish three possible choices u J, s J, and w J, where the first one generates the universal differential calculus (over Γ) and the last one is Woronowicz' external algebra. Let q be a transcendental complex number and let Γ be one of the N 2 -dimensional bicovariant first order differential calculi on the quantum group SL q (N). Then for N ≥ 3 the three ideals coincide. For Woronowicz' external algebra we calculate the dimensions of the spaces of left-invariant and bi-invariant k-forms. In this case each bi-invariant form is closed. In case of 4D ± calculi on SL q (2) the universal calculus is strictly larger than the other two calculi. In particular, the bi-invariant 1-form is not closed. (author)
Higher-order conductivity corrections to the Casimir force
International Nuclear Information System (INIS)
Bezerra, Valdir Barbosa; Klimchitskaya, Galina; Mostepanenko, Vladimir
2000-01-01
Full text follows: Considerable recent attention has been focused on the new experiments on measuring the Casimir force. To be confident that experimental data fit theory at a level of several percent, a variety of corrections to the ideal expression for the Casimir force should be taken into account. One of the main corrections at small separations between interacting bodies is the one due to finite conductivity of the boundary metal. This correction has its origin in non-zero penetration depth δ 0 of electromagnetic vacuum oscillations into the metal (for a perfect metal of infinitely large conductivity δ 0 = 0). The other quantity of the dimension of length is the space separation a between two plates or a plate and a sphere. Their relation δ 0 /a is the natural perturbation parameter in which powers the corrections to the Casimir force due to finite conductivity can be expanded. Such an expansion works good for all separations a >> δ 0 (i.e. for separations larger than 100-150 nm). The first-order term of this expansion was calculated almost forty years ago, and the second-order one in 1985 [1]. These two terms are not sufficient for the comparison of the theory with precision modern experiments. In this talk we report the results of paper [2] where the third- and fourth-order terms in δ 0 /a expansion of the Casimir force were calculated first. They gave the possibility to achieve an excellent agreement of a theory and experiment. (author)
Algebraic Specifications, Higher-order Types and Set-theoretic Models
DEFF Research Database (Denmark)
Kirchner, Hélène; Mosses, Peter David
2001-01-01
, and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard......In most algebraic specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces...... set-theoretic models are considered, and conditions are given for the existence of initial reduct's of such models. Algebraic specifications for various set-theoretic concepts are considered....
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Higher-order photon bunching in a semiconductor microcavity
DEFF Research Database (Denmark)
Assmann, M.; Veit, F.; Bayer, M.
2009-01-01
Quantum mechanically indistinguishable particles such as photons may show collective behavior. Therefore, an appropriate description of a light field must consider the properties of an assembly of photons instead of independent particles. We have studied multiphoton correlations up to fourth order...... in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior...
Higher order Riesz transforms associated with Bessel operators
Betancor, Jorge J.; Fariña, Juan C.; Martinez, Teresa; Rodríguez-Mesa, Lourdes
2008-10-01
In this paper we investigate Riesz transforms R μ ( k) of order k≥1 related to the Bessel operator Δμ f( x)=- f”( x)-((2μ+1)/ x) f’( x) and extend the results of Muckenhoupt and Stein for the conjugate Hankel transform (a Riesz transform of order one). We obtain that for every k≥1, R μ ( k) is a principal value operator of strong type ( p, p), p∈(1,∞), and weak type (1,1) with respect to the measure dλ( x)= x 2μ+1 dx in (0,∞). We also characterize the class of weights ω on (0,∞) for which R μ ( k) maps L p (ω) into itself and L 1(ω) into L 1,∞(ω) boundedly. This class of weights is wider than the Muckenhoupt class mathcal{A}p^μ of weights for the doubling measure dλ. These weighted results extend the ones obtained by Andersen and Kerman.
Higher order Godunov methods for general systems of hyperbolic conservation laws
International Nuclear Information System (INIS)
Bell, J.B.; Colella, P.; Trangenstein, J.A.
1989-01-01
We describe an extension of higher order Godunov methods to general systems of hyperbolic conservation laws. This extension allow the method to be applied to problems that are not strictly hyperbolic and exhibit local linear degeneracies in the wave fields. The method constructs an approximation of the Riemann problem from local wave information. A generalization of the Engquist--Osher flux for systems is then used to compute a numerical flux based on this approximation. This numerical flux replaces the Godunov numerical flux in the algorithm, thereby eliminating the need for a global Riemann problem solution. The additional modifications to the Godunov methodology that are needed to treat loss of strict hyperbolicity are described in detail. The method is applied to some simple model problems for which the glocal analytic structure is known. The method is also applied to the black-oil model for multiphase flow in petroleum reservoirs. copyright 1989 Academic Press, Inc
Directory of Open Access Journals (Sweden)
Athanasios D. Karageorgos
2009-01-01
Full Text Available In many applications, and generally speaking in many dynamical differential systems, the problem of transferring the initial state of the system to a desired state in (almost zero-time time is desirable but difficult to achieve. Theoretically, this can be achieved by using a linear combination of Dirac -function and its derivatives. Obviously, such an input is physically unrealizable. However, we can think of it approximately as a combination of small pulses of very high magnitude and infinitely small duration. In this paper, the approximation process of the distributional behaviour of higher-order linear descriptor (regular differential systems is presented. Thus, new analytical formulae based on linear algebra methods and generalized inverses theory are provided. Our approach is quite general and some significant conditions are derived. Finally, a numerical example is presented and discussed.
Higher-order predictions for supersymmetric particle decays
Energy Technology Data Exchange (ETDEWEB)
Landwehr, Ananda Demian Patrick
2012-06-12
We analyze particle decays including radiative corrections at the next-to-leading order (NLO) within the Minimal Supersymmetric Standard Model (MSSM). If the MSSM is realized at the TeV scale, squark and gluino production and decays yield relevant rates at the LHC. Hence, in the first part of this thesis, we compute decay widths including QCD and electroweak NLO corrections to squark and gluino decays. Furthermore, the Higgs sector of the MSSM is enhanced compared to the one of the Standard Model. Thus, the additional Higgs bosons decay also into supersymmetric particles. These decays and the according NLO corrections are analyzed in the second part of this thesis. The calculations are performed within a common renormalization framework and numerically evaluated in specific benchmark scenarios.
On higher order corrections to three-jet cross sections
International Nuclear Information System (INIS)
Schierholz, G.
1981-07-01
In this talk I report a calculation of the Sterman-Weinberg type 3-jet cross section to order a 2 sub(s). We have chosen a Sterman-Weinberg type angle and energy cut off for a variety of reasons. In particular, an acceptable 3-jet measure must be insensitive to the emission of soft and/or collinear radiation and to the process of hadronization which, in contrast to many popular 3-jet measures, is uniquely met by the Sterman-Weinberg definition of 3-jet events. The talk is divided into three parts. In the first part I present the results. The second part discusses an independent (algebraic) test of the cross section formula. Finally, in the third part I comment on the contrasting results pioneered by the CALTECH group. (orig.)
Symmetries, invariants and generating functions: higher-order statistics of biased tracers
Munshi, Dipak
2018-01-01
Gravitationally collapsed objects are known to be biased tracers of an underlying density contrast. Using symmetry arguments, generalised biasing schemes have recently been developed to relate the halo density contrast δh with the underlying density contrast δ, divergence of velocity θ and their higher-order derivatives. This is done by constructing invariants such as s, t, ψ,η. We show how the generating function formalism in Eulerian standard perturbation theory (SPT) can be used to show that many of the additional terms based on extended Galilean and Lifshitz symmetry actually do not make any contribution to the higher-order statistics of biased tracers. Other terms can also be drastically simplified allowing us to write the vertices associated with δh in terms of the vertices of δ and θ, the higher-order derivatives and the bias coefficients. We also compute the cumulant correlators (CCs) for two different tracer populations. These perturbative results are valid for tree-level contributions but at an arbitrary order. We also take into account the stochastic nature bias in our analysis. Extending previous results of a local polynomial model of bias, we express the one-point cumulants Script SN and their two-point counterparts, the CCs i.e. Script Cpq, of biased tracers in terms of that of their underlying density contrast counterparts. As a by-product of our calculation we also discuss the results using approximations based on Lagrangian perturbation theory (LPT).
Boistard, H.; Lopuhää, H.P.; Ruiz-Gazen, A.
2012-01-01
This paper is devoted to rejective sampling. We provide an expansion of joint inclusion probabilities of any order in terms of the inclusion probabilities of order one, extending previous results by Hájek (1964) and Hájek (1981) and making the remainder term more precise. Following Hájek (1981), the
Recursive estimation of high-order Markov chains: Approximation by finite mixtures
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2016-01-01
Roč. 326, č. 1 (2016), s. 188-201 ISSN 0020-0255 R&D Projects : GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Markov chain * Approximate parameter estimation * Bayesian recursive estimation * Adaptive systems * Kullback–Leibler divergence * Forgetting Subject RIV: BC - Control Systems Theory Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2015/AS/karny-0447119.pdf
Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic.
Francesco, Marco Di; Fagioli, Simone; Rosini, Massimiliano D
2017-02-01
We consider the follow-the-leader approximation of the Aw-Rascle-Zhang (ARZ) model for traffic flow in a multi population formulation. We prove rigorous convergence to weak solutions of the ARZ system in the many particle limit in presence of vacuum. The result is based on uniform BV estimates on the discrete particle velocity. We complement our result with numerical simulations of the particle method compared with some exact solutions to the Riemann problem of the ARZ system.
Directory of Open Access Journals (Sweden)
ShuZheng Yang
2016-01-01
Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.
2010-09-17
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.; Pasquetti, R.
2010-01-01
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Higher order QCD corrections in exclusive charmless B decays
International Nuclear Information System (INIS)
Bell, G.
2006-10-01
We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in Λ QCD /m b and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B → ππ and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B → πlν. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non-relativistic bound states which can be
Higher order QCD corrections in exclusive charmless B decays
Energy Technology Data Exchange (ETDEWEB)
Bell, G.
2006-10-15
We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in {lambda}{sub QCD}/m{sub b} and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B {yields} {pi}{pi} and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B {yields} {pi}l{nu}. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non
Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.
1993-01-01
The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...
Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.
2017-12-01
The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
HQET at order 1/m. Pt. 2. Spectroscopy in the quenched approximation
International Nuclear Information System (INIS)
Blossier, Benoit; Della Morte, Michele; Garron, Nicolas; Edinburgh Univ.; Hippel, Georg von; DESY, Zeuthen; Mendes, Tereza; Sao Paulo Univ., Sao Carlos; Simma, Hubert; Sommer, Rainer
2010-06-01
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B s system at static order. We also determine the splitting between first excited and ground state, and between the B s * and B s ground states to order 1/m b . The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach. (orig.)
HQET at order 1/m. Pt. 2. Spectroscopy in the quenched approximation
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS et Paris-Sud XI Univ., Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica e Inst. de Fisica Teorica IFT-UAM/CSIC; Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hippel, Georg von [Mainz Univ. (Germany). Inst. fuer Kernphysik; DESY, Zeuthen (Germany). NIC; Mendes, Tereza [DESY, Zeuthen (Germany). NIC; Sao Paulo Univ., Sao Carlos (Brazil). IFSC; Simma, Hubert; Sommer, Rainer [DESY, Zeuthen (Germany). NIC
2010-06-15
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B{sub s} system at static order. We also determine the splitting between first excited and ground state, and between the B{sub s}{sup *} and B{sub s} ground states to order 1/m{sub b}. The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach. (orig.)
Approximate solution of integro-differential equation of fractional (arbitrary order
Directory of Open Access Journals (Sweden)
Asma A. Elbeleze
2016-01-01
Full Text Available In the present paper, we study the integro-differential equations which are combination of differential and Fredholm–Volterra equations that have the fractional order with constant coefficients by the homotopy perturbation and the variational iteration. The fractional derivatives are described in Caputo sense. Some illustrative examples are presented.
High-Order Approximation of Chromatographic Models using a Nodal Discontinuous Galerkin Approach
DEFF Research Database (Denmark)
Meyer, Kristian; Huusom, Jakob Kjøbsted; Abildskov, Jens
2018-01-01
by Javeed et al. (2011a,b, 2013) with an efficient quadrature-free implementation. The framework is used to simulate linear and non-linear multicomponent chromatographic systems. The results confirm arbitrary high-order accuracy and demonstrate the potential for accuracy and speed-up gains obtainable...
DEFF Research Database (Denmark)
Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer
A correction term is introduced in the stationary-point analysis on high-order harmonic generation (HHG) from aligned molecules. Arising from a multi-centre expansion of the electron wave function, this term brings our numerical calculations of the Lewenstein model into qualitative agreement...
Avellar, J.; Claudino, A. L. G. C.; Duarte, L. G. S.; da Mota, L. A. C. P.
2015-10-01
For the Darbouxian methods we are studying here, in order to solve first order rational ordinary differential equations (1ODEs), the most costly (computationally) step is the finding of the needed Darboux polynomials. This can be so grave that it can render the whole approach unpractical. Hereby we introduce a simple heuristics to speed up this process for a class of 1ODEs.
A higher-order numerical framework for stochastic simulation of chemical reaction systems.
Székely, Tamás
2012-07-15
BACKGROUND: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for example in gene regulation, biochemical cascades and cell-cell interaction. However most discrete stochastic simulation techniques are slow. We apply Richardson extrapolation to the moments of three fixed-step methods, the Euler, midpoint and θ-trapezoidal τ-leap methods, to demonstrate the power of stochastic extrapolation. The extrapolation framework can increase the order of convergence of any fixed-step discrete stochastic solver and is very easy to implement; the only condition for its use is knowledge of the appropriate terms of the global error expansion of the solver in terms of its stepsize. In practical terms, a higher-order method with a larger stepsize can achieve the same level of accuracy as a lower-order method with a smaller one, potentially reducing the computational time of the system. RESULTS: By obtaining a global error expansion for a general weak first-order method, we prove that extrapolation can increase the weak order of convergence for the moments of the Euler and the midpoint τ-leap methods, from one to two. This is supported by numerical simulations of several chemical systems of biological importance using the Euler, midpoint and θ-trapezoidal τ-leap methods. In almost all cases, extrapolation results in an improvement of accuracy. As in the case of ordinary and stochastic differential equations, extrapolation can be repeated to obtain even higher-order approximations. CONCLUSIONS: Extrapolation is a general framework for increasing the order of accuracy of any fixed-step stochastic solver. This enables the simulation of complicated systems in less time, allowing for more realistic biochemical problems to be solved.
The Meaning of Higher-Order Factors in Reflective-Measurement Models
Eid, Michael; Koch, Tobias
2014-01-01
Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…
Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2004-01-01
A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...
Off-shell properties of the second-order Born approximation for laser-assisted potential scattering
International Nuclear Information System (INIS)
Trombetta, F.
1991-01-01
A formal method is presented to evaluate the second-order Born approximation of the laser-assisted potential scattering. It is an implicit closure technique that includes intermediate virtual-state transitions and enables one to find the exact explicit expression of the transition amplitude. This is of interest from two standpoints: first, one can deal with ranges of parameters in which the first-order Born approximation is a poor one; second, one can set limits of on-shell approximations that are also widely used to analyze recent laser-assisted experiments. The off-shell character yields new terms in the exact amplitude, and in particular, it is shown to play a crucial role in forward scattering from a long-range potential
International Nuclear Information System (INIS)
Vrscay, E.R.
1986-01-01
A simple power-series method is developed to calculate to large order the Rayleigh-Schroedinger perturbation expansions for energy levels of a hydrogen atom with a Yukawa-type screened Coulomb potential. Perturbation series for the 1s, 2s, and 2p levels, shown not to be of the Stieltjes type, are calculated to 100th order. Nevertheless, the poles of the Pade approximants to these series generally avoid the region of the positive real axis 0 < lambda < lambda(, where lambda( represents the coupling constant threshold. As a result, the Pade sums afford accurate approximations to E(lambda) in this domain. The continued-fraction representations to these perturbation series have been accurately calculated to large (100th) order and demonstrate a curious ''quasioscillatory,'' but non-Stieltjes, behavior. Accurate values of E(lambda) as well as lambda( for the 1s, 2s, and 2p levels are reported
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2004-01-01
An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...
Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling
Fink, P. W.; Wilton, D. R.; Dobbins, J. A.
2002-01-01
to obtain usable convergence from an iterative solver. The authors have examined the use of an Incomplete LU Threshold (ILUT) preconditioner . to solver linear systems stemming from higher order BEM/FEM formulations in 2D scattering problems. Although the resulting preconditioner provided aD excellent approximation to the system inverse, its size in terms of non-zero entries represented only a modest improvement when compared with the fill-in associated with a sparse direct solver. Furthermore, the fill-in of the preconditioner could not be substantially reduced without the occurrence of instabilities. In addition to the results for these 2D problems, the authors will present iterative solution data from the application of the ILUT preconditioner to 3D problems.
Directory of Open Access Journals (Sweden)
Jiameng Wu
2018-01-01
Full Text Available The infinite depth free surface Green function (GF and its high order derivatives for diffraction and radiation of water waves are considered. Especially second order derivatives are essential requirements in high-order panel method. In this paper, concerning the classical representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity, not only the GF and its first order derivatives but also second order derivatives are derived from four kinds of analytical series expansion and refined division of whole calculation domain. The approximations of special functions, particularly the hypergeometric function and the algorithmic applicability with different subdomains are implemented. As a result, the computation accuracy can reach 10-9 in whole domain compared with conventional methods based on direct numerical integration. Furthermore, numerical efficiency is almost equivalent to that with the classical method.
On the expressiveness and decidability of higher-order process calculi
Lanese, Ivan; Perez, Jorge A.; Sangiorgi, Davide; Schmitt, Alan
In higher-order process calculi, the values exchanged in communications may contain processes. A core calculus of higher-order concurrency is studied; it has only the operators necessary to express higher-order communications: input prefix, process output, and parallel composition. By exhibiting a
Substance and Artifact in the Higher-Order Factors of the Big Five
McCrae, Robert R.; Jang, Kerry L.; Ando, Juko; Ono, Yutaka; Yamagata, Shinji; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M.
2018-01-01
J. M. Digman (1997) proposed that the Big Five personality traits showed a higher-order structure with 2 factors he labeled α and β. These factors have been alternatively interpreted as heritable components of personality or as artifacts of evaluative bias. Using structural equation modeling, the authors reanalyzed data from a cross-national twin study and from American cross-observer studies and analyzed new multimethod data from a German twin study. In all analyses, artifact models outperformed substance models by root-mean-square error of approximation criteria, but models combining both artifact and substance were slightly better. These findings suggest that the search for the biological basis of personality traits may be more profitably focused on the 5 factors themselves and their specific facets, especially in monomethod studies. PMID:18665712
Explicit higher order symplectic integrator for s-dependent magnetic field
International Nuclear Information System (INIS)
Wu, Y.; Forest, E.; Robin, D.S.
2001-01-01
We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings
Measurements of higher order modes in a 30 cm long X-band structure
International Nuclear Information System (INIS)
Xiao, L.; Liang, Y.; Tong, D.; Zhang, H.
2001-01-01
The use of a cage of metallic wires as a bead is proposed to measure the higher order modes (HOMs) in an X-band accelerating structure. These long thin wires can isolate the longitudinal electric field component from other field components and produce sufficient frequency shift in bead-pull measurements. In the setup described in this paper, the bead is made by sputtering silver film onto a thin nylon line through a specially designed fixture. The cage has a size of approximately 0.5 mm in diameter, 2 mm in length and more than six metallic wires of less than 0.1 mm in width. The fabrication and calibration of the cage are described. The longitudinal electric fields of the lowest passband dipole mode TM 110 in a 30 cm long X-band structure are measured by bead-pull measurements. Results are compared with the calculated ones obtained from URMELT-code
DEFF Research Database (Denmark)
Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy
2004-01-01
An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....
Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning
2016-10-01
An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.
PRE-SERVICE MATHEMATICS TEACHERS’ CONCEPTION OF HIGHER-ORDER THINKING LEVEL IN BLOOM'S TAXONOMY
Damianus D Samo
2017-01-01
The purpose of this study is to explore pre-service mathematics teachers' conception of higher-order thinking in Bloom's Taxonomy, to explore pre-service mathematics teachers' ability in categorizing six cognitive levels of Bloom's Taxonomy as lower-order thinking and higher-order thinking, and pre-service mathematics teachers' ability in identifying some questionable items as lower-order and higher-order thinking. The higher-order thinking is the type of non-algorithm thinking which include ...
A New Approach to Rational Discrete-Time Approximations to Continuous-Time Fractional-Order Systems
Matos , Carlos; Ortigueira , Manuel ,
2012-01-01
Part 10: Signal Processing; International audience; In this paper a new approach to rational discrete-time approximations to continuous fractional-order systems of the form 1/(sα+p) is proposed. We will show that such fractional-order LTI system can be decomposed into sub-systems. One has the classic behavior and the other is similar to a Finite Impulse Response (FIR) system. The conversion from continuous-time to discrete-time systems will be done using the Laplace transform inversion integr...
Energy Technology Data Exchange (ETDEWEB)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
International Nuclear Information System (INIS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-01-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Directory of Open Access Journals (Sweden)
Shao Yan-Lin
2014-12-01
Full Text Available This paper presents some of the efforts by the authors towards numerical prediction of springing of ships. A time-domain Higher Order Boundary Element Method (HOBEM based on cubic shape function is first presented to solve a complete second-order problem in terms of wave steepness and ship motions in a consistent manner. In order to avoid high order derivatives on the body surfaces, e.g. mj-terms, a new formulation of the Boundary Value Problem in a body-fixed coordinate system has been proposed instead of traditional formulation in inertial coordinate system. The local steady flow effects on the unsteady waves are taken into account. Double-body flow is used as the basis flow which is an appropriate approximation for ships with moderate forward speed. This numerical model was used to estimate the complete second order wave excitation of springing of a displacement ship at constant forward speeds.
Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012
Roy, Arnab; Venkatesh, Srinivas Vivek
2013-01-01
Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for...
A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices
AlQurashi, Ahmed; Selvakumar, C. R.
2018-06-01
There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.
Energy Technology Data Exchange (ETDEWEB)
Zwick, D; Balachandar, S [Department of Mechanical and Aerospace Engineering, University of Florida, FL, United States of America (United States); Sakhaee, E; Entezari, A, E-mail: dpzwick@ufl.edu [Department of Computer and Information Science and Engineering, University of Florida, FL, United States of America (United States)
2017-10-15
Multiphase flow simulation serves a vital purpose in applications as diverse as engineering design, natural disaster prediction, and even study of astrophysical phenomena. In these scenarios, it can be very difficult, expensive, or even impossible to fully represent the physical system under consideration. Even still, many such real-world applications can be modeled as a two-phase flow containing both continuous and dispersed phases. Consequentially, the continuous phase is thought of as a fluid and the dispersed phase as particles. The continuous phase is typically treated in the Eulerian frame of reference and represented on a fixed grid, while the dispersed phase is treated in the Lagrangian frame and represented by a sample distribution of Lagrangian particles that approximate a cloud. Coupling between the phases requires interpolation of the continuous phase properties at the locations of the Lagrangian particles. This interpolation step is straightforward and can be performed at higher order accuracy. The reverse process of projecting the Lagrangian particle properties from the sample points to the Eulerian grid is complicated by the time-dependent non-uniform distribution of the Lagrangian particles. In this paper we numerically examine three reconstruction, or projection, methods: (i) direct summation (DS), (ii) least-squares, and (iii) sparse approximation. We choose a continuous representation of the dispersed phase property that is systematically varied from a simple single mode periodic signal to a more complex artificially constructed turbulent signal to see how each method performs in reconstruction. In these experiments, we show that there is a link between the number of dispersed Lagrangian sample points and the number of structured grid points to accurately represent the underlying functional representation to machine accuracy. The least-squares method outperforms the other methods in most cases, while the sparse approximation method is able to
Higher Order Thinking Skills among Secondary School Students in Science Learning
Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah
2015-01-01
A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…
Memon, Sajid; Nataraj, Neela; Pani, Amiya Kumar
2012-01-01
In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.
The Higher Order Structure of Environmental Attitudes: A Cross-Cultural Examination
Directory of Open Access Journals (Sweden)
Taciano L. Milfont
2010-01-01
Full Text Available Past research has suggested that Preservation and Utilization are the two higher order dimensions forming the hierarchical structure of environmental attitudes. This means that these two higher order dimensions could group all kinds of perceptions or beliefs regarding the natural environment people have. A crosscultural study was conducted in Brazil, New Zealand, and South Africa to test this hierarchical structure of environmental attitudes. Results from single- and multi-group confirmatory factor analyses demonstrated that environmental attitudes are a multidimensional construct, and that their first-order factors associate to each other to form a vertical structure. However, the question whether the vertical structure comprise a single higher order factor or two higher order factors still remains unanswered. These results are discussed and directions for future research trying to demonstrate that Preservation and Utilization, taken as distinct second-order environmental attitudes factors, are more empirically meaningful than a single and generalised environmental attitudes higher order factor are presented.
Connectivity strategies for higher-order neural networks applied to pattern recognition
Spirkovska, Lilly; Reid, Max B.
1990-01-01
Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.
Low rank approach to computing first and higher order derivatives using automatic differentiation
International Nuclear Information System (INIS)
Reed, J. A.; Abdel-Khalik, H. S.; Utke, J.
2012-01-01
This manuscript outlines a new approach for increasing the efficiency of applying automatic differentiation (AD) to large scale computational models. By using the principles of the Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and higher orders can be calculated using minimized computational resources. The output obtained from nuclear reactor calculations typically has a much smaller numerical rank compared to the number of inputs and outputs. This rank deficiency can be exploited to reduce the number of derivatives that need to be calculated using AD. The effective rank can be determined according to ESM by computing derivatives with AD at random inputs. Reduced or pseudo variables are then defined and new derivatives are calculated with respect to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. OpenAD is used to determine the effective rank and the subspace that contains the derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo variables for the desired order. The overall approach is applied to two simple problems and to MATWS, a safety code for sodium cooled reactors. (authors)
Mathematics Teachers’ Interpretation of Higher-Order Thinking in Bloom’s Taxonomy
Tony Thompson
2008-01-01
This study investigated mathematics teachers’ interpretation of higher-order thinking in Bloom’s Taxonomy. Thirty-two high school mathematics teachers from the southeast U.S. were asked to (a) define lower- and higher-order thinking, (b) identify which thinking skills in Bloom’s Taxonomy represented lower- and higher-order thinking, and (c) create an Algebra I final exam item representative of each thinking skill. Results indicate that mathematics teachers have difficulty interpreting the thi...
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
International Nuclear Information System (INIS)
Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso
2011-01-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)
Analysis of Scattering by Inhomogeneous Dielectric Objects Using Higher-Order Hierarchical MoM
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2003-01-01
An efficient technique for the analysis of electromagnetic scattering by arbitrary shaped inhomogeneous dielectric objects is presented. The technique is based on a higher-order method of moments (MoM) solution of the volume integral equation. This higher-order MoM solution comprises recently...... that the condition number of the resulting MoM matrix is reduced by several orders of magnitude in comparison to existing higher-order hierarchical basis functions and, consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement...
On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows
2018-01-01
We study the evolution of hydrodynamic and non-hydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e. of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from non-hydrodynamic modes coupling into the entropy evolution which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipati...
arXiv On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows
Chattopadhyay, Chandrodoy; Pal, Subrata; Vujanovic, Gojko
2018-06-15
We study the evolution of hydrodynamic and nonhydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e., of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from nonhydrodynamic modes coupling into the entropy evolution, which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipativ...
Mauri, Francesco
Anharmonic effects can generally be treated within perturbation theory. Such an approach breaks down when the harmonic solution is dynamically unstable or when the anharmonic corrections of the phonon energies are larger than the harmonic frequencies themselves. This situation occurs near lattice-related second-order phase-transitions such as charge-density-wave (CDW) or ferroelectric instabilities or in H-containing materials, where the large zero-point motion of the protons results in a violation of the harmonic approximation. Interestingly, even in these cases, phonons can be observed, measured, and used to model transport properties. In order to treat such cases, we developed a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity in the nonperturbative regime and to obtain, from first-principles, the structural, thermodynamic and vibrational properties of strongly anharmonic systems. I will present applications to the ferroelectric transitions in SnTe, to the CWD transitions in NbS2 and NbSe2 (in bulk and monolayer) and to the hydrogen-bond symmetrization transition in the superconducting hydrogen sulfide system, that exhibits the highest Tc reported for any superconductor so far. In all cases we are able to predict the transition temperature (pressure) and the evolution of phonons with temperature (pressure). This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore1.
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Authentic Instruction for 21st Century Learning: Higher Order Thinking in an Inclusive School
Preus, Betty
2012-01-01
The author studied a public junior high school identified as successfully implementing authentic instruction. Such instruction emphasizes higher order thinking, deep knowledge, substantive conversation, and value beyond school. To determine in what ways higher order thinking was fostered both for students with and without disabilities, the author…
Fischer, Christopher; Bol, Linda; Pribesh, Shana
2011-01-01
This study investigated the extent to which higher-order thinking skills are promoted in social studies classes in high schools that are implementing smaller learning communities (SLCs). Data collection in this mixed-methods study included classroom observations and in-depth interviews. Findings indicated that higher-order thinking was rarely…
From "Hello" to Higher-Order Thinking: The Effect of Coaching and Feedback on Online Chats
Stein, David S.; Wanstreet, Constance E.; Slagle, Paula; Trinko, Lynn A.; Lutz, Michelle
2013-01-01
This exploratory study examined the effect of a coaching and feedback intervention in teaching presence and social presence on higher-order thinking in an online community of inquiry. Coaching occurred before each chat, and feedback was provided immediately afterwards. The findings suggest that over time, the frequency of higher-order thinking…
Comparing higher order models for the EORTC QLQ-C30
DEFF Research Database (Denmark)
Gundy, Chad M; Fayers, Peter M; Grønvold, Mogens
2012-01-01
To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire.......To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire....
Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach
Wang, Shouhong; Wang, Hai
2011-01-01
One vision of education evolution is to change the modes of thinking of students. Critical thinking, design thinking, and system thinking are higher order thinking paradigms that are specifically pertinent to business education. A model-directed approach to teaching and learning higher order thinking is proposed. An example of application of the…
Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Ren Ji; Ruan Hangyu
2008-01-01
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained
Tanujaya, Benidiktus; Mumu, Jeinne; Margono, Gaguk
2017-01-01
Higher order thinking skills (HOTS) is one of important aspects in education. Students with high level of higher order thinking skills tend to be more successful. However, do this phenomenon also happen in the learning of Mathematics? To answer this question, this research aims to study the relationship between HOTS and students' academic…
Multi-domain, higher order level set scheme for 3D image segmentation on the GPU
DEFF Research Database (Denmark)
Sharma, Ojaswa; Zhang, Qin; Anton, François
2010-01-01
to evaluate level set surfaces that are $C^2$ continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming...
Higher-order blackhole solutions in N=2 supergravity and Calabi-Yau string backgrounds
Behrndt, K.; Cardoso, G.L.; de Wit, B.Q.P.J.; Lüst, D.; Mohaupt, T.; Sabra, W.A.
1998-01-01
Based on special geometry, we consider corrections to N=2 extremal black-hole solutions and their entropies originating from higher-order derivative terms in N=2 supergravity. These corrections are described by a holomorphic function, and the higher-order black-hole solutions can be expressed in
Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels
Yilmaz, Ferkan
2012-03-01
In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present simple and efficient closed-form expression to the higher order moments of the channel capacity of dual hop transmission system with Rayleigh fading channels. In order to analyze the behavior of the higher order capacity statistics and investigate the usefulness of the mathematical analysis, some selected numerical and simulation results are presented. Our results are found to be in perfect agreement. © 2012 IEEE.
Modular specification and verification for higher-order languages with state
DEFF Research Database (Denmark)
Svendsen, Kasper
The overall topic of this thesis is modular reasoning for higher-order languages with state. The thesis consists of four mostly independent chapters that each deal with a different aspect of reasoning about higher-order languages with state. The unifying theme throughout all four chapters is higher....... The third chapter of the thesis is a case study of the C# joins library. What makes this library interesting as a case study is that it combines a lot of advanced features (higher-order code with effects, concurrency, recursion through the store, shared mutable state, and fine-grained synchronization...
Generating higher-order Lie algebras by expanding Maurer-Cartan forms
International Nuclear Information System (INIS)
Caroca, R.; Merino, N.; Salgado, P.; Perez, A.
2009-01-01
By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0 +V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories.
Directory of Open Access Journals (Sweden)
Erkinjon Karimov
2017-10-01
Full Text Available In this work we discuss higher order multi-term partial differential equation (PDE with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Erkinjon Karimov; Sardor Pirnafasov
2017-01-01
In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Geometrical optics in general relativity: A study of the higher order corrections
International Nuclear Information System (INIS)
Anile, A.M.
1976-01-01
The higher order corrections to geometrical optics are studied in general relativity for an electromagnetic test wave. An explicit expression is found for the average energy--momentum tensor which takes into account the first-order corrections. Finally the first-order corrections to the well-known area-intensity law of geometrical optics are derived
Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
Lesiuk, Michał; Balawender, Robert; Zachara, Janusz
2012-01-21
We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics
Ping, Owi Wei; Ahmad, Azhar; Adnan, Mazlini; Hua, Ang Kean
2017-05-01
Higher Order Thinking Skills (HOTS) is a new concept of education reform based on the Taxonomies Bloom. The concept concentrate on student understanding in learning process based on their own methods. Through the HOTS questions are able to train students to think creatively, critic and innovative. The aim of this study was to identify the student's proficiency in solving HOTS Mathematics question by using i-Think map. This research takes place in Sabak Bernam, Selangor. The method applied is quantitative approach that involves approximately all of the standard five students. Pra-posttest was conduct before and after the intervention using i-Think map in solving the HOTS questions. The result indicates significant improvement for post-test, which prove that applying i-Think map enhance the students ability to solve HOTS question. Survey's analysis showed 90% of the students agree having i-Thinking map in analysis the question carefully and using keywords in the map to solve the questions. As conclusion, this process benefits students to minimize in making the mistake when solving the questions. Therefore, teachers are necessarily to guide students in applying the eligible i-Think map and methods in analyzing the question through finding the keywords.
Directory of Open Access Journals (Sweden)
Xiaojian Li
2018-05-01
Full Text Available Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2 photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC to posterior secondary motor cortex (M2 in mice in vivo. Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5–10 ms latencies, and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1 of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant and small delay. Reverse (antidromic driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Li, Xiaojian; Yamawaki, Naoki; Barrett, John M; Körding, Konrad P; Shepherd, Gordon M G
2018-01-01
Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo . Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5-10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)
2015-11-01
Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.
International Nuclear Information System (INIS)
Ishikawa, Nobuyuki; Suzuki, Katsuo
1999-01-01
Having advantages of setting independently feedback characteristics such as disturbance rejection specification and reference response characteristics, two-degree-of-freedom (2DOF) control is widely utilized to improve the control performance. The ordinary design method such as model matching usually derives high-ordered feedforward element of 2DOF controller. In this paper, we propose a new design method for low order feedforward element which is based on Pade approximation of the denominator series expansion. The features of the proposed method are as follows: (1) it is suited to realize reference response characteristics in low frequency region, (2) the order of the feedforward element can be selected apart from the feedback element. These are essential to the 2DOF controller design. With this method, 2DOF reactor power controller is designed and its control performance is evaluated by numerical simulation with reactor dynamics model. For this evaluation, it is confirmed that the controller designed by the proposed method possesses equivalent control characteristics to the controller by the ordinary model matching method. (author)
Directory of Open Access Journals (Sweden)
Abdel-Ouahab Boudraa
2005-10-01
Full Text Available In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope approximation using spline model performs better than Gaussian-based approach.
International Nuclear Information System (INIS)
Baer, M.; Nakamura, H.; Kouri, D.J.
1986-01-01
In this work the ion-molecule reaction He + H 2 + (v/sub i/) → HeH + (v/sub f/) + H(v/sub i/ = 0-7, v/sub f/ = 0-2) was studied quantum mechanically in the energy range 1.3 eV ≤ E/sub tot/ ≤ 1.8 eV. The calculations were carried out employing the Reactive Infinite Order Sudden Approximation (RIOSA). The two features characteristic of this system in the above energy range, namely the strong enhancement of the reaction rate with the initial vibrational energy (at a fixed total energy) and the relatively weak dependence of the cross sections on translational energy, were found to be well reproduced in the numerical treatment. The results also revealed the existence of two mechanisms of the exchange process: one is the ordinary mechanism and the other is probably related to the spectator stripping model
Domin, Daniel S.
1999-01-01
The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.
The geometry of higher-order Lagrange spaces applications to mechanics and physics
Miron, Radu
1997-01-01
This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology
Application of Higher-Order Cumulant in Fault Diagnosis of Rolling Bearing
International Nuclear Information System (INIS)
Shen, Yongjun; Yang, Shaopu; Wang, Junfeng
2013-01-01
In this paper a new method of pattern recognition based on higher-order cumulant and envelope analysis is presented. The core of this new method is to construct analytical signals from the given signals and obtain the envelope signals firstly, then compute and compare the higher-order cumulants of the envelope signals. The higher-order cumulants could be used as a characteristic quantity to distinguish these given signals. As an example, this method is applied in fault diagnosis for 197726 rolling bearing of freight locomotive. The comparisons of the second-order, third-order and fourth-order cumulants of the envelope signals from different vibration signals of rolling bearing show this new method could discriminate the normal and two fault signals distinctly
Verifying object-oriented programs with higher-order separation logic in Coq
DEFF Research Database (Denmark)
Bengtson, Jesper; Jensen, Jonas Braband; Sieczkowski, Filip
2011-01-01
We present a shallow Coq embedding of a higher-order separation logic with nested triples for an object-oriented programming language. Moreover, we develop novel specification and proof patterns for reasoning in higher-order separation logic with nested triples about programs that use interfaces...... and interface inheritance. In particular, we show how to use the higher-order features of the Coq formalisation to specify and reason modularly about programs that (1) depend on some unknown code satisfying a specification or that (2) return objects conforming to a certain specification. All of our results have...
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
Energy Technology Data Exchange (ETDEWEB)
Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills
Energy Technology Data Exchange (ETDEWEB)
Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)
2014-06-26
We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.
Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest
McGibbon, J.; Bretherton, C. S.
2017-12-01
Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.
DEFF Research Database (Denmark)
Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.
1998-01-01
We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...
Higher-Order Blind Signal Feature Separation: An Enabling Technology for Battlefield Awareness
National Research Council Canada - National Science Library
Su, Wei; Kosinski, John A
2006-01-01
Higher-order transform blind signal feature classification is discussed for separating bar-shaped, circular, squared, circular-squared, and offset-diamonded constellation patterns of digital linear signals...
Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes
Directory of Open Access Journals (Sweden)
Jinhua Bao
2009-01-01
Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.
The Need to Deliver Higher-Order Skills in the Context of Marketing in SMEs
Copley, Paul
2013-01-01
It is argued that the delivery of learning and the development of skills and competences are central to SME success; and there appears to be a requirement for higher-order education and training that can deliver a
Covariant quantization of infinite spin particle models, and higher order gauge theories
International Nuclear Information System (INIS)
Edgren, Ludde; Marnelius, Robert
2006-01-01
Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized
Higher-order asymptotic homogenization of periodic materials with low scale separation
Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D
2016-01-01
In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical
Higher Order Thinking in the Australian Army Suite of Logistic Officer Courses
National Research Council Canada - National Science Library
Bradford, Scott R
2006-01-01
.... The current Suite of Logistic Officer Courses (SOLOC) has been recently criticized for failing to meet this requirement, with the general perception that there is a distinct lack of higher-order thinking competencies within this continuum...
Non-Poisson Dichotomous Noise: Higher-Order Correlation Functions and Aging
National Research Council Canada - National Science Library
Allegrini, Paolo; Grigolini, Paolo; Palatella, Luigi; West, Bruce J
2004-01-01
.... The transition of psi(tau) from the exponential to the nonexponential condition yields the breakdown of the usual factorization condition of higher-order correlation functions, as well as the birth of aging effects...
Jaber, Nizar; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.
2016-01-01
© 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using
A stable higher order space time Galerkin marching-on-in-time scheme
Pray, Andrew J.; Shanker, Balasubramaniam; Bagci, Hakan
2013-01-01
We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order
Connection between weighted LPC and higher-order statistics for AR model estimation
Kamp, Y.; Ma, C.
1993-01-01
This paper establishes the relationship between a weighted linear prediction method used for robust analysis of voiced speech and the autoregressive modelling based on higher-order statistics, known as cumulants
Deformation from symmetry for Schrodinger equations of higher order on unbounded domains
Directory of Open Access Journals (Sweden)
Addolorata Salvatore
2003-06-01
Full Text Available By means of a perturbation method recently introduced by Bolle, we discuss the existence of infinitely many solutions for a class of perturbed symmetric higher order Schrodinger equations with non-homogeneous boundary data on unbounded domains.
Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres
International Nuclear Information System (INIS)
Liu Chunping
2005-01-01
First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed
Dynamics of massless higher spins in the second order in curvatures
International Nuclear Information System (INIS)
Vasiliev, M.A.
1989-08-01
The consistent equations of motion of interacting fields of all spins s=0,1/2,1...∞ are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (author). 14 refs
Dynamics of massless higher spins in the second order in curvatures
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A [International Centre for Theoretical Physics, Trieste (Italy)
1990-04-05
The consistent equations of motion of interacting massless fields of all spins s=0, 1/2, 1, ..., {infinity} are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (orig.).
Visualization and processing of higher order descriptors for multi-valued data
Schultz, Thomas
2015-01-01
Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization, and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area, and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics, and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key rese...
Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels
Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim
2012-01-01
In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2007-01-01
The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....
Ultra-compact Higher-Order-Mode Pass Filter in a Silicon Waveguide
DEFF Research Database (Denmark)
Guan, Xiaowei; Frandsen, Lars Hagedorn; Ding, Yunhong
2015-01-01
An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide......An 3.7 μm long higher-order-mode pass filter with an extinction ratio larger than 20 dB is demonstrated in a 1D corrugated silicon multimode waveguide...
Higher order mode of a microstripline fed cylindrical dielectric resonator antenna
Energy Technology Data Exchange (ETDEWEB)
Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)
2016-03-09
A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.
Higher order aberrations in amblyopic children and their role in refractory amblyopia
Directory of Open Access Journals (Sweden)
Arnaldo Dias-Santos
2014-12-01
Full Text Available Objective: Some studies have hypothesized that an unfavourable higher order aberrometric profile could act as an amblyogenic mechanism and may be responsible for some amblyopic cases that are refractory to conventional treatment or cases of “idiopathic” amblyopia. This study compared the aberrometric profile in amblyopic children to that of children with normal visual development and compared the aberrometric profile in corrected amblyopic eyes and refractory amblyopic eyes with that of healthy eyes. Methods: Cross-sectional study with three groups of children – the CA group (22 eyes of 11 children with unilateral corrected amblyopia, the RA group (24 eyes of 13 children with unilateral refractory amblyopia and the C group (28 eyes of 14 children with normal visual development. Higher order aberrations were evaluated using an OPD-Scan III (NIDEK. Comparisons of the aberrometric profile were made between these groups as well as between the amblyopic and healthy eyes within the CA and RA groups. Results: Higher order aberrations with greater impact in visual quality were not significantly higher in the CA and RA groups when compared with the C group. Moreover, there were no statistically significant differences in the higher order aberrometric profile between the amblyopic and healthy eyes within the CA and RA groups. Conclusions: Contrary to lower order aberrations (e.g., myopia, hyperopia, primary astigmatism, higher order aberrations do not seem to be involved in the etiopathogenesis of amblyopia. Therefore, these are likely not the cause of most cases of refractory amblyopia.
Numerical simulation of stratified shear flow using a higher order Taylor series expansion method
Energy Technology Data Exchange (ETDEWEB)
Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)
1995-09-01
A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.
The power of non-determinism in higher-order implicit complexity
DEFF Research Database (Denmark)
Kop, Cynthia Louisa Martina; Simonsen, Jakob Grue
2017-01-01
We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur...... in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order...... 0. Previous work has shown that adding explicit non-determinism to consfree programs taking data of order 0 does not increase expressivity; we prove that this—dramatically—is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows...
Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion
Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo
2018-03-01
We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.
In-Service Teacher Education: Asking Questions for Higher Order Thinking in Visual Literacy
Moodley, Visvaganthie
2013-01-01
The kinds of questions teachers ask may thwart or promote learner high-order thinking; teachers themselves must have expertise in questioning skills to promote higher order cognition among learners. Drawing on experiential knowledge of assessment, and as an English-teaching professional development programme (PDP) facilitator, I demonstrate that…
The advantage of higher-order theory of mind in the game of limited bidding
De Weerd, H.; Verheij, B.; van Eijck, J.; Verbrugge, L. C.
2011-01-01
Higher-order theory of mind is the ability to recursively model mental states of other agents. It is known that adults in general can reason adequately at the second order (covering attributions like "Alice knows that Bob knows that she wrote a novel under pseudonym"), but there are cognitive limits
On realization of nonlinear systems described by higher-order differential equations
van der Schaft, Arjan
1987-01-01
We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the
Toledo, Santiago; Dubas, Justin M.
2016-01-01
An emphasis on higher-order thinking within the curriculum has been a subject of interest in the chemical and STEM literature due to its ability to promote meaningful, transferable learning in students. The systematic use of learning taxonomies could be a practical way to scaffold student learning in order to achieve this goal. This work proposes…
Contribution of higher order terms in the reductive perturbation theory, 2
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Mitsuhashi, Teruo; Konno, Kimiaki.
1977-01-01
Contribution of higher order terms in the reductive perturbation theory has been investigated for nonlinear propagation of strongly dispersive ion plasma wave. The basic set of fluid equation is reduced to a coupled set of the nonlinear Schroedinger equation for the first order perturbed potential and a linear inhomogeneous equation for the second order perturbed potential. A steady state solution of the coupled set of equations has been solved analytically in the asymptotic limit of small wave number. (auth.)
A stable higher order space time Galerkin marching-on-in-time scheme
Pray, Andrew J.
2013-07-01
We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.
Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.
2009-01-01
Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…
Electron kinetics with attachment and ionization from higher order solutions of Boltzmann's equation
International Nuclear Information System (INIS)
Winkler, R.; Wilhelm, J.; Braglia, G.L.
1989-01-01
An appropriate approach is presented for solving the Boltzmann equation for electron swarms and nonstationary weakly ionized plasmas in the hydrodynamic stage, including ionization and attachment processes. Using a Legendre-polynomial expansion of the electron velocity distribution function the resulting eigenvalue problem has been solved at any even truncation-order. The technique has been used to study velocity distribution, mean collision frequencies, energy transfer rates, nonstationary behaviour and power balance in hydrodynamic stage, of electrons in a model plasma and a plasma of pure SF 6 . The calculations have been performed for increasing approximation-orders, up to the converged solution of the problem. In particular, the transition from dominant attachment to prevailing ionization when increasing the field strength has been studied. Finally the establishment of the hydrodynamic stage for a selected case in the model plasma has been investigated by solving the nonstationary, spatially homogeneous Boltzmann equation in twoterm approximation. (author)
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N
2018-02-13
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
International Nuclear Information System (INIS)
Green, Timothy F. G.; Yates, Jonathan R.
2014-01-01
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1 J(P-Ag) and 2 J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW
Higher- and Lower-Order Factor Analyses of the Temperament in Middle Childhood Questionnaire
Kotelnikova, Yuliya; Olino, Thomas M.; Klein, Daniel N.; Mackrell, Sarah V.M.; Hayden, Elizabeth P.
2017-01-01
The Temperament in Middle Childhood Questionnaire (TMCQ; Simonds & Rothbart, 2004) is a widely used parent-report measure of temperament. However, neither its lower- nor higher-order structures have been tested via a bottom-up, empirically based approach. We conducted higher- and lower-order exploratory factor analyses (EFAs) of the TMCQ in a large (N = 654) sample of 9-year-olds. Item-level EFAs identified 92 items as suitable (i.e., with loadings ≥.40) for constructing lower-order factors, only half of which resembled a TMCQ scale posited by the measure’s authors. Higher-order EFAs of the lower-order factors showed that a three-factor structure (Impulsivity/Negative Affectivity, Negative Affectivity, and Openness/Assertiveness) was the only admissible solution. Overall, many TMCQ items did not load well onto a lower-order factor. In addition, only three factors, which did not show a clear resemblance to Rothbart’s four-factor model of temperament in middle childhood, were needed to account for the higher-order structure of the TMCQ. PMID:27002124
Izsák, Róbert; Neese, Frank
2013-07-01
The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.
An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs
Directory of Open Access Journals (Sweden)
Eman S. Alaidarous
2013-01-01
Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.
Neurodevelopmental outcomes of triplets or higher-order extremely low birth weight infants.
Wadhawan, Rajan; Oh, William; Vohr, Betty R; Wrage, Lisa; Das, Abhik; Bell, Edward F; Laptook, Abbot R; Shankaran, Seetha; Stoll, Barbara J; Walsh, Michele C; Higgins, Rosemary D
2011-03-01
Extremely low birth weight twins have a higher rate of death or neurodevelopmental impairment than singletons. Higher-order extremely low birth weight multiple births may have an even higher rate of death or neurodevelopmental impairment. Extremely low birth weight (birth weight 401-1000 g) multiple births born in participating centers of the Neonatal Research Network between 1996 and 2005 were assessed for death or neurodevelopmental impairment at 18 to 22 months' corrected age. Neurodevelopmental impairment was defined by the presence of 1 or more of the following: moderate to severe cerebral palsy; mental developmental index score or psychomotor developmental index score less than 70; severe bilateral deafness; or blindness. Infants who died within 12 hours of birth were excluded. Maternal and infant demographic and clinical variables were compared among singleton, twin, and triplet or higher-order infants. Logistic regression analysis was performed to establish the association between singletons, twins, and triplet or higher-order multiples and death or neurodevelopmental impairment, controlling for confounding variables that may affect death or neurodevelopmental impairment. Our cohort consisted of 8296 singleton, 2164 twin, and 521 triplet or higher-order infants. The risk of death or neurodevelopmental impairment was increased in triplets or higher-order multiples when compared with singletons (adjusted odds ratio: 1.7 [95% confidence interval: 1.29-2.24]), and there was a trend toward an increased risk when compared with twins (adjusted odds ratio: 1.27 [95% confidence: 0.95-1.71]). Triplet or higher-order births are associated with an increased risk of death or neurodevelopmental impairment at 18 to 22 months' corrected age when compared with extremely low birth weight singleton infants, and there was a trend toward an increased risk when compared with twins.
Perturbative theory of higher-order collision-enhanced wave mixing
International Nuclear Information System (INIS)
Trebino, R.; Rahn, L.A.
1989-01-01
This paper reports on collision-enhanced resonances which represent an interesting class of nonlinear- optical processes. They occur because collisional dephasing can rephase quantum-mechanical amplitudes that ordinarily cancel out exactly, thereby allowing otherwise unobservable wave-mixing resonances to be seen. This is an especially interesting phenomenon because these resonances are coherent effects that are induced by an incoherent process (collisional dephasing). First predicted in the late 1970s and eventually observed in 1981, these novel effects have now been seen in a wide variety of four-wave-mixing experiments, ranging from self-focusing to coherent anti-Stokes Raman spectroscopy. Recently, the authors have extended these observations to higher order, where the authors have shown both experimentally and theoretically the higher-order, collision-enhanced effects exist in nonlinear optics, appearing as subharmonics of two-photon resonances. Indeed, the authors have found that collision-enhanced processes are ideal systems for studying higher-order, nonlinear-optical effects because very high orders can be made to contribute with little or no saturation braodening. Experiments on sodium in a flame using six- and eight-wave-mixing geometries have revealed still higher-order effects (at least as high- order as χ (13) )
Study of higher order cumulant expansion of U(1) lattice gauge model at finite temperature
International Nuclear Information System (INIS)
Zheng Xite; Lei Chunhong; Li Yuliang; Chen Hong
1993-01-01
The order parameter, Polyakov line , of the U(1) gauge model on N σ 3 x N τ (N τ = 1) lattice by using the cumulant expansion is calculated to the 5-th order. The emphasis is put on the behaviour of the cumulant expansion in the intermediate coupling region. The necessity of higher order expansion is clarified from the connection between the cumulant expansion and the correlation length. The variational parameter in the n-th order calculation is determined by the requirement that corrections of the n-th order expansion to the zeroth order expansion finish. The agreement with the Monte Carlo simulation is obtained not only in the weak and strong coupling regions, but also in the intermediate coupling region except in the very vicinity of the phase transition point
MIMO processing based on higher-order Poincaré spheres
Fernandes, Gil M.; Muga, Nelson J.; Pinto, Armando N.
2017-08-01
A multi-input multi-output (MIMO) algorithm based on higher-order Poincaré spheres is demonstrated for space-division multiplexing (SDM) systems. The MIMO algorithm is modulation format agnostic, robust to frequency offset and does not require training sequences. In this approach, the space-multiplexed signal is decomposed in sets of two tributary signals, with each set represented in a higher-order Poincaré sphere. For any arbitrary complex modulation format, the samples of two tributaries can be represented in a given higher-order Poincaré sphere with a symmetry plane. The crosstalk along propagation changes the spatial orientation of this plane and, therefore, it can be compensated by computing and realigning the best fit plane. We show how the transmitted signal can be successfully recovered using this procedure for all possible combinations of tributaries. Moreover, we analyze the convergence speed for the MIMO technique considering several optical-to-noise ratios.
Recurrent activity in higher order, modality non-specific brain regions
DEFF Research Database (Denmark)
Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja
2011-01-01
It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...
Higher order polynomial expansion nodal method for hexagonal core neutronics analysis
International Nuclear Information System (INIS)
Jin, Young Cho; Chang, Hyo Kim
1998-01-01
A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy
FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri
2015-02-17
To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals
Deimert, C.; Potter, M. E.; Okoniewski, M.
2016-12-01
The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.
International Nuclear Information System (INIS)
Kawano, S.
2003-01-01
Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)
Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators
Chattopadhyay, Aditi; Seeley, Charles E.
1996-01-01
A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.
Equivalence of two Fixed-Point Semantics for Definitional Higher-Order Logic Programs
Directory of Open Access Journals (Sweden)
Angelos Charalambidis
2015-09-01
Full Text Available Two distinct research approaches have been proposed for assigning a purely extensional semantics to higher-order logic programming. The former approach uses classical domain theoretic tools while the latter builds on a fixed-point construction defined on a syntactic instantiation of the source program. The relationships between these two approaches had not been investigated until now. In this paper we demonstrate that for a very broad class of programs, namely the class of definitional programs introduced by W. W. Wadge, the two approaches coincide (with respect to ground atoms that involve symbols of the program. On the other hand, we argue that if existential higher-order variables are allowed to appear in the bodies of program rules, the two approaches are in general different. The results of the paper contribute to a better understanding of the semantics of higher-order logic programming.
Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease
Directory of Open Access Journals (Sweden)
Morozov Alexandre V
2009-08-01
Full Text Available Abstract Background The reaction of HIV protease to inhibitor therapy is characterized by the emergence of complex mutational patterns which confer drug resistance. The response of HIV protease to drugs often involves both primary mutations that directly inhibit the action of the drug, and a host of accessory resistance mutations that may occur far from the active site but may contribute to restoring the fitness or stability of the enzyme. Here we develop a probabilistic approach based on connected information that allows us to study residue, pair level and higher-order correlations within the same framework. Results We apply our methodology to a database of approximately 13,000 sequences which have been annotated by the treatment history of the patients from which the samples were obtained. We show that including pair interactions is essential for agreement with the mutational data, since neglect of these interactions results in order-of-magnitude errors in the probabilities of the simultaneous occurence of many mutations. The magnitude of these pair correlations changes dramatically between sequences obtained from patients that were or were not exposed to drugs. Higher-order effects make a contribution of as much as 10% for residues taken three at a time, but increase to more than twice that for 10 to 15-residue groups. The sequence data is insufficient to determine the higher-order effects for larger groups. We find that higher-order interactions have a significant effect on the predicted frequencies of sequences with large numbers of mutations. While relatively rare, such sequences are more prevalent after multi-drug therapy. The relative importance of these higher-order interactions increases with the number of drugs the patient had been exposed to. Conclusion Correlations are critical for the understanding of mutation patterns in HIV protease. Pair interactions have substantial qualitative effects, while higher-order interactions are
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2005-01-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Mihály Pituk
2005-03-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
A finite deformation theory of higher-order gradient crystal plasticity
DEFF Research Database (Denmark)
Kuroda, Mitsutoshi; Tvergaard, Viggo
2008-01-01
crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...
Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves
Heydari-Fard, M.; Hasani, S. N.
We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.
Higher-order resonant electronic recombination as a manifestation of configuration interaction
International Nuclear Information System (INIS)
Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R
2013-01-01
Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)
Higher-order stochastic differential equations and the positive Wigner function
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
International Nuclear Information System (INIS)
Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E.
2016-01-01
This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.
Energy Technology Data Exchange (ETDEWEB)
Fraysse, F., E-mail: francois.fraysse@rs2n.eu [RS2N, St. Zacharie (France); E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid (Spain); Redondo, C.; Rubio, G.; Valero, E. [E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid (Spain)
2016-12-01
This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.
Energy Technology Data Exchange (ETDEWEB)
Nejad, Bijan Chokoufe
2017-07-12
In this thesis, we present detailed studies of top-pair production with (t anti tH) and without association of a Higgs boson (t anti t) in e{sup +}e{sup -} collisions. These processes are of utmost interest for the top physics program of future lepton colliders. They allow in particular a precise measurement of the top quark mass and the Yukawa coupling. For this purpose, we present predictions for off-shell t anti t and t anti tH production including non-resonant and interference contributions up to next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD). This allows for top-quark phenomenology in the continuum at an unprecedented level of accuracy. We show that off-shell effects and NLO QCD corrections for these processes do not factorize in general. In particular, we present the Yukawa coupling dependence of the cross section, which receives negative corrections due to sizable interference terms. We also add a discussion of p{sub T} resummation in the form of combining the NLO prediction via POWHEG matching with the parton shower and the associated uncertainties. To handle large Coulomb singularities at threshold, we include the next-to-leading log (NLL) threshold resummation derived in nonrelativistic QCD (NRQCD) for t anti t production. This results in a form factor that we incorporate in a fully relativistic cross section, which is factorized within an extended double-pole approximation. Fixed-order QCD corrections are included, hereby, for the top decay. We combine this calculation with the full fixed-order QCD results at NLO for W{sup +}W{sup -}b anti b production to obtain a computation that is not only valid at threshold but smoothly interpolates to the continuum. This allows us to present the first prediction for exclusive W{sup +}W{sup -}b anti b production at a lepton collider with a consistent matching between the top-antitop threshold and continuum regions. This computation is not only required to describe the intermediate energy
International Nuclear Information System (INIS)
Nejad, Bijan Chokoufe
2017-01-01
In this thesis, we present detailed studies of top-pair production with (t anti tH) and without association of a Higgs boson (t anti t) in e"+e"- collisions. These processes are of utmost interest for the top physics program of future lepton colliders. They allow in particular a precise measurement of the top quark mass and the Yukawa coupling. For this purpose, we present predictions for off-shell t anti t and t anti tH production including non-resonant and interference contributions up to next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD). This allows for top-quark phenomenology in the continuum at an unprecedented level of accuracy. We show that off-shell effects and NLO QCD corrections for these processes do not factorize in general. In particular, we present the Yukawa coupling dependence of the cross section, which receives negative corrections due to sizable interference terms. We also add a discussion of p_T resummation in the form of combining the NLO prediction via POWHEG matching with the parton shower and the associated uncertainties. To handle large Coulomb singularities at threshold, we include the next-to-leading log (NLL) threshold resummation derived in nonrelativistic QCD (NRQCD) for t anti t production. This results in a form factor that we incorporate in a fully relativistic cross section, which is factorized within an extended double-pole approximation. Fixed-order QCD corrections are included, hereby, for the top decay. We combine this calculation with the full fixed-order QCD results at NLO for W"+W"-b anti b production to obtain a computation that is not only valid at threshold but smoothly interpolates to the continuum. This allows us to present the first prediction for exclusive W"+W"-b anti b production at a lepton collider with a consistent matching between the top-antitop threshold and continuum regions. This computation is not only required to describe the intermediate energy region but also allows to study
Equivalence of two formalisms for calculating higher order synchrotron sideband spin resonances
International Nuclear Information System (INIS)
Mane, S.R.
1988-01-01
Synchrotron sideband resonances of a first order spin resonance are generally regarded as the most important higher order spin resonances in a high-energy storage ring. Yokoya's formula for these resonances is rederived, including some extra terms, which he neglected, but which turn out to be of comparable magnitude to the terms retained. Including these terms, Yokoya's formalism and the SMILE algorithm are shown to be equivalent to leading order in the resonance strengths. The theoretical calculations are shown to agree with certain measurements from SPEAR
Higher-order threshold resummation for semi-inclusive e+e- annihilation
International Nuclear Information System (INIS)
Moch, S.; Vogt, A.
2009-08-01
The complete soft-enhanced and virtual-gluon contributions are derived for the quark coefficient functions in semi-inclusive e + e - annihilation to the third order in massless perturbative QCD. These terms enable us to extend the soft-gluon resummation for the fragmentation functions by two orders to the next-to-next-to-next-to-leading logarithmic (N 3 LL) accuracy. The resummation exponent is found to be the same as for the structure functions in inclusive deep-inelastic scattering. This finding, together with known results on the higher-order quark form factor, facilitates the determination of all soft and virtual contributions of the fourth-order difference of the coefficient functions for these two processes. Unlike the previous (N 2 LL) order in the exponentiation, the numerical effect of the N 3 LL contributions turns out to be negligible at LEP energies. (orig.)
Analyzes of students’ higher-order thinking skills of heat and temperature concept
Slamet Budiarti, Indah; Suparmi, A.; Sarwanto; Harjana
2017-11-01
High order thinking skills refer to three highest domains of the revised Bloom Taxonomy. The aims of the research were to analyze the student’s higher-order thinking skills of heat and temperature concept. The samples were taken by purposive random sampling technique consisted of 85 high school students from 3 senior high schools in Jayapura city. The descriptive qualitative method was employed in this study. The data were collected by using tests and interviews regarding the subject matters of heat and temperature. Based on the results of data analysis, it was concluded that 68.24% of the students have a high order thinking skills in the analysis, 3.53% of the students have a high order thinking skills in evaluating, and 0% of the students have a high order thinking skills in creation.
A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.
Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn
2015-11-01
Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan
-, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf
Toward an Understanding of Higher-Order Thinking among Minority Students.
Armour-Thomas, Eleanor; And Others
1992-01-01
Used principal-factors extraction with varimax rotation analysis to clarify nature and function of higher-order thinking among minority high school students (n=107) from economically disadvantaged backgrounds. Results allowed for specification of mental processes associated with the construct and the extent to which students reported awareness and…
Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin
2017-01-01
This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…
Tanujaya, Benidiktus
2016-01-01
The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…
The Higher Order Factor Structure and Gender Invariance of the Pathological Narcissism Inventory
Wright, Aidan G. C.; Lukowitsky, Mark R.; Pincus, Aaron L.; Conroy, David E.
2010-01-01
The Pathological Narcissism Inventory (PNI) is a recently developed multidimensional inventory for the assessment of pathological narcissism. The authors describe and report the results of two studies that investigate the higher order factor structure and gender invariance of the PNI. The results of the first study indicate that the PNI has a…
Massive, massless and ghost modes of gravitational waves from higher-order gravity
DEFF Research Database (Denmark)
Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia
We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...
Method of applying single higher order polynomial basis function over multiple domains
CSIR Research Space (South Africa)
Lysko, AA
2010-03-01
Full Text Available A novel method has been devised where one set of higher order polynomial-based basis functions can be applied over several wire segments, thus permitting to decouple the number of unknowns from the number of segments, and so from the geometrical...
Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow
Watson, Willie R.; Jones, Michael G.
2017-01-01
Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.
Controlled generation of higher-order Poincaré sphere beams from a laser
CSIR Research Space (South Africa)
Naidoo, Darryl
2016-03-01
Full Text Available . 10: 327-332 Controlled generation of higher-order Poincaré sphere beams from a laser Naidoo D Roux FS Dudley A Litvin I Piccirillo B Marrucci L Forbes A ABSTRACT: The angular momentum of light can be described by positions on a...
Superpositions of higher-order bessel beams and nondiffracting speckle fields
CSIR Research Space (South Africa)
Dudley, Angela L
2009-08-01
Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...
EXISTENCE OF PERIODIC SOLUTION TO HIGHER ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,using the coincidence degree theory of Mawhin,we investigate the existence of periodic solutions to higher order differential equations with deviating argument. Some new results on the existence of periodic solutions to the equations are obtained. In addition,we give an example to illustrate the main results.
Dori, Yehudit J.; Tal, Revital T.; Tsaushu, Masha
2003-01-01
Teaching nonscience majors topics in biotechnology through case studies is the focus of this research. Our "Biotechnology, Environment, and Related Issues" module, developed within the "Science for All" framework, is aimed at elevating the level of students' scientific and technological literacy and their higher order thinking…
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
Oscillation of certain higher-order neutral partial functional differential equations.
Li, Wei Nian; Sheng, Weihong
2016-01-01
In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.
McGill, Ryan J.; Canivez, Gary L.
2016-01-01
As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…
A review of higher order strain gradient theories of plasticity: Origins ...
Indian Academy of Sciences (India)
require higher order boundary conditions that enable us to model effects of disloca- ..... where ǫ0 is a reference strain, σ0 the yield stress and n the strain hardening exponent. The ...... Petch N J 1953 J. Iron Steel Inst. London 173: 25. Pantleon ...
Foundational (co)datatypes and (co)recursion for higher-order logic
Biendarra, Julian; Blanchette, Jasmin Christian; Bouzy, Aymeric; Desharnais, Martin; Fleury, Mathias; Hölzl, Johannes; Kunčar, Ondřej; Lochbihler, Andreas; Meier, Fabian; Panny, Lorenz; Popescu, Andrei; Sternagel, Christian; Thiemann, René; Traytel, Dmitriy; Dixon, C.; Finger, M.
2017-01-01
We describe a line of work that started in 2011 towards enriching Isabelle/HOL’s language with coinductive datatypes, which allow infinite values, and with a more expressive notion of inductive datatype than previously supported by any system based on higher-order logic. These (co)datatypes are
Higher-order QCD corrections to inclusive particle production in panti p collisions
International Nuclear Information System (INIS)
Borzumati, F.M.; Kniehl, B.A.; Kramer, G.
1992-10-01
Inclusive single-particle production cross sections have been calculated including higher-order QCD corrections. Transverse-momentum and rapidity distributions are presented and the scale dependence is studied. The results are compared with experimental data from the CERN Spanti pS Collider and the Fermilab Tevatron. (orig.)
Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2007-01-01
Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
Brady, Timothy F.; Tenenbaum, Joshua B.
2013-01-01
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
Higher order hierarchical discretization scheme for surface integral equations for layered media
DEFF Research Database (Denmark)
Jørgensen, Erik; Kim, Oleksiy S.; Meincke, Peter
2004-01-01
This paper presents an efficient technique for the analysis of electromagnetic scattering by arbitrarily shaped perfectly conducting objects in layered media. The technique is based on a higher order method of moments (MoM) solution of the electric field, magnetic field, or combined-field integra...
Shape invariant higher-order Bessel-like beams carrying orbital angular momentum
CSIR Research Space (South Africa)
Ismail, Y
2012-09-01
Full Text Available -1 Journal of Optics September 2012/ Vol. 14 Shape invariant higher-order Bessel-like beams carrying orbital angular momentum Y Ismail1,2, N Khilo3, V Belyi3 and A Forbes1,2 1 School of Physics, University of KwaZulu-Natal, Private Bag X54001...
Lim, Cher Ping; Tay, Lee Yong
2003-01-01
Based on a case study of an elementary school in Singapore, this article describes and analyzes how different types of ICT tools (informative, situating, constructive, and communicative tools) are used to engage students in higher-order thinking. The discussion emphasizes that the objective of the lesson and the orienting activities, rather than…
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
International Nuclear Information System (INIS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-01-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants. (author)
Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases
Parkinson, William A.
2009-01-01
Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…
Quantum Noether identities for non-local transformations in higher-order derivatives theories
International Nuclear Information System (INIS)
Li, Z.P.; Long, Z.W.
2003-01-01
Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
Tularam, Gurudeo Anand
2013-01-01
This paper addresses the importance of teaching mathematics in business and finance schools of tertiary institutions of Australia. The paper explores the nature of thinking and reasoning required for advancement financial or economic studies involves the use of higher order thinking and creativity skills (HOTS) for teaching in mathematics classes.…
Performance-Based Task Assessment of Higher-Order Proficiencies in Redesigned STEM High Schools
Ernst, Jeremy V.; Glennie, Elizabeth; Li, Songze
2017-01-01
This study explored student abilities in applying conceptual knowledge when presented with structured performance tasks. Specifically, the study gauged proficiency in higher-order applications of students enrolled in earth and environmental science or biology. The student sample was drawn from a Redesigned STEM high school model where a tested…
DEFF Research Database (Denmark)
Breinbjerg, Olav
1992-01-01
An approach for including higher order edge diffraction in the equivalent edge current (EEC) method is proposed. This approach, which applies to monostatic as well as bistatic radar configurations with perfectly conducting polygonal plates, involves three distinct sets of EECs. All of these sets...